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Abstract

Given a weighted graph with N vertices, consider a real-valued regression problem in a semi-

supervised setting, where one observes n labeled vertices, and the task is to label the remaining

ones. We present a theoretical study of ℓp-based Laplacian regularization under a d-dimensional

geometric random graph model. We provide a variational characterization of the performance of

this regularized learner as N grows to infinity while n stays constant; the associated optimality

conditions lead to a partial differential equation that must be satisfied by the associated function

estimate f̂ . From this formulation we derive several predictions on the limiting behavior the func-

tion f̂ , including (a) a phase transition in its smoothness at the threshold p = d + 1; and (b) a

tradeoff between smoothness and sensitivity to the underlying unlabeled data distribution P . Thus,

over the range p ≤ d, the function estimate f̂ is degenerate and “spiky,” whereas for p ≥ d + 1,

the function estimate f̂ is smooth. We show that the effect of the underlying density vanishes

monotonically with p, such that in the limit p = ∞, corresponding to the so-called Absolutely

Minimal Lipschitz Extension, the estimate f̂ is independent of the distribution P . Under the as-

sumption of semi-supervised smoothness, ignoring P can lead to poor statistical performance; in

particular, we construct a specific example for d = 1 to demonstrate that p = 2 has lower risk than

p = ∞ due to the former penalty adapting to P and the latter ignoring it. We also provide simula-

tions that verify the accuracy of our predictions for finite sample sizes. Together, these properties

show that p = d + 1 is an optimal choice, yielding a function estimate f̂ that is both smooth and

non-degenerate, while remaining maximally sensitive to P .

Keywords: ℓp-based Laplacian regularization; semi-supervised learning; asymptotic behavior; ge-

ometric random graph model; absolutely minimal Lipschitz extension; phase transition.

1. Introduction

Semi-supervised learning is a research field of growing interest in machine learning. It is attractive

due to the availability of large amounts of unlabeled data, and the growing desire to exploit it in

order to improve the quality of predictions and inference in downstream applications. Although

many proposed methods have been successful empirically, a formal understanding of the pros and

cons of different semi-supervised methods is still incomplete.

The goal of this paper is to study the tradeoffs between some recently proposed Laplacian regu-

larization algorithms for graph-based semi-supervised learning. In the noiseless setting, the problem
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amounts to a particular form of interpolation of a graph-based function. More precisely, consider

a graph G = (V,E,w) where V = {v1, · · · , vN} is a set of N vertices, and E is the set of edges

equipped with a set w = (we)e∈E of non-negative edge weights. For some subset O ⊂ V of the

vertex set, say with cardinality |O| = n ≪ N , and an unknown function f∗ : V → R, suppose

that we are given observations (yi = f∗(vi))i∈O of the function at the specified subset of vertices.

Our goal is to use the observed values to make predictions of the function values at the remaining

vertices in a way that agrees with f∗ as much as possible.

In order to render this problem well-posed, the behavior of the function f∗ must be tied to the

properties of the graph G. In a statistical context, one such requirement is such that the marginal

distribution of the points vi be related to the regression function f∗—for instance, by requiring that

f∗ be smooth on regions of high density. This assumption and variants thereof are collectively

referred to as the cluster assumption in the semi-supervised learning literature.

Under such a graph-based smoothness assumption, one reasonable method for extrapolation is

to penalize the change of the function value between neighboring vertices while agreeing with the

observations. A widely used approach involves using the ℓ2-based Laplacian as a regularizer; doing

so leads to the objective

min
f

∑

ij∈E
wij

(
f(vi)− f(vj)

)2
subject to f(vi) = yi for all i ∈ O, (1)

where the penalization is enforced by the quadratic form given by the graph Laplacian (Zhu et al.,

2003). This method is closely tied to heat diffusion on the graph and has a probabilistic interpre-

tation in terms of a random walk on the graph. Unfortunately, solutions of this objective are badly

behaved in the sense that they tend to be constant everywhere except for the points {vi}i∈O asso-

ciated with observations (Nadler et al., 2009). The solution must then have sharp variations near

those points in order to respect the measurement constraints.

Given this undesirable property, several alternative methods have been proposed in recent work

(e.g., Alamgir and Luxburg (2011); Bridle and Zhu (2013); Zhou and Belkin (2011); Kyng et al.

(2015)). One such formulation is based on interpolating the observed points exactly while penaliz-

ing the maximal gradient value on neighboring vertices:

min
f

max
ij∈E

wij |f(vi)− f(vj)| subject to f(vi) = yi for all i ∈ O. (2)

Any solution to this variational problem is known as an inf-minimizer. Kyng et al. (2015) recently

proposed a fast algorithm for solving the optimization problem (2). In fact, their algorithm finds a

specific solution that not only minimizes the maximum gradient value, but also the second largest

one among all minimizers of the former and so on—that is to say, they find a solution such that the

gradient vector (wij |f(vi)− f(vj)|)(i,j)∈E is minimal in the lexicographic ordering, which they

refer to as the lex-minimizer. They observed empirically that when |V | = N grows to infinity while

both the degree of the graph and number of observations are held fixed, the lex-minimizer is a bet-

ter behaved solution than its 2-Laplacian counterpart. More precisely, the observed advantage is

twofold: (a) the solution is a better interpolation of the observed values; and (b) the average ℓ1-error
1
n

∑n
i=1 |f(vi) − f∗(vi)| for the lex-minimizer remains stable, while it quickly diverges with N

when f is the 2-Laplacian minimizer. Their experiments together with the known limitations of the

2-Laplacian regularization method point to the possible superiority of the ℓ∞-based formulation (2)

over the ℓ2-based (1) in a semi-supervised setting. However, we currently lack a theoretical under-

standing of this assertion. Accordingly, we aim to fill this gap in the theoretical understanding of
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Laplacian-based regularization by studying both formulations in the asymptotic limit as the graph

size goes to infinity.

We conduct our investigation in the context of a more general objective that encompasses the

approaches (1) and (2) as special cases. In particular, for a positive integer p ≥ 2, we consider the

variational problem

Jp(f) =
∑

ij∈E
wp
ij |f(vi)− f(vj)|p . (3)

The objective Jp is referred to as the (discrete) p-Laplacian of the graph G in the literature; for

instance, see the papers by Zhou and Schölkopf (2005) and Bühler and Hein (2009), as well as

references therein. It offers a way to interpolate between the 2-Laplacian regularization method

and the inf-minimization approach. It is then natural to consider the general family of interpolation

problems based on p-Laplacian regularization—namely

min
f

Jp(f) subject to f(vi) = yi for i ∈ O. (4)

Formulations (1) and (2) are recovered respectively with p = 2 and p → ∞. Indeed, in the latter

case, observe that lim
p→∞

Jp(f)
1/p = max

ij∈E
wij |f(vi)− f(vj)|. Moreover, under certain regularity

assumptions (Egger and Huotari (1990); Kyng et al. (2015)), it follows that the lex-minimizer is the

limit of the (unique) minimizers of Jp as p grows to infinity1—that is, we have the equivalence

flex = lim
p→∞

argmin
u

Jp(u) subject to u(vi) = yi for all i ∈ O. (5)

Our contributions: We analyze the behavior of p-Laplacian interpolation when the underlying

graph G is drawn from a geometric random model. Our first main result is to derive a variational

problem that is the almost-sure limit of the formulation (4) in the asymptotic regime when the size

of the graph grows to infinity. For a twice differentiable function f , we use ∇f and ∇2f to denote

its gradient and Hessian, respectively. Letting µ denote the density of the vertices in a latent space,

we show that for any even integer p ≥ 2, solutions of this variational problem must satisfy the

partial differential equation

∆2f(x) + 2〈∇ logµ(x),∇f(x)〉+ (p− 2)∆∞f(x) = 0,

where ∆2f : = Tr(∇2f) is the usual 2-Laplacian operator, while ∆∞f : = 〈∇f, ∇2f ∇f〉
〈∇f,∇f〉 is the

∞-Laplacian operator, which is defined to be zero when ∇f = 0.

This theory then yields several predictions on the behavior of these regularization methods when

the number of labeled examples is fixed while the number of unlabeled examples becomes infinite:

first, the method leads to degenerate solutions when p ≤ d; i.e., they are discontinuous, a manifes-

tation of the curse of dimensionality. On the other hand, the solution is continuous when p ≥ d+1.

Second, the solution is dependent on the underlying distribution of the data for all finite values of

p; however, when p = ∞, the solution is not dependent on the underlying density µ. Consequently,

as the graph size increases, the lex- and inf-minimizers end up interpolating the observed values

1. The construction of this sequence of minimizers is known as the Pólya algorithm, and the study of its rate of con-

vergence is a classical problem in approximation theory (Darst et al. (1983); Egger and Taylor (1987); Legg and

Townsend (1989); Egger and Huotari (1990)).
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without exploiting the additional knowledge of the density µ of the features that is provided by the

abundance of unlabeled data.

In order to illustrate the consequences of this last property, we study a simple one-dimensional

regression problem whose intrinsic difficulty is controlled by a parameter ǫ > 0. We show that the 2-

Laplacian method has an estimation rate independent of ǫ while the infinity-minimization approach

has a rate that is increasing in 1/ǫ. As shown by our analysis, this important difference can be

traced back to whether or not the method leverages the knowledge of µ. We also provide an array

of experiments that illustrate some pros and cons of each method, and show that our theory predicts

these behaviors accurately. Overall, our theory lends support to using intermediate value of p that

will lead to non-degenerate solutions while remaining sensitive to the underlying data distribution.

2. Generative Model

We follow the popular assumption in the semi-supervised learning literature that the graph repre-

sents the metric properties of a cloud point in d-dimensional Euclidean space (Zhu et al. (2003);

Bousquet et al. (2003); Belkin and Niyogi (2004); Hein (2006a); Nadler et al. (2009); Zhou and

Belkin (2011)). More precisely, suppose that we are given a probability distribution on the unit

hypercube [0, 1]d having a smooth density µ with respect to the Lebesgue measure, as well as a

bounded decreasing function ϕ : R+ → R+ such that limz→∞ ϕ(z) = 0. We then draw an i.i.d.

sequence (xi)
N
i=1 of samples from µ; these vectors will be identified with the vertices of the graph

G: xi ≡ vi. Finally, we associate to each pair of vertices the edge weight wij = ϕ
(
‖xi−xj‖2

h

)
,

where h > 0 is a bandwidth parameter. We use GN,h to denote the random graph generated in this

way.

Degree asymptotics Given a sequence of graphs {GN,h}∞N=1 generated as above, we study the

behavior of the minimizers of Jp in the limit N → ∞. A first step is to understand the behavior of

the graph itself, and in particular its degree distribution in this limit. In order to gain intuition for

this issue, consider the special case when ϕ(z) = 1{z ≤ 1}. If the bandwidth parameter h > 0
is held fixed, then any sequence xi1 , · · · , xik of points that fall in a ball of radius h will form a

clique. Thus, the graph will contain roughly 1/hd cliques, each with approximately Nhd vertices.

It is typically desired that the sequence of graphs be sparse with an appropriate degree growth (e.g.,

constant or logarithmic growth) so that it converges to the underlying manifold. In order to enforce

this behavior, the bandwidth parameter h should tend to zero as the sample size N increases.

Under this assumption, it can be shown that the scaled degree at any vertex x, given by

d(x) =
1

Nhd

N∑

i=1

ϕ

(‖xi − x‖2
h

)
,

concentrates around µ(x). A precise statement can be found in Hein (2006a); roughly speaking, it

follows from the fact that for any fixed point x in [0, 1]d, as h goes to zero and under a smoothness

assumption on the density µ, the probability that a random vector xi ∼ µ falls in the h-neighborhood

of x scales as Pr(‖xi − x‖2 ≤ h) =
∫
‖z−x‖2<h µ(z)dz ∼ hdµ(x).
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Figure 1: A mixture of two 1-dimensional Gaussians N(0, 1) and N(4, 1) with equal weights. 500

points are drawn i.i.d. from each component. We added one point at 0 with label -1 and one point

at 4 with label +1. The similarity graph is constructed with an RBF kernel with bandwidth .4.

3. Variational problem and related PDE

In this section, our main goal is to study the behavior of the solution in the limit as the sample size

N → ∞ and the bandwidth h → 0. As discussed above, it is natural to consider scalings under

which h decreases in parallel with the increase in N . However, for simplicity, we follow Nadler

et al. (2009) and first take the sample size N to infinity with the bandwidth held constant, and then

let h go to zero.2 Our first result characterizes the asymptotic behavior of the objective Jp.

Theorem 1 Let f be continuously differentiable with a bounded derivative, and let µ be a bounded

density. Then for any even integer p ≥ 2, we have

Ip(f) : = lim
h→0

lim
N→∞

1

N2 hp+d
Jp(f) = Cp

∫
‖∇f(x)‖p2µ2(x)dx, (6)

where Cp : =
1

dp/2

∫
‖z‖p2ϕ

(
‖z‖2

)p
dz.

We provide the proof in Appendix A; it involves applying the strong law of large numbers for

U -statistics, as well as an auxiliary result on the isotropic nature of the integral of a rank-one tensor.

We pause here to mention that the convergence of the objective function for a fixed function

f does not imply convergence of the sequence of estimators (fN,h) obtained by minimizing Jp.

Obtaining a result of the latter form would require proving a statement of uniform convergence of

Jp on a suitably large class of functions, and would take us far from the scope of the present paper.

We point to Hein (2006b); Lu (2012) for such attempts in the case p = 2. Proving similar results

for higher p bears a deeper study and is interesting in it’s own right.

Based on Theorem 1, the asymptotic limit of the semi-supervised learning problem is a super-

vised non-parametric estimation problem with a regularization term given by the functional Ip—

2. In the case p = 2, it is known that the same limiting objects are recovered when a joint limit in N and h is taken

with h → 0 but Nhd/ logN → ∞ (Hein (2006a)). Based on the discussion above, this scaling implies a super-

logarithmic degree sequence. It is still to be verified if the same result holds for all p.
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namely, the problem

inf
g

∫
‖∇g(x)‖p2 µ2(x)dx subject to g(xi) = yi for all i ∈ O. (7)

Our next main result characterizes the solutions of this optimization problem in terms of a partial

differential equation known as the (weighted) p-Laplacian equation. Here the word “weighted”

refers to the term µ2 in the functional (7) (Heinonen et al. (2012); Oberman (2013)).

Let us introduce various pieces of notation that are useful in the sequel. Given a smooth vector

field F : Rd → R
d, we use div(F ) : =

∑d
i=1 ∂xiFi to denote denote its divergence. For a scalar-

valued function f : Rd → R, we let

∆2f = div
(
∇f

)
=

d∑

i=1

∂2
xi
f, and ∆∞f =

〈∇f, ∇2f ∇f〉
〈∇f,∇f〉 =

1

‖∇f‖22

d∑

i,j=1

∂xif · ∂xi,xjf · ∂xjf

denote the (standard) 2-Laplacian operator and the ∞-Laplacian operator, respectively.

Theorem 2 Suppose that the density µ is bounded and continuously differentiable. Then any twice-

differentiable minimizer f of the functional (7) must satisfy the Euler-Lagrange equation

div
(
µ2(x)‖∇f(x)‖p−2

2 ∇f(x)
)
= 0. (8a)

If moreover the distribution µ has full support, then equation (8a) is equivalent to

∆2f(x) + 2〈∇ logµ(x),∇f(x)〉+ (p− 2)∆∞f(x) = 0. (8b)

The proof employs standard tools from calculus of variations (Gelfand and Fomin, 1963). We

note here that f does not need to be twice differentiable for the above result to hold (Heinonen et al.

(2012)), in which case equations (8a) and (8b) have to be understood in the viscosity sense (Crandall

et al. (2001); Armstrong and Smart (2010)). Twice differentiability is assumed so only for ease of

the proof (see Appendix B).

When µ is the uniform distribution, equation (8b) reduces to the partial differential equation

(PDE)

∆2f(x) + (p− 2)∆∞f(x) = 0,

which is known as the p-Laplacian equation and often studied in the PDE literature (Heinonen et al.

(2012); Oberman (2013)). If one divides by p and lets p → ∞, one obtains the ∞-Laplacian

equation

∆∞f(x) = 0, (9)

subject to measurement constraints f(xi) = yi for i ∈ O. This problem has been studied by various

authors (e.g., Crandall et al. (2001); Aronsson et al. (2004); Peres et al. (2009); Armstrong and

Smart (2010)). Note that in dimension d = 1, we have ∆∞ = ∆2 =
d2

dx2 , and equation (8b) reduces

to

(p− 1)µ(x)f
′′
(x) + 2µ′(x)f ′(x) = 0.

Therefore, if we specialize to the case p = 2, the 2-Laplacian regularization method solves the

differential equation µ(x)f
′′
(x) + 2µ′(x)f ′(x) = 0, whereas if we specialize to p = ∞, then

the inf-minimization method solves the differential equation f
′′
= 0. Note that the two equations

coincide only when µ is the uniform distribution, in which case µ′ is uniformly zero.
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Figure 2: Behavior of the 2- and infinity- Laplacian solutions under a change of input density. The

latter is either a mixture of two 1-dimensional Gaussians N(0, 1) and N(4, 1) or a mixture of two

uniform distributions U([−3, 3]) and U([1, 7]) with equal weights. In each case, 500 points are

drawn i.i.d. from each component. The methods are given two observations (0,−1) and (4, 1). (a)

ℓ2-based solution. (b) ℓ∞-based solution.

4. Insights and predictions

Our theory from the previous section allows us to make a number of predictions about the behavior

of different regularization methods, which we explore in this section.

4.1. Inf-minimization is insensitive to µ

Observe that the effect of the data-generating distribution µ has disappeared in equation (9). One

could also see this by taking the limit p → ∞ in the objective to be minimized in Theorem 1—in

particular, assuming that µ has full support, we have Ip(f)
1/p → sup[0,1]d ‖∇f(x)‖2.

From the observations above, one can see that in the limit of infinite unlabeled data—i.e., once

the distribution µ is available—the 2-Laplacian regularization method, as well as any p-Laplacian

method based on finite (even) p, incorporates knowledge of µ in computing the solution; in contrast,

for p = ∞, the inf-minimization method does not (see Figure 2). On the other hand, it has been

shown that the 2-Laplacian method is badly behaved for d ≥ 2 in the sense that the solution tends to

be uninformative (constant) everywhere except on the points of observation. The solution must then

have sharp variations on those points in order to respect the measurement constraints (see Figure 1

for an illustration of this phenomenon). We show in the next section that this problem plagues the

p-Laplacian minimization approach as well whenever p ≤ d.

4.2. p-Laplacian regularization is degenerate for p ≤ d

In this section, we show that p-Laplacian regularization is degenerate for all p ≤ d. This issue

was originally addressed by Nadler et al. (2009), who provided an example that demonstrates the

degeneracy for p = 2 and d ≥ 2. Here we show that the underlying idea generalizes to all pairs
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(p, d) with p ≤ d. Recall that Theorem 1 guarantees that

Ip(f) : = lim
h→0

lim
N→∞

1

N2 hp+d
Jp(f) = Cp

∫
‖∇f(x)‖p2µ2(x)dx.

In the remainder of our analysis, we treat the cases p ≤ d− 1 and p = d separately.

Case p ≤ d − 1: Beginning with the case p ≤ d − 1, we first set x0 = 0 and then let x1 be

any point on the unit sphere (i.e., ‖x1‖2 = 1). Define the function fǫ(x) = min{‖x‖2/ǫ, 1} for

some ǫ ∈ (0, 1), and let the observed values be yj = fǫ(xj) for j ∈ {0, 1}. Using the fact that

∇‖x‖2 = x
‖x‖2 and assuming that µ is uniformly upper bounded by µmax on [0, 1]d, we have

Ip(fǫ) =

∫

B(0,ǫ)

µ2(x)

ǫp
dx ≤ µ2

max

ǫp
vol(B(0, ǫ)) = µ2

max vol(B(0, 1))ǫd−p,

where B(0, ǫ) denotes the Euclidean ball of radius ǫ centered at the origin, and vol denotes the

Lebesgue volume in R
d. Consequently, we have limǫ→0 Ip(fǫ) = 0, so the infimum of Ip is achieved

for the trivial function that is 1 everywhere except at the origin, where it takes the value 0. The key

issue here is that ‖∇f(x)‖p2 grows at a rate of 1
ǫp while the measure of the “spike” in the gradient

shrinks at a rate of ǫd.

Case p = d: On the other hand, when p = d, we take fǫ(x) = log
(‖x‖2

2
+ǫ

ǫ

)
/ log

(
1+ǫ
ǫ

)
, for which

we also have y0 = fǫ(x0) = 0 and y1 = fǫ(x1) = 1. With this choice, we have

Ip(fǫ) =
1

log
(
1+ǫ
ǫ

)d
∫

B(0,1)

‖x‖d2(
‖x‖22 + ǫ

)dµ
2(x)dx

≤ µ2
max

log
(
1+ǫ
ǫ

)d
∫

B(0,1)

‖x‖d2(
‖x‖22 + ǫ

)ddx

(i)
=

µ2
max

log
(
1+ǫ
ǫ

)d · vol(B(0, 1))

∫ 1

0

rd
(
r2 + ǫ

)ddr
d−1dr

(ii)
=

d µ2
max vol(B(0, 1))

log
(
1+ǫ
ǫ

)d
∫ 1

0

ud−1

(
u+ ǫ

)ddu

(iii)

≤ d µ2
max vol(B(0, 1))

2 log
(
1+ǫ
ǫ

)d−1
,

where step (i) follows from a change of variables from x to the radial coordinate r; step (ii) follows

by the variable change u = r2; and step (iii) follows by upper-bounding u by u+ǫ in the numerator

inside the integral. Again, we find that limǫ→0 Ip(fǫ) = 0. Thus, in order to avoid degeneracies, it

is necessary that p ≥ d+ 1.

It is worth noting that Alamgir and Luxburg (2011) studied the problem of computing the so-

called q-resistances of a graph, which are a family of distances on the graph having a formulation

similar —in fact, dual— to the p-Laplacian regularization method considered in the present paper,

and where 1/p + 1/q = 1. They established a phase transition in the value of q for the geometric

random graph model, where above the threshold q∗∗ = 1 + 1/(d − 2), the q-resistances “[...]

depend on trivial local quantities and do not convey any useful information [...]” about the graph,
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while below the threshold q∗ = 1 + 1/(d − 1), these resistances encode interesting properties of

the graph. They conclude by suggesting the use of p-Laplacian regularization with 1/p+1/q∗ = 1.

The latter condition can be read p = d. However, as shown by the examples above, this choice is

still problematic, and in fact, the choice d+ 1 is the smallest admissible value for p.

We also note that the example for p ≤ d − 1 extends to an arbitrary number of labeled points:

one simply has a spike for each point. Undesirable behavior arises as long as the set {xi | i ∈ O}
of observed points is of measure zero. Finally, we note that both the above example can be adapted

to the case where the squared loss (f(xi) − yi)
2 is optimized along with the regularizer instead of

imposing the hard constraint f(xi) = yi (see Appendix D). The issue is that the regularizer is too

weak and allows to choose the solution from a very large class of functions.

4.3. p-Laplacian solution is smooth for p ≥ d+ 1

At this point, a natural question is whether the condition p ≥ d + 1 is also sufficient to ensure that

the solution is well-behaved. In a specific setting to be described here, the answer is yes3. The

underlying reason is the Sobolev embedding theorem. More precisely, let W 1,p([0, 1]d) denote the

weighted Sobolev space of all (weakly) differentiable functions f on [0, 1]d such that

‖f‖1,p : =
(∫

‖∇f(x)‖p2µ2(x)dx

)1/p

< ∞.

The above is a semi-norm on W 1,p([0, 1]d). If moreover, we assume µ is strictly positive almost

everywhere and restrict the above class to functions vanishing on the boundary, then ‖ · ‖1,p actually

defines a norm. When p > d, and under additional regularity conditions on µ (e.g. upper- and

lower-bounded by constants a.e.), the space W 1,p can be embedded continuously into the space of

Hölder functions of exponent 1− d
p , i.e. functions u such that |u(x)− u(y)| ≤ c‖x− y‖1−

d
p

2 for all

x, y ∈ [0, 1]d for some dimension-dependent constant c. For details, see Theorem 11.34 of Leoni

(2009) or Lemma 5.17 of Adams and Fournier (2003). Brown and Opic (1992) provide some

relaxed conditions on µ. Since the minimizer f of Ip is such that Ip(f) =
∫
‖∇f(x)‖p2µ2(x)dx <

∞, the function f is in the Sobolev class W 1,p, and therefore it automatically inherits the Hölder

smoothness property, i.e. the p-Laplacian solution is smooth for p ≥ d + 1, asymptotically as

N → ∞, h → 04. Incidentally, via the examples in the previous section, it is clear that no such

embedding exists if p ≤ d.

4.4. An example where inf-minimization interpolates well

By extension to the case p → ∞, the infinity-Laplacian solutions also enjoy continuity (this solu-

tion is actually Lipschitz based on its interpretation as the absolutely minimal Lipschitz extension

of the observations (Aronsson et al. (2004)). It was also argued by Kyng et al. (2015) based on

experimental results that the inf-minimization method has a better behavior in higher dimensions in

terms of faithfulness to the observations. We illustrate this point by considering a simple example,

3. Interestingly enough, the p-Laplacian equation has been extensively studied in non-linear potential theory. It is in

fact the prototypical example of a non-linear degenerate elliptic equation. The regularity of the solutions is well

understood for any real number 1 < p < ∞ (see e.g. Heinonen et al. (2012)). For our purposes however, we do not

need the full power of this theory.

4. If the graph is finite, then the solution might still contain small spikes as apparent in Figures 1 and 2.
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similar to the one above, for which the ∞-Laplacian equation (9) produces a sensible solution. With

x0 = 0 and S : = {x ∈ R
d | ‖x‖2 = 1} denoting the Euclidean unit sphere, suppose that we limit

ourselves to functions satisfying the observation constraints y0 = f(0) = 0 and y(x) = 1 for all

x ∈ S.

Without any further information on the data-generating process, a reasonable fit is the function

f̄(x) = ‖x‖2. We claim that it is the only radially symmetric solution to the differential equation

∆∞f = 0 with the boundary constraints f(x0) = y0 and f(x) = y(x) for all x ∈ S. In order to

verify this claim, let f(x) = g(‖x‖2) for a differentiable function g : R+ → R. For any non-zero

x ∈ R
d, we have

∇f(x) = g′(‖x‖2)
x

‖x‖2
, and ∇2f(x) = g′′(‖x‖2)

xx⊺

‖x‖22
+ g′(‖x‖2)

I

‖x‖2
− g′(‖x‖2)

xx⊺

‖x‖32
.

Then

∆∞f(x) =
1

‖∇f(x)‖22
∇f(x)⊺∇2f(x)∇f(x) = g′′(‖x‖2).

Given the boundary conditions on f , the only solution to ∆∞f = 0, is given by g(r) = r,

meaning that f(x) = ‖x‖2. On the other hand, the latter is not a solution to ∆2f = 0, unless d = 1.

In summary, this section reveals a trade-off between smoothness and sensitivity to the data-

generating density µ in p-Laplacian regularization: the solution is strongly sensitive to µ but is

non-smooth for small values of p, while it is smooth but weakly dependent on µ for large and

infinite values of p. The transition from degeneracy to smoothness happens at a sharp threshold

p∗ = d+ 1, while the dependence on µ weakens with larger and larger p without a threshold.

While the property of smoothness is an obvious quality in an estimation setting, and may lead

to improved statistical rates if assumed first hand —especially if the signal one wishes to recover is

itself smooth— it is less obvious how to quantify the advantages entailed by the sensitivity to the

underlying data-generating density; especially when the latter is available and is to be incorporated

in the design of an estimator. We provide in the next section a simple, one-dimensional regression

example where the regression function is tied to the density µ via the cluster assumption, and where

a difference in estimation rates between the ℓ2 and ℓ∞ methods is exhibited. This difference is

explicitly due to the fact that the ℓ2 method leverages the knowledge of µ while ℓ∞ does not.

5. The price of “forgetting” µ

We consider in this section a simple estimation example in one dimension where the asymptotic

formulation of 2-Laplacian regularization method achieves a better rate of convergence than that of

the inf-minimization method. Such an advantage of the ℓ2 method over the ℓ∞ method should be

conceivable under the cluster assumption: the regularizer I2 =
∫
f ′2µ2 will encodes information

about the target function via µ while the regularizer I∞ = sup |f ′| does not.

Let the target function f∗ and the data-generating density µ be supported on the interval [−1, 1].
For some small ǫ > 0, we construct a density µ that takes a uniformly small value over the interval

[−ǫ, ǫ], and takes and a large value on the complementary set [−1,−ǫ) ∪ (ǫ, 1]. We also let f∗

have a high Lipschitz constant on the interval [−ǫ, ǫ] and be constant otherwise. More precisely, the

10
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density µ and function f∗ are constructed as follows:

µ(x) =

{
b x ∈ [−ǫ, ǫ],

a x ∈ [−1,−ǫ) ∪ (ǫ, 1],
f∗(x) =





−1 x ∈ [−1,−ǫ),

x/ǫ x ∈ [−ǫ, ǫ],

1 x ∈ (ǫ, 1].

(10)

The constants a and b are related by the equation (1 − ǫ)a + ǫb = 1/2 so that the density µ
integrates to 1, and we think of b as being much smaller than a, i.e. b ≪ a. Consider the following

two classes of functions corresponding to the regularizer Ip for p = 2 and p = ∞ respectively:

H : =
{
f : [−1, 1] → R , f absolutely continuous, odd and

∫ 1

−1
f ′(x)2µ2(x)dx < ∞

}
,

L : =
{
f : [−1, 1] → R , f absolutely continuous, odd and sup

|x|≤1
|f ′(x)| < ∞

}
.

We define the associated norms ‖f‖H : =
( ∫ 1

−1 f
′(x)2µ2(x)dx

)1/2
and ‖f‖L : = sup

x∈[−1,1]
|f ′(x)|

on H and L respectively. Observe that ‖f∗‖L = 1/ǫ while ‖f∗‖H is upper bounded by a constant:

∫ 1

−1
[(f∗)′(x)]2µ2(x)dx =

∫ ǫ

−ǫ

1

ǫ2
b2dx = 2b2/ǫ.

Taking b =
√
ǫ, the above integral is bounded above by 2.

We draw n points (xi)
n
i=1 independently from µ and observe the responses yi = f∗(xi) + σ2ξi

where ξi ∼ N(0, 1) are i.i.d. standard normal random variables, σ > 0. We compare the following

two M-estimators:

f̂H = argmin
f

1

n

n∑

i=1

(
yi − f(xi)

)2

s.t. f ∈ H , ‖f‖H ≤ 2,

and
f̂L = argmin

f

1

n

n∑

i=1

(
yi − f(xi)

)2

s.t. f ∈ L , ‖f‖L ≤ 1/ǫ,

in terms of the rate of decay of the error
∥∥f̂ − f∗∥∥2

n
, where ‖f‖2n = 1

n

∑n
i=1 f

2(xi). Note that this

error can in principle tend to zero as n grows to infinity since the target f∗ belongs to the hypothesis

class in both of the considered cases, i.e. there is no approximation error.

Theorem 3 There are universal constants (c0, c1, c2, c3) such that for any ǫ ∈ (0, 1/2), the ℓ2
estimator satisfies the bound

∥∥∥f̂H − f∗
∥∥∥
2

n
≤ c1

(
σ2

n

)2/3

(11)

with probability at least 1 − exp
{
−c0

(
n
σ2

)1/3}
. On the other hand, the ℓ∞ estimator satisfies the

bound

∥∥f̂L − f∗∥∥2
n
≤ c3

( σ2

ǫ n

)2/3
(12)

with probability at least 1− exp
{
−c2

(
ǫ2 n

σ2

)1/3}
.

11
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We can thus compare the upper bounds on the rate of estimation of the ℓ2 and ℓ∞ methods

respectively. The upper bound (12) shows a dependence in 1/ǫ2/3, while the bound (11) shows no

dependence on ǫ. One might ask if these bounds are tight. In particular, a question of interest is

whether the ℓ∞ estimator adapts to the target f∗ without the need to know the density µ, in which

case the corresponding estimator would achieve a better rate. While we think our bounds could

be sharpened, we strongly suspect that the ℓ∞ estimator cannot achieve a rate independent of ǫ
(in contrast to the ℓ2 estimator). We provide an array of simulations showing that the rate of ℓ∞
deteriorates as ǫ gets small, where the rate of the ℓ2 method stays the same (see Figure 3).

5.1. Main ideas of the proof

The non-asymptotic bound (12) in Theorem 3 follows in a straightforward way from known results

on the minimax rate of estimation on the class of Lipschitz functions. Indeed, the rate of estimation

on this class with Lipschitz constant L is
(
Lσ2/n

)2/3
, and in our case L = 1/ǫ. On the other hand,

the result (11) follows by recognizing that the class H is a weighted Sobolev space of order 1, which

is a Reproducing Kernel Hilbert Space (RKHS). The associated kernel, as identified by Nadler et al.

(2009), is given by

K(x, y) =
1

4

∫ 1

−1
dt/µ2(t)− 1

2

∣∣∣∣
∫ y

x
dt/µ2(t)

∣∣∣∣ , for all x, y ∈ [−1, 1]. (13)

It is known that the rate of estimation on a ball of radius R of an RKHS is tightly related to the

decay of the eigenvalues of the kernel. More precisely, the rate of estimation is upper-bounded with

high probability by the smallest solution δ > 0 to the inequality


 2

n

∞∑

j=0

min
{
γj , δ

2
}



1/2

≤ R

σ
δ2, (14)

where (γj)j≥0 is the sequence of eigenvalues of the kernel K (Koltchinskii (2006); Mendelson

(2002); Bartlett et al. (2002); van de Geer (2000)). Our next result upper-bounds the rate of decay

of these eigenvalues.

Lemma 4 For any ǫ ∈ (0, 1/2), the eigenvalues of the kernel K form a doubly indexed sequence

(γk,j) with 0 ≤ k ≤ 2k0 − 1, j ≥ 0, k0 = ⌊
√
2ǫ−3/4⌋. This sequence satisfies the upper bound

γk,j ≤




1.26 if k = j = 0

1(
k

2
√
2
+jǫ−3/4

)2
π2

otherwise.

Plugging these estimates in equation (14) leads to the rates we claim in Theorem 3. The full details

are given in Appendix C.
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Figure 3: Plots of mean-squared-error (MSE) against number of labeled samples. The regular-

ization parameter is determined using cross-validation (thereby producing estimators of superior

performance than f̂H and f̂L). The samples xi are drawn according to µ and yi = f∗(xi) + ξi,
and ξi are i.i.d. N(0, 0.05). Panels (a) and (b): MSE of ℓ2 and ℓ∞ methods respectively for various

values of ǫ. As expected, the MSE of the ℓ2 method is independent of ǫ while that of the ℓ∞ method

is increasing in 1/ǫ. Panels (c) and (d): Plots of the MSE and MSE × n2/3, respectively versus

the sample sample size n for both methods. Both plots correspond to sequences of problems with

ǫ = 1/n; panel (d) shows that in this regime, the rate of the ℓ2 method is roughly n−2/3, thereby

providing evidence that the upper bound (11) is tight, while the rate of the ℓ∞ method, call it r(ǫ, n),
is such that r( 1n , n) ≫ n−2/3.

6. Related work

The discrete graph p-Laplacian was introduced by Zhou and Schölkopf (2005) as a form of regular-

ization generalizing classical Laplacian regularization in semi-supervised learning Zhu et al. (2003).

We mention however that the continuous p-Lapalcian has been extensively studied much earlier in

PDE theory Heinonen et al. (2012); Aronsson et al. (2004). It was also used and analyzed for spec-
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tral clustering, where it provides a family of relaxations to the normalized cut problem Amghibech

(2003); Bühler and Hein (2009); Luo et al. (2010). A dual version of the problem (the q-resistances

or q-volatges problem) was investigated and shown to yield improved classification performance

in Bridle and Zhu (2013). Alamgir and Luxburg (2011) prove the existence of a phase transition un-

der the geometric random graph model roughly similar to the one exhibited in this paper, although

the thresholds are slightly different. The exact nature of the connection is still unclear however. On

the other hand, a game-theoretic interpretation of the p-Laplacian solution is studied in Peres and

Sheffield (2008); Peres et al. (2009), and a similar transition at p = d + 1 in the behavior of the

game is found. The assumption that the graph entails a geometric structure is popular in the analysis

of semi-supervised learning algorithms Belkin and Niyogi (2001); Bousquet et al. (2003); Belkin

and Niyogi (2004); Hein (2006a,b); Nadler et al. (2009). This line of work have mostly focused on

the 2-Laplacian formulation and its convergence properties to a differential operator on the limiting

manifold.

Among other approaches that circumvent the degeneracy issue discussed in the paper, we men-

tion higher order regularization Zhou and Belkin (2011), where instead of only penalizing the first

derivative of the function, one can penalize up to l derivatives. This approach considers solutions

in a higher order Sobolev space W l,2 which, via the Sobolev embedding theorem, only contains

smooth functions if l > d/2 (see Adams and Fournier (2003); Leoni (2009)). This approach can be

implemented algorithmically using the discrete iterated Laplacian Zhou and Belkin (2011); Wang

et al. (2015).

Results on statistical rates for semi-supervised learning problems are very sparse. The first

results are covered in Castelli and Cover (1996) in the context of mixture models, Rigollet (2007)

in the context of classification, and Lafferty and Wasserman (2007) for regression. A recent line

of work considers the setting where the graph is fixed while the set of vertices where the labels

are available is random Ando and Zhang (2007); Johnson and Zhang (2007, 2008); Shivanna and

Bhattacharyya (2014); Shivanna et al. (2015). The methods studied in this setting generalize the

2-Laplacian method by penalizing by the quadratic form given by a general positive semidefinite

kernel. The derived rates depend on the structural properties of the graph and/or the kernel used.

It is shown in particular that using the normalized Laplacian instead of the regular one leads to a

better statistical bound, and on the other hand, one can obtain rates depending on the Lovász Theta

function of the graph by choosing the regularization kernel optimally.

7. Conclusion and open problems

In this paper, we used techniques and ideas from PDE theory to yield insight into the behavior

of various methods for semi-supervised learning on graphs. The d-dimensional geometric random

graph model analyzed in this paper is a common one in the literature, and the most common Lapla-

cian penalization technique is for p = 2, though the choice p = ∞ has also attracted some recent

attention. Our paper sheds light on both of these options, as well as the full range of p in between.

From our asymptotic analysis, we see that for a d-dimensional problem, degenerate solutions occur

whenever p ≤ d, whereas at the other extreme, the choice p = ∞ leads to solutions that are totally

insensitive to the input data distribution. Hence, the choice p = d + 1 seems like a prudent one,

trading off degeneracy of the solution with sensitivity to the unlabeled data.

An important companion problem is the unconstrained version of the problem, in which we

penalize a (weighted) sum of two terms, the p-Laplacian term and a sum of squared losses on the
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labeled data. One can see that under our asymptotics, we can make the same conclusions about

the unconstrained solution. Hence, the conclusions of this paper do not hinge on the fact that we

modeled the problem with equality constraints, and do apply more generally. For completeness, we

outline this argument in Appendix D.

In addition to the questions of obtaining uniform convergence results for the discrete p-Laplacian

objective, and studying the convergence of the latter under a joint limit N → ∞ and hN → 0 (i.e.

the bandwidth parameter h decays to 0 as a function of N ) already raised in the paper, there are

perhaps two important assumptions which must be relaxed in future work. The first is the asymp-

totics we consider, in which the number of labeled points is fixed as the unlabeled points become

infinite. An interesting situation is when both labeled and unlabeled points grow at a relative rate.

We showed that in the first situation, a certain class of methods, namely all p-Laplacian methods

with p ≤ d, behave poorly. An interesting direction is to understand what set of methods are appro-

priate in different regimes of relative growth rate. In particular, we suspect that most of our results

should continue to hold as long as the number of unlabeled points grow at a much faster rate than

the number of labeled points.

The second assumption is about the geometric random graph model, and how much our results

are tied to this model. Finite sample rates and non-asymptotic arguments are necessary to understand

how soon we can expect to see these effects on general graphs in practice. The model selection

problem of what p to use in practice is very important, since we may not know the underlying

dimensionality of the data from which our graph was formed.

Finally, the question of designing fast algorithms for computing the estimator f̂ is of utmost

importance. One promising idea is the use of a Newton method for minimizing the p-Laplacian

objective: each iteration requires solving a Laplacian linear system, which is fast in theory (the

Hessian matrix of Jp is the Laplacian of a graph with changing weights). This is the algorithm used

in the experiments in the present paper, although we did not conduct a theoretical analysis of its

overall running time.
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Appendix A. Proof of Theorem 1

Let x and x′ be i.i.d. draws from µ. Since f is a bounded function, the first moment E
[
|f(x) −

f(x′)|q
]

is finite. Therefore, by the strong law of large numbers for U-statistics (Serfling (2009)),

we have

lim
N→∞

1

N2
Jp(f) =

∫ ∫
ϕ

(‖x− x′‖2
h

)p ∣∣f(x)− f(x′)
∣∣p µ(x)µ(x′)dxdx′, almost surely.

Writing x′ = x+ hz for some scalar h > 0 and vector z, the second integral simplifies to

∫
ϕ

(‖x− x′‖
h

)p ∣∣f(x)− f(x′)
∣∣p µ(x′)dx′ = hd

∫
ϕ
(
‖z‖2

)p |f(x)− f(x+ hz)|p µ(x+ hz)dz.
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We now divide by hd+p and consider the behavior as the bandwidth parameter h tends to zero. Since

the functions f , f ′ and µ are all bounded on a compact domain, the dominated convergence theorem

implies that

µ(x)

∫
ϕ
(
‖z‖2

)p |〈∇f(x), z〉|p dz = µ(x)
〈
∇f(x)⊗p,

∫
ϕ
(
‖z‖2

)p
z⊗pdz

〉
.

Note the above inner product involves tensors of order p, and recall that we have assumed that p ≥ 2
is even. Since the function ϕ depends only on the norm of z in the above integral, the latter should

also be isotropic. The precise statement is as follows:

Lemma 5 For any function w : R+ → R+ and vector u ∈ R
d, we have

〈
u⊗p ,

∫
w
(
‖z‖2

)
z⊗pdz

〉
=

{
1

dp/2

( ∫
w
(
‖z‖2

)
‖z‖p2dz

)
· ‖u‖p2 if p ≥ 2 is even

0 if p is odd.
(15)

Applying Lemma 5 with the function w(‖z‖2) : = ϕ(‖z‖2)p and then simplifying yields

lim
N→∞

1

N2hp+d
Jp(f) =

1

dp/2

∫
‖z‖p2ϕ

(
‖z‖2

)p
dz ·

∫
‖∇f(x)‖p2µ2(x)dx,

which concludes the proof of the theorem.

The only remaining detail is to prove Lemma 5.

Proof of Lemma 5 We proceed by induction on the integer p. In the base case (p = 2), we have

〈
uu⊺ ,

∫
w
(
‖z‖2

)
zz⊺dz

〉
= u⊺

( ∫
w
(
‖z‖2

)
zz⊺dz

)
u.

Since the function w depends only on ‖z‖2, the matrix between the parentheses above is propor-

tional to the identity, the proportionality constant can be determined by taking a trace. We end up

with
∫
w
(
‖z‖2

)
zz⊺dz = 1

d

( ∫
w
(
‖z‖2

)
‖z‖22dz

)
I . This establishes the base case.5 Now assume

that for a given even p ≥ 2, and for all function non-negative maps w, one has (15). We prove that

the same is true for p+2. Define Tp : =
∫
w
(
‖z‖2

)
z⊗pdz, and for any vector u ∈ R

d, let T̄p be the

partial contraction of Tp+2 by u⊗ u, namely

T̄p : =Tp+2(u⊗ u) =

∫
w
(
‖z‖2

)
z⊗p〈u, z〉2dz.

The tensor T̄ is of order p, and the map z → w(‖z‖2)〈u, z〉2 is non-negative, so by the induction

hypothesis, for every v ∈ R
d, we have

〈v⊗p , T̄p〉 =
1

dp/2

(∫
w (‖z‖2) ‖z‖p2〈u, z〉2dz

)
‖v‖p2.

By recourse to the base case, the quadratic form between the parentheses is equal to
1
d

(∫
w
(
‖z‖2

)
‖z‖p+2

2 dz
)
‖u‖22. Taking u = v completes the proof of the lemma.

5. The case p = 2 is also proven in Proposition 4.1 of the paper (Bousquet et al., 2003)
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Appendix B. Proof of Theorem 2

Recall the shorthand notation Ip(f) : =
∫
‖∇f(x)‖p2µ2(x)dx. By convexity, the function f is a

minimizer of the functional Ip if for all test functions h and all sufficiently small real numbers

ǫ > 0, we have Ip(f + ǫh) ≥ Ip(f). Moreover, by a Taylor series expansion, we have

Ip(f + ǫh) = Ip(f) + pǫ

∫
〈∇f(x),∇h(x)〉 · ‖∇f(x)‖p−2

2 µ2(x)dx+O(ǫ2),

where the O(ǫ2) term is non-negative by convexity of Ip. Hence, the function f is a minimizer if

and only if

∫
〈∇f(x),∇h(x)〉 · ‖∇f(x)‖p−2

2 µ2(x)dx = 0

for all testing functions h. By integrating by parts and choosing h to vanish on the boundary of the

set [0, 1]d, we find that the above quantity is equal to

∫
〈∇f(x),∇h(x)〉 · ‖∇f(x)‖p−2

2 µ2(x)dx = −
∫

div
(
µ2(x)‖∇f(x)‖p−2

2 ∇f(x)
)
h(x)dx.

This expression has to vanish for all test functions h (that vanish on the boundary), which implies

the Euler-Lagrange equation

div
(
µ2(x)‖∇f(x)‖p−2

2 ∇f(x)
)
= 0.

We now further manipulate this equation so as to obtain the p-Laplacian equation. In particular,

some straightforward computations yield

∂xi

(
µ2‖∇f‖p−2

2 ∂xif
)
(x) = ∂xi

(
µ2(x)‖∇f(x)‖p−2

2

)
∂xif(x) + µ2(x)‖∇f(x)‖p−2

2 ∂2
xi
f(x), and

∂xi

(
µ2‖∇f‖p−2

)
(x) = 2∂xiµ(x) · µ(x)‖∇f(x)‖p−2 + µ2(x)(p− 2)

( d∑

j=1

∂xi,xjf∂xjf
)
· ‖∇f(x)‖p−4.

Now summing these terms yield

div
(
µ2(x)‖∇f(x)‖p−2

2 ∇f(x)
)
= 2µ(x)‖∇f(x)‖p−2

2 〈∇µ(x),∇f(x)〉+ µ2(x)‖∇f(x)‖p−2
2 ∆2f(x)

+ (p− 2)µ2(x)‖∇f(x)‖p−4
2

( d∑

i,j=1

∂xif · ∂xi,xjf · ∂xjf
)
(x)

= µ2(x)‖∇f(x)‖p−2
2 ·

(
∆2f(x) +

2

µ(x)
〈∇µ(x),∇f(x)〉+ (p− 2)∆∞f(x)

)
.

From the derivation above, the Euler-Lagrange equation (8a) is equivalent to

∆2f(x) + 2〈∇ logµ(x),∇f(x)〉+ (p− 2)∆∞f(x) = 0,

as claimed.
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Appendix C. Proof of Theorem 3

Bounding the error of M -estimators is a classical problem in statistics and learning theory. Op-

timal rates typically follow by deriving uniform convergence bounds over a small ball localized

around the true regression function f∗; for instance, see the book van de Geer (2000) as well as

the papers Koltchinskii (2006); Bartlett et al. (2002). Uniform convergence is established by upper-

bounding the Rademacher or Gaussian complexity of this small ball via generic covering number

arguments, or by leveraging the special structure of the ball. The first approach will be used to

analyze the rate of the estimator f̂L, and the second approach to analyze the rate of f̂H. In this latter

case, the analysis is based on the study of the spectrum of a certain integral operator associated to

the kernel K (13) that generates the space H.

C.1. Proof of the error bound (12) on f̂L

For a given metric space (F , ρ), we let N(t,F , ρ) be the covering number of F in the metric ρ at

resolution t. Now consider the shifted function class

L∗ : = {f − f∗ | f ∈ L , ‖f‖L ≤ 1/ǫ}

under the metric ‖f‖L = supx |f ′(x)|. By known results on metric entropy (Dudley, 1999), we

have log(N(t;L∗; ‖ · ‖L)) = O
(
1
ǫt

)
, using the fact that any function in L∗ must be 2/ǫ-Lipschitz.

Now let ‖f‖2n = 1
n

∑n
i=1 f

2(xi) be the squared empirical L2-norm, and consider the ball

Bn(δ,L∗) : = {f ∈ L∗ | ‖f‖n < δ}.

Since the sup norm is stronger than this empirical norm, we have the sequence of inequalities

log(N(t;Bn(δ;L∗); ‖ · ‖n)) ≤ log(N(t;L∗; ‖ · ‖n)) ≤ log(N(t;L∗; ‖ · ‖L)) = O
(
1

ǫt

)
. (16)

Next consider the δ-localized Gaussian complexity of a function class F , given by

G(δ;F) = Ew


 sup

g∈F
‖g‖n≤δ

1

n

n∑

i=1

wig(xi)


 , (17)

where {wi}Ni=1 is an i.i.d. sequence of standard normal random variables. Define the critical radius

δn as the smallest δ that satisfies the master inequality

G(δ;L∗) ≤ δ2

2σ
. (18)

With this set-up, it is known (van de Geer, 2000) that the M -estimator f̂L satisfies a bound of the

form

P
[
‖f̂L − f∗‖2n ≤ c1δ

2
n

]
≥ 1− e−c2

nδ2n
2σ2 , (19)
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where c1 and c2 are universal positive constants. By Dudley’s entropy integral, the critical radius δn
is upper bounded by any δ which satisfies

1√
n

∫ δ

δ2/2

√
log(N(t;Bn(δ;L∗); ‖ · ‖n))dt ≤

δ2

σ
.

A little calculation shows that it suffices to choose δn such that

δ2n ≤
(
σ2

ǫn

)2/3

.

Note that this is in fact a global upper bound on δn, since the first inequality of (16) holds for any

setting of the design points {xi}ni=1.

C.2. Proof of the error bound (11) on f̂H

As our starting point, we use the master inequality (18) with the shifted function class L∗ replaced

by H∗ : = {f − f∗ | f ∈ H , ‖f‖H ≤ R}. Recall that ‖f‖2H =
∫
f ′2µ2 and R = 2 in our case.

Using known bounds (Mendelson, 2002) on localized Gaussian complexity of H∗ in terms of the

eigenvalues of the kernel K, the master inequality takes the simpler form


 2

n

∞∑

k,j=0

min
{
γk,j , δ

2
}



1/2

≤ R

σ
δ2. (20)

We claim that this master inequality is satisfied by

δn = c1

(
σ2

R2n

)1/3

(21)

where c1 is an absolute constant, independent of n, ǫ. Given this choice, the overall claim follows

by applying the non-asymptotic error bound (19).

It remains to show that the choice (21) is valid, and we do so by using the bounds on the

eigenvalues from Lemma 4. For δ ∈ (0,
√
2/π), let k∗, j∗ be the largest integers such that γk,j ≥ δ2,

or equivalently such that

k/(2
√
2) + jǫ−3/4 ≤ 1/(πδ).

One can verify that j∗ = ⌊ ǫ3/4δπ ⌋ and k∗ = ⌊2
√
2ǫ−3/4

(
ǫ3/4

δπ − ⌊ ǫ3/4δπ ⌋
)
⌋. We note that for δ <√

2/π < 1, j∗ and k∗ cannot simultaneously be zero. Using these cut-off points, the number of

eigenvalues (γk,j) that are larger than δ2 is at most 2k0j
∗ + k∗ + 1. Moreover, we have

∞∑

k,j=0

min
{
γk,j , δ

2
}
≤ (2k0j

∗ + k∗ + 1)δ2 +

2k0−1∑

k=k∗+1

γk,j∗ +
∑

j≥j∗+1

2k0−1∑

k=0

γk,j . (22)

Next, we control each term in the above expression. For the first term, note that k0 ≤
√
2ǫ−3/4 and

j∗ ≤ ǫ3/4

δπ . Moreover, we have k∗ ≤ 2
√
2

πδ . Therefore, the first term is bounded as 2k0j
∗ + k∗ + 1 ≤

4
√
2/(δπ) + 1.
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As for the second term,

2k0−1∑

k=k∗+1

γk,j∗ ≤
2k0−1∑

k=k∗+1

1
(

k
2
√
2
+ j∗ǫ−3/4

)2
π2

=
1

(
k∗+1
2
√
2
+ j∗ǫ−3/4

)2
π2

+

2k0−1∑

k=k∗+2

1
(

k
2
√
2
+ j∗ǫ−3/4

)2
π2

(i)

≤ 1
(
k∗+1
2
√
2
+ j∗ǫ−3/4

)2
π2

+

∫ 2k0−1

k∗+1

dt
(

t
2
√
2
+ j∗ǫ−3/4

)2
π2

=
1

(
k∗+1
2
√
2
+ j∗ǫ−3/4

)2
π2

+
2
√
2(

k∗+1
2
√
2
+ j∗ǫ−3/4

)
π2

− 2
√
2(

2k0−1
2
√
2

+ j∗ǫ−3/4
)
π2

≤ 1
(
k∗+1
2
√
2
+ j∗ǫ−3/4

)2
π2

+
2
√
2(

k∗+1
2
√
2
+ j∗ǫ−3/4

)
π2

(ii)

≤ 4
√
2(

k∗+1
2
√
2
+ j∗ǫ−3/4

)
π2

.

The first inequality is obtained using Lemma 4. Inequality (i) follows by upper-bounding the dis-

crete sum by an integral:
∑k0

k=k∗+1 1/k
2 ≤

∫ k0
k∗ dt/t (this argument will be used once more to

control of the third sum). Inequality (ii) is obtained simply by factoring and noting that k∗+1
2
√
2
+

j∗ǫ−3/4 ≥ 1
2
√
2
. By definition of j∗ and k∗, we have k∗+1

2
√
2
+ j∗ǫ−3/4 > 1

πδ . Therefore,

2k0−1∑

k=k∗+1

γk,j∗ ≤ 4
√
2(

1
δπ

)
π2

=
4
√
2

π
δ.

On the other hand, using the same techniques above, the third term is upper bounded as

∑

j≥j∗+1

2k0−1∑

k=0

γk,j ≤
∑

j≥j∗+1

2k0

(jǫ−3/4)2π2

=
2k0ǫ

3/2

(j∗ + 1)2π2
+

∑

j≥j∗+2

2k0ǫ
3/2

j2π2

≤ 2k0ǫ
3/2

(j∗ + 1)2π2
+

∫ ∞

j∗+1

2k0ǫ
3/2

s2π2
ds

=
2k0ǫ

3/2

(j∗ + 1)2π2
+

2k0ǫ
3/2

(j∗ + 1)π2

≤ 2
2k0ǫ

3/2

(j∗ + 1)π2
.

Since j∗ = ⌊ ǫ3/4δπ ⌋, we have j∗ + 1 > ǫ3/4

δπ . Therefore, using k0 = ⌊
√
2ǫ−3/4⌋, we have

∑

j≥j∗+1

2k0−1∑

k=0

γk,j ≤
4k0ǫ

3/4

π
δ ≤ 4

√
2

π
δ.
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Putting these estimates together, inequality (22) yields

∞∑

k,j=0

min
{
γk,j , δ

2
}
≤ (

4
√
2

δπ
+ 1)δ2 +

8
√
2

π
δ ≤ δ2 +

12
√
2

π
δ.

Therefore, the master inequality (20) becomes

√
2

n

(
δ2 +

12
√
2

π
δ
)1/2

≤ R

σ
δ2.

Finally, only considering solutions δ < 1, it can be verified that the specified choice (21) is adequate,

as claimed.

C.3. Proof of Lemma 4

We first characterize the eigenvalues of the kernel K as solutions to a certain non-linear equation:

Lemma 6 The eigenvalues of the kernel K from equation (13) are given by the solutions λ > 0 of

the non-linear equation

tan

(
ǫ√
λb

)
tan

(
1− ǫ√
λa

)
=

(
b

a

)3/2

. (23)

The proof of this lemma is deferred to the next subsection. Our next step is to understand the

solutions to tan
(

ǫ√
b
x
)
tan

(
1−ǫ√

a
x
)
=

(
b
a

)3/2
with x = 1/

√
λ.

For our purposes, we only need to consider the regime where b =
√
ǫ ≪ a and the quantity ǫ

is close to zero. We then assume that the ratio of the two periods 1−ǫ√
a
/ ǫ√

b
: = k0 is an integer; note

that this assumption can always be satisfied by choosing ǫ appropriately. This assumption prevents

complicated oscillatory phenomena, and thus makes the analysis simpler.

Define the function φ(x) : = tan
(

ǫ√
b
x
)
tan

(
1−ǫ√

a
x
)
. We first exploit the periodicity of the

function φ so as to simplify the reduce the problem φ is even, and by our assumption on k0, it has a

period of
√
a

1−ǫπ. Therefore, we only study its behavior on [0,
√
b
ǫ π]. We divide this interval into two

intervals I = [0,
√
b
ǫ π/2) and Ī = [

√
b
ǫ π/2,

√
b
ǫ π] and we study the behavior of φ on each of them

separately.

Divide I into smaller subintervals Ik : =
[
k

√
a

1−ǫπ/2, (k + 1)
√
a

1−ǫπ/2
)

with 0 ≤ k ≤ k0 − 1.

On each interval Ik, both functions x → tan
(
1−ǫ√

a
x
)

and x → tan
(

ǫ√
b
x
)

are continuous, positive,

and increasing. In addition, the last one varies from 0 to ∞. Therefore, φ spans the entire half line

[0,∞) on Ik. Consequently, it must cross the line y =
(
b
a

)3/2
exactly once in each interval Ik. We

denote the coordinate of intersection by xk, i.e. φ(xk) =
(
b
a

)3/2
and xk ∈ Ik.

Similarly, we divide Ī into regular subintervals Īk =
√
b
ǫ π − Ik. We observe that by parity of φ,

we have φ(−xk) =
(
b
a

)3/2
, and by periodicity, x̄k = −xk+

√
b
ǫ π ∈ Īk also verifies φ(x̄k) =

(
b
a

)3/2
.

The sequence of numbers x0 < x1 < . . . < xk0−1 < x̄k0−1 < x̄k0−2 < . . . < x̄0 correspond to the

entire set of solutions on the interval [0,
√
b
ǫ π]. Then by periodicity, we obtain all positive solutions
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by translating the above sequence by multiples of the period
√
b
ǫ π. Therefore the eigenvalues of the

kernel K form a doubly-indexed sequence (γk,j) such that

γk,j =





1
/(

xk + j
√
b
ǫ π

)2
k ∈ [0, k0 − 1],

1
/(√

b
ǫ π − x2k0−k−1 + j

√
b
ǫ π

)2
k ∈ [k0, 2k0 − 1].

Now, we can upper bound γk,j by using the fact xk ∈ Ik when either k or j is greater than 1:

observe that when k ≤ k0 − 1, xk ≥ k
√
a

1−ǫπ/2. Likewise, when k0 ≤ k ≤ 2k0 − 1,

√
b

ǫ
π − x2k0−k−1 ≥

√
b

ǫ
π − ((2k0 − k − 1) + 1)

√
a

1− ǫ
π/2 = k

√
a

1− ǫ
π/2.

Thus, we have shown that γk,j ≤ 1
/(

k
√
a

1−ǫ/2+j
√
b
ǫ

)2
π2 for all 1 ≤ k ≤ 2k0−1. Furthermore,

recalling that a = 1/2−ǫ3/2

1−ǫ , we notice that
√
a

1−ǫ ≥ 1/
√
2 when ǫ < 1/2. Consequently, we have

γk,j ≤ 1
/( k

2
√
2
+ j

√
b

ǫ

)2
π2 whenever k ≥ 1 or j ≥ 1.

Note in passing that k0 =
1−ǫ√

a
ǫ−3/4 ≤

√
2ǫ−3/4.

The case k = j = 0 needs extra care. We have x0 ∈ [0,
√
a

1−ǫπ/2). Since φ vanishes at 0 and

is strictly increasing on this interval, it is clear that x0 > 0. Now we proceed by an approximation

argument valid in the limit ǫ → 0, and then invoke monotonicity of the solution x0 in ǫ. For ǫ
sufficiently small and by using b =

√
ǫ, we can uniformly approximate the function tan

(
ǫ√
b
x
)

by

ǫ√
b
x for 0 < x < 1. Then, the equation φ(x) =

(
b
a

)3/2
becomes x tan

(
1−ǫ√

a
x
)
=

√
b
ǫ

(
b
a

)3/2
=

1
a3/2

. In this regime a ≃ 1/2 and the equation can be further approximated by tan(
√
2x) = 2

√
2

x .

A numerical inspection shows that the latter has a unique solution .892 ≤ x∗ ≤ .899 on [0, 1].

Moreover we also numerically observe that the solution x0(ǫ) to the equation φ(x) =
(
b
a

)3/2
on

[0, 1] is an increasing function of ǫ, hence x0 ≥ limǫ→0 x0(ǫ) = x∗. Therefore, the first eigenvalue

γ0,0 = 1/x20 is upper bounded by a constant independent of ǫ—that is, we have γ0,0 ≤ 1/x∗2 ≤
1.26, as claimed.

C.4. Proof of Lemma 6

Letting P be the distribution associated with the density µ, we study the eigenvalues and eigenfunc-

tions of the integral operator T : L2(P ) → L2(P ) given by

Tf(x) : =

∫ 1

−1
f(t)K(t, x)µ(t)dt.

Here the reader should recall that the density µ takes the form

µ(x) =

{
b if x ∈ [−ǫ, ǫ]

a if x ∈ [−1,−ǫ) ∪ (ǫ, 1].
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where the parameters (a, b, ǫ) are related by the equations (1 − ǫ)a + ǫb = 1/2, and b =
√
ǫ. The

kernel K is given by

K(x, y) =
1

4

∫ 1

−1

dt

µ2(t)
− 1

2

∣∣∣∣
∫ y

x

dt

µ2(t)

∣∣∣∣ , for x, y ∈ [−1, 1].

The eigenvalue equation associated with the operator T can be written as Tϕλ = λϕλ, where

ϕλ is the eigenfunction associated with the eigenvalue λ ≥ 0. Differentiating this equation twice

yields a system of differential equations for the eigenfunctions (proof omitted):

Lemma 7 All eigenfunctions of T must satisfy the following system of differential equations:

λb ϕ′′
λ + ϕλ = 0 on [−ǫ, ǫ], and

λa ϕ′′
λ + ϕλ = 0 on [−1,−ǫ) ∪ (ǫ, 1].

Solving this system of differential equations yields that any eigenfunction must be of the form

ϕλ(x) =





A1 sin
(

x√
λb

)
for x ∈ [−ǫ, ǫ],

A2 sin
(

x√
λa

)
+B2 cos

(
x√
λa

)
for x ∈ [−1,−ǫ), and

A2 sin
(

x√
λa

)
−B2 cos

(
x√
λa

)
for x ∈ (ǫ, 1],

where we already exploited the fact that ϕλ has to be odd. Of course, not all functions of the above

form are eigenfunctions of T , since we lost information by taking two derivatives. In order to show

that ϕλ is actually an eigenfunction, we need to verify that it is continuous continuous, and satisfies

the relations
(
Tϕλ

)′
= λϕ′

λ and Tϕλ = λϕ. Actually, the last condition will be satisfied when

the first two are. Together, these conditions will provide enough constraints to specify the four

parameters A1, A2, B2 and λ in an unambiguous, modulo a global multiplicative constant for the

first three.

By imposing continuity on the solutions for ±ǫ, we obtain an equation relating the parameters

of the problem:

A2 sin

(
ǫ√
λa

)
−B2 cos

(
ǫ√
λa

)
= A1 sin

(
ǫ√
λb

)
. (24)

Next we verify that the condition
(
Tϕλ

)′
= λϕ′

λ holds on [−ǫ, ǫ] and [−1,−ǫ) ∪ (ǫ, 1] separately.

Since the density µ is even, we have K(−x, y) = K(x,−y) for all x, y ∈ [−1, 1]. Therefore, for

any odd function f , we have

∫ −ǫ

−1
f(t)K(t, x)µ(t)dt = −

∫ 1

ǫ
f(t)K(t,−x)µ(t)dt,

so one we can study the problem on the interval (ǫ, 1] and automatically obtain the corresponding

results on [−1,−ǫ).
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ℓ2 , ℓp AND ℓ∞

Case x ∈ (ǫ, 1]: For any odd function f , we have

Tf(x) = −1

2

∫ −ǫ

−1
af(t)

(−ǫ− t

a2
+

2ǫ

b2
+

x− ǫ

a2
)
dt− 1

2

∫ ǫ

−ǫ
bf(t)

(ǫ− t

b2
+

x− t

a2
)
dt

− 1

2

∫ 1

ǫ
af(t)

( |t− x|
a2

)
dt.

Differentiating with respect to x and setting f = ϕλ yields

(
Tϕλ

)′
(x) = − 1

2a

{
A2

[
−
√
λa cos

( t√
λa

)]−ǫ

−1
+B2

[√
λa sin

( t√
λa

)]−ǫ

−1

}

− 1

2a

{
A2

[
−
√
λa cos

( t√
λa

)]x
ǫ
−B2

[√
λa sin

( t√
λa

)]x
ǫ

}

+
1

2a

{
A2

[
−
√
λa cos

( t√
λa

)]1
x
−B2

[√
λa sin

( t√
λa

)]1
x

}
.

Since we must have
(
Tϕλ

)′
= λϕλ, some algebra then leads to

A2 cos
( 1√

λa

)
+B2 sin

( 1√
λa

)
= 0. (25)

Equations (24) and (25) form a linear system in the coefficients A2 and B2, and solving this system

yields

A2 = A1

sin
(

1√
λa

)
sin

(
ǫ√
λb

)

sin
(

1√
λa

)
sin

(
ǫ√
λa

)
+ cos

(
1√
λa

)
cos

(
ǫ√
λa

) ,

B2 = −A1

cos
(

1√
λa

)
sin

(
ǫ√
λb

)

sin
(

1√
λa

)
sin

(
ǫ√
λa

)
+ cos

(
1√
λa

)
cos

(
ǫ√
λa

) .

Case x ∈ [−ǫ, ǫ]: For an odd function f , we have

Tf(x) = −1

2

∫ −ǫ

−1
af(t)

(−ǫ− t

a2
+

x+ ǫ

b2
)
dt− 1

2

∫ ǫ

−ǫ
bf(t)

( |x− t|
b2

)
dt

− 1

2

∫ 1

ǫ
af(t)

(ǫ− x

b2
+

t− ǫ

a2
)
dt.

Following an argument similar to the previous case, we find that

(
Tϕλ

)′
(x) = − a

b2
{
A2

[
−
√
λa cos

( t√
λa

)]−ǫ

−1
+B2

[
−
√
λa sin

( t√
λa

)]−ǫ

−1

}

− 1

2b

{
A1

[
−
√
λb cos

( t√
λb

)]x
−ǫ

+A1

[
−
√
λb cos

( t√
λb

)]ǫ
x

}
.

Imposing the constraint
(
Tϕλ

)′
= λϕλ leads to the equation

A2

(
cos

( ǫ√
λa

)
− cos

( 1√
λa

))
+B2

(
sin

( ǫ√
λa

)
− sin

( 1√
λa

))
=

( b
a

)3/2
A1 cos

( ǫ√
λb

)
. (26)

Finally, plugging the expressions of A2 and B2 in the above equation and simplifying yields the

claimed equation (23).
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Appendix D. Reduction of least squares to constrained optimization

In this appendix, we show that in the regime p ≤ d, minimizing an objective function that is

a weighted sum of a least-squares cost with a regularization term
(∫

‖∇f(x)‖pµ2(x)dx
)1/p

will

have degenerate solutions, just like the constrained formulation. Consider a least-squares problem

of the form

min
f

{∑

i∈O
(f(xi)− yi)

2 + λR(f)
}
, (27)

where R(f) is some arbitrary regularization term. We show that the above has the same solution as

a constrained optimization problem. Let

f̂ = argmin
f

{∑

i∈O
(f(xi)− yi)

2 + λR(f)
}
.

Then f̂ is equal to the minimizer of

min
f

R(f) subject to f(xi) = f̂(xi), i ∈ O. (28)

To see this, suppose that the optimizer of (28) is g 6= f̂ , then it must be that R(g) < R(f̂) and∑
i∈O(g(xi)− yi)

2 =
∑

i∈O(f̂(xi)− yi)
2, in which case the function g achieves a smaller value of

the cost (27) than f̂ .

By setting R(f) =
(∫

‖∇f(x)‖pµ2(x)dx
)1/p

, we know from Section 4.2 that the solution to

the optimization problem (28) must be degenerate, and so must the solution to the problem (27).
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