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ASYMPTOTIC BEHAVIOR OF ELEMENTARY SOLUTIONS OF
ONE-DIMENSIONAL GENERALIZED DIFFUSION EQUATIONS

By NARIYUKI MINAMI, YUKIO OGURA, AND MATSUYO TOMISAKI

Tokyo Institute of Technology, Saga University, and Saga University

We give the asymptotic estimate for large ¢t of elementary solutions of
one-dimensional generalized diffusion equations with regularly varying Green
functions. As a corollary we obtain the precise asymptotic behavior of the
semigroup T.f(x) for all f € Li(dm) if the speed measure function m(x) is
regularly varying as x — oo,

1. Introduction. Let p(t, x, y) be an elementary solution of a generalized
diffusion equation

(1.1) ou(t, x)/ot = Gu(t,x), t>0

on an interval S in the sense of McKean [9]. Its asymptotic behavior for small
t > 0 is obtained in general form by Watanabe in [8]. In this paper-we study that
for large ¢t under the assumption that the Green function G(«, x, y) is regularly
varying as « tends to 0 from the right, i.e.,

(1.2) G(a, 0,0) ~a™L(1l/a) as a0,

for some slowly varying function L(t) and 0 < p < 1. Here the description a(a) ~
b(a) as a | 0 [ — ] stands for lim,ja(a)/b(a) = 1 [resp. lim,_«a(a)/b(a) = 1].
More precisely, after noting the pointwise asymptotic formula

(1.3) p(t, %, y) ~T(p)'t"'L(t) as t—ow, x,yES,
we will show that the following global asymptotic estimate
(1.4) lim sup; .t "L(t) sup,esp(t, x, y) < ®, x € S

holds provided 0 < p < 1 and an extra condition is assumed (see (2.5) and (2.6)
below). It should be noted that the formula (1.3) together with estimate (1.4)
implies

(1.5) J;p(t, x, YY) dm(y) ~ T(p)~"t*7'L(t) Lf(y) dm(y) as t— o,

for all f € L,(dm), where dm(x) is the speed measure. As a by-product, we will
also note that (1.4) and (1.5) remain valid for p = 1 if L(t) converges to a positive
constant as ¢t — oo,

Actually our first interest in this subject was inspired by a physicist, Masuo
Suzuki, who gave (1.5) for long-time tail phenomena in statistical physics ([12]
and [13], also cf. [2] and [7]). Our results here verify his results rigorously as far
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as the external fluctuation force is Gaussian white noise. We will illustrate it in
Section 6. Finally, we note that some sufficient conditions for our assumption
(1.2) are given in [5] and [6]. We will mention that in Corollary 2 and Remark 2
in the next section. As is mentioned in [5], the class of one-dimensional diffusion
processes which satisfy (1.2) coincides with that introduced by Darling and Kac
[1] for the limit theorem of normalized occupation time law (see also Stone [11]).

2. Statement of results. Let S = (4, %) be an open interval with
—0 =< /4 <0< /4 < o and m(x) a real valued nontrivial right continuous
nondecreasing function on it with m(0) = 0. The support of the measure dm(x)
on S induced by m(x) is denoted as Sn. Let C(S) and C(Sn) be the spaces of all
complex valued bounded continuous functions on S and S,,, respectively, and
D(®) the space of all those functions u(x) in C(S) satisfying the following two
conditions. a) There are two complex constants a, b and a function g(x) in C(S,,)
such that

(2.1) u(x) = a + bx + J; (x — y)g(y) dm(y), x €S,

where the integral is read as

o+ o fly) dm(y) if x €0, 4),
fo+ f(y) dm(y) = '
- 0]f(y) dm(y) if x € (4,0).

(™

b) If Z is finite, then

(2.2) lim, ., esu(x) =0, i=1,2.

The linear operator & from D(®) into C(S,,) is defined by
D(®) D u— Gu=ge C(S,).

We note that the above setting includes all cases of sticky elastic boundary
conditions for regular boundaries as well. Indeed, if 4 is a regular boundary and
if we want to set the reflecting boundary condition at #4 for instance, then we
have only to reset S = (4, ®) and m(x) = m(4—) for all x € [4, ®) (for details
see [8] and [16]). Now we can define the elementary solution p(¢, x, y) of the
diffusion equation (1.1) following McKean [9] (see Section 3 below for precise
definition). The corresponding Green function G(a, x, y) is given by

23) Gla,x,y) = f e “p(t,x,y) dt + &(x,y), a>0, %, y€ES,
0

where ®(x, y) is a nonnegative function defined in (3.9) below. We note that the
correction function ®(x, y) is equal to zero if [x A ¥, x V y] N S,, # &, where
x A y = min{x, y} and x V y = max{x, y}. Hence the formula (2.3) is reduced to
the usual relation between the Green function and the elementary solution for
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diffusion processes, if [x A y, x V y] N S,, # O, especially if the generalized
diffusion equation (1.1) is a diffusion equation (i.e., S,, = S).

PROPOSITION. The Green function satisfies (1.2) if and only if the elementary
solution satisfies (1.3). Further in this case it holds that
(2.4) lim sup;.t'"L(t) " sup,yexp(t, x, y) < ©
for every compact set K in S.

REMARK 1. Assume that the formula (1.2) (and hence (1.3)) is satisfied.

Then 4 = — and 4 = . Further if 0 < p < 1, then either J; = © or J, = @
holds, where

2+
Ji = limx—»/,»,xES f y dm(y): i= 11 2.
0+

THEOREM. Let 0 < p <1 and the Green function satisfy (1.2). In the case of
J1=J2=°°, let also )

(2.5) lim inf,_.{cm(c)}™* J; (m(c) — m(x)) dx > 0,

(2.6) lim inf,_,_ofem(c)}™ f (m(x) — m(c)) dx > 0.

Then the global asymptotic estimate (1.4) holds. Further the formula (1.5) is valid
for all f € Li(dm).

COROLLARY 1. The Green function satisfies (1.2) with p = 1 and the slowly
varying function L(t) converging to a positive finite limit L() as t — o if and only
ifA=—x, A4=0on 0<m(®e) — m(—») = 1/L(0) < o, Further in this case the
formulae (1.3)-(1.5) hold.

Note that the assumption (2.5) [(2.6)] is satisfied if m(o) = o [resp. m(—») =
—o0] and
lim inf, ,.m(cxo)/m(c) > 1 [resp. lim inf,_, .m(cxe)/m(c) > 1]
for some positive xo. In particular, it is satisfied if m(x) [resp. —m(—x)] is regularly
varying with positive exponent as x — . Hence, due to [5] and [6], we have the
following ‘
COROLLARY 2. Assume that /i = —®, /o = ®, JJ; < ®, J, = © and

(2.7) m(x) ~ x/'K(x) as x— oo,

for some 0 < p < 1 and slowly varying function K(x). Then the assertions of the
Theorem hold with a slowly varying function L(t) satisfying

(2.8) K(t°L(t)) ~ {p(1 — p)}H{T'(1 + p)/T(1 — p)}/*L(t)™* as t— o,
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REMARK 2. Suppose that
(2.9) limy o keo(t)/Ra(t) = 6

for some 0 < § < o, where k;(t) and ks(t) are the inverse functions of the mapping
[0, —A4) © x — —xm(—x) and [0, 4) 2 x — xm(x), respectively. Then the Green
function satisfies (1.2) if and only if the speed measure satisfies (2.7) up to a
multiplicative positive constant ([6]). Thus conditions (2.5) and (2.6) are not
necessary for the Green function formula (1.2). On the other hand, (1.2) together
with (2.5) and (2.6) does not imply (2.9) either.

3. Preliminaries. In this section we define the elementary solution
p(t, x, ¥) of the generalized diffusion equation (1.1) and list some of its properties.
Most of the arguments in the following, except for Lemma 1, are the analogues
of those for diffusion equations in McKean [9] and Yoshida [17; Chapter 5}, and
can be obtained by tracing their proofs (see also [4] and [8] for the reason why
the generalized diffusion equation should be studied).

Let S and m(x) be those given in Section 2. For each o € C, let ¥1(x, o) and
P2(x, ) be the solutions of the integral equations

x+

Prlx, ) =1+« f (x = ¥)P1(y, @) dm(y),

o+

(3.1) ” x €S,
Polx, @) = x + @ J(; (x = ¥)P2(y, o) dm(y),
respectively. Then for each a > 0, there exist the limits
hi(a) = —lim, ), Pa(x, a)/P:(x, a),
ho(a) = lim,Pa(x, a)/P1(x, a).

Here and hereafter, we use the usual convention 1/ = 0, (xa)/0 = +ox,

(3.2)

o+ g =0 and — * @ = —oo for positive a. Define the function h(a) by the
equality
(3.3) 1/h(a) = 1/hi(a) + 1/hy(a)

and ui(x, @),i=1,2,0>0,x € S, by
(3.4) ui(x, a) = P1(x, a) + (=1)*""Py(x, a)/hi().

Then it is well known that u;(x, «) [us(x, «)] is positive and nondecreasing [resp.
nonincreasing] in x € S with u,(0, o) = ux(0, a) = 1 (see [6; page 178]). Let

hu(e) = h(a), hgs(a) = —(hi(a) + hala))™;
h12(a) = hzl(a) = —h(a)/h»z(a).

Then it is seen that all these functions h;(a), i, j = 1, 2 can be analytically
continued to the exterior of the half line (—, 0] in the complex plane. The

(3.5)
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spectral measures o;;(d)), i, j = 1, 2 are given by
1™
(3.6) 0ii([M, A2]) = lim, o ;r-f Imhi(—\ — v=1¢) dX\
M

for all continuity points A; < A;. Then the matrix valued measure [o;(dN)];j=1,2
is symmetric and nonnegative definite. Now we define the Green function and
the elementary solution of the generalized diffusion equation by

(3 7) G(“, X, y) = G(Ol, Y, x) = h(a)ul(xa a)u‘Z(ya a),
- a>0, x<y, x,y€ES,

(3°8) P(t, X, y) = Etz,j=1 J; e_)‘t(pi(xa _A)(pl(y: -—A)au(d}\), t> 0: X, Yy €S.

As will be given in (3.11) below, there is another candidate G(a, x, v) for the
Green function of the generalized diffusion equation (1.1). The two functions
make sense substantially only for x, y € S,,. Further, they coincide with each
other for those points, and we find no drastic difference between the two
definitions. We adopted our definition (3.7) because it is simpler than (3.11).
Instead, we need a correction function ®(x, y) to combine the Green function
G(a, x, y) and p(t, x, ). Denote S\S,, = Ui~1 I, where I, I, --- are disjoint
open intervals (some or all of them may be null) with the end points (if they
exist) belonging to S, U {4, 4}. For each x, y € S with x < y, we set

(= ) (2 — ¥) /(g — 11), —0 <x; <23 <00,
(3.9) ®(x, y) = ¥y, x) = 'lx - x5, -0 < 3 < xp = ®,
X2 — Y, —0 =y < X < ™,

if x, ¥ € I, = [x;, x2] for some I, and = 0 otherwise.

LEMMA 1. The equality (2.3) holds. Hence it follows that
(3.10) Gla, x, y) = Gla, %, y) + ®(x, ), a>0, x,y€ES,

where

(311) G(a9 X, y) = le,j=l L_ (a + A)—:l"oi(xy _)\)¢J(y’ _)\)"'u(dk)-

PrOOF. Tracing the arguments in [17; Chapter 5], we see that the function
p(t, x, ¥) in (3.8) is no other than the elementary solution in [9], if x, y € Sp.
Hence (3.10) is valid for x, y € S,,, and we have only to show it for x € S\S,, or
y € S\S,,..

Assume first that —o < x; < x < y < x, < ® for some I, = (x;, x;). Noting that
the functions ¥;(x, —\), { = 1, 2 are linear in x € I, by the integral equations
(3.1), we have

pt, x, ¥) = [(x2 — x)(xz — ¥)p(t, %1, %1) + (x — 2)(y — 2)P(¢, X2, %2)
+ {(x — 2)(x2 — ¥) + (x2 — )(y — 2)}P(L, %1, x2)/ (%2 — x1)2.
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Similarly,
Gla, x, ¥) = {(x2 = 2)(x2 — ¥)G(a, 21, 21) + (x — 2)(y — x1)Gex, 22, %2)
+ (x = x1)(x2 — Y)h(e@)ui(xz, @)uz(%1, @)
+ (2 = )y = x1)Gla, %1, X2)}/(x2 — 21)%

Hence

Gle, x, y) — J; e “p(t, x, y) dt

= &(x, y)h(a)

Ui(%xa, aug(x1, @) = us(x1, a)us(%s, )
Xo — X1 )

But u;(x2, o) = ui(x;, a) + (x2 = x))ui(x1, @), i = 1, 2. Further, the Wronskian of
ui(x, o) and us(x, o) is constant:

(8.12)  ui(x, a)us(x, a) — wilx, a)ui(x, a) = ()™, a>0, x €S,

where in general u*(x) = lim,jo{u(x + ¢) — u(x)}/e. Thus we obtain (2.3) for this
case. Assume next that —» < % < x < y < x3 = 4 = o, Then we have
ho(a) = P3(x;, a)/P7(x,, @), and the expression (3.8) is reduced to

p(t9 X, y) = L‘ e_)‘t‘P(xy —A)‘P(y, _A)O'u(d)\)

where (x, =\) = P1(x, =\) — Pa(x, —A\)PT(x1, —N)/P3(x;, —\). This implies
p(t, x, ¥) = p(t, x1, x1). Further we have u;(x, a) = u(x1, a) + (x — x)ui(x, o)
and ua(y, a) = us(x;, a). Hence we have (3.10) by (3.12). The proof for the other
cases is similar and will be omitted.

We note that Schwarz’s and Jensen’s inequalities together with (3.8) and
(3.11) imply

(3.13) p(t, x, ¥) < plt, x, x)*p(t, y, )%, t>0, x,y€S,
(3.14) plt, %, x) < t7'Gt™, x,x), t>0, x€E€S.

For each a € S, let p.(t, x, ¥) and G.(a, x, ¥) be the elementary solution and
the Green function of the generalized diffusion equation (1.1) restricted on the
interval S, = (a, %) with the boundary condition (2.2) at a. Then, also tracing
the arguments in [17; Chapter 5], we have the following spectral representations.
Let

¢l,a(x9 a) = ﬁo;(a, a)(pl(x’ a) - ¢-{(a, a)¢2(x7 a)9
Pra(x, a) = —Psla, a)Pi(x, a) + ¢1(a, a)¥s(x, a),
hZ,a(a) = limlez(pZa(x, a)/¢1,a(x’ a)

= {#1(a, a)hy(a) — Pi(a, a)}/{—P1(a, )hi(a) + PI(a, o)}
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Also define the spectral measure g,(d\) by

(3.15) aal[M, Ag]) = —limgo i J; 2 I’”(h (=2 : J-1 )) »
1 2,a\— A — VTl

for all continuity points \; < A;. We note that ¢,({0}) = 0 since the limit
1/h;,.(0+) is finite. Now we can check that in this case the equalities (3.7), (3.8)
and (3.10) are reduced to

Gua, x, ¥) = Gula, y, x) = P24, aus(y, a)/usa, a),

(3.16)
a>0, a<x=<sy<ds,

pa(t, X, y) = f e_)‘t¢2,a(x, _>\)¢2,a(y, _>\)Ua(d)\)y
0+
t>0, x,y€(q4),

(3.17)

Ga(a, X, y) = f (a + )\)_1¢2,a(x9 _)\)¢2,a(y9 _A)aa(dx) + ¢a(xy y)’
(3.18) o+
a>0, xy€aq 4),
where ®,(x, y) is defined on S, in a similar way as ®(x, y) is defined on S.
Following [9], we define a nonnegative function g,(¢, ¥) by
qa(ty y) = limxlaapa(t’ X, y)/ax'

The correction function ¥,(y) is defined as = (x; — y)/(x; — a) ifa, y E L, =
[x1, %2], @ # %2, for some I, with x, < %0; =1 if a, y € I, = [x,, ©); and = 0 for all
the rest. Then we have by the same arguments as those in the proof of [9;
Theorem 4.2] and those in the proof of Lemma 1,

(319) :%_’,—; qa(t7 y) = f (‘A)ne-”goZ,a(y’ _‘A)O'a(d)\),

0+

t>0, y€(a, 4), n=0,1,2, ...,
(3.20) Uy, @) f e qy(t, y) dt + ¥o(y), a>0, yE (a, A).
us(a, a) )

Further from (2.3), (3.7) and (3.20) it follows that
p(t, x, y)

t
(3.21) = fo p(t — s, x, a)qa(s, ¥) ds + ®(x, a)qa(t, y) + p(t, x, )V (y),
t>0, A<x<a<y<s.

Finally, let mq(x) = m(x + a) — m(a) and m®9(x) = ma(cx)/ma(c), 4 —a < x
< /4 — a, for each ¢ > 0 with m,(c) > 0. We denote the corresponding items for
m®9(x) in place of m(x) by L?(x, a), b (a), i =1, 2, "V (dN), ¢7(t, y), etc.
Then it is well known that ©, ,(x, @) = @£ ((x — a)/c, cmy(c)a), Poolx, a) =
c‘PQ“‘”((x —a)/c, cma(c)a) and hy o(a) = ché”’“)(cma(c)a) for « > 0 ([5]), which with
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(3.15) and (3.19) imply

(3.22) 7a([0, N]) = a$([0, cma(c)\])/c*ma(c), A\ =0,
(c,a) -
(823) ault, y) = Lodlomda b = a)fe) o0 ey s - ),
emy(c)

4. Proof of the Proposition. The following simple proof of the next lemma
is due to T. Shiga.

LEMMA 2. The Green function for the generalized diffusion equation (1.1)
satisfies

(4.1) Gla,y, ) =Ga,x,x)+|y—x|], >0, x,yES.
Proor. We give the proof only for /4, < x < y < 4. By (3.7) and (3.12)
Gla, y, ¥)

_ w(y, @) _ (z, a) fﬂ_g;_
= h(a)u2(y, a)2 U«2(y, a) - h(a)u2(y9 a)z{llq(x, a) + . h(a)uz(Z, a)2 dz} ’

Since uy(x, «) is nonincreasing in x € S, this implies (4.1).

PROOF OF THE PROPOSITION. Note first that the formula (1.2) obviously
follows from (1.3) by the well-known Abelian theorem.

Assume (1.2). Since G(«, 0, 0) = h(a) for all « > 0, it follows that A(0+) = .
Hence in view of (3.3) and (3.4) we have h;(0+) = hy(0+) = o and u,(x, 0+) =
us(x, 0+) =1 for x € S. This with (3.7) implies :

(4.2) Gla, x, y) ~a™L(l/a) as a0,

for every fixed x, y € S. Due to the Hardy-Littlewood-Karamata theorem ([10;
Theorem 2.3}, e.g.), we have from (2.3) and (3.7) that

t
(4.3) f pls, x, ¥) ds ~ T'(p + 1) ¢t°L(t) as t— oo,
0
In the case of x = y, the density function p(¢, x, x) is nonincreasing in ¢ by means
of the representation (3.8). Hence it follows that
(4.4) plt, x, x) ~T(p) t* 'L(t) as t-——>o

({10; Theorem 2.4], e.g.). In the case of x # y, the density function p(t, x, y) is
not monotone in general, and we have to study it more closely. From the estimate
(3.13) and the asymptotic formula (4.4), it follows that

(4.5) lim sup;..T'(p)t**L(t)'p(t, x, y) < 1.
In order to prove the reverse inequality
(4.6) lim inf, . T(p)t**L(t) 'p(t, x, y) = 1,
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we note that (3.21) implies
rt
‘4.7 p, x y) = plt, x, x){ i: (s, ¥) ds + \I'x(jf)}', <y, xy€S.

Further, letting o | 0in (3.20), we have

(4.8) fo (s, y) ds + W (y) = i, x<y xy€S.

Now (4.6) follows from (4.4), (4.7) and (4.8).‘T-he first assertion is proved.
For the proof of (2.4), note that Lemma 2 together with (3.13) and (3.14)
implies

plt, %, ¥) < t7REYA + 2| /REDRL + |y | RED2, ¢> 0, x,y €S
This and (4.2) prove (2.4).

5. Proof of the Theorem. First we prepare some proberties of the function
4a(t, ¥).

LEMMA 3. 1) The spectral measure oo(d\) defined by (3.15) satisfies
11 f"’ oo(d)) _f” dm(z)
6.1) ahy(a)  as + o+ Ma + 7)) Jor @F(x, @)’ @>0.
2) Foreacha € S,

te
t+ [3 (m(y) — m(2)) dz’

t
(5.2) f Qa(s, y) ds < t>0, y€laq A).
- Jo

3) If 4 = o and m(») < , then
'y+

(5.3) fo $Ga(s, ¥) ds = (y — a)(m(») — m(y)) + J: , (- a)dm(),
A<a<y.

PROOF. 1) The assertions are implied from those in [4; Section 12]. We shall
explain it. Let m™(x) be the inverse function of m(x) on [0, A4), i.e.,, m™Y(x) =
sup{y: m(y) < x}, x € [0, m(%—)). This is called dual string to m(x) and the
corresponding characteristic function h,(«) is given by 1/ahs(a) (see [4; (12.5)]
and [8; (1.10)]). By virtue of [4; (12.6)] and [4; (12.7)], the spectral measure
a,(d\) corresponding to h, () coincides with ao(d\)/A for A > 0 and a,({0}) =
1/#. Further, the left end point of the support of dm™(x) is equal to 0 and the
corresponding a-harmonic function is given by 3 (m (%), a). Hence (5.1) follows
from Krein’s correspondence theory ([4; (12.4)]).

2) Let y € (a, 4). Then

y
us(a, o) = ux(y, a) + (a — Y)ui(y, a) + a J; dz I ’ uz(§, @) dm(¢).
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Since uy(x, a) is nonincreasing in x, this implies
¢ |
us(a, a) = ux(y, a){l + a f (m(y) = m(2)) dzj'-
a
Hence we have by (3.20) that

¢ " ~—s/t et
fo %a(s, ) dssefo €5 ) 65 = T G) — m@) de”

proving (5.2).
3) We will give the proof only for a = 0 for simplicity. Note first that the
condition 4 = o together with (3.4) and (3.20) guarantees (4.7). In view of

Y+
u(y, @) =1+ yu3(0, a) + a j(; (y — Dualz, a) dm(z),

we then have from (3.4) and (5.1) that

a1 = unly, @) = —2— — f (¥ = 2)uz(z, a) dm(2)
hg( ) 0+

=y | dme f“f 1 ]
=Y J;; ?3(z, a)? ty Jo+ 1‘P2+(z, a)? Uz, O,l)[ dm(2)

¥+
+ f 2uy(z, ) dm(z), «>0, y=>0.
0

Letting a | 0, we obtain (5.3) from (3.20).

For the proof of our key Lemma 5 in the following, we need one more
preparatlon from calculus:

LEMMA 4. Letf € C*(0, 1)) and
LAY | = Mat?, |f/(t)| = Mat?, tE€(0,1)
for some real constants p, g, M1 and M;, and set r = min{p - 1, (p + q)/2}. Then
If ()] = {@2% + 1)M, + 29 Mpjt", t € (0, %).

LEMMA 5. Let 4<a<b< 4=, m(b) — m(a) >0 and

(5.4) infezsfc(m(c) — m(a))}™ f (m(c) — m(x)) dx > 0.
Then it follows that |
(5.5) SURy=b,>0tGalt, ¥) < .

PROOF. Step 1. Without loss of generality, we may assume a = 0 and m(b)
> 0. Then the function [b, ®) 3 y > ym(y) is strictly increasing and we denote
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its inverse function by k»(t). Further we denote by m“(x), ?(x, @), ¢§(d\) and
g$(¢, y) the corresponding items for this case. In view of (3.23), we have
SUDPyzb,:0G0(t; ¥) = SUDyap 0<tcymin/2(t/Ym{y))g s (t/ym(y), 1)
+ SUDyzb k202 2q02 " (Yo, y/Rao(2L)).

Hence it is enough for (5.5) to show that

(5.6) Supczb,0<t<1/2tQ(()C)(t, 1) < ®,
and
(5.7 SUDc=b0<y=145 (Y2, ) < .

Step 2. On this step we will show (5.6). For each ¢ = b, set

t
ft) = f g, 1) ds, 0<t<l.
Then by (5.2)

f(t) s te / j; (m©(1) — m“(2)) dz

= te/{cm(c)}‘1 JO‘ (m(c) — m(2)) dz.
Hence (5.4) assures

(5.8) O0=sft)ysMt 0<t<l, c=b

for some constant M;. On the other hand, due to the representation (3.19) for
g&(t, y), we have

(c) o

t, 1

él(t) a(t ) _f Ae_)‘tqrp(zc)(l )\)U(C)(dk), o<t<l.
0+

But there is an absolute constant Mj; such that
(AN + 1/t)e ™M <M;, A=0, t>0.
Hence it follows that

00 -1
172@)) = Mpt™" f A-W(x + %) |91, =N | (V)
0+
sl [ @9, —N)? ”2< f " afdy \*
5/2, c) -
(5.9) = Myt ( M eyl ACY I W R Ve
< Mst™2GP(1/t, 1, 1)2h9(1 /)12
by (3.18) and (5.1). By Lemma 2 applied to G§(t, x, ),
(5.10) GY(1/t, x, x) < GO/t 0+, 0+) + x =x, x> 0.
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From [15; (3.7)],
hE(1/t)7! < BRI, t>0,

where kY(t) is the inverse function of xm(x). Noting that xm“(x) =
xm(cx)/m(c) <= x for x € (0, 1) and = 1 for x = 1, we have k(;’(t) = t for
t € (0, 1). Hence it follows that

(5.11) RO/t =3t 0<t=1.
This with (5.9) and (5.10) yields
(5.12) [f2(6) | = Mat™?2, 0<t<l,

where M, = 3Y2M,. Further it is obvious that f, € C%((0, 1)). Due to Lemma 4,
the inequalities (5.8) and (5.12) prove (5.6).
Step 3. The proof of (5.7) is now easy. Indeed, as in (5.9), we have
0 < qf(%, ¥) < M{GP(L, y, RO, ez b
for some constant M,. This with (5.10) and (5.11) verifies (5.7). The lemma is

proved.

Proor oF THE THEOREM. Suppose that the assumptions of the Theorem
are fulfilled. Then /4 = —» and 4 = « as is noted in Remark 1. Without loss of
generality, we may assume that t*~ !L(t) is nonincreasing. By the exchange of the
roles of —» and o if necessary, it is enough for (1.4) to show that

(5.13) SUDz=1,y=et TPL()7'p(t, x, y) <, x ES.

Let r, be the supremum of the support S, of dm(x). If r» < e, then as in the
proof of Lemma 1 we have

(5.14) plt,x, y)=plt,x Ary,ra), t>0, ra=<y.

Hence (5.13) follows from (2.4) and (5.14). Now we assume r, = . Then,
for each fixed x € S, we can ¢hoose two points a and b such that x < a < b,
m(a) — m(x) > 0 and m(b) — m(a) > 0. Fixing such a and b, we have

(5.15) M; = supeop(t, x, @) < ™, supsot~'p(t, x, @) < ®

(see {9]). Further, by (2.4) again, it is enough for (5.13) to verify

(5.16) SUDP¢a1,y=bt' PL(t)7'p(t, %, y) < .

For the proof of (5.16), we note that ®(x, a) = ¥,(y) = 0 for ¥ = b and decompose
the expression (3.21) as
t

t/2
p(t, x, y) = f p(t — s, x, a)qa(s, y) ds + f p(t — s, x, a)qa(s, y) ds
(5.17) o ¢/2

= Il(ty y) + IZ(ty y)’ t= 1’ Yy = b'



710 MINAMI, OGURA AND TOMISAKI
Due to (1.3)

t/2
Lt, y) = Ms J; (t — s)7'L(t - 5)qals, y) ds

t/2
=< 2M,t*L(t) f L) L(t(1 = s/t))qals, y) ds
[1]
for some constant Ms. But L(t\)/L(t) — 1 as t — o uniformly in A € [%, 1]
([10; Theorem 1.1]). Hence we have from(4.7) that
(5.18) SUPca1,y2pt L) (¢, ¥) < oo,
At this point we divide our arguments into two cases.

Case 1. Suppose that J; < . Then we have m(®) < = and also, owing
to (5.3)

t 00
¢ f da(s, y) ds < 2 f 8qa(s, y) ds
t/2 0

v+
= 2{(3' = a)(m(®) — m(y)) + J; (z~a) dm(z)} = M,,

t=1, y=b,
for some constant M;. Hence it follows from (5.15) that
(5.19) sup,zl,y?_btl"”L(t)'llz(t, y) = M5M7Sllpt;1t’pL(t)-l < 00,

Case 2. Suppose that J; = », In case of J; = o, we may assume (5.4) by (2.5).
When J, < «, it is well known that (1.2) is equivalent to (2.7) ([5] and [6]).
Hence we may assume (5.4) again. Due to Lemma 5, we thus have (5.5) in both
cases. Now fix an ¢ € (0, p). Then we can find a slowly varying function L(¢)
such that ¢t*~L,(t) is nondecreasing, L(t) < L.t) and L(t) ~ L.(t) as t — o
([10; page 20]). It follows from (1.3), (5.5) and (5.15) that

t
L(t, y) =< Ms J;z (t = s)'L(t — s)s7' ds
7

t
< M; f (t — 8)P Lt — s)(t — s) s~ ds
(5.20) . t/2

1
< Mst* L (t)t! f ) (1-s)ylstds
1/2

= Mot 'L(t), t=1, y=b,

for some constants Mg and M. ,

The formulae (5.17)-(5.20) verify (5.16), completing the proof of (1.4). The
second assertion is a direct consequence of (1.3), (1.4) and Lebesgue’s dominated
convergence theorem.
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ProOOF OF COROLLARY 1. Suppose first that the formula (1.2) holds with
p = 1 and the slowly varying function L(t) satisfying 0 < L(%) < . Then as in
the proof of the Proposition we have h;(0+) = hy(0+) = . But

* Go(d)\) _ 0
o+ Ma + )

f ® ooldN) 1
= < 00,
o+ M1+ A) T h(1)
Hence, due to (5.1), we have 4 = . Similarly, it holds that 4 = —oo. Further, by
(5.1) and the similar relations for the characteristic function h,(a), we have

(5.21) 1 J: _dm(z)

ah(a) - ity P3(z, )’

Hence we obtain the formula 1/L(®) = m(%) — m(—»). The converse assertion
also follows from (5.21).

We will show the second assertion. The implication of (1.3) from (1.2) is
included in the Proposition. On the other hand, with the same choice of x < a <
b as in the proof of the Theorem, we have from (3.21) and (5.15) that

lim,oa

since

t
pt, x, y) < M; f gols, Yy ds, t>0, y=b.
(4]

The rest of the arguments are the same as those in the proof of the Theorem.
6. Examples and application to long-tail phenomena.

EXAMPLE 1 (Brownian motion). Let S = (-, ) and m(x) = 2x. Then the
equation (1.1) is reduced to the standard heat equation
(6.1) du(t, x)/ot = du(t, x)/20x2, t>0, xER.
In this case, it is known that
@1(x, a) = {exp(V2ax) + exp(—v2ax)}/2
Py(x, a) = {exp(v2ax) — exp(—v2ax)}/2v2a,
hi(a) = hy(a) = 1/¥2a,

1 >
ou(dN)/d\ = {O/QW\@X’ ; = g’

oaa(dN)/dX = Ny

[Var/er, A>0,
o,
o12(dN) = a21(d)) = 0,
(see [17; Chapter 5]). Hence, by (3.8), we have as usual

p(t, x, y) = (1/2V2x)e 1% ~ 1/2V2xt as t— o,
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and
SUPy,yes2V2wtp(t, x, ¥) < 1.

Thus we have (1.3) and (1.4) with p = % and L(¢t) = 1/2V2.

EXAMPLE 2 (Brownian motion with reflecting boundary). Let S = (—o, )

and
m(x) = 2x, x=0,
0, x<0.

Then we have (6.1) for x > 0 also, and due to (2.2), the domain D(®) of the
operator ® consists of the functions u(x) such that

a+2f(x—y)g(y)dy, x>0,
(4]

a, x=0,

u(x) =

for some constant a and g € C((0, «)). In this case

(. a) = <|f flexp(@x) + exp(—VEZax)}/2, x>0,

x<0,

Oy, a) = {iexp(«/ﬂx) — exp(—v2ax)}/2v2aq, zi (()),
hi(e) = ®, hy(a) = 1/v2a,

ou(d)) 1/7v2A, A>0,

dr |0, A=<0,

o22(dN) = o12(dN) = 62(dN) = 0.
Hence we have
Pt x, ) = plt, y, %)
I'(l /2@) {e_<,_y)2/2: + e—<x+y)2/2t}’ x, y >0,

=1 (1/V2nt)e™%, x=<0<y,
l 1/v2wt, x,y=<0.

Thus we have
p(t, x, y) ~ 1/V2xt as t— o,

and
Sup,.yesV2ntp(t, x, ¥) = 1

again.
Now we illustrate an application to long-time phenomena, which is one of our

main objects.
Let a € CY((0, ®)), b € C((0, )) with a(x) > 0 and (W(t), P) be the standard
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Brownian motion. Let x(t) be the solution of the stochastic differential equation
dx(t) = a(x(t)) o dW(E) + b(x(t))dt, t>0

with the initial condition x(0) = x € (0, ), where the stochastic integral is taken
in Stratonovich’s sense. Then the stochastic process (x(t), P) (x(0) = x € (0, »))
is a diffusion process with the generator

L = a(x)%d?/2dx? + (a(x)a’(x)/2 + b(x))d/dx.

Hence the scale function s(x) and the speed measure dm(y) with the natural
scale ¥y = s(x) can be taken as

y=s(x) = f a(z) e B dz, x € (0, »),
1

s71(y)
m(y) = 2 J: a(z)7'eB? dz, y € (s(0), s(»)),

where B(2) = [% {2b(¢)/a(¢)?} dt. Thus if we assume

(6.2) fl b() dx < o fl a(x)dx =

* o a(x)2 ’ N ’

(6.3) f a(x) teB® f a(z) e 8@ dz dx < o,
1 1

and impose the reflecting boundary condition at r; in case of
(6.4) r, = f a(x) " te™B® dx < o,
1

then we have 4 = s(0+) = —, 4 = o, [§ y dm(y) < » and

2B(0)

m(y) ~ 2¢*"% as y— —o,

In this case, the feature of the elementary solution is basically the same as that
in Example 2 (the orient of S is reversed). Indeed, it follows from Corollary 2
that

(6.5) G(a, 0, 0) ~ 272e7BO~12 a5 ¢ 10
(6.6) p(t, x, ¥) ~ 2wt) V2%e™BO a5 t— o,
But

E[f(x(t))] = j; p(t, s(x), s(2))f(z) dm(s(2)),

where E[f(x(t))] stands for the expectation of f(x(t)) with respect to the proba-
bility measure P. Hence we have

6.7) E[f(x(t)] ~ (2xt)~V22 J; a(x)"f(x)eBDBO dy as t— o

for all f such that the integral in the right-hand side converges absolutely.
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If we assume instead of (6.2) and (6.3) that
(6.8) M=2 J;“ a(x)eBW dx <
and impose the reflecting boundary condition at r; [r;] in case of
(6.9) r o= ——j;l a(x) e ™® dx > —o0

[resp. (6.4)], then we have /4 = —oo, 4, = % and
m(®) — m(—o0) = M.

Hence it follows from Corollary 1 that

(6.10) G(e, 0,0) ~1/aM as a0,

(6.11) pt,x, ) ~1/M as t—,

and

(6.12) E[f(x(t))] ~ M2 j(: a(x) f(x)ePP dx as t— o

for all f such that the integral in the right-hand side converges absolutely.
Following Suzuki, Kaneko and TakgSug [14], let
(6.13) a(x) ~ x", b(x) ~yx —cx™ as x}0 and x— o,

where n, m, ¥ and c are real constants such that n = LLm>1,vy=0andc> 0.
Suppose first that ¥ = 0 and (m + 1)/2 > n = 1. Then it follows that (6.2), (6.3)
and r, = o hold. Hence we have the formulae (6.5)—(6.7), which coincide with
those in [12], [13] and [14]. Suppose next that v > 0. Then (6.8) follows, and we
have the formulae (6.10)-(6.12). ’

Finally we note that if y = 0, (m + 1)/2=n>2c + 1 and

' b(y)
+ a(y)?

then the exponent p in (1.5) differs from %. Indeed, in this case, it follows that
ry = s(®) < ®, m(x) < o, $(0) = —~ and

(6.15) m(y) ~—=2(n+2c—1){(n — 2c — D)(~y)}/** as y— —oo,

where p = (n — 2¢c — 1)/2(n — 1). Hence if we impose the reflecting boundary
condition at r,, then we have (1.5) with

L(t) = 2°(n — 1)*T(1 + p)/(n = 2¢ — DHT(1 — p)

for all f € L,(dm). Unfortunately this says nothing about the formula [14; (3.24)]
because no functions of the form f(x) = xP belong to L,(dm(s(x))) in this case.

(6.14) dy=—clog 1/x + o(1) as x]0,
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