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ASYMPTOTIC BEHAVIOR OF BAYES PROCEDURES FOR
TESTING SIMPLE HYPOTHESES IN MULTIPARAMETER
EXPONENTIAL FAMILIES

By B. R. JornsoN! AND D. R. TrRUAX? ,
University of Victoria, British Columbia and University of Oregon

The asymptotic form of the Bayes acceptance region is derived for test-
ing simple null-hypotheses in multiparameter exponential families. This
result suggests a reasonable definition for tests which might be called
‘‘almost-Bayes”. The rate at which the risk of the Bayes test converges
to zero is obtained, showing the nature of its dependence on the prior dis-
tribution and providing a basis for comparison of almost-Bayes procedures.
Concluding remarks contain a brief discussion of some asymptotic con-
sequences of poor prior guessing.

1. Introduction and summary. Consider the problem of testing H,: 6 = 6,
versus H,: 6 +# 0, in the following model:

(i) We observe X}, X,, ---, X,, which are i.i.d. with k-dimensional density

(under 6)
f(X, 0) — ef'z—¢

with respect to some nondegenerate measure / (i.e., its support is not contained
in a k — 1 dimensional subspace).

(ii) The k-dimensional parameter € ranges over the natural parameter space
Q which includes 6, as an interior point.

(iii) For convenience zero-one loss functions are used. Modifications which
accommodate more general loss functions are discussed in Section 3.

(iv) The prior distribution v assigns probability y to § = 6, and density (w.r.t.
Lebesgue measure) p to § = 6,. This density satisfies
(1) o) =10 — (T =0 ) 408 — 07 as [0 — 8]0,

|6 — 6|

where % is a continuous, positive function defined on the unit sphere.

In this setting the acceptance region for the Bayes test is

(2) fe Cn — {x e R*: S e’n(ﬁ’x—-(/:(ﬁ))p(a) do < re’n(%x—g{t(ﬁo))}
— {x: S en[(a—ﬁo)'<x-v¢(0o))—lwo,ﬁ)]p(g) do < 7,} ,
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where I(6,, 6) = V¢(6,)(60, — ) — (¢(6,) — ¢(0)) is the Kullback-Leibler infor-
mation. Asymptotically the region C, shrinks to the mean vector V¢ (6,) under
6 = 6,; more precisely, C, behaves like

(n~*logn)t D + V¢(0,) ,
where D is the ellipsoid

(3) D= {x: x¥Z,x < k + p}
and
4) 2, = ‘( g;baa") !l (covariance matrix under 6 = 6,).

The risk of the Bayes test is
(5) B, = rP,,o(Yg C,)+§ P,,(X’e C,)p(0)do .

An investigation of the rates at which each of these two terms converges to zero
shows the type II risk to be the dominate term, behaving like

C, ,(n~* log n)(k+»/2

The type I risk goes to zero more rapidly by the factor (logn)™*

This work generalizes some of the results obtained by Johnson and Truax
(1974), where an extensive study was made for one-dimensional parameter ex-
ponential families. Working in a somewhat different framework, Rubin and
Sethuraman (1965) obtained similar convergence rates for the type I and type
IT risks.

The form of the Bayes acceptance region suggests consideration of tests which
accept whenever

m(X — Vg(6,)) € (log n)iE ,

where E is a bounded convex set. Tests of this form, which might be called
“almost-Bayes”, are studies in Section 4. Some interesting and surprising results
are obtained when the convergence rates are compared for various E sets. In
conclusion, some asymptotic consequences of poor prior guessing are discussed.

2. Main results. This paper is centered around two principal theorems which
are presented in this section. The first describes the rate at which the Bayes
acceptance region C, shrinks to the mean vector under 6 = 6,; the second is
concerned with the asymptotic behavior of the Bayes risk and shows the nature
of its dependence on choice of prior distribution. Several technical lemmas,
which are required for the proofs of these two theorems, have been relegated
to the final section.

We begin by showing that C, has the limiting behavior described in Section
1. More precisely.

d((n/log n)¥(C, — V¢(6,)), D) — 0 as n—> oo ,
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where d is the Hausdorff metric. Define
D, = (n/log n)}(C, — V¢(6,)) .
We need to prove that given ¢ > 0, D is contained in an ¢-neighborhood of D,

for all n sufficiently large; and, conversely, D, is contained in an e-neighborhood
of D. Clearly, it will be enough to prove that for all sufficiently large n

fx: X x<k+p—ec D, C{x: X5 x<k+p+ ¢}
Actually, we prove a somewhat stronger result.
THEOREM 1. Given ¢ > 0 we have for all sufficiently large n
E-cD,cCcE,,

where
E * — {X:x’z—lxgk"'P_P loglogn + c*—'ie}
" * U= log n logn
and
£ _ r(det X))} s _ inf i
¢ =2log {(’}‘:‘)5}5};:a;)_kﬁb(? o T ap O =1
27 = min eigenvalue of X,7'.

max

Proor. To simplify notation without losing generality, we assume that 6, and
the mean vector V@(6,) under H, are both the zero vector. Then ¢(6) is the
Kullback-Leibler information number /(f,, #). We must show that, givene > 0,
we have, for all suﬁiciently large n, E,~ C D,. That is, for all sufﬁciently large
n, x € E,” implies

(6) ) e(nlogmia'x—mp(a)p(e) dg <.

Write the left hand side of (6) as the sum of two integrals (7) and (8).
(7) 1015 m—tiogs €10EMH0E=m0 D) 0(0) df

®) 12 hogs €M IEE05=0000(6) df .

Since |J, E,” is a bounded set we have by Lemma 4 (see Section 6) the existence
of an integer N, so that if n = N,

(9) S|0|>n_&logn e(’nlogn)éﬂ'x—ng}(ﬁ)p(o) d(9 < 7'(1 _ e—e,’«i)

forall xe E,~.

At this stage we remark that we may as well assume that X, = 1. If it is not,
write X, = B’B where B is nonsingular. Y = BX then has an exponential dis-
tribution with parameter = B'~'¢ and wheny = 0, Cov (Y) = I. If 6 has prior
density o(f) then 7 has density

p(7) = (det Z)~*o(B'y) ,
and if o(6) = |6|*4(0/|6]) 4 o(|6|?), then

o) = bih (1) + oGl
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where

b = e s ().

If h is bounded by A*, A~ on the unit sphere, then h is bounded by
(det Zy)=3(2+)/2h*, (det Z))~#(A~)?/*h~ where 4* are the max and min eigenvalues
of BB’ (or BB = Z,7%).

Now, making the simplifying assumption that X, = /, (8) can be bounded by
(10) € § s n—tiogn e(nlogmiﬂ'z—nw?/zp(ﬁ) do

where
Tn = N SUPgca—tiogn (|0132 — ¢(0)) .

Make a change of variables to express (10) as
P40 § . g10gn €985~ 8000 nt) dO
Notice that for any 6 > 0
p(0]nt) < (1 + B)[6h (,_;l) nt i |6 < logn

for all n sufficiently large, so that anothfer upper bound for (8) is

en(l 4 Oyt Rk () o |6]7h (%{) e-0-ogmist g

But, we only increase this by integrating over the whole space, and
0 + (log n)tx o2 .
6 + (lo nix”h< A e T/ )eé"d0~ lo n”/x”h( >27r"/2
10 -+ (tog mixph (11 (OB MR (1og nyJxh () (20)
Thus, for n sufficiently large (say n = N,), (8) is bounded above by

ers(1 + O () niex-r(2m) X log n

< (1 + 0f*(k + p)/¥(2m) - mi==4=7(log e
é (1 + 5)3h+(k + p)p/Z(271.)10/2n—(p/2)(loglogn,r’logn)+(c——e)/(210gn)(log n)p/z
— (1 + 6)37,e—5/2 < Te—e/4 s

if we choose d sufficiently small.
For the second part of the theorem we want to show that for any ¢ > 0 there

is an N such that if n = N, (11) implies (12)
(11) { e(nlogm*e'z_nmo)p(g) do <7,
+
(12) Xf < k4 p—p 10BIOBT L F e
log n log n
The proof is by contradiction. Suppose there is some ¢ > 0 such that for in-
finitely many n, there is an x, satisfying (11) and not (12). From (11)
§ 10150 t1ogn e("log"m’i"%y’w)‘a(a) do
n=*2%e § g <10gm e(l(’g")éo'“"_*'0'29(‘9/”5) do

where 7% = ninf; ,~415., (3]0)* — ¢(0)).

7

v v



350 B. R. JOHNSON AND D. R. TRUAX

By choosing n sufficiently large we have, for a fixed d to be chosen later,
o(0/nt) = (1 — 9)|0|*h <|_z—l> n=e2if 6] < logn.
Thus, for all sufficiently large n |

7z nm P era(1 — 0)§ <106 e‘1°g”’é””n"%""2|0|"h (I—z—|> do

= eri(1 — Q)nilsali=bp | gmil0-Clogmis,R | (ﬁ) de .
16|

Since {x,} is bounded (Lemma 5) the above integral is asymptotically equivalent
to the integral over the whole space. Also, since {x,} is bounded away from the
origin (because (12) fails) the integral is asymptotically equivalent to

(13) (2r)+%(log ny?’*|x,|*h ( Xn ) .

1%

Further, because (12) fails, we have for all sufficiently large n that (13) is greater

than
(27:)"/2(1 — o)k + p)””h‘(log n)?’*

Finally, we have for all n sufficiently large
7 = ern(l — 8)nt=al k=2 2r )21 — )k + p)*/*h=(log n)»/*.
Also, e = 1 — 0 for n large enough, and using the fact that (12) fails for suf-
ficiently large n
7 2 ho(1 — 0)!5+9(log n)»/'e* /e (2m)¢ ¥(k + py*(log n)?'®
= (1 — 0)tP+0ee/2y
We get a contradiction by choosing d so that
(1 — 0)prt0e/2 > 1,
Thus, when X, = I, we have proved the result.

In the general case, make the transformation Y = BX, where X,7* = B'B, and
let & be replaced by

h(i) = 1B (get 5)-th <.._B"/ >
Il Inl? |B'7|
ht — sup. h (1/_ < sup (7' BB'p)*"? (det Zo)+ sup, < B'y >
Pob(f) = e A 2
< (max. eigenvalue of BB')*/*(det Z))~th+
= (max. eigenvalue of X,~')#/*(det Z,)~th+ .

Similarly,
Y h= = (27)**(det Zy)"thm . d

Next, we examine the asymptotic behavior of the Bayes risk
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THEOREM 2. The risk of the Bayes test satisfies

B, = C, (n~tlog n)*+2%(1 4 0,(1)),
where

u
Cus = Durpusnss 1 (1)

PrOOF. As in the proof of Theorem 1, we assume ¢, = 0 and the mean vector
V¢(0,) = 0 (so ¢(0) = I(0,, §)). We will estimate the rate at which each of the
terms in (14) converges to zero. Write

S Pﬂ(Ye Cn)p)a) do = Slﬂlsn_glogn + S|a9|>n_%logn .
First, look at the integral
(15) SWIsn_%logn Pﬂ("\? € Cn)p(a) do = S|0I§n_i’logn SnQCE e—ng}(ﬂ)-kn%ﬂ’v dPOn(v)p(e) d0 ’
where P, is the distribution of ntX when § = 0. To make our calculations
simpler, let us assume that X, = 1. We can then recapture the general case as
in the proof of Theorem 1. After a change in the order of integration, (15) can
be expressed as
Yube, S5 togn e—m/z>|0|2+nie'u(en<;1012—¢<0>>)p(0) df dP,,(v) .
The quantity in parentheses converges to one uniformly for |§| < n~t log n, and
using
o(0) ~ |6]7h (ﬁ) as 0] -0

19|
we see that the above integral is asymptotically equivalent to
(16) n-k+p)/2 Snicn etlvi? S|0|§log'n wlph <%> e—40-v12 gg dPM(v) .

For v e ntC, we have v = O((log n)}) so that
Sio1s10gm [0]7h <~0—> e~ H0= df
161
is asymptotically equivalent to
§ |6]7h (i) emH0=v12 4f
16|
uniformly for v € ntC,. Thus (16) is asymptotically

(17) n—tk+2)/2 S(logm*Dn etlvi? S I0 + v|”h (%{_%) o401 4g dP(m(v) .

We want to show that (17) is asymptotically equivalent to the integral obtained
when @ is substituted for P,,; ® is N0, I). Consider Theorem 15.4, page 154
of Bhattacharya and Rao (1976). Taking r = 0 and

f(’IJ) = eilmM('v)I(ve(mgminn)(v)
in this theorem, where

M) = § |0 + v]*h (H) b0 4
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one obtains
§itogmtn, €4 M(v) APy, (v)
(18) = | f(v) dPu(v)
= {f(v) dD(v) + X525 n77* { f(v) dP(=P)(v) + R, .
Here
(19) [R,| < @f(RF) o(n=77 %) + @ (y: @) + o(1),
and
o (R*) = sup {|f(x) — f()|: x, y e R},
(20) n = O(n~tlogn),
o (x: 1) = sup {|f(y) = f)]: |y — x[ < 7}
@, (71 @) = J o v:n)dD().
If v € (log n)tD,,, then for some constant a
[v* < (k 4+ p)logn — ploglogn + a.
Since M(v) < At { |6 + v|? e~#” df and the right hand side is an increasing func-
tion of |v|>, we have M(v) < b(log n)*’* for some constant b. It is easy to show

that
wf(Rk) é ea/zbn(k+p)/2 ,

0 v 7) < d,et"{(log ny(glv] + 7Y2) + wu(v: )}
(21) X I(|vl2s(k+p)logn—ploglogn+a+m(v) ’
0, (vin) < dy § |0]2(37° + |6 — v]p) exp{—}|0 — v + 7" + [0 — vy} db
s dy(l + [Py,
where d,, d,, and d, are positive numbers (independent of n). Hence,
('Df("]: (I)) é (2’7r)_k/2 S(Ivlzé(k+p)logn—ploglogn+a+n)((log n)p/Z(y]l/vl + ”2/2)
(22) + dy(1 + [v]**)p) dv
=o(l).
Taking s — 2 = k + 2, the relations (18)-(22) yield
$(1ogm?p,, et M(v) dP,y,(v)
= ((1ogmin, €""M(v) d[@ + T332 n*Py(—D)](v) + o(1) -
Now, dP,(—®)(v) = Q,(v)e~¥"" dv where Q; is a polynomial.
ln—:‘/z S(logminn e%lleM(,v)Qj(,v)e—ilvlz d'v|
= |17 § 1ogmy i, M(V)Q;(v) dv)|
é n_j/z maxve(log'n)&Dn |QJ(,U)IM('U) S(logn)ﬁl)n d’l) = ”_j/zo((log n)a)

for some « (and this is also o(1)). Hence,

S(lo n)*D e%'”‘sz dPOn V) = S(lo n)%D e“”le(’U dd)('v + o 1) *
g n g n
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Finally, we need to calculate
S(logn)QDn e&wle(,v) d(I)(v) = (Z’ﬂ)mk/2 S(logn)’}Dn M(U) d’l) :
Take {a,} to be a sequence such that @, — oo, (log n)ta, — 0. Then
(2m)~*r Saogm%pn—sw,an)M('v) dv
0+ v ‘
= (2z)*1 SSuogm*D,,—Sw,a,,)w + v|*h <]0_:||-—'v}> e~ 492 4o dy |
where S(0, a,) = {v: |v| £ a,}. If |v| = a, then
- _ 0 +v
27)~*1 § |6 + v[re-t0Ph <_.> do
( | |0 ‘+ v/ .
()
v]
uniformly in |v| = a,. Thus, the above integral is asymptotically equivalent to

v
et [0 (1) 0 = (108 1§t iPh (1) i

where 8, = (log n)~ta, — 0, and in turn, this is asymptotically equivalent to

(g 18+ sy luPh (1) i

Also,
0
()4 Sty MO0 0 = S0y 10 01 (1) 900) o
0

— &% 0 § |0 + @, 0]k (%) #(0) db dv

— O(a,**7) = o((log n)*+»7?) .
Finally,

Slﬂlsn_%logn Pﬂ("—, € Cn)p(e) da ~ Ck,p(n—l log n)(k+p)/2 ’

where

Crp = Vjunsiss [¥[7h <|—Z—l> du .

In the general case we get the same result with A replaced by h. That is,
B'u ) du
|B'ul

Crp = (det Zg)™* §pgpy |Blu|ph<

= Y ulPh <i> du .
S Zgusk+p } } |u|
Finally, we have to examine

§ 10150 H10gn Pg(X, e C,)o(0) do
= Slﬂl>n_5logn S(logn)ibn e—n[p(ﬁ)—n—éwy] dPO.,,(’l))p(o) dﬁ .
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If v € (log n)*D,, then |n~*v| — 0 so that ¢() — n—4¢’v has its minimum in the
region |f| = n~*log n attained at 6, on the boundary

P(0,) =m0, = ¢|0,]* + 0(10,]") — ¢,|6,|(n" log n)t
= ¢yn~i(log n)* — ¢,n=(log n)} + o(n~Y(log n)?),
so there exists ¢; > 0 such that
¢(0,) — n~40,'v = c;n~(log n)?, for all sufficiently large n .
Hence,
015w bogn §togmtn, €400 AP, (v)p(0) dB < e=aiost < pmikiei,
Putting all these results together gives us
§ Py(X € C,)p(0)do ~ C, ,(n="log n)k+»r2,
To complete the calculation of the Bayes risk one must examine
7Py (X ¢ C,) = 1(1 — Py,((log n)iD,)) .

Again using Theorem 15.4, page 154 of Bhattacharya and Rao (1976), this time
with r = 0 and f(v) = I, g tp,,(v), ONe obtains

rPy(X € C,) = 1(1 — @((log n)iD,)) — r T34 n=9P,(—®@)((log n)!D,) + R, ,
where |R,| < o(n=“"%) + ya (n: ¢*), and dg(v) = d(P + 25 nm PP (— D)) (v).
First, we estimate the terms

P(—®@)((log n)D,) = (2 7)7*" § 1ogmyip, € H*Q;(x) dx .
Noting that P,(—®)(C) = —P,(—®D)(C°) we have (assuming X, = I) for given
e>0
(2ﬂ)—k/2 S(log’n)%D% e—%lzwIQj(x)l dx < (2n)—k/2e—&(1_s)|z,,|2 S e—(e/z)llej(x)l dx ,

where |x,|* = (log n)(k + p — p(log log n/log n) + ((c~ — ¢)/log n)), (n suffici-
ently large). Thus,

|P;(—®@)((log n)tD,)| < (constant)n—tk+» Ao (Jog p)pu-e/2
and by choosing ¢ < (k + p)~* we have
n=iP (—®)((log n}\D,) = o(n=+»3)
To estimate 1| — ®((log n)}D,) we need to make use of Theorem 1.
I — @((log n)tE,*) < 1 — ®((log n)tD,) < 1 — ®((log n)E,") .
To calculate the left and right hand side we make use of the following lemma.

LEMMA.

k-2 —ai/z
(2m)=*2 §  ne, € dx ~ 2a, e , as a,— oo .
= 2¢T'(k/2)
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Thus,
I — (D((log n)Eni) ~ z(lzck;:_-l_‘?z‘(/,;_;)j (log n)(k—2J,2e—§[(k+11)(logn)—p(loglogn)+c1'ie]
_ 2k 4 p)* (log mRe e
- 2"/2T(k/2) ntk+p)/2 o )
Recall,

Cip = Sjusiep |U[7h (%]) du = h* §nghsp (U] du

— p* Vznk/z
I'(k/2)

(k + P)(k+p—2i/2 ,

where h* lies between A=. Thus,
7(1 — O((log n)tE, %)) ~ Z—: C, ,n~ 7% (log n)k+r-Dr2gte2 |
giving us
7(1 — ®((log n)tE,*)) = C, ,n=**P/(log n)k+r-2/2g0n 1 |
where A=[h* < lim €%V < A*[/h~. These results also show
@t ¢*) = ¢*(8{v ¢ (log n)!D,}")

log 1 T — e\t
< |¢| {/U: |v| > (log n)? <k +p—p Oigogorgl'l + Clog n5> —_ 77} )

n = O(n~tlog n)
o O(H—(k+1’)/2(log n)(k+p—2)/2) .
Taking s — 2 = k 4 p we see that the dominant term in the risk of the Bayes
test is the type II risk
C, ,(n~'log n)®+r2, 0

3. Generalized loss functions. Suppose that, instead of zero-one loss func-
tions, we had assumed the more general structure:

Ly(6) = |6 — 6,%g (f:ﬁo_> 4 o(f — %) as |§— 6] —0,
|6 — 0,
Le)=5 if 6=6,
=0 if 6+6,.

Then the acceptance region for the Bayes test (2) would have been
(2') XeC, ={x: | e s [ (0)p(6)df < oyertez=¢o}
and the Bayes risk (3) would have been

(3 B, = 0P, (X¢C,) + § P(X € C,")L(0)p(6) df .

Comparing (2) with (2’) and (3) with (3’), it is obvious that the results of Section
2 can be adapted to this generalized setting by formally replacing y by dy, p by
P + a, and k by gh.
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4. Almost-Bayes tests. Now, let us look at the risk of tests that might be
called “‘almost-Bayes.” Recall that the Bayes test had an acceptance region like

(X — V¢(8,)) € (log n)¥{x: x'Z;"x < k + p}.

Let E be an arbitrary bounded convex set and consider tests which accept
whenever

n¥(X — V¢(0,)) € (log n)iE .
For simplicity we will suppose X, = I. This can always be accomplished by
looking at BX instead of X, where £,-! = B’B. The set BE is also convex if E is.
For the type I risk one needs to evaluate
(1 — Py, ((log n)E))
where P, is the distribution of n#(X — V¢(6,)) when 6 = 6,. By the same argu-
ment as in the proof of Theorem 2, we have
111 — Po((log n)E)] ~ 7[1 — ®((log n)*E)]
and the latter is

/2
7(2”)_k/2 S(losmii«:c e~ dx = r((l;)g):’/)z : § e e~ ttogmi= gy |
¥

Let x, be a point such that |x,|* = inf, . |x|>. Then

r((l;g):/):/'z- Vo etitosmi dx = _(rz_(_l)%‘%zna)lk/j‘z‘ { po @ dtlcgmali=lag® gy
T )% %n?'%0

Write
§ po e~ Hlogmzl=lzg®) gy — (e 2 {x e Eo: |x]® — |x)? _:_21_95_’.} dt

= {32 {er‘: x| — |x? < —21°g_’.} dt
logn

= J(log ) T e-smuafx e B [xf — [x' < y}dy.
Next, we have to calculate A{xe E°: |x|* — |x|* > y}. The two most extreme

cases are when E is a sphere and when £ is a half-space. In the second case we

need
T[(k_“ 2

A{x:|x Xy Db x2 < x4 ) ~ pe+n 2 as v—0.
(s ol <t Do x? S I+ )~ e ,
At the other extreme
k2
xS Dt < x4 pp~ o, KT v, as y—0.

ol
2I'(kj2 + 1)
Recall that
J(log n) {7 y*=t e-tosm dy — 21 I(a)(log n)*! .
Thus, the type I risk for a half-space is asymptotically
r(logm? . 200 A((k + 3)/2)
(2m) i 20((k + 3)2)x|  (log n)*+0
= 7(27)4x,|(log n)~tn-Hx?
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For the sphere the type I risk is asymptotically

rlogm® kat* oy 2T(2) _ r(log m)® k)
Q@r)rint=® 2T(kj2 + 1) (logn)  2¢pt=T(kj2 + 1)

Thus, in general one can say that the type I risk is asymptotically

rntfp,
where ¢,(log n)~* < p, < ¢,(log n)*~” for some positive constants c,, c,.
If we had not assumed X, = /I, the result would be the same except that

[xo* = inf{y' 2~y y¢ E} .
The next problem is to compute the type II risk for almost-Bayes tests. Just

as in the Bayes case one shows that the type Il risk is asymptotically (again with
Z,=1)

n—(k+p)/2 S(logn)éE eﬂvlz S |0 + ’Ulph <%> e_*wlz d0 dq)(v)
v

|0

= (2r)~*ip=twr (e § 10 + v]Ph < 0+ v|> e~4192 4@ dy

which, in turn, is asymptotically equlvalent to

o5 1] (b (LB H2 Y i ap
(271,) /2pk+p)/ (10g n)* |0/(10g n)i + «g|

~ (" log n)#+®72 § , [p]?h <| I) v .

For the general case replace E by X,7'E in this expression.

It is interesting to note that if in place of the Bayes set

Dnz{ XX <k +p4p 2t log log n + }
log n

one uses D = {x: xX'Z;~'x < k + p} the type II risk stays the same but the type
I risk is reduced by a power of log n.

If a test with acceptance set (log n)*E has |x,|* < k + p, then the risk is asymp-
totically the type I risk and is larger than the Bayes risk by a power of n. How-
ever, if E has |x,|* = k + p then the risk is larger only by the factor

Szo‘llsl”lph <| |) dv
ol () o |

One can define (similar to Rubin and Sethuraman (1965)) an index of efficiency
of a test based on the acceptance region (log n)*E by letting

- gzo_ll,[q;l»h<l_z~l>dv ,,,
o 1el0l? h<| |> P
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because if

(n,~" log ) #+#72 § v,y [v|h <|—;);|> dv = (n, log n,) 0 § 1 Jv|7h <'_Z,|> dv

as n, — oo, n, — oo, we must have
ny/n, — e(E) .

Note that this is only for E containing D. Otherwise, if n, and n, are chosen to
make the risks equal, n,/n, goes to zero faster than a power of 1/n,.

5. Consequences of poor prior guessing. An almost-Bayes test results from
wrongly guessing the exponential family. Let {° denote the mean vector under
the null-hypothesis, and suppose that the assumed exponential family yields the
covariance matrix 4 under H, instead of the actual X, = /. Then the (almost-
Bayes) acceptance region

nt(X — %) e (log n)¥{x: x’A'x < k + p}
would be used; so the type I risk is
yn—Help where |x* = inf {|x]*: x’4~x > k + p}
= (mine.v. of A)(k + p),
and the type II risk is

(ﬂ“l log n)(k+p)/2(2n.)—k/2 Slx:x’A‘le’”"’) I’l)lph <,_:lvz_|> v

Therefore, unless all the eigenvalues of 4 are = 1, the risk of the Bayes test is
much smaller (approximately by the factor 1/n?-4min)(k+2)/2),
Suppose next that one guesses the wrong prior

0 — 0,

mw=w-m%(w_“

)+ o1t — %) .

The calculated acceptance region would then be
(X — (% e (log n)¥{x: x'x < k + p},

and |x,* = k + p. Again, unless p = p, the actual Bayes risk is much smaller,
this time roughly by a factor 1/n‘®=?72,

6. Lemmas. This section contains the technical lemmas needed to prove the
main results (see Section 2). Here we again assume without loss of generality
that 6, = 0 and the mean vector V¢(6,)) = 0 (so ¢(0) = I(6,, 6) and is strictly
convex with absolute minimum zero at 6, = 0).

LemMMA 1. Letr > 0and &, — 0. Then there exists 0 > 0 such that

12 Szroene, 00)d8 23>0 forall |f=1.
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PROOF. 1 = (s, 0(0)d0 = § g <rpionizs, 0(0) 40, where we have chosen
r, < r so small that

o) S Linf,_ hw) >0 if 0] <r.

0]
Thus,
12 $pcrpzs, 0(0)d0 = % inf -y A(4) Soisrg0ezs, 6] d6
= % inf!ul=1 h(ll) S'ﬂléro;ﬂ’tozin Iﬁl” o ,
where 1, = (1,0,0, ---,0). Forn sufficiently large

Siorsryirtyze, 101740 Z 154, 10]7 40 > 0. 0
Lemma 2. If |y,| — oo, there exists ¢ > 1 such that
{ enlf'vn=9D1p(d) df = c",
for all n sufficiently large.

PROOF. Let ¢ > 0 be given and choose r so small that M = sup,, <, ¢(0) < «.

Then
S e”[""’"—""m]p(ﬁ) do Slolgr en[ﬁ’ﬂn—s)(ﬁ)]p(ﬂ) db
" piri0ry,ze e""vnp(0) db

n(e—M)
L Y S I PRV T o(0) dé

derts=) | by Lemma 1

()
|

vV IV IV IV IV

(2
B

if n is sufficiently large,
where 1 < ¢ < e~ Y. ]

LEMMA 3. Suppose x,eC, = {x: §e"?"*=¢"p(0)df < 7} for all n. Then
lim, x, = 0.

Proor. First, note that {x,} is a bounded sequence. Otherwise, there would
be a subsequence {x, } such that |x, | — oo; and along this subsequence we

would have
r > S enk[ﬂ’xnk—¢(ﬂ)]p(0) de ,

which would contradict Lemma 2.
Since the sequence is bounded, let x, be a finite limit point. It entails no loss
to suppose x, — X,. Then, a standard argument shows
n='log [ {e™?'*n=¢'"1p(0) df] — SUPg.,i9)50) [0'%0 — $(O)] -
Because 6'x, — ¢(f) is strictly concave, its maximum must occur at some 6 such
that x, = V¢(d). Also, 0'x, — ¢(6) is zero at 6 =0, sO SUP.4)>0) [0'x, —
$(6)] > 0 unless § = 0. Since

0= ntlogy = n'log § en?=u=¢"p(6) db ,
we must have § = 0 (hence x, = V¢(0) = 0). ]
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LEMMA 4. Let a, = (n~'log n)t. Then

sWzn_%lognen[an/ﬂx—([um]pw) df — 0 as n— oo,
uniformly for x in a bounded set.

PRrROOF. «a,0'x — ¢(6) is a strictly concave function whose maximum value
occurs when V¢(0,) = a,x. Since Z, is nonsingular, it follows that 6, = O(a,),
hence, that |0,| < n~*log n for all x in a bounded set, provided » is sufficiently
large . That is, the maximum value of a,80'x — ¢(f) for |6] = n~tlog n occurs
when ]5”] = n-t log n; so that for all n sufficiently large

Slalgn‘hogn en[anﬂ':t—;'l(ﬂ)]p(a) do < en[an@x—miﬂ)]
where @, is the point on the sphere {#: || = n~tlog n} where the maximum
occurs. From Taylor’s theorem ’

n[a,8,/x — ¢(B,)] = (log n)ii,'x — }(log n)d, e, + O <(1_°§;’_)3> ,
h

where |@,| = 1. This converges to —oco uniformly for x in a bounded set. []
LemMa 5. U3, D, is bounded (D, is defined in Section 2).
PrOOF. Suppose there is a sequence {y,} contained in J;_, D, with |y,| — co.
It is easy to show that each D, is a bounded set, so that without loss we can
suppose y, € D, for all n. By Lemma 3 we have (n~'log n)ty, — 0. If y,eD,

we have
§ en[a'yn(n-llogn)i—glr(a)]p(g) do < 7.

We will obtain a contradiction by showing that the left-hand side converges to
oo. Set B, = (n~'logn)ty,. Choosed > 0 so small that ¢(f) < |0]*/26* for all
|0] < d, where ¢ is some suitably chosen positive constant. This is possible

because
P(0) = $0'Z0 + O(|6°) .
Then
§ et OIo(8) dB 2§10 €1 p(0) O
= $ip12a e(n/az)(ﬂ’azﬂn-ilﬂlz)p(a) dé
Z et hinf, b (o) G e 100 40
(We also choose d so small that p(#)/|0|" = 4 inf,,_, (w) for || < d.)
= IR InEB) s 00 €10 4 0B, O
~ etr?Mfa(Linf k) § e~"0%2% |0 + o*B, |7 df
~ eto’Ba(L inf h)|o®B,|?(27/n)/ a® .
But
$nd’|B,* + plog|B,| — sk logn
= }d’|y,[*logn + plog|y,| + 3p(loglogn — logn) — }klogn
= $(log n)[a*|y.* — (p + k)] + plog|y.| + 4ploglogn

— 0. 0



ASYMPTOTIC BEHAVIOR OF BAYES PROCEDURES 361

Acknowledgment. The authors wish to thank the referees for comments which
improved the quality of this paper.

REFERENCES

[1] BHATTACHARYA, R. N. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expan-
sions. Wiley, New York.

[2] Jounson, B. R. and Truax, D. R. (1974). Asymptotic behavior of Bayes tests and Bayes
risk. Ann. Statist. 2 278-294.

[3] Lehmann, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

[4] RusiN, H. and SETHURAMAN, J. (1965). Bayes risk efficiency. Sankhya Ser. A 27 347-356.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
UNIVERSITY OF VICTORIA UNIVERSITY OF OREGON
P.O. Box 1700 EUGENE, OREGON 97403

VicToria, B.C.
CANADA V8W 2Y2



