Forum Math. 19 (2007), 429461 Forum
DOI 10.1515/FORUM.2007.018 Mathematicum
© de Gruyter 2007

Asymptotic behavior of flows in networks
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Abstract. Using functional analytical and graph theoretical methods, we extend the results of
[12] to more general transport processes in networks allowing space dependent velocities and
absorption. We characterize asymptotic periodicity and convergence to an equilibrium by
conditions on the underlying directed graph and the (average) velocities.
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1 Introduction

The study of networks is becoming an important and popular field of mathematical
research with many recent applications ranging from classical sciences to the internet.
However, dynamical processes in such networks have not been studied widely (see
the remark on p. 224 of [19]). Mostly second order problems are handled in the lit-
erature. We refer to the monographs of Lagnese, Leugering et al. [13] and [14] that
treat second order equations also on more complicated multi-link-structures. Dager
and Zuazua in [8] and [9] investigate controllability and stabilizability of wave equa-
tions on graphs. F. Ali Mehmeti, J. von Below et al. ([1], [2], [3], [4], [5]) used func-
tional analytic methods to treat diffusion and wave propagation in networks (and on
more general structures). Recently, M. Kramar and E. Sikolya [12] have developed a
semigroup approach to certain transport processes in networks. They described the
asymptotic behavior of these processes under conditions on the flow velocities on the
edges of the underlying directed graph.

Our aim is—based on the paper [12]—to handle more general transport processes
allowing space dependent velocities and absorption in networks. We model the
problem by a system of partial differential equations on a directed graph where the
vertices serve as linking points between the edges. We show that the flow is (up to

§ This paper was written during the authors’ stay at the Mathematisches Institut der Uni-
versitdt Tiibingen. The authors were supported by the Marie Curie Host Fellowship ““Spectral
theory for evolution equations”, contract number HPMT-CT-2001-00315. Both authors thank
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rescaling) asymptotically periodic if the average flow velocities are linear dependent
over @ (see condition (LD)g, in Definition 4.8), while it converges strongly to an
equilibrium in case of linear independence.

Furthermore, we extend the result to the situation when—instead of functions—we
consider measures on the edges.

Generalizing the setting in [12], we describe a flow in a finite network by the equa-
tions

0 0
auj(sv t) = cj(s)&uj(s, [) + q_i(s) ’ M(S, [)a S€ (Oa 1); 1>0,

(F) u(s,0) = fi(s), s€(0,1), (IC)
$yui(1,0) = w5 3 auc(0,1), 120, (BC)
k=1
fori=1,...,n,and j=1,...,m.

For the model of the network we use the terminology as in [12, Section 1] and asso-
ciate it to a directed, topological graph G = (V, E) having vertices V = {v1,...,v,}
and directed edges (or arcs) E = {ey,...,en}, normalized as ¢; = [0, 1]. The arcs are
parameterized contrary to the direction of the flow. For graph theoretical notions see
also [6].

The distribution of material along an edge e; at time ¢ > 0 is described by the func-
tions u;(s,t) for s €[0,1] (see [12, Section 1]). The functions ¢;(-) are the space de-
pendent velocities of the flow on each arc e;, while the functions ¢;(-) describe the
absorption along the edges. We arrange them into the diagonal matrices

ci(s8) 0 q1(s) 0
(1) C(s) == . 0(s) = ,
0 Cm (S) 0 qm (S)

We assume that the absorption functions ¢; and velocities ¢; are bounded, that is
belong to L*[0,1], and in addition that ¢;(s) > ¢ > 0 for a.e. s € [0, 1] and for every
j=1,....m.

The boundary conditions (BC) are described by the following matrices, again as used
in [12, Section 1]. First, we define the outgoing incidence matrix ®~ = (¢ with

¢17 — {17 Ui = e/(1)7

0, otherwise.

ij )nxm

Respectively, we define the incoming incidence matrix ®* = (4;,),,,,, with
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+ . I, u= e‘j(()),
¥ 10, otherwise.
We also define the weighted outgoing incidence matrix ®,, = (wj),,,, With entries

0 < wj; < 1 expressing the proportion of the mass leaving the vertex v; into the edge
e;. We require that

m
(2) w; = ¢ w; and le’jzl foralli=1,...,n, j=1,...,m,
j=

and we assume that if e; is an outgoing edge of v;, then w; # 0. Again, as in [12], the
Kirchhoff law is satisfied in every vertex. Indeed, the boundary conditions (BC) to-
gether with (2) implies

m

(3) f:](/ﬁl;uj(l,t):z:l(/ﬁ;uj(OJ), i=1,...,n
J= J=

Hence in each vertex the total outgoing flow equals to the total incoming flow.

To treat our problem (F) we use methods as in [12]. First, we rewrite (F) in the form
of an abstract Cauchy problem and prove its well-posedness using semigroup meth-
ods (see also [10]). We then investigate the spectral properties of the generator of the
solution semigroup. Also, we extend this treatment to transport involving measures.
Finally, in Section 4, we give an accurate characterization for the asymptotic behav-
ior of the solutions.

2 Well-posedness of the problem

Our aim is to study the asymptotic behavior of the solutions in the state spaces
Q= (L0, 1)), ||.]le) and M := ((-#]0,1])", ||.lly), where ||.||¢ is the m-fold prod-
uct of the usual L' norm defined with respect to Lebesgue measure, while ||.||q; is the
m-fold product of the total variation norm on the Banach space of (finite) Borel
measures ./ |0, 1]. Note that £ can be regarded as a subspace of 9t by identifying the
absolutely continuous measures with their Radon-Nikodym derivative. In the sequel
we use this convention without further mention.

For both state spaces we obtain the appropriate semigroups by abstract methods
similarly to [12, Section 2]. The analysis of the resulting operators will then be carried
out in the next section.

Consider first £. Denoting by M,; the multiplication operator with the function g;,
we define the operator
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M,
C1 (S) dS + q1 0
(4) Ay =
d
0 Cm <S> % + qu

with (dense) domain

(5) D) i={g= (1. .gm) € W10, 1)" (1) € ran(@;) "},

We call
0L :=¢”"

the boundary space and introduce the outgoing boundary operator L : & — 0L,
L:=® ®06;, DL):=Wh''o,1)",

where J; is the point evaluation at 1, and the incoming boundary operator
M:LQ— 08,

(6) M:=®d"®d, DM):=Who,1)",

where dy is the point evaluation at 0. Similarly as in [12, Definition 2.2], the operator
corresponding to the problem (F) is the following.

Definition 2.1. On the Banach space £ we define the operator
() D(4) :={g € D(4,,) | Lg = My},
Ag = Awg'

A simple calculation shows that the conditions in the domain of 4 are equivalent to
(BC), hence the Cauchy problem

{u(t) = Au(t), t=>0,
u(0) = ug

with ug = (f}) i lom is an abstract version of our original problem. In the following,
if we write u(¢), we understand it as u(¢) = (u1(¢), ..., um()) = (1 (-, 1), ..., tm(-, 1))
e L'([0,1],R™) = (L'[0,1])"". By standard semigroup theory (see [10, Theorem
I1.6.7]) this problem is well-posed if and only if 4 generates a strongly continuous
semigroup (7°(¢)),., on L. In this case, the solutions of (2) have the form u(f) =
T(t)u yielding solutions for (F) too. To show the generator property we will use the
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Phillips theorem as in [12, Lemma 2.4]. We recall from [17, Section C-11.1] the defi-
nition of dispersive operators on Banach lattices.

Definition 2.2. An operator 4 on a Banach lattice X is called dispersive if for every
g € D(A) one has Re{Ag,$> <0 for some ¢ € X such that ||¢|| <1 and <{g,¢) =

llg™1l-

Based on this property, we can show that the operator 4 generates a semigroup of
positive operators on the Banach lattice £.

Proposition 2.3. The operator (A,D(A)) generates a positive strongly continuous
semigroup (T'(t)),s, on L.

Proof. Our operator A can be written as the sum

0
ci(s) 75 0 My, 0
A= ‘. - . =Ac+ A4y
0 M,

qm

0
0 cm(s) s

First we show that A, generates a positive Cy-semigroup (7°(?)), . To this purpose
we introduce a new, but equivalent lattice norm on £ defined as

m (1 lg(s
® o3| 2

j=1Jo ¢i(s)

Using the same computation as in the proof of [12, Lemma 2.4] we can show that the
operator (A4.,D(A)) is dispersive on the Banach lattice ((L'[0,1])",]|-]|.). Since
(4., D(A)) is also closed, densely defined and as we will see in Corollary 3.6, its re-
solvent set is not empty, we can use the Phillips Theorem from [17, Theorem C-
I1.1.2]. From this we obtain that (4., D(A4)) generates a positive semigroup (U(?)),,
on (£, - ). hence on (€,|- ).

By the assumptions on ¢q;, 4, is a bounded real multiplication operator on £, hence
it generates a positive multiplication semigroup (S(7)),- with ||S(7)|| < e’ for some
@ > 0. To the positive semigroups (U(?)),., and (S(¢)),., we can apply the Trotter
product formula (see [10, Corollary I11.5.8] obtaining

T(t)x = lim [U(t/n)S(t/n)]"x, xeX.

n—oo
This formula clearly defines again a positive semigroup (7°(?)),- - O

This yields to the following result.
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Corollary 2.4. The problem (F) is well-posed.

Consider now our second state space 9. We show that it is possible to extend the
semigroup (7°(¢)),-, on M using the density of & with respect to the weak*-topology
on (.#[0,1])™, that is in the space

My := ([0, 1)), w*) = (C[0, 1", [1]]..)".
We denote the w* convergence by —,,-.

Proposition 2.5. There is an extension of (T(1)),s, from £ to a w*-continuous semi-
group onto the state space M+, that is for every t > 0, T(1) fr —w T(O)u if fr = 1
for a sequence (fi),.n = £ and p € M.

Proof. Tt is enough to show that T(¢): & — £ is continuous with respect to the
weak*-topology on £ since then 7'(7)u can be defined as the weak*-limit of 7'(¢)fi
where fi —- n€ M, || fillo < 2||ullgy, as follows. Since 7'(¢) is norm bounded on £,
the set {7(7) f; : k € N} is bounded, hence it has a w*-accumulation point (see [23,
Theorem IV.11.2]). By weak*-continuity on £, this accumulation point is unique; let
T (t)u be defined as this point. Then this extension will clearly form a semigroup.

Observe that because of the metrizability of norm bounded sets in (2, w*) it is enough
to show that (7(¢)),., is sequentially continuous. So take f, (fi);.n < £ such that
fi —w+ f-. Consider the adjoint semigroup (7”(¢)),., on €' = L*([0, 1], C™) (see e.g.
[10, Section 1.5.14]). By definition, for every ¢ € C[0, 1] we have that

T fe =T f 0> =<fi = f, T'()p> — 0

if k — co. This shows that 7'(7) fi —,+ T(¢)f and proves the w*-continuity of 7(z)
on L. |

3 Spectral properties

To analyse the spectrum of 4, we again use methods as in [12, Section 3] and intro-
duce the operator

Ay = AW|kerL7 D(AO) = {g € D(Aw) i Lg = O}'
The domain of Ay can be rewritten as
D(d4p) = {g e (W"0,1))" : g(1) = 0}.

The corresponding Cauchy problem
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9) {zl(t) = Aou(t), t=>0,

u(0) = uy,

is well-posed since (4o, D(Ay)) generates a nilpotent semigroup (7(¢)),., on £. To
write explicitly this semigroup, we introduce two notations.

Definition 3.1. Take j=1,...,m and si,s; € [0, 1]. If the edge ¢; points from v, to-
wards v,, we set

2 ds
10) Tj S],Sz) =T (S],S2 :ZJ —
( ./( P ) 5 Cj(S)
and
52
q;(s)
11 Ei(sy,80) =& (51,8 ::J ——Zds.
(1) glon,80) = Eiplonomn) = | 20
We denote 7 := maxi<j<m 7;(0,1) and 7_ := min; << 7;(0,1).*

The value 7;(s1,s:) is exactly the time needed to pass on the edge ¢; from s to s,
moving with speed ¢;(s) at every point s € [s1, 2], while ;(s1,52) is the rate of the
mass gain or lost on this journey resulting from the factor ¢;(s). Note that our as-
sumptions on the flow speed and the absorption functions imply that the integrals in
(10) and (11) are finite. With these notations the resolvent of A4, which exists for ev-
ery A € C, can be computed explicitly.

Lemma 3.2. For every /. € C and with the matrices C(s) and Q(s) defined in (1), we
have

1

(12) (R(/LAo)f)(S)=J a(8)e(r) CR) (D) dr, se(01], fe,

s

where

(13)  e;(s) := diag(e s O9+m09) selo,1].

i=1,...,m

Proof. An easy calculation shows that

(14) () = exl)(~0(s) + HCs)

* Throughout this paper, an edge parameter with one index number corresponds to the edge
with the same index, while pairs of index numbers refer to the edge pointing from the vertex
with the first index towards the vertex with the second index.
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Clearly, the function

1
g(s) ;:J () () C) Y (x)dr, sel0,1]

S

is contained in D(A4y). By applying A — A4y to it and using (14) we obtain

(2= A0)g)(s) = 2g(s) — C(s)g'(s) — O(s)g(s)

1

+1(s) — 0(s) j e(8)ex(1) " CO) " f (1) dr = £(s),

s

using the fact that the diagonal matrices commute. A similar argument, using the
above form for the derivative of ¢,, yields that formula (12) gives also the left inverse
of A — A4,. |

We also obtain a formula for the semigroup generated by Aj.

Lemma 3.3. Let the edge e; be fixed, and, with the notations of Definition 3.1, let
5(t) €[0,1] be the location where the flow moves to on the edge e; from the point s
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during time t < t;(s, 1). Hence the function § € C[0,1;(s, 1)] is defined by t;(s, 5(t)) = t.
Then the jth coordinate of the semigroup (To(t)), generated by (Ao, D(Ao)) is given
by

e SSL(5(0)), i 0 <1 <75, 1),
0, otherwise.

(15) <%mmw{

Proof. If we write

a6 (s = {¢ IO T =1 =5,

0, otherwise,

we have to prove that Sy(¢) = To(¢) for every ¢ > 0. Observe that &; is continuous
with &;(s,s) = 0 for every s € [0, 1]. Furthermore, because of the continuity of t;,

(17)  50)=s and lim §(¢) =s.

t—0
From these properties follows that Sy(0) f = f and (So(?)), is strongly continuous
int=0.

Since

(5,80 (1) = (5, 50)) + 17(8(), $@) (1)) = w + 1 = 7y(s.3(u + 1),

we have

Su)(t) =5u+1),
and so

(So(u+1));(s) = 5O fi(5(u + 1)

= 5:50) o §EW-SW) £(5(4) (1)) = (So (1) (So(2) ) ),

hence (So(7)),( is a Co-semigroup. Let By denote its generator; we have to show that
By = Aj.

We know that if f € D(By), then

(18) lim S0/ =/ _ Bof

t—0 t

in L. Therefore there exists a sequence 7, — 0 such that

(SO(Zn)f)(S) - f(S)
t

n

lim
n— o0

= (Byf)(s) for almost all s € [0,1].
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For all s € [0, 1], we can calculate the pointwise limit as follows. Let j be fixed. Then

1
t

[(So(1)1);(s) = fi(s)] = % [e5 S D1(5(0)) — £i(5)]

1 (0 a7 S0, 0,
:;[ej\ <q/<s>/c/<s>>dxﬁ(s~(t)),eﬁ, (q/(s)/c,(s))dxfj(s) +ej\ (q/<s>/c/<s>>dxﬁ(s)f £(s)]

" i(s)/¢i(s ax 1 5 1 " j(8)/¢j(s5)) dx
= el WO 5(0) — fi(s)] ek GIDE 7).

Since §e W10, 1], we have that §'(0) exists and §'(0) = ¢;(s) for almost every
s € [0, 1]. From this and using (17) we obtain that

ltllré ((SO(l)f)'/£S) - fj(s)) -1 .fj’(_g) -cj(s) +1-

LS50 509

= ¢j(8) 1 (s) + q;(s) i (s)-
Because of the uniqueness of the limit, we have

(Bof);=¢ - f +q;-fi forall feD(By).

Since the L'-limit in (18) exists for all f e (C*[0,1])" (the pointwise convergence
implies L'-convergence because of Lebesgue’s dominated convergence theorem),
D := (C*[0,1))" = D(By) and By = Ay on a dense subspace D = X. Clearly the
subspace D is invariant for Sy(¢), ¢ > 0, hence it is a core for D(By), see [10, Propo-
sition I1.1.7]. That means

plls — pllas = p(By).

Since D = D(Ay) and Ay is closed, we have DM = D(By) < D(Ap). Hence we ob-
tained that

By = A0|D(Bo)’ that is By < Ay.

As we have seen in Lemma 3.2, p(4y) = €, hence p(Ay) N p(By) # O and so by [10,
IV.1.21(5)], Bo = Ao and hence Sy = Ty. O

In order to compute the spectrum of the generator 4 we use the operator matrix
techniques as in [12, Section 3], developed by A. Rhandi (see [21]) and R. Nagel (see

[18]).

Using the results in [11] by Greiner, observe that Ly, is invertible for every
A€ p(dp) = C. Its inverse will play an important role in the characterization of the
spectrum of 4 and we denote it by
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D= (Ll a,) 02 = ker(2 — A,).
In order to determine D, explicitly we use (13) and the notation

(19)  E;:=¢;(1) = diag(e 9@ D+4u0.D)y

j=1,...m

o (o[ a))

Lemma 3.4. The operator D, has the form
(21) Dy =eE (D),
that is
(D;d)(s) = e;(s) - [E;'(;)"|d  for any d € 02, s € [0, 1].

The proof is an easy computation, and we refer to [12, Lemma 3.1] for more details.

By the same operator matrix and perturbation methods as in [12, Section 3], we ob-
tain the following characterization for the spectrum of A.

Proposition 3.5. For every 1 € C we have
Lea(d) & 1 € a(MDy).
Furthermore, the resolvent of A has the form
(22)  R(2,4) = (I + D;(1 — MD;)"' M)R(J, Ay)
Proof. See [12, Proposition 3.3]. O

The operator MD; appearing in the characteristic equation is actually an n x n
matrix:

MD; = (" ® d) (e, E; (D)) = OTE; (D))" =: A,
having entries

250, D)=150,1)  §f p. = e, — e
@) (b)), = {a),,]e g /0D if v = €;(0) and v, = ¢;(1),
0, else.
It is a weighted (transposed) adjacency matrix of G. This means that its entry a;, is
different from zero if and only if there is an arc from the vertex v, to the vertex v;. Let
us investigate the matrix A, using Z]f’:' L wi = 1. 1f ¢; <0 for all /, then the column
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sums of Ay are all less than or equal to 1. Therefore in this case ||A;[|; < || Ao, <1
for Re 4 > 0, and we obtain the following

Corollary 3.6. For every A € C we have
(24) Jed(Ad) & det(l—4A;) =0.

In particular, if q; <0 for all I, this implies
(25)  Adep(d4) forReld>0.

In the following we use the spectral bound
(26) G:=s(A)=sup{Rel:iea(4)}

of A and recall an important property of positive semigroups on L”-spaces (see e.g.
[10, Section VI.1.b]).

Remark 3.7. For the growth bound
wo = inf{w e R : IM,, > 1 such that || T(¢)|| < M,.e"" for all ¢ > 0}
of the semigroup we have
(27)  wo=qea(A),
if g > —c0.

Finally we extend to 9t the results obtained in L. First, we introduce a notation and
prove a technical result.

Definition 3.8. With the notations of Definition 3.1, for je{l,...,m} and
0 <t <7(0,1) let 5;(¢) € [0, 1] be the location where the flow moves to on the edge ¢,
from the point 0 during time 7. Hence s; € C[0, 7;(0, 1)] is defined by 7;(0, s;()) = ¢.
Lemma 3.9. With the above notation,

1. w(o,t) = e @ Vuy(1,t —1(0,1)) for 1(a,1) < t and

2. u(0,t —1(0,1)) = e'ff(o*r‘f(”(ov”)>)u,~(sj(r;(0, a)),t—10,1)) for 7;(0,1) < ¢,
7(0,0) < 7(0,1)

hold for every 1 < j,1 < m, and a.e. o.
Proof. For both of the statements, we use Lemma 3.3. For any fixed / and ¢ satisfying

the conditions assumed in 1. and 2., the action of 7'() and Ty(¢) coincide on the
subintervals of e¢; we consider. That is
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Ll[(0'7 l) = (T(Tl(O', 1))”( L= 71(0-7 1)))/(0-)
= (To(ti(o, D)u(-,t —17/(0,1))),(0) = e V(1,1 = 7(a, 1)),
and
uj(0,1—71(a,1)) = (T(w:(0,0))u(- , 1 — (0, 1))),(0)
= (TO(TI(Oa O-))u(' L= ’C](O, 1)))/(0)
— S0 5(21(0, ), 1 = (0, 1). O
The w*-convergence makes possible to extend all the formulae obtained in £ to their
corresponding weak versions. Since for measures point evaluation can not be defined
in general, we have to prove first a generalized version of the Kirchhoff law in (3).
Proposition 3.10. The measures (u(-,1)), <, obtained as the orbits of the extended
semigroup (T(t)), satisfy the generalized Kirchhoff law, that is, using the notation of
Definition 3.1 and 3.8, for every fixed T, < t, 1 <i < n and | such that v; = ¢;(1), we

have

si(t-)

(28) J o(0) dus(o, 1)

0

m si(t-) s
- Z] ¢:]r J() (p(a)eé(a’ D+¢,0,5(u(0,0))) duj(sj(fl(oa O')), r— T/(()? 1))7
J=

where ¢ is any continuous function on [0, 1].

Proof. 1t is enough to prove the statement for absolutely continuous measures, then
(28) holds by Proposition 2.5.

So let u(-, ) be in £. According to Lemma 3.9.1, we have
ui(a, 1) = e“ V(1,1 — 1/(0, 1)),

by (7),
u(l,t—1(0,1)) = wy f:l ¢ ui (0,1 —71(a, 1)),
j:

while by Lemma 3.9.2,
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uj(0,t —7/(0,1)) = eéf(o"vf(f’(o’”)))L(/(s,(rl(O, 6)),t—1(0,1)) ae.

Putting these together we have
u(o,t) = wy Z ¢ ¢1(7:1)+6(0,5((0, “)))uj(sj(tg(o, a)),t—1/(0,1))

a.e., as required. |

The preceding spectral analysis of the operator A4 is based on the fact that it generates
a strongly continuous semigroup on the state space L. Since this is not true for the
state space 9, we have to study directly the semigroup (7°(f)),-,. Here, instead of the
spectrum of 4 we are looking for periodic orbits of the semigroup.

Instead of working with the measure functions u;(-, ) describing the flow on the
edges of our network, we consider the flow through the vertices of the graph. In £ is
easy to make precise this intuitive notion, namely for every v; € V' one has to take

i

T (1) = (1) = ilqs;uj(o, 0, 120

For measures the analogous expression is more complicated. Since point evaluation
is not possible in general, for every 1 <i < n we “put together” the one-parameter
family of measures {u;(-,?) : (/5; = 1} into one measure u[u, in the following way.
Let ulu], := p; € 4 (R™) be the complete history of the flow through the vertex v,
that is the unique measure which for any 7 € R™ and ¢ € C[t, 7 + 7_] satisfies

= m

(29) j ot + ) du(1 + 5) = z¢j p(t + )¢50 duy(5(s), 1).

0

We now introduce a notation turning out to be very useful in the subsequent com-
putations.

Definition 3.11. Fixa p e {1,...,n}. Let[(i), i = 1,...,n denote the index of the edge
pointing from v; to v, if it exists. Otherwise let /(i) be any edge index. We define

N i), if ey points from v; to vy,
wp 0, else.

The measures y;, by the Kirchhoff law in (28), are related in the following way.

Lemma 3.12. Let §, denote the left shift on R™ with r. Using the notations of Definition
3.1and3.11,
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n
Z Wj peé!p /,66.[1 »(0,1)
l_

holds on [t ,00) for every p=1,....n

Proof. Fix a vertex v, and let /(i) be defined as in Definition 3.11. Clearly, it is
enough to show that

T

BO0) |t s)duylr 9) = e O | e 5) dulr =y 0.1) 49

holds for every ¢ > 7, and ¢ € C[t,t + 7_].
By (29), for the two sides of (30) we have

T

(31) J; p(t+s) du, (1 +s) = anl N Jo p(t + 5)e< 09 duy (s,(s), 1)

(32) iwf,peffw“-“jo’¢<z+s>du,<z—u (0, 1) +5)

n m T-
= Z%wi,,,eé’<f><°’l’2% 45 L o(t + 5)eS " duy(55(s)), £ = 7 (0, 1))
i= Jj=

Applying the Kirchhoff law (28) for the measures u;; (-, ¢) with variable o = s, (s),
(31) equals

(33) S, > 6 J (1t + 5)eS100:510(60) 10 610 ), 1146 0,5 110 0,510 ()
= =1 " Jo

du; (i (7133) (0, 51 (5)))), £ — T1(5(0, 1)).

Since by Definition 3.1

iy (0,513 (5)) + iy (503 (5), 1) = &y5(0, 1)
and 7;(;)(0, ;5 (s)) = s, (33) equals

Sy 3305 [ 496500 S0 )1 51 (0.1)

This is exactly the right hand side of (32), so the proof is complete. ]
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Since we are interested in (asymptotically) periodic solutions, it is natural to discretize
our problem by Fourier transformation. For every 7 >0, ge R, pe {l,...,n} and
kelZ, let

(B4 T = [ g o),

’ 0
If, rescaling with the spectral bound g in (26), {¢~%u;(-,#): j = 1,...,m} corresponds

to a periodic solution in the state space 9 with period 7z, then from Lemma 3.12 we
have

() FUI) = | g0

n B T 5 .
= Zl 601',1139”'(0‘1> JO elmaramik/ot du;(t —7;,5(0, 1))

n —7;,5(0,1)
Z} w; peSir 0D J (”0 ) P =aH2k /D (, 0.1) (1)

~ . 3 7—17;,,(0,1) ~ .
e~/ 014,01 J a2/ g (1

_'Ci.p(ov l)

s

Il
-

05 e~/ 0,460 ) (k) for every k € Z.

R

For the sake of simplicity, let us denote the weighted adjacency matrix by

(36) A, (k) = Pt )e = (wi’pe(—quZnik/r)fi.p(O‘l)+§i.p(0,l));lpzr

Then the vectors of the Fourier coefficients

)} (k)
Flul (k)
satisfy

Tl 4(k) = Ae q(k) 7 [u], 4(k).

7,9 g

We summarize what we have obtained.

Proposition 3.13. The rescaled semigroup (e 1T (1)), ., where G is defined in (26), has
a periodic orbit on the state space M with period t if and only if for every k e Z,
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Flul, ;(k) from (34) is an eigenvector of the weighted adjacency matrix A (k) with
eigenvalue 1, that is

(38)  Flu], (k) = A q(k)Fu], ;(k), ke

7,4 ( q
In the following section we will use the consequences of the spectral properties of 4
and of (7'(t)),s, to describe the asymptotic behavior of the system.

4 Asymptotic behavior on strongly connected graphs

To obtain results on the asymptotic behavior of the semigroup on £, we will proceed
as in [12, Section 4] and restrict ourselves to special networks yielding a semigroup
with useful additional properties. The next property (see [17, Definition C-111.3.1]) is
essential to this purpose.

Definition 4.1. A positive semigroup on L' (Q, ), u a o-finite measure, with generator
A is irreducible if for all A > s(A4)—the spectral bound defined in (26)—and f > 0,
the resolvent satisfies (R(4,4)f)(s) > 0 for almost all s € Q.

Throughout this section, we will consider networks having the following type of
underlying graph.

Definition 4.2. A directed graph is called strongly connected if for every two vertices in
the graph there are paths connecting them in both directions.

As stated in [15, Theorem IV.3.2], a directed graph is strongly connected if and only
if its adjacency matrix is irreducible. Using this fact we can relate the irreducibility of
our semigroup on £ to the strong connectedness of the underlying graph.

Lemma 4.3. Let the graph G be strongly connected. Then the semigroup (T(t)),s is
irreducible.

Proof. The proof is based on the above Definition 4.1, on the form of the resolvent of
A in (22) and works as the proof of [12, Lemma 4.4]. Observe that R(4, 4p) in (12) is
again positive. We still need the strict positivity of (1 — Ai)fl for A > 4. Since A; is
positive irreducible, from the form (23) of its entries follows by [22, Corollary 1.6.4]
that its spectral radius r(4) is a (continuous) strictly monotone decreasing function
of A. Because of the positivity, r(4;) € a(4,), see [22, Proposition 1.2.3]. These facts
imply that r(A;) =1 > r(A,) for every 4 > ¢. Now from [22, Proposition 1.6.2] fol-
lows that (1 — A;,)fl is strictly positive for 4 > g. The rest of the proof is analogous
to that one in [12]. O

Using the irreducibility of the adjacency matrix, we can state the following result on
the asymptotic behavior of (7°(7)), -
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Proposition 4.4. Assume that G is strongly connected. If q; < 0 for all | and there exists
at least one index j such that q; # 0 (that is q; < 0 on a set of positive measure), then
g < 0, hence the semigroup (T'(t)),s is uniformly exponentially stable.

Proof. From Corollary 3.6 follows that ¢ < 0 holds, hence we only have to prove that
g#0. Let Ay := Ao and call Ao, the weighted adjacency matrix for A =0 in
the case when we replace ¢; by the 0. Observe that both matrices are irreducible.
With the notation of [22], from the form (I1) of &; and from (23) follows that
|£o 1] < |Ao,2|, and there is at least one entry in the first matrix that is strictly less
than the same entry in the second one. Using [22, Corollary 1.6.4] we obtain that
r(Ao,1) < r(|Ro2]). Since r(|Ag2]) < | A2l <1, we have that det(1 — A ;) #0
and so 0 ¢ g(A4). Using (27) we obtain that § # 0, hence ¢ < 0. Il

In the following we always assume the graph G to be strongly connected, hence our
semigroup to be irreducible on £. The behavior of this semigroup (7'()),. is gov-
erned by the growth bound g: for § > 0 the flow blows up, while for g < 0 it vanishes.
To obtain a finer description, we work with the rescaled semigroup T'(¢) := e 9T ().
In the following lemma we summarize the basic properties of (T(t))tZ o

Lemma 4.5. The rescaled semigroup (T(t)) (>0 I8 positive and strongly continuous on L
and its generator A = A — gl satisfies s(/f) =0e a(/f). Furthermore, if the graph is
strongly connected, (T(1)),s is irreducible.

We also obtain that our semigroup is bounded.

Theorem 4.6. If the graph is strongly connected, the semigroup (T (t)) />0 is bounded on
L.

Proof.t From the Banach-Steinhaus theorem follows that it is enough to prove that
forall g € 2, f € €' there exists K, s > 0 such that

(39) Ko, T()f>l <Kgp, 120,

where €' = L™ ([0, 1], C") is the dual space of £. Using the positivity and irreduci-
bility of the semigroup (7'(7)),5, and the compactness of R(/, A), we obtain that
s(A) =0 is a (first order) pole of the resolvent, and by [17, Proposition C-III.3.5]
admits a (strictly) positive eigenvector also for A'. Let us fix such an eigenvector
he 2. From the form of A4 and A’ follows that / is an exponential function, hence
we can assume that 4 > 1. Since 4’4 = 0, we have that T'(¢)h = h for all ¢ > 0, see
[10, Proposition 1V.2.18] and [10, Theorem 1V.3.7]. To prove (39), take an arbitrary
f e Then |f| <|fll, -h From the positivity of the adjoint semigroup follows
that

T The proof is due to Balint Farkas.
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T fI < TSI < IS\l - (T(0)'D),

hence

1T < 1Mo - NT @) Rl = 151 - A

From this we obtain

g, T L < llglly - I1f1l.e - 1Allo. =0, forallge g, feg,

where |4, is fixed. O

Having a bounded irreducible semigroup (7°(7)), > With R(4, A) compact, we imme-
diately obtain the following decomposition of the state space 2.

Proposition 4.7. Using the above notation, the following properties hold.

1. &y := ker A4 is one dimensional and is spanned by a positive eigenvector.

2. There is a projection Q:2 — L, hence a decomposition £ =2 @ £, such
that  T()x— 0 if and only if xe&:=kerQ while £ :=ranQ=
lin{xe D(A)|Jze R : Ax = iox}.

Proof. Using the fact that A4 has compact resolvent, we obtain by [10, Corollary
IV.1.19] that all the elements of the (point) spectrum of A are poles of the resolvent

R(2, A) with finite algebraic multiplicity. Being s(A) = 0 an element of the spectrum
(see (27)), and using that the semigroup (7'(¢)),., is irreducible, [17, Proposition C-
I11.3.5] implies that 0 is an algebraically simple pole and admits a positive eigenvector
for A, hence 1. holds.

Since A has compact resolvent, the second statement is Corollary V.2.15 of [10]. []

It turns out that the following properties of the velocities strongly influence the
spectral properties of A4 and the asymptotic behavior of (7'(z)) 10"

Definition 4.8. We say that (LDg), [(LIg) resp.] holds if the numbers
{7;,(0,1) +---+17,(0,1) : ¢,,...,e;, form a cycle in G}

are linearly dependent [independent, resp.] over @.

In the sequel we treat these two alternatives separately.

4.1 (LDg) case

As we will see, rationally dependent average speeds produce nontrivial periodic orbits
for (T'(1)), . Asymptotically, these periodic solutions govern the dynamics of the
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flow, and even in the state space 9t the orbits converge uniformly in norm to a
rotation.

Let us investigate the characteristic equation (24) in the case when condition (LDg)
holds. Using the definition of the determinant and (23), we obtain that

(40)  h(2) :=det(1 — A,)

=1l4+a(A)+--+ay(d)

with
r » 7 -y, w(0,1)
a(2) =5 (=D" 3 Tl(we ==a777).
p=1 ki+-+ky,=rj=1
VAPRNY A%
Here the second sum runs over all positive integers ki, . .., k, having sum r such that
there exist vertex disjoint cycles Zi, ..., Z, in the graph G having ki, ..., k, vertices,

respectively. The numbers w; are defined as

— &(0,1
wi= [] wge - eSO
ereZ;

where w;; # 0 is uniquely determined by e, in the cycle Z;. For more details on this
representation of det(1 — A;) see a generalization of the Sachs theorem in [7, Theo-
rem 3.1].

The condition (LDg) implies that there exists a real number ¢ such that
c(7;,(0,1) +---+17,(0,1)) e N

for all ¢;,...,e; that form a cycle in G. Take the greatest common divisor of these
numbers

l(c) := ged{c(7;,(0,1) 4+ --- +17;,(0,1)); ¢, ..., ¢, form a cycle in G}

and observe that the fraction @ does not depend on the special choice of ¢. Therefore
the number

@y ="

is well-defined. This leads to the following expression for the terms a,(4) in (23)

@) a@)=x(1" ¥ [Twe™)

p=1 ky+thy=r j=1
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with

1
l,‘ == Z ‘L','(O, 1) e N.
! yeier

The form (42) implies that s#(1) can be written as
(43)  h(2)=qle™)

with a polynomial g. This immediately leads to the following result on the spectrum
of A.

Lemma 4.9. Suppose that the condition (LDq) is fulfilled. Then the eigenvalues of A,
hence that of A lie on finitely many vertical lines.

Proof. By (24) and (43) the zeros of g(e~*’) are exactly the eigenvalues of 4, hence the
statement follows. O

We are now able to relate the spectral properties of the generator to those of the
semigroup as already shown in [12, Proposition 3.8].

Proposition 4.10 (Circular Spectral Mapping Theorem). Suppose that the condition
(LDq) holds. Then the semigroup (T(t)), satisfies the so called circular spectral
mapping theorem, that is

[e”d =T a(T(1)\{0} for every t >0,
where T" denotes the unit circle.

Proof. The proof uses the form of the resolvent of 4 and is analogous to the proof of
[12, Proposition 3.8]. ]

The Circular Spectral Mapping Theorem and the above Lemma 4.9 imply that the

spectrum o(7(7)) lies on finitely many circles, where the largest one is the unit circle
I' (see Lemma 4.5). This immediately allows the following decomposition of the
semigroup.

Proposition 4.11. Suppose that condition (LDq) holds. Then for the decomposition in
Proposition 4.7.2 the following assertions are true.

1. The operators S(t) := T(Z)|£], t > 0, yield a bounded Cy-group on L.

2. The semigroup (T(l)|£2) />0 18 uniformly exponentially stable, hence
IT(r) = S(1)llg < Me™

for some constants M > 1, ¢ > 0.
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Proof. Use Theorem 4.10 and [10, Theorem V.1.17] in a rescaled form. O

The Perron-Frobenius theory for positive irreducible semigroups (and the compact-
ness of R(4,A)) implies that

o(4) niR = iaZ for some o > 0,

where each ik is a simple pole of the resolvent (see [10, Theorem VI.1.12] or [17,
Section C-111]). In the following we want to identify o. The statement (27) and the
form (43) of the characteristic equation (24) imply that 1 = g is a zero of g(e™*),
therefore all the numbers 4 = q+i2n%k, k € Z, are also zeros of h(A)—hence ei-
genvalues of 4. So we obtain

1
(44) 277 < o),

where 6,(A4) = a(A) N iR denotes the boundary spectrum of A. To obtain equality in
(44), we need the following lemma.

Lemma 4.12. Let By = (a;,); -, be a real irreducible matrix, so that a;, >0,
i,p=1,...,n, with a positive vector b = (by, ..., b,) satisfying

(45)  Bob=b.

Let B denote any matrix obtained form By by multiplying each of its entries by a
complex number having absolute value 1, that is

(B);, = €ra,.

Then det(B — 1) = 0 if and only if

s .
H 81\9,-[,,,1 -1
=1
for every sequence (iy,p1), ..., (is,ps) With o1 =11, pr =i, [ =1,... s

Proof. The “if”” part being trivial, we only prove the other implication. Suppose that
det(B — 1) = 0. Then the columns of the matrix B — 1 are not linearly independent
over C, so there exist coefficients ¢y, . .., ¢, satisfying

n
(46) Z CiZj = O,
i=1

where z; denotes the i™ column of BB.
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Choose ¢;, to be one coefficient such that

leil e
47 — <
(47) b = b

for every i = 1,...,n. From (46) in the i{" coordinate we obtain

3

i, i -1, i, i
(48)  cietoay i, + -+ cipmr€o b oag g, + ¢y (€700 ay, i, — 1)

i 1 i, —
+ Ci0+le o+h Oai[)+1,i0 + e + Cne ‘Oan.io - 07
hence
i9,

i 9 )
(49) ce' ]"0a17i0 +oeet c"o—lel ohoa, e 00 djy i

+ Cio+lellgi°+l'i°aio+l,io + Cnel‘gn'ioamio = Ciy-

We also know from (45) that
(50) blalyfu +oeee bl’(}*laio*l,io + bi[)aio,l'o + bi()+1ai()+1,il> +oet bn“n,ia = bi()‘

Since, by (47), ¢;, is the relatively greatest coordinate, we expect by (50) that (49) is
possible only if
Ci 9, Ciy
51 — Vi = =
(51) b, .

forevery i =1,...,n with a; ;, # 0. This holds since

(52) cip = c1eoay iy + -+ ¢, dMiay

Cl i9y ;s Cn 9 .
- FEI l.’Oblal,i{) +-+— ”"Obnan‘io'
1 n

Hence, by the triangle inequality and (50),

C1 C,
(53) lci] < %blal,io N |b"| bnay ;,
1 n
|Ci0| |Cio|
< bio blaw‘o + -+ bio bnamio = |cio|'

Equality is possible only if all the complex numbers point into the same direction and
if (47) holds with equality for every i with ; ;, # 0. This is exactly (51).
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But then (48), (49) and hence (51) hold for every k instead of iy with ay ; # 0, all
those ¢’s satisfying (47). Since these k’s are the indices of the nonzero entries in the
th row, by the irreducibility of the matrix and by repeating the argument, we obtain
that

Ci C
4 i idie Ok
(54) b ¢ by

for every k and i with a; ; # 0.

Take now indices ij,...,i, satisfying, with the notational convention i, | = i|,
ai.i,, # 0 forevery I =1,...,s By (54),

S g s cre1/big

H ng‘NIH = H — =1,

= =1 albi
since a;, ;,,, # 0 for every / = 1,...,s. This proves the statement. O

Corollary 4.13. Suppose that (LDg) is satisfied.

1. The boundary spectrum ay(A) in the state space 2 satisfies
1 ;
(55) 127[;2 = og,(4).

2. In M, the periods of periodic orbits of'(f"(t))tzo are exactly y/Z.

Proof. Since a spectrum point iff € o(A4) corresponds to a periodic orbit with period
2,7”, by (44) we only need to prove that every period in 9t is of the form y/Z.

Suppose that u is a periodic orbit with period 7 and consider the Fourier coefficients
of (37) and the characteristic equation in (38). For every k € Z, we have that either
T (k) is null or 7 ;(k) is an eigenvector of the matrix A, 4(k), defined in (36), with
eigenvalue 1, that is det(4, 5(k) — 1) = 0.

Using (36) we apply Lemma 4.12 with

By = Aq 4(0) = (e pe O VT O

and

B =4, q(k) = (wi Pe( G+2mik /7)T; 5 (0,1)+<; ,(0, 1))

i,p=1>

that is with §; , = 2k “2= 220D for every k € Z. According to Proposition 4.7 and Def-
inition 4.20, b = 7, q[uo]( ) is a positive vector satisfying (45), so we have that either
F 4(k) is null for every k # 0 or
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s . K . 2k 1 s
/1—[1 61'9’7‘”1 — l]._II 6)27zlk(‘r,;,,(0,1)/-r) _ eXP(%/ZITi,,p, (07 1)) -1

whenever the edges ¢,
only if

..+, €y v, form a cycle in G. Hence 7 is a possible period

s Upp?

k K}
; Z Ti/,[?/(ov 1) €eZ
=1

for every cycle and k is such that 7, ;(k) # 0. Since then the actual period of the
orbit is = t/ged{k : 7, 4(k) # 0} (cf. (35)), we have that ged{k : 7, (k) # 0} = 1.
This implies that

1 5
72 Tf/«,ﬁz(ov 1) €eZ
Ti=1

for every cycle. In particular, in the definition of p, ¢ can be taken as 1/z. So

= 1(11//:) = 1/(1/7) where /(1/7) € Z, so indeed 7 is of the form y/Z. This finishes the

proof. ]

Applying now the result of Nagel [16, Theorem 4.3] generalized in [12, Theorem 4.5]
we obtain that under (LDgq) and strong connectivity of the graph, the rescaled
semigroup (7°(#)),-, behaves asymptotically as a periodic group on a function space.

Theorem 4.14. Suppose that the condition (LDg) holds and that the graph G is strongly
connected. Then the decomposition & = &1 @ L, from Proposition 4.11 has the fol-
lowing additional properties.

1. £ is a closed sublattice of L isomorphic to L'(T'), where T is the unit circle.

2. The group (S(1)), is isomorphic to the rotation group on L'(T) with period

(56) =y
1 .
== ged{c(7;, (0,1) +--- +7;(0,1))s¢,,...,¢e, form a cycle in G},

where y is defined in (41) and c is any number such that c(t;,(0,1) 4+ --- +7;(0,1)) e N

forall e, ... e, which form a cycle in G.

Proof. By Lemma 4.5, the semigroup (7°(¢)) />0 18 irreducible, positive and bounded.
Since s(A~) =0 and because of the compactness of the resolvent, 0 is a pole of
R(2, A). By the above corollary, we also know that there are nonzero spectral points
on the imaginary axis. So, all the conditions of [17, C-IV, Lemma 2.12] and [17, C-

IV, Theorem 2.14] are fulfilled, and we obtain the statements 1. and the first half of 2.
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By [17, C-1V, Lemma 2.12 (c)] the period  equals 2%, where o € R is determined by
o(4) NiR = ioZ.

Due to (55), formula (56) holds. O

In less technical terms the above result can be expressed as follows.

Corollary 4.15. Under the assmptions of Theorem 4.14 the rescaled semigroup
(T(1)),s is asymptotically periodic with period

1
T=- ged{c(7;,(0,1) +--- +17;,(0,1));¢,,...,e, form a cycle in G},
where c is any number such that ¢(z; (0,1) +--- 417, (0,1)) e N for all e;,, ... , e, that

form a cycle in G.
Remark 4.16. Observe that the period does not depend on the weights on the edges.
We now state the corresponding result on the state space 9.

Corollary 4.17. If (LDg) holds, T(t)u converges in ||.||g-norm to a periodic solution
for every e M, as well.

Proof. With the notation of Proposition 4.11, we show first that for any positive C,
IT () = T(s)uallgy < 3Me™*C

whenever s, t > C and ¢ — s is a multiple of 7, the period of (S(¢)). Suppose that this is
not true, i.e., for a suitable functional ¢ € C[0,1]" with ||p||,, = 1 we have

(57) K~ T()u, py| > 3MeC

Since (T(t))tz() on I is the w*-extension of (T(Z))zzo on £, there is an f € £ such
that

KF (O — T £, 03] + [T (s — T65)f 9] < Me ™.
Then by Proposition 4.11.2,
KT ()= T(s)p, 03| < KT (e = T(1)f, 0>
+(T () = SW)f = (T(s) = S) S 9l
+ KT (s)f = T(s)u, 9>| < 3Me™*C.

This contradicts (57).
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So for every fixed ¢ > 0, the sequence (T(7 + nt)u), .y is Cauchy; thus since M is

complete (T'(¢ + nt)p), . converges. By the semigroup property, it defines a periodic
orbit, which finishes the proof. O

In [24, Chapter 4] one can find some examples for this phenomena on concrete ori-
ented graphs. In the following we present one of these. For the sake of simplicity, in
the system (F) we set constant velocities and no absorption—that is, ¢; =1 and
g; = 0 on all edges. By Theorem 4.14 the system is periodic with period equal to
ged{cycle lengths}, hence in our case equal to 1. As we also have noticed in Remark
4.16, the period does not depend on the weights of the edges in (BC). Investigating
the velocity of the convergence—that is the (optimal) value of ¢ in Proposition 4.11
for which

IT(1) = S(0)l¢ < Me™

—, it turns out that the weights can have an influence to it. From the characteristic
equation (24) for equal velocities (see also [12, Corollary 3.6]) and the Circular
Spectral Mapping Theorem (Theorem 4.10) follows that

(58) &= —logr,

where r is the second largest absolute value—that is, the largest absolute value dif-
ferent from 1—of the spectral points of A in (23) (in the case ¢; = 1 and ¢; = 0).

Vi

Fig. 1. An oriented Petersen graph
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Example 4.18. We consider an orientation of the well-known Petersen graph.t

1. We first investigate in general how the weight in v, as parameter effects the con-
vergence speed to the periodic semigroup. Let

0 0 0 00500 0 0 O

a 0 0 0 O O0O0 05 0 O

0 1 0 0 0 00 O O O

0 0050 0 0O O 0 05

By = 0 o o0 1 0 00 0 0 O
0 0 0 0 05 0 0 05 0 O

l-a 0 0 0 0 OO0 O 1 O

0 0 0 0 0 00 O 0 05

0 0050 0 10 0 0 O

0 0O 0 0 0 01 0 0 O

for 0 < a < 1. The characteristic polynomial becomes p(z) = z!° — 0.5z° — 0.375z% —
0.0625(1 +a) - z2 — 0.0625z + 0.0625a. Clearly, z; = 1 is a root of p(z). Dividing
p(z) by z — 1 yields a polynomial p;(z) whose root with the greatest absolute value—
depending on a—is the value r occuring in (58). Actually, r is the greatest absolute
value of the roots of the polynomial p(z) = 16z° + 1628 + 1627 + 16z° + 162° +
824+ 222 + 222+ (1 —a)z —a.

One can compute that the value of r has a minimum at approximately a =
0.6085 + 0.0003, which means that in this case the convergence speed is maximal.

2. We now take equal outgoing flow proportions in v; and investigate the effect of
different proportions in the “inner” vertex vg.

0 0 0 0 05 0 0 0 0 0
05 0 0 0 0 0 0 a 0 0
0 1 0 0 0 0 0 0 0
0 0 050 0 0O 0 0 05
ho = 0 0 0 1 0 0O 0 0 O
0 0 0 0 0500 1-a 0 O
050 0 0 0 0O 0 1 0
0 0 0 0 0 0O 0 0 05
0 0 050 0 1 0 0 0 0
0 0 0 0 0 01 0 0 0

The maximal convergence speed now is attained at a ~ 0.56295 + 0.00006.

¥ The next computations are made with Maple.
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4.2 (Llg) case

We have seen that linearly dependent average speeds result in periodic orbits. As we
will show now, (LDg) is also necessary for the existence of nontrivial limit flows.
First we prove that under the condition (LIg) the eigenvalue structure of A4 is com-
pletely different from the (LDg) case. Before giving the description of the spectrum,
we rewrite (Llg) in an equivalent form.

Lemma 4.19. Under condition (Llg), for every fixed d > 0 and K € R there isa p > K
such that if the edges e;, p,, €, p,, - - -, €. p, form a cycle in G one has

(59)  |p(zi p (0,1) + - 415, (0,1)) = 27l| < &
for an appropriate | € Z depending on the cycle.

Proof. Tt follows from Diophantine approximation, see e.g. [20, Proposition V.58].
O

We now proceed to the description of the spectrum of 4. Proposition 4.7.1 in the first
part of this section allows the following definition.

Definition 4.20. We denote by u, € £ the unique positive element of £¢ := ker A with
Fluo)9(0) + - - + Fuol9(0) = 1, while Pre, : M — L is the projection mapping

w i = (Fuly10) + -+ Zul, 1(0))uo.

Theorem 4.21. Suppose that (Llg) holds.

1. Then there is no nontrivial periodic orbit of (T (1)), in the state space M (so nei-
ther in &), or equivalently, with the notations of Proposition 4.7, £ contains only the

trivial periodic solutions, that is &y = L4. In particular, a(4) niR = {0}.

2. On the other hand, for every n € o‘(/f) and every rectangle

R.x ={zeC|Rep—e<Rez<Ren+e¢Imn+ K <Imz}

we have a(A) N R, g # 0.

Proof. For 1, suppose that T(#)u is a periodic orbit with period 7. We show that, with
the notation of Definition 4.20, x = fi. Consider the Fourier coefficients of (37) and
the characteristic equation in (38). For every k € Z, we have that either #; ;(k) is an
eigenvector of the matrix A, ;(k) with eigenvalue 1, that is det(A4, 5(k) —1) =0, or
T (k) is null.

Similarly to the (LDgq) case we apply Lemma 4.12 with By = 4, 4(0), B = A4, 4(k)
for every k € Z. We have that either %, ;(k) is null for every k # 0 or



458 T. Matrai, E. Sikolya

S

K . 2k 1 s
,1:[1 i — }:{1 27k (71 (0, 1)/7) exp( Tml_le,(Oa 1)> :1

whenever the edges €uy 5 -+ Cuiy, form a cycle in G. This contradicts (Llg), so
F . 4(k) is null for every k # 0, that is u = L.

We now prove the second statement. We consider the holomorphic function /(1) =
det(1 — A;). By (24), 1 € o(A) if and only if 4(1) = 0.

For every 7 = o« +iff € 6(A) and rectangle R := R, x we construct another rectangle
R’ = R such that the curve A(dR’) goes around zero with the multiplicity of the root
n. This clearly proves the existence of a root of /#in R, .

Fix a 0 > 0 and take p > K according to Lemma 4.19. Being a determinant, 4(z) is a
sum of terms of the form

CEZ(T[I"’I (0, 1) 4473, p, (0,1)).

For o — ¢ < Rz < o+ ¢ we have

(60) |Ce(2+ip)(ril_,,] (0, 1) 4474, (0,1)) _ CeZ<T’l~"I (0, 1) 4473, p, (0,1)) |

(61) < |c|e(a+z)(rf1.m (0-,1>+-~-+rf,(,,)k<0,1>)|ei/>(r,-1Ap1 (0, D)4++745, (0, 1)) _ 1]

so by (59), there is a constant C = C(4, ) for which
(62) |h(z +ip) — h(z)] < oC

holds whenever « —¢ < Rez < a+e.

Since a(A) is discrete, one can find a rectangle

R'c{o—¢<Rez<a+e¢}

such that R” no(A4) = {n}. Since # is a root of /, the curve hA(0R") goes around
zero with the multiplicity of #. If ¢ is small enough, by (62) for R’ := R” +ip the
curve i(OR') also goes around zero with the multiplicity of #, which completes the
proof. |

In case (LIg), not only the periodic orbits but the uniform convergence is lost. The
following theorem is the counterpart to the previous one.

Theorem 4.22. Under condition (Llg) and using the notation of Definition 4.20 the
following holds.
1. T(¢) converges strongly to Pre, on L.

2. T(t) converges weakly uniformly to Pre, on M.
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Proof. The strong convergence on £ means that

3) (T f = Fllg =0

for every f € £. By Theorem 4.21.1, for the projection Q of Proposition 4.7.2 we
have ran Q = £, so Q = Prg, which gives (63).

From this weak uniform convergence on 9t immediately follows. For every function
¢ € C[0,1]", we show that {T(f)u — i, »> — 0 uniformly in x on the unit ball of M
denoted by B(). Fix an ¢ > 0. Since £ is dense in the weakly compact set B(9), we
can find an e-net {fi,..., fv} = £ to ¢, that is for every u € B(9) there exists an in-
dex 1 <i < N such that [{u — f;, ¢>| < . By the strong convergence on £, there is a
to > 0 such that | T(7) f; — fi||o < eforevery t > foand 1 <i < N. Let now u € B(9)
be arbitrary and assume that |{u — f;,p>| < ¢ for a proper 1 <i < N. Then for ¢t > ¢,

(64) (T ()= ), 9]

= (IO~ fi) = @ ).+ KT fi = fi 9

< (M+1+p

)8

where M denotes a common norm bound of the projection Prg, and (T(t)),. This
gives weak uniform convergence and finishes the proof. O

Remark 4.23. The weak uniform and the strong but not uniform convergence of 7'(t)
on M and L respectively proved in Theorem 4.22 are the best one can guarantee, in
general. To illustrate this, consider the orbit of a Dirac mass ¢ under (7°(¢)), , asso-
ciated to a network satisfying (LIg). By Theorem 4.22.2, T(t)0 — 6 weakly.

The measure & = Prg, d is nonzero, so |0 llgw # 0. On the other hand, it is easy to see
that 7'(¢)d is a finite sum of positive Dirac measures for every ¢ > 0. So if ¢ is fixed,
for every 7 sufficiently small one has

(65)  supp T(t+7)0 nsupp T(1)0 = 0,
hence
(66) (I T(t+ )0 = T()0]lon = | T(¢ + )0l ow + 1T (1)3llgy — 2[19lan

as t — 0. So strong convergence on I is not possible under condition (Llg).

By approximating ¢ with absolutely continuous measures we immediately
have that the convergence on & cannot be uniform. If for some ¢, > 0,
supp 7'(19)d ~ supp T(#;)0 = @ holds, one can find a function ¢ € C[0,1]", [|¢||,, < 1,
for which (T(t;), 9> = i|| T(t,)d|lgy, i = 0, 1. Since T (t) is weakly continuous and € is
weakly dense in 9, we can find an f;, , € £, ||fi,,,|le = 1, satisfying
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(KT (t3) fio,n — T(1)3, 03 < 1/3]6]|, i =0,1.

Applying this for any f) =1t and ¢, = ¢+ 7 satisfying (65) we have a function
Ji := f11+: so that according to (66)

67) T+ fi = T(Ofille = KTt +0)fi = T(0) 11, 9]
> [KT(t + 7)o = T(1)d, )|
~ KT (t+0)0 = T(t+ 1) fi, 03| = KT (1) f = T(1)5, 9|
> [|6llan — 1/310llx — 1/3010llan = 1/3116 o

for every ¢ sufficiently large. By Theorem 4.22.1, T(¢) f; — f, in norm so by (67) this
convergence cannot be uniform.

Note also that the converse of Theorem 4.22.2 is not true. To illustrate this, one
might take a purely atomic measure 4 so that in a suitable translated copy of u the
different atoms in u cancel each other, that is 7'(¢)u = 0 for every ¢ sufficiently large.
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