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Abstract. Using functional analytical and graph theoretical methods, we extend the results of
[12] to more general transport processes in networks allowing space dependent velocities and
absorption. We characterize asymptotic periodicity and convergence to an equilibrium by
conditions on the underlying directed graph and the (average) velocities.
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1 Introduction

The study of networks is becoming an important and popular field of mathematical
research with many recent applications ranging from classical sciences to the internet.
However, dynamical processes in such networks have not been studied widely (see
the remark on p. 224 of [19]). Mostly second order problems are handled in the lit-
erature. We refer to the monographs of Lagnese, Leugering et al. [13] and [14] that
treat second order equations also on more complicated multi-link-structures. Dáger
and Zuazua in [8] and [9] investigate controllability and stabilizability of wave equa-
tions on graphs. F. Ali Mehmeti, J. von Below et al. ([1], [2], [3], [4], [5]) used func-
tional analytic methods to treat di¤usion and wave propagation in networks (and on
more general structures). Recently, M. Kramar and E. Sikolya [12] have developed a
semigroup approach to certain transport processes in networks. They described the
asymptotic behavior of these processes under conditions on the flow velocities on the
edges of the underlying directed graph.

Our aim is—based on the paper [12]—to handle more general transport processes
allowing space dependent velocities and absorption in networks. We model the
problem by a system of partial di¤erential equations on a directed graph where the
vertices serve as linking points between the edges. We show that the flow is (up to
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rescaling) asymptotically periodic if the average flow velocities are linear dependent
over Q (see condition ðLDÞQ in Definition 4.8), while it converges strongly to an
equilibrium in case of linear independence.

Furthermore, we extend the result to the situation when—instead of functions—we
consider measures on the edges.

Generalizing the setting in [12], we describe a flow in a finite network by the equa-
tions

q

qt
ujðs; tÞ ¼ cjðsÞ

q

qs
ujðs; tÞ þ qjðsÞ � uðs; tÞ; s A ð0; 1Þ; tb 0;

ujðs; 0Þ ¼ fjðsÞ; s A ð0; 1Þ;

f�ij ujð1; tÞ ¼ oij

Pm
k¼1

fþikukð0; tÞ; tb 0;

8>>>>>>><
>>>>>>>:

ðFÞ (IC)

(BC)

for i ¼ 1; . . . ; n, and j ¼ 1; . . . ;m.

For the model of the network we use the terminology as in [12, Section 1] and asso-
ciate it to a directed, topological graph G ¼ ðV ;EÞ having vertices V ¼ fv1; . . . ; vng
and directed edges (or arcs) E ¼ fe1; . . . ; emg, normalized as ej ¼ ½0; 1�. The arcs are
parameterized contrary to the direction of the flow. For graph theoretical notions see
also [6].

The distribution of material along an edge ej at time tb 0 is described by the func-
tions ujðs; tÞ for s A ½0; 1� (see [12, Section 1]). The functions cjð�Þ are the space de-
pendent velocities of the flow on each arc ej, while the functions qjð�Þ describe the
absorption along the edges. We arrange them into the diagonal matrices

CðsÞ :¼
c1ðsÞ 0

. .
.

0 cmðsÞ

0
BB@

1
CCA; QðsÞ :¼

q1ðsÞ 0

. .
.

0 qmðsÞ

0
BB@

1
CCA:ð1Þ

We assume that the absorption functions qj and velocities cj are bounded, that is
belong to Ly½0; 1�, and in addition that cjðsÞb e > 0 for a.e. s A ½0; 1� and for every
j ¼ 1; . . . ;m.

The boundary conditions (BC) are described by the following matrices, again as used
in [12, Section 1]. First, we define the outgoing incidence matrix F� ¼ ðf�ij Þn�m with

f�ij :¼ 1; vi ¼ ejð1Þ;
0; otherwise.

�

Respectively, we define the incoming incidence matrix Fþ ¼ ðfþij Þn�m with
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fþij :¼ 1; vi ¼ ejð0Þ;
0; otherwise.

�

We also define the weighted outgoing incidence matrix F�
w ¼ ðoijÞn�m with entries

0aoij a 1 expressing the proportion of the mass leaving the vertex vi into the edge
ej. We require that

oij ¼ f�ij oij and
Pm
j¼1

oij ¼ 1 for all i ¼ 1; . . . ; n; j ¼ 1; . . . ;m;ð2Þ

and we assume that if ej is an outgoing edge of vi, then oij 0 0. Again, as in [12], the
Kirchho¤ law is satisfied in every vertex. Indeed, the boundary conditions (BC) to-
gether with (2) implies

Pm
j¼1

f�ij ujð1; tÞ ¼
Pm
j¼1

fþij ujð0; tÞ; i ¼ 1; . . . ; n:ð3Þ

Hence in each vertex the total outgoing flow equals to the total incoming flow.

To treat our problem (F) we use methods as in [12]. First, we rewrite (F) in the form
of an abstract Cauchy problem and prove its well-posedness using semigroup meth-
ods (see also [10]). We then investigate the spectral properties of the generator of the
solution semigroup. Also, we extend this treatment to transport involving measures.
Finally, in Section 4, we give an accurate characterization for the asymptotic behav-
ior of the solutions.

2 Well-posedness of the problem

Our aim is to study the asymptotic behavior of the solutions in the state spaces

L :¼ ððL1½0; 1�Þm; k:kLÞ and M :¼ ððM½0; 1�Þm; k:kMÞ, where k:kL is the m-fold prod-
uct of the usual L1 norm defined with respect to Lebesgue measure, while k:kM is the
m-fold product of the total variation norm on the Banach space of (finite) Borel
measures M½0; 1�. Note that L can be regarded as a subspace of M by identifying the
absolutely continuous measures with their Radon-Nikodym derivative. In the sequel
we use this convention without further mention.

For both state spaces we obtain the appropriate semigroups by abstract methods
similarly to [12, Section 2]. The analysis of the resulting operators will then be carried
out in the next section.

Consider first L. Denoting by Mqj
the multiplication operator with the function qj,

we define the operator
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Aw :¼

c1ðsÞ
d

ds
þ Mq1

0

. .
.

0 cmðsÞ
d

ds
þ Mqm

0
BBBBB@

1
CCCCCAð4Þ

with (dense) domain

DðAwÞ :¼ fg ¼ ðg1; . . . ; gmÞ A ðW 1;1½0; 1�Þm j gð1Þ A ranðF�
w Þ

>g:ð5Þ

We call

qL :¼ Cn

the boundary space and introduce the outgoing boundary operator L : L ! qL,

L :¼ F� n d1; DðLÞ :¼ ðW 1;1½0; 1�Þm;

where d1 is the point evaluation at 1, and the incoming boundary operator

M : L ! qL,

M :¼ Fþ n d0; DðMÞ :¼ ðW 1;1½0; 1�Þm;ð6Þ

where d0 is the point evaluation at 0. Similarly as in [12, Definition 2.2], the operator
corresponding to the problem (F) is the following.

Definition 2.1. On the Banach space L we define the operator

ð7Þ DðAÞ :¼ fg A DðAwÞ jLg ¼ Mgg;

Ag :¼ Awg:

A simple calculation shows that the conditions in the domain of A are equivalent to
(BC), hence the Cauchy problem

_uuðtÞ ¼ AuðtÞ; tb 0;

uð0Þ ¼ u0

�

with u0 ¼ ð fjÞj¼1;...;m is an abstract version of our original problem. In the following,

if we write uðtÞ, we understand it as uðtÞ ¼ ðu1ðtÞ; . . . ; umðtÞÞ ¼ ðu1ð� ; tÞ; . . . ; umð� ; tÞÞ
A L1ð½0; 1�;RmÞG ðL1½0; 1�Þm. By standard semigroup theory (see [10, Theorem
II.6.7]) this problem is well-posed if and only if A generates a strongly continuous
semigroup ðTðtÞÞtb0 on L. In this case, the solutions of (2) have the form uðtÞ ¼
TðtÞu0 yielding solutions for (F) too. To show the generator property we will use the
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Phillips theorem as in [12, Lemma 2.4]. We recall from [17, Section C-II.1] the defi-
nition of dispersive operators on Banach lattices.

Definition 2.2. An operator A on a Banach lattice X is called dispersive if for every
g A DðAÞ one has RehAg; fia 0 for some f A X 0

þ such that kfka 1 and hg; fi ¼
kgþk.

Based on this property, we can show that the operator A generates a semigroup of
positive operators on the Banach lattice L.

Proposition 2.3. The operator ðA;DðAÞÞ generates a positive strongly continuous

semigroup ðTðtÞÞtb0 on L.

Proof. Our operator A can be written as the sum

A ¼

c1ðsÞ
q

qs
0

. .
.

0 cmðsÞ
q

qs

0
BBBBB@

1
CCCCCAþ

Mq1
0

. .
.

0 Mqm

0
BB@

1
CCA¼ Ac þ Aq:

First we show that Ac generates a positive C0-semigroup ðTðtÞÞtb0. To this purpose
we introduce a new, but equivalent lattice norm on L defined as

kgkc :¼
Pm
j¼1

ð1

0

jgjðsÞj
cjðsÞ

ds:ð8Þ

Using the same computation as in the proof of [12, Lemma 2.4] we can show that the
operator ðAc;DðAÞÞ is dispersive on the Banach lattice ððL1½0; 1�Þm; k � kcÞ. Since
ðAc;DðAÞÞ is also closed, densely defined and as we will see in Corollary 3.6, its re-
solvent set is not empty, we can use the Phillips Theorem from [17, Theorem C-
II.1.2]. From this we obtain that ðAc;DðAÞÞ generates a positive semigroup ðUðtÞÞtb0

on ðL; k � kcÞ, hence on ðL; k � kLÞ.

By the assumptions on qj, Aq is a bounded real multiplication operator on L, hence
it generates a positive multiplication semigroup ðSðtÞÞtb0 with kSðtÞka eot for some

o > 0: To the positive semigroups ðUðtÞÞtb0 and ðSðtÞÞtb0 we can apply the Trotter

product formula (see [10, Corollary III.5.8] obtaining

TðtÞx ¼ lim
n!y

½Uðt=nÞSðt=nÞ�n
x; x A X :

This formula clearly defines again a positive semigroup ðTðtÞÞtb0. r

This yields to the following result.
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Corollary 2.4. The problem (F) is well-posed.

Consider now our second state space M. We show that it is possible to extend the
semigroup ðTðtÞÞtb0 on M using the density of L with respect to the weak?-topology
on ðM½0; 1�Þm, that is in the space

Mw ? :¼ ððM½0; 1�Þm;w?Þ ¼ ðC½0; 1�m; k:kyÞ0:

We denote the w? convergence by !w ? .

Proposition 2.5. There is an extension of ðTðtÞÞtb0 from L to a w?-continuous semi-

group onto the state space Mw? , that is for every t > 0, TðtÞ fk !w ? TðtÞm if fk !w? m

for a sequence ð fkÞk AN HL and m A M.

Proof. It is enough to show that TðtÞ : L ! L is continuous with respect to the
weak?-topology on L since then TðtÞm can be defined as the weak?-limit of TðtÞ fk

where fk !w? m A M, k fkkL a 2kmkM, as follows. Since TðtÞ is norm bounded on L,
the set fTðtÞ fk : k A Ng is bounded, hence it has a w?-accumulation point (see [23,
Theorem IV.11.2]). By weak?-continuity on L, this accumulation point is unique; let
TðtÞm be defined as this point. Then this extension will clearly form a semigroup.

Observe that because of the metrizability of norm bounded sets in ðL;w?Þ it is enough
to show that ðTðtÞÞtb0 is sequentially continuous. So take f , ð fkÞk AN HL such that
fk !w ? f . Consider the adjoint semigroup ðT 0ðtÞÞtb0 on L 0 ¼ Lyð½0; 1�;CmÞ (see e.g.

[10, Section I.5.14]). By definition, for every j A C½0; 1�m we have that

hTðtÞ fk � TðtÞ f ; ji ¼ h fk � f ;T 0ðtÞji ! 0

if k ! y. This shows that TðtÞ fk !w? TðtÞ f and proves the w?-continuity of TðtÞ
on L. r

3 Spectral properties

To analyse the spectrum of A, we again use methods as in [12, Section 3] and intro-
duce the operator

A0 :¼ Awjker L; DðA0Þ ¼ fg A DðAwÞ : Lg ¼ 0g:

The domain of A0 can be rewritten as

DðA0Þ ¼ fg A ðW 1;1½0; 1�Þm : gð1Þ ¼ 0g:

The corresponding Cauchy problem
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_uuðtÞ ¼ A0uðtÞ; tb 0;

uð0Þ ¼ u0;

�
ð9Þ

is well-posed since ðA0;DðA0ÞÞ generates a nilpotent semigroup ðT0ðtÞÞtb0 on L. To
write explicitly this semigroup, we introduce two notations.

Definition 3.1. Take j ¼ 1; . . . ;m and s1; s2 A ½0; 1�. If the edge ej points from vi to-
wards vp, we set

tjðs1; s2Þ :¼ ti;pðs1; s2Þ :¼
ð s2

s1

ds

cjðsÞ
ð10Þ

and

xjðs1; s2Þ :¼ xi;pðs1; s2Þ :¼
ð s2

s1

qjðsÞ
cjðsÞ

ds:ð11Þ

We denote tþ :¼ max1ajam tjð0; 1Þ and t� :¼ min1ajam tjð0; 1Þ.*

The value tjðs1; s2Þ is exactly the time needed to pass on the edge ej from s1 to s2

moving with speed cjðsÞ at every point s A ½s1; s2�, while xjðs1; s2Þ is the rate of the
mass gain or lost on this journey resulting from the factor qjðsÞ. Note that our as-
sumptions on the flow speed and the absorption functions imply that the integrals in
(10) and (11) are finite. With these notations the resolvent of A0, which exists for ev-
ery l A C, can be computed explicitly.

Lemma 3.2. For every l A C and with the matrices CðsÞ and QðsÞ defined in (1), we

have

ðRðl;A0Þ f ÞðsÞ ¼
ð1

s

�lðsÞ�lðtÞ�1
CðtÞ�1

f ðtÞ dt; s A ½0; 1�; f A L;ð12Þ

where

�lðsÞ :¼ diagðe�xið0; sÞþltið0; sÞÞi¼1;...;m; s A ½0; 1�:ð13Þ

Proof. An easy calculation shows that

� 0lðsÞ ¼ �lðsÞð�QðsÞ þ lÞCðsÞ�1:ð14Þ

* Throughout this paper, an edge parameter with one index number corresponds to the edge
with the same index, while pairs of index numbers refer to the edge pointing from the vertex
with the first index towards the vertex with the second index.
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Clearly, the function

gðsÞ :¼
ð1

s

�lðsÞ�lðtÞ�1
CðtÞ�1

f ðtÞ dt; s A ½0; 1�

is contained in DðA0Þ: By applying l� A0 to it and using (14) we obtain

ððl� A0ÞgÞðsÞ ¼ lgðsÞ � CðsÞg 0ðsÞ � QðsÞgðsÞ

¼ lgðsÞ � CðsÞ� 0lðsÞ
ð1

s

�lðtÞ�1
CðtÞ�1

f ðtÞ dt

þ CðsÞ�lðsÞ�lðsÞ�1
CðsÞ�1

f ðsÞ � QðsÞgðsÞ

¼ l

ð1

s

�lðsÞ�lðtÞ�1
CðtÞ�1

f ðtÞ dt

� CðsÞ�lðsÞð�QðsÞ þ lÞCðsÞ�1

ð1

s

�lðtÞ�1
CðtÞ�1

f ðtÞ dt

þ f ðsÞ � QðsÞ
ð 1

s

�lðsÞ�lðtÞ�1
CðtÞ�1

f ðtÞ dt

¼ l

ð1

s

�lðsÞ�lðtÞ�1
CðtÞ�1

f ðtÞ dt

þ QðsÞ
ð1

s

�lðsÞ�lðtÞ�1
CðtÞ�1

f ðtÞ dt

� l

ð 1

s

�lðsÞ�lðtÞ�1
CðtÞ�1

f ðtÞ dt

þ f ðsÞ � QðsÞ
ð1

s

�lðsÞ�lðtÞ�1
CðtÞ�1

f ðtÞ dt ¼ f ðsÞ;

using the fact that the diagonal matrices commute. A similar argument, using the
above form for the derivative of �l, yields that formula (12) gives also the left inverse
of l� A0: r

We also obtain a formula for the semigroup generated by A0.

Lemma 3.3. Let the edge ej be fixed, and, with the notations of Definition 3.1, let
~ssðtÞ A ½0; 1� be the location where the flow moves to on the edge ej from the point s
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during time ta tjðs; 1Þ. Hence the function ~ss A C½0; tjðs; 1Þ� is defined by tjðs; ~ssðtÞÞ ¼ t.

Then the jth coordinate of the semigroup ðT0ðtÞÞtb0 generated by ðA0;DðA0ÞÞ is given

by

ðT0ðtÞ f ÞjðsÞ ¼
exjðs; ~ssðtÞÞfjð~ssðtÞÞ; if 0a ta tjðs; 1Þ;
0; otherwise:

�
ð15Þ

Proof. If we write

ðS0ðtÞ f ÞjðsÞ ¼
exjðs; ~ssðtÞÞfjð~ssðtÞÞ; if 0a ta tjðs; 1Þ;
0; otherwise;

�
ð16Þ

we have to prove that S0ðtÞ ¼ T0ðtÞ for every tb 0: Observe that xj is continuous
with xjðs; sÞ ¼ 0 for every s A ½0; 1�. Furthermore, because of the continuity of tj ,

~ssð0Þ ¼ s and lim
t!0

~ssðtÞ ¼ s:ð17Þ

From these properties follows that S0ð0Þ f ¼ f and ðS0ðtÞÞtb0 is strongly continuous
in t ¼ 0.

Since

tjðs;g~ssðuÞ~ssðuÞðtÞÞ ¼ tjðs; ~ssðuÞÞ þ tjð~ssðuÞ;g~ssðuÞ~ssðuÞðtÞÞ ¼ u þ t ¼ tjðs; ~ssðu þ tÞÞ;

we have

g~ssðuÞ~ssðuÞðtÞ ¼ ~ssðu þ tÞ;

and so

ðS0ðu þ tÞ f ÞjðsÞ ¼ exjðs; ~ssðuþtÞÞfjð~ssðu þ tÞÞ

¼ exjðs; ~ssðuÞÞexjð~ssðuÞ;f~ssðuÞðtÞÞfjðg~ssðuÞ~ssðuÞðtÞÞ ¼ ðS0ðuÞðS0ðtÞ f ÞÞjðsÞ;

hence ðS0ðtÞÞtb0 is a C0-semigroup. Let B0 denote its generator; we have to show that
B0 ¼ A0.

We know that if f A DðB0Þ, then

lim
t!0

S0ðtÞ f � f

t
¼ B0 fð18Þ

in L. Therefore there exists a sequence tn ! 0 such that

lim
n!y

ðS0ðtnÞ f ÞðsÞ � f ðsÞ
tn

¼ ðB0 f ÞðsÞ for almost all s A ½0; 1�:
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For all s A ½0; 1�, we can calculate the pointwise limit as follows. Let j be fixed. Then

1

t
½ðS0ðtÞ f ÞjðsÞ � fjðsÞ� ¼

1

t
½exjðs; ~ssðtÞÞfjð~ssðtÞÞ � fjðsÞ�

¼ 1

t
½e
Ð ~ssðtÞ

s
ðqjðsÞ=cjðsÞÞ dx

fjð~ssðtÞÞ � e

Ð ~ssðtÞ

s
ðqjðsÞ=cjðsÞÞ dx

fjðsÞ þ e

Ð ~ssðtÞ

s
ðqjðsÞ=cjðsÞÞ dx

fjðsÞ � fjðsÞ�

¼ e

Ð ~ssðtÞ

s
ðqjðsÞ=cjðsÞÞ dx 1

t
½ fjð~ssðtÞÞ � fjðsÞ� þ

1

t
½e
Ð ~ssðtÞ

s
ðqjðsÞ=cjðsÞÞ dx � 1� fjðsÞ:

Since ~ss A W 1;1½0; 1�, we have that ~ss 0ð0Þ exists and ~ss 0ð0Þ ¼ cjðsÞ for almost every
s A ½0; 1�. From this and using (17) we obtain that

lim
t!0

ððS0ðtÞ f ÞjðsÞ � fjðsÞÞ
t

¼ 1 � f 0
j ðsÞ � cjðsÞ þ 1 � qjðsÞ

cjðsÞ
� cjðsÞ � fjðsÞ

¼ cjðsÞ f 0
j ðsÞ þ qjðsÞ fjðsÞ:

Because of the uniqueness of the limit, we have

ðB0 f Þj ¼ cj � f 0
j þ qj � fj for all f A DðB0Þ:

Since the L1-limit in (18) exists for all f A ðCy½0; 1�Þm (the pointwise convergence
implies L1-convergence because of Lebesgue’s dominated convergence theorem),
D :¼ ðCy½0; 1�Þm HDðB0Þ and B0 ¼ A0 on a dense subspace DHX . Clearly the
subspace D is invariant for S0ðtÞ, tb 0, hence it is a core for DðB0Þ, see [10, Propo-
sition II.1.7]. That means

D
k�kB0 ¼ D

k�kA0 ¼ DðB0Þ:

Since DHDðA0Þ and A0 is closed, we have D
k�kA0 ¼ DðB0ÞHDðA0Þ. Hence we ob-

tained that

B0 ¼ A0jDðB0Þ; that is B0 HA0:

As we have seen in Lemma 3.2, rðA0Þ ¼ C, hence rðA0ÞX rðB0Þ0j and so by [10,
IV.1.21(5)], B0 ¼ A0 and hence S0 ¼ T0. r

In order to compute the spectrum of the generator A we use the operator matrix
techniques as in [12, Section 3], developed by A. Rhandi (see [21]) and R. Nagel (see
[18]).

Using the results in [11] by Greiner, observe that Ljkerðl�AwÞ is invertible for every
l A rðA0Þ ¼ C. Its inverse will play an important role in the characterization of the
spectrum of A and we denote it by
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Dl :¼ ðLjkerðl�AwÞÞ
�1 : qL ! kerðl� AwÞ:

In order to determine Dl explicitly we use (13) and the notation

ð19Þ El :¼ �lð1Þ ¼ diagðe�xjð0;1Þþltjð0;1ÞÞj¼1;...;m

ð20Þ ¼ diag

�
exp

�Ð1
0

�qjðsÞ þ l

cjðsÞ
ds

��
j¼1;...;m

:

Lemma 3.4. The operator Dl has the form

Dl ¼ �lE
�1
l ðF�

w Þ
>;ð21Þ

that is

ðDldÞðsÞ ¼ �lðsÞ � ½E�1
l ðF�

w Þ
>�d for any d A qL; s A ½0; 1�:

The proof is an easy computation, and we refer to [12, Lemma 3.1] for more details.

By the same operator matrix and perturbation methods as in [12, Section 3], we ob-
tain the following characterization for the spectrum of A.

Proposition 3.5. For every l A C we have

l A sðAÞ , 1 A sðMDlÞ:

Furthermore, the resolvent of A has the form

Rðl;AÞ ¼ ðIL þ Dlð1� MDlÞ�1
MÞRðl;A0Þð22Þ

Proof. See [12, Proposition 3.3]. r

The operator MDl appearing in the characteristic equation is actually an n � n

matrix:

MDl ¼ ðFþ n d0Þð�lE�1
l ðF�

w Þ
>Þ ¼ FþE�1

l ðF�
w Þ

> ¼: Al

having entries

ðAlÞip ¼ opje
xjð0;1Þ�ltjð0;1Þ; if vi ¼ ejð0Þ and vp ¼ ejð1Þ;

0; else:

�
ð23Þ

It is a weighted (transposed) adjacency matrix of G. This means that its entry aip is
di¤erent from zero if and only if there is an arc from the vertex vp to the vertex vi. Let
us investigate the matrix A0 using

Pm
j¼1 oij ¼ 1. If ql a 0 for all l, then the column
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sums of A0 are all less than or equal to 1. Therefore in this case kAlk1 < kA0k1 a 1
for Re l > 0, and we obtain the following

Corollary 3.6. For every l A C we have

l A sðAÞ , detð1�AlÞ ¼ 0:ð24Þ

In particular, if ql a 0 for all l, this implies

l A rðAÞ for Re l > 0:ð25Þ

In the following we use the spectral bound

~qq :¼ sðAÞ ¼ supfRe l : l A sðAÞgð26Þ

of A and recall an important property of positive semigroups on Lp-spaces (see e.g.
[10, Section VI.1.b]).

Remark 3.7. For the growth bound

o0 ¼ inffw A R : bMw b 1 such that kTðtÞkaMwewt for all tb 0g

of the semigroup we have

o0 ¼ ~qq A sðAÞ;ð27Þ

if ~qq > �y.

Finally we extend to M the results obtained in L. First, we introduce a notation and
prove a technical result.

Definition 3.8. With the notations of Definition 3.1, for j A f1; . . . ;mg and
0a ta tjð0; 1Þ let sjðtÞ A ½0; 1� be the location where the flow moves to on the edge ej

from the point 0 during time t. Hence sj A C½0; tjð0; 1Þ� is defined by tjð0; sjðtÞÞ ¼ t.

Lemma 3.9. With the above notation,

1. ulðs; tÞ ¼ exlðs;1Þulð1; t � tlðs; 1ÞÞ for tlðs; 1Þa t and

2. ujð0; t � tlðs; 1ÞÞ ¼ exjð0; sjðtlð0;sÞÞÞujðsjðtlð0; sÞÞ; t � tlð0; 1ÞÞ for tlð0; 1Þa t,

tlð0; sÞa tjð0; 1Þ

hold for every 1a j; l am, and a.e. s.

Proof. For both of the statements, we use Lemma 3.3. For any fixed l and s satisfying
the conditions assumed in 1. and 2., the action of TðtÞ and T0ðtÞ coincide on the
subintervals of el we consider. That is

440 T. Mátrai, E. Sikolya



ulðs; tÞ ¼ ðTðtlðs; 1ÞÞuð� ; t � tlðs; 1ÞÞÞlðsÞ

¼ ðT0ðtlðs; 1ÞÞuð� ; t � tlðs; 1ÞÞÞlðsÞ ¼ exlðs;1Þulð1; t � tlðs; 1ÞÞ;

and

ujð0; t � tlðs; 1ÞÞ ¼ ðTðtlð0; sÞÞuð� ; t � tlð0; 1ÞÞÞjð0Þ

¼ ðT0ðtlð0; sÞÞuð� ; t � tlð0; 1ÞÞÞjð0Þ

¼ exjð0; sjðtlð0;sÞÞÞujðsjðtlð0; sÞÞ; t � tlð0; 1ÞÞ: r

The w�-convergence makes possible to extend all the formulae obtained in L to their
corresponding weak versions. Since for measures point evaluation can not be defined
in general, we have to prove first a generalized version of the Kirchho¤ law in (3).

Proposition 3.10. The measures ðujð� ; tÞÞ1ajam obtained as the orbits of the extended

semigroup ðTðtÞÞtb0 satisfy the generalized Kirchho¤ law, that is, using the notation of

Definition 3.1 and 3.8, for every fixed tþ < t, 1a i a n and l such that vi ¼ elð1Þ, we

have

ð28Þ
ð slðt�Þ

0

jðsÞ dulðs; tÞ

¼ oil

Pm
j¼1

fþij

ð slðt�Þ

0

jðsÞexlðs;1Þþxjð0; sjðtlð0;sÞÞÞ dujðsjðtlð0; sÞÞ; t � tlð0; 1ÞÞ;

where j is any continuous function on ½0; 1�.

Proof. It is enough to prove the statement for absolutely continuous measures, then
(28) holds by Proposition 2.5.

So let uð� ; tÞ be in L. According to Lemma 3.9.1, we have

ulðs; tÞ ¼ exl ðs;1Þuð1; t � tlðs; 1ÞÞ;

by (7),

ulð1; t � tlðs; 1ÞÞ ¼ oil

Pm
j¼1

fþij ujð0; t � tlðs; 1ÞÞ;

while by Lemma 3.9.2,
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ujð0; t � tlðs; 1ÞÞ ¼ exjð0; sjðtlð0;sÞÞÞujðsjðtlð0; sÞÞ; t � tlð0; 1ÞÞ a:e:

Putting these together we have

ulðs; tÞ ¼ oil

Pm
j¼1

fþij exlðs;1Þþxjð0; sjðtlð0;sÞÞÞujðsjðtlð0; sÞÞ; t � tlð0; 1ÞÞ

a.e., as required. r

The preceding spectral analysis of the operator A is based on the fact that it generates
a strongly continuous semigroup on the state space L. Since this is not true for the
state space M, we have to study directly the semigroup ðTðtÞÞtb0. Here, instead of the
spectrum of A we are looking for periodic orbits of the semigroup.

Instead of working with the measure functions ujð� ; tÞ describing the flow on the
edges of our network, we consider the flow through the vertices of the graph. In L is
easy to make precise this intuitive notion, namely for every vi A V one has to take

f ½u�vi
ðtÞ :¼ fiðtÞ :¼

Pm
j¼1

fþij ujð0; tÞ; tb 0:

For measures the analogous expression is more complicated. Since point evaluation
is not possible in general, for every 1a i a n we ‘‘put together’’ the one-parameter
family of measures fujð� ; tÞ : fþij ¼ 1g into one measure m½u�vi

in the following way.
Let m½u�vi

:¼ mi A MðRþÞ be the complete history of the flow through the vertex vi,
that is the unique measure which for any t A Rþ and j A C½t; t þ t�� satisfies

ð t�

0

jðt þ sÞ dmiðt þ sÞ ¼
Pm
j¼1

fþij

ð t�

0

jðt þ sÞexjð0; sjðsÞÞ dujðsjðsÞ; tÞ:ð29Þ

We now introduce a notation turning out to be very useful in the subsequent com-
putations.

Definition 3.11. Fix a p A f1; . . . ; ng. Let lðiÞ, i ¼ 1; . . . ; n denote the index of the edge
pointing from vi to vp if it exists. Otherwise let lðiÞ be any edge index. We define

oi;p :¼ oilðiÞ; if elðiÞ points from vi to vp;

0; else.

�

The measures mi, by the Kirchho¤ law in (28), are related in the following way.

Lemma 3.12. Let dr denote the left shift on Rþ with r. Using the notations of Definition

3.1 and 3.11,
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mp ¼
Pn

i¼1

oi;pexi; pð0;1Þmidti; pð0;1Þ

holds on ½tþ;yÞ for every p ¼ 1; . . . ; n.

Proof. Fix a vertex vp and let lðiÞ be defined as in Definition 3.11. Clearly, it is
enough to show that

ð t�

0

jðt þ sÞ dmpðt þ sÞ ¼
Pn

i¼1

oi;pexlðiÞð0;1Þ
ð t�

0

jðt þ sÞ dmiðt � tlðiÞð0; 1Þ þ sÞð30Þ

holds for every t > tþ and j A C½t; t þ t��.

By (29), for the two sides of (30) we have

ð t�

0

jðt þ sÞ dmpðt þ sÞ ¼
Pm
l¼1

fþpl

ð t�

0

jðt þ sÞexlð0; slðsÞÞ dulðslðsÞ; tÞð31Þ

and

ð32Þ
Pn

i¼1

oi;pexlðiÞð0;1Þ
ð t�

0

jðt þ sÞ dmiðt � tlðiÞð0; 1Þ þ sÞ

¼
Pn

i¼1

oi;pexlðiÞð0;1ÞPm
j¼1

fþij

ð t�

0

jðt þ sÞexjð0; sjðsÞÞ dujðsjðsÞÞ; t � tlðiÞð0; 1ÞÞ:

Applying the Kirchho¤ law (28) for the measures ulðiÞð� ; tÞ with variable s ¼ slðiÞðsÞ,
(31) equals

ð33Þ
Pn

i¼1

oi;p

Pm
j¼1

fþij

ð t�

0

jðt þ sÞexlðiÞð0; slðiÞðsÞÞexlðiÞðslðiÞðsÞ;1Þþxjð0; sjðtlðiÞð0; slðiÞðsÞÞÞÞ

dujðsjðtlðiÞð0; slðiÞðsÞÞÞÞ; t � tlðiÞð0; 1ÞÞ:

Since by Definition 3.1

xlðiÞð0; slðiÞðsÞÞ þ xlðiÞðslðiÞðsÞ; 1Þ ¼ xlðiÞð0; 1Þ

and tlðiÞð0; slðiÞðsÞÞ ¼ s, (33) equals

Pn

i¼1

oi;p

Pm
j¼1

fþij

ð t�

0

jðt þ sÞexlðiÞð0;1Þþxjð0; sjðsÞÞ dujðsjðsÞ; t � tlðiÞð0; 1ÞÞ:

This is exactly the right hand side of (32), so the proof is complete. r
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Since we are interested in (asymptotically) periodic solutions, it is natural to discretize
our problem by Fourier transformation. For every t > 0, q A R, p A f1; . . . ; ng and
k A Z, let

F½u�t;qp ðkÞ ¼
ð t

0

eð�qþ2pik=tÞt dmpðtÞ:ð34Þ

If, rescaling with the spectral bound ~qq in (26), fe�~qqtujð� ; tÞ: j ¼ 1; . . . ;mg corresponds
to a periodic solution in the state space M with period t, then from Lemma 3.12 we
have

ð35Þ F½u�t; ~qqp ðkÞ ¼
ð t

0

eð�~qqþ2pik=tÞt dmpðtÞ

¼
Pn

i¼1

oi;pexi; pð0;1Þ
ð t

0

eð�~qqþ2pik=tÞt dmiðt � ti;pð0; 1ÞÞ

¼
Pn

i¼1

oi;pexi; pð0;1Þ
ð t�ti; pð0;1Þ

�ti; pð0;1Þ
eð�~qqþ2pik=tÞðtþti; pð0;1ÞÞ dmiðtÞ

¼
Pn

i¼1

oi;peð�~qqþ2pik=tÞti; pð0;1Þþxi; pð0;1Þ
ð t�ti; pð0;1Þ

�ti; pð0;1Þ
eð�~qqþ2pik=tÞt dmiðtÞ

¼
Pn

i¼1

oi;peð�~qqþ2pik=tÞti; pð0;1Þþxi; pð0;1ÞF½u�t; ~qqi ðkÞ for every k A Z:

For the sake of simplicity, let us denote the weighted adjacency matrix by

At; ~qqðkÞ :¼ A ~qq�2pik=t ¼ ðoi;peð�~qqþ2pik=tÞti; pð0;1Þþxi; pð0;1ÞÞn
i;p¼1:ð36Þ

Then the vectors of the Fourier coe‰cients

F½u�t; ~qqðkÞ :¼
F½u�t; ~qq1 ðkÞ

..

.

F½u�t; ~qqn ðkÞ

0
BB@

1
CCAð37Þ

satisfy

F½u�t; ~qqðkÞ ¼ At; ~qqðkÞF½u�t; ~qqðkÞ:

We summarize what we have obtained.

Proposition 3.13. The rescaled semigroup ðe�~qqtTðtÞÞtb0, where ~qq is defined in (26), has

a periodic orbit on the state space M with period t if and only if for every k A Z,
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F½u�t; ~qqðkÞ from (34) is an eigenvector of the weighted adjacency matrix At; ~qqðkÞ with

eigenvalue 1, that is

F½u�t; ~qqðkÞ ¼ At; ~qqðkÞF½u�t; ~qqðkÞ; k A Z:ð38Þ

In the following section we will use the consequences of the spectral properties of A

and of ðTðtÞÞtb0 to describe the asymptotic behavior of the system.

4 Asymptotic behavior on strongly connected graphs

To obtain results on the asymptotic behavior of the semigroup on L, we will proceed
as in [12, Section 4] and restrict ourselves to special networks yielding a semigroup
with useful additional properties. The next property (see [17, Definition C-III.3.1]) is
essential to this purpose.

Definition 4.1. A positive semigroup on L1ðW; mÞ, m a s-finite measure, with generator
A is irreducible if for all l > sðAÞ—the spectral bound defined in (26)—and f > 0,
the resolvent satisfies ðRðl;AÞ f ÞðsÞ > 0 for almost all s A W.

Throughout this section, we will consider networks having the following type of
underlying graph.

Definition 4.2. A directed graph is called strongly connected if for every two vertices in
the graph there are paths connecting them in both directions.

As stated in [15, Theorem IV.3.2], a directed graph is strongly connected if and only
if its adjacency matrix is irreducible. Using this fact we can relate the irreducibility of
our semigroup on L to the strong connectedness of the underlying graph.

Lemma 4.3. Let the graph G be strongly connected. Then the semigroup ðTðtÞÞtb0 is

irreducible.

Proof. The proof is based on the above Definition 4.1, on the form of the resolvent of
A in (22) and works as the proof of [12, Lemma 4.4]. Observe that Rðl;A0Þ in (12) is
again positive. We still need the strict positivity of ð1�AlÞ�1 for l > ~qq. Since Al is
positive irreducible, from the form (23) of its entries follows by [22, Corollary I.6.4]
that its spectral radius rðAlÞ is a (continuous) strictly monotone decreasing function
of l. Because of the positivity, rðAlÞ A sðAlÞ, see [22, Proposition I.2.3]. These facts
imply that rðA ~qqÞ ¼ 1 > rðAlÞ for every l > ~qq. Now from [22, Proposition I.6.2] fol-
lows that ð1�AlÞ�1 is strictly positive for l > ~qq. The rest of the proof is analogous
to that one in [12]. r

Using the irreducibility of the adjacency matrix, we can state the following result on
the asymptotic behavior of ðTðtÞÞtb0.
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Proposition 4.4. Assume that G is strongly connected. If ql a 0 for all l and there exists

at least one index j such that qj 0 0 (that is qj < 0 on a set of positive measure), then
~qq < 0, hence the semigroup ðTðtÞÞtb0 is uniformly exponentially stable.

Proof. From Corollary 3.6 follows that ~qqa 0 holds, hence we only have to prove that
~qq0 0. Let A0;1 :¼ A0 and call A0;2 the weighted adjacency matrix for l ¼ 0 in
the case when we replace qj by the 0. Observe that both matrices are irreducible.
With the notation of [22], from the form (11) of xj and from (23) follows that
jA0;1ja jA0;2j, and there is at least one entry in the first matrix that is strictly less
than the same entry in the second one. Using [22, Corollary I.6.4] we obtain that
rðA0;1Þ < rðjA0;2jÞ. Since rðjA0;2jÞa kA0;2k1 a 1, we have that detð1�A0;1Þ0 0
and so 0 B sðAÞ. Using (27) we obtain that ~qq0 0, hence ~qq < 0. r

In the following we always assume the graph G to be strongly connected, hence our
semigroup to be irreducible on L. The behavior of this semigroup ðTðtÞÞtb0 is gov-
erned by the growth bound ~qq: for ~qq > 0 the flow blows up, while for ~qq < 0 it vanishes.
To obtain a finer description, we work with the rescaled semigroup ~TTðtÞ :¼ e�~qqtTðtÞ.
In the following lemma we summarize the basic properties of ð ~TTðtÞÞtb0.

Lemma 4.5. The rescaled semigroup ð ~TTðtÞÞtb0 is positive and strongly continuous on L

and its generator ~AA :¼ A � ~qqI satisfies sð ~AAÞ ¼ 0 A sð ~AAÞ. Furthermore, if the graph is

strongly connected, ð ~TTðtÞÞtb0 is irreducible.

We also obtain that our semigroup is bounded.

Theorem 4.6. If the graph is strongly connected, the semigroup ð ~TTðtÞÞtb0 is bounded on

L.

Proof.† From the Banach-Steinhaus theorem follows that it is enough to prove that
for all g A L, f A L 0 there exists Kg; f > 0 such that

jhg; ~TTðtÞ0f ijaKg; f ; tb 0;ð39Þ

where L 0 ¼ Lyð½0; 1�;CmÞ is the dual space of L. Using the positivity and irreduci-
bility of the semigroup ð ~TTðtÞÞtb0 and the compactness of Rðl; ~AAÞ, we obtain that
sð ~AAÞ ¼ 0 is a (first order) pole of the resolvent, and by [17, Proposition C-III.3.5]
admits a (strictly) positive eigenvector also for ~AA 0. Let us fix such an eigenvector
h A L 0. From the form of ~AA and ~AA 0 follows that h is an exponential function, hence
we can assume that hb 1. Since ~AA 0h ¼ 0, we have that ~TT 0ðtÞh ¼ h for all tb 0, see
[10, Proposition IV.2.18] and [10, Theorem IV.3.7]. To prove (39), take an arbitrary
f A L 0. Then j f ja k f ky � h. From the positivity of the adjoint semigroup follows
that

† The proof is due to Bálint Farkas.
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j ~TTðtÞ0f ja ~TTðtÞ0j f ja k f ky � ð ~TTðtÞ0hÞ;

hence

k ~TTðtÞ0f ky a k f ky � k ~TTðtÞ0hky ¼ k f ky � khky:

From this we obtain

jhg; ~TTðtÞ0f ija kgk1 � k f ky � khky; tb 0; for all g A L; f A L 0;

where khky is fixed. r

Having a bounded irreducible semigroup ð ~TTðtÞÞtb0 with Rðl; ~AAÞ compact, we imme-
diately obtain the following decomposition of the state space L.

Proposition 4.7. Using the above notation, the following properties hold.

1. L0 :¼ ker ~AA is one dimensional and is spanned by a positive eigenvector.

2. There is a projection Q : L ! L, hence a decomposition L ¼ L1 lL2, such

that ~TTðtÞx ! 0 if and only if x A L2 :¼ ker Q while L1 :¼ ran Q ¼
linfx A Dð ~AAÞ j ba A R : ~AAx ¼ iaxg.

Proof. Using the fact that ~AA has compact resolvent, we obtain by [10, Corollary
IV.1.19] that all the elements of the (point) spectrum of ~AA are poles of the resolvent
Rðl; ~AAÞ with finite algebraic multiplicity. Being sð ~AAÞ ¼ 0 an element of the spectrum
(see (27)), and using that the semigroup ð ~TTðtÞÞtb0 is irreducible, [17, Proposition C-
III.3.5] implies that 0 is an algebraically simple pole and admits a positive eigenvector
for ~AA, hence 1. holds.

Since ~AA has compact resolvent, the second statement is Corollary V.2.15 of [10]. r

It turns out that the following properties of the velocities strongly influence the
spectral properties of ~AA and the asymptotic behavior of ð ~TTðtÞÞtb0.

Definition 4.8. We say that ðLDQÞ, [ðLIQÞ resp.] holds if the numbers

ftj1ð0; 1Þ þ � � � þ tjk ð0; 1Þ : ej1 ; . . . ; ejk form a cycle in Gg

are linearly dependent [independent, resp.] over Q:

In the sequel we treat these two alternatives separately.

4.1 (LDQ) case

As we will see, rationally dependent average speeds produce nontrivial periodic orbits
for ð ~TTðtÞÞtb0. Asymptotically, these periodic solutions govern the dynamics of the
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flow, and even in the state space M the orbits converge uniformly in norm to a
rotation.

Let us investigate the characteristic equation (24) in the case when condition ðLDQÞ
holds. Using the definition of the determinant and (23), we obtain that

ð40Þ hðlÞ :¼ detð1�AlÞ

¼ 1 þ a1ðlÞ þ � � � þ anðlÞ

with

arðlÞ ¼
Pr

p¼1

ð�1Þp P
k1þ���þkp¼r

Z1;...;Zp

Qp
j¼1

ðwje
�lT

ei A Zj
tið0;1ÞÞ:

Here the second sum runs over all positive integers k1; . . . ; kp having sum r such that
there exist vertex disjoint cycles Z1; . . . ;Zp in the graph G having k1; . . . ; kp vertices,
respectively. The numbers wj are defined as

wj :¼
Q

ek AZj

oik � exkð0;1Þ;

where oik 0 0 is uniquely determined by ek in the cycle Zj. For more details on this
representation of detð1�AlÞ see a generalization of the Sachs theorem in [7, Theo-
rem 3.1].

The condition ðLDQÞ implies that there exists a real number c such that

cðtj1ð0; 1Þ þ � � � þ tjk ð0; 1ÞÞ A N

for all ej1 ; . . . ; ejk that form a cycle in G. Take the greatest common divisor of these
numbers

lðcÞ :¼ gcdfcðtj1ð0; 1Þ þ � � � þ tjk ð0; 1ÞÞ; ej1 ; . . . ; ejk form a cycle in Gg

and observe that the fraction
lðcÞ

c
does not depend on the special choice of c. Therefore

the number

g :¼ lðcÞ
c

ð41Þ

is well-defined. This leads to the following expression for the terms arðlÞ in (23)

arðlÞ ¼
Pr

p¼1

ð�1Þp P
k1þ���þkp¼r

Z1;...;Zp

Qp
j¼1

wjðe�lgÞ ljð42Þ
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with

lj :¼
1

g

P
ei AZj

tið0; 1Þ A N:

The form (42) implies that hðlÞ can be written as

hðlÞ ¼ qðe�lgÞð43Þ

with a polynomial q. This immediately leads to the following result on the spectrum
of ~AA.

Lemma 4.9. Suppose that the condition ðLDQÞ is fulfilled. Then the eigenvalues of A,

hence that of ~AA lie on finitely many vertical lines.

Proof. By (24) and (43) the zeros of qðe�lgÞ are exactly the eigenvalues of A, hence the
statement follows. r

We are now able to relate the spectral properties of the generator to those of the
semigroup as already shown in [12, Proposition 3.8].

Proposition 4.10 (Circular Spectral Mapping Theorem). Suppose that the condition

ðLDQÞ holds. Then the semigroup ð ~TTðtÞÞtb0 satisfies the so called circular spectral
mapping theorem, that is

G � etsð ~AAÞ ¼ G � sð ~TTðtÞÞnf0g for every tb 0;

where G denotes the unit circle.

Proof. The proof uses the form of the resolvent of ~AA and is analogous to the proof of
[12, Proposition 3.8]. r

The Circular Spectral Mapping Theorem and the above Lemma 4.9 imply that the
spectrum sð ~TTðtÞÞ lies on finitely many circles, where the largest one is the unit circle
G (see Lemma 4.5). This immediately allows the following decomposition of the
semigroup.

Proposition 4.11. Suppose that condition ðLDQÞ holds. Then for the decomposition in

Proposition 4.7.2 the following assertions are true.

1. The operators SðtÞ :¼ ~TTðtÞjL1
, tb 0, yield a bounded C0-group on L1.

2. The semigroup ð ~TTðtÞjL2
Þtb0 is uniformly exponentially stable, hence

k ~TTðtÞ � SðtÞkL aMe�et

for some constants M b 1, e > 0.
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Proof. Use Theorem 4.10 and [10, Theorem V.1.17] in a rescaled form. r

The Perron-Frobenius theory for positive irreducible semigroups (and the compact-
ness of Rðl; ~AAÞ) implies that

sð ~AAÞX iR ¼ iaZ for some ab 0;

where each iak is a simple pole of the resolvent (see [10, Theorem VI.1.12] or [17,
Section C-III]). In the following we want to identify a. The statement (27) and the
form (43) of the characteristic equation (24) imply that l ¼ ~qq is a zero of qðe�lgÞ,
therefore all the numbers l ¼ ~qq þ i2p 1

g
k, k A Z, are also zeros of hðlÞ—hence ei-

genvalues of A. So we obtain

i2p
1

g
ZJ sbð ~AAÞ;ð44Þ

where sbð ~AAÞ ¼ sð ~AAÞX iR denotes the boundary spectrum of ~AA. To obtain equality in
(44), we need the following lemma.

Lemma 4.12. Let B0 ¼ ðai;pÞn
i;p¼1 be a real irreducible matrix, so that ai;p b 0,

i; p ¼ 1; . . . ; n, with a positive vector b ¼ ðb1; . . . ; bnÞ satisfying

B0b ¼ b:ð45Þ

Let B denote any matrix obtained form B0 by multiplying each of its entries by a

complex number having absolute value 1, that is

ðBÞi;p ¼ eiQi; p ai;p:

Then detðB� 1Þ ¼ 0 if and only if

Qs

l¼1

eiQil ; pl ¼ 1

for every sequence ði1; p1Þ; . . . ; ðis; psÞ with isþ1 ¼ i1, pl ¼ ilþ1, l ¼ 1; . . . ; s.

Proof. The ‘‘if ’’ part being trivial, we only prove the other implication. Suppose that
detðB� 1Þ ¼ 0. Then the columns of the matrix B� 1 are not linearly independent
over C, so there exist coe‰cients c1; . . . ; cn satisfying

Pn

i¼1

cizi ¼ 0;ð46Þ

where zi denotes the i th column of B.
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Choose ci0 to be one coe‰cient such that

jcij
bi

a
jci0 j
bi0

ð47Þ

for every i ¼ 1; . . . ; n. From (46) in the i th
0 coordinate we obtain

ð48Þ c1eiQ1; i0 a1; i0 þ � � � þ ci0�1eiQi0�1; i0 ai0�1; i0 þ ci0ðeiQi0 ; i0 ai0; i0 � 1Þ

þ ci0þ1eiQi0þ1; i0 ai0þ1; i0 þ � � � þ cneiQn; i0 an; i0 ¼ 0;

hence

ð49Þ c1eiQ1; i0 a1; i0 þ � � � þ ci0�1eiQi0�1; i0 ai0�1; i0 þ ci0 eiQi0 ; i0 ai0; i0

þ ci0þ1eiQi0þ1; i0 ai0þ1; i0 þ � � � þ cneiQn; i0 an; i0 ¼ ci0 :

We also know from (45) that

b1a1; i0 þ � � � þ bi0�1ai0�1; i0 þ bi0 ai0; i0 þ bi0þ1ai0þ1; i0 þ � � � þ bnan; i0 ¼ bi0 :ð50Þ

Since, by (47), ci0 is the relatively greatest coordinate, we expect by (50) that (49) is
possible only if

ci

bi

eiQi; i0 ¼ ci0

bi0

ð51Þ

for every i ¼ 1; . . . ; n with ai; i0 0 0. This holds since

ð52Þ ci0 ¼ c1eiQ1; i0 a1; i0 þ � � � þ cneiQn; i0 an; i0

¼ c1

b1
eiQ1; i0 b1a1; i0 þ � � � þ cn

bn

eiQn; i0 bnan; i0 :

Hence, by the triangle inequality and (50),

ð53Þ jci0 ja
jc1j
b1

b1a1; i0 þ � � � þ jcnj
bn

bnan; i0

a
jci0 j
bi0

b1a1; i0 þ � � � þ jci0 j
bi0

bnan; i0 ¼ jci0 j:

Equality is possible only if all the complex numbers point into the same direction and
if (47) holds with equality for every i with ai; i0 0 0. This is exactly (51).
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But then (48), (49) and hence (51) hold for every k instead of i0 with ak; i0 0 0, all
those ck’s satisfying (47). Since these k’s are the indices of the nonzero entries in the
i th
0 row, by the irreducibility of the matrix and by repeating the argument, we obtain

that

ci

bi

eiQi; k ¼ ck

bk

ð54Þ

for every k and i with ak; i 0 0.

Take now indices i1; . . . ; is satisfying, with the notational convention isþ1 ¼ i1,
ail ; ilþ1

0 0 for every l ¼ 1; . . . ; s. By (54),

Qs

l¼1

eiQil ; ilþ1 ¼
Qs

l¼1

clþ1=blþ1

cl=bl

¼ 1;

since ail ; ilþ1
0 0 for every l ¼ 1; . . . ; s. This proves the statement. r

Corollary 4.13. Suppose that ðLDQÞ is satisfied.

1. The boundary spectrum sbð ~AAÞ in the state space L satisfies

i2p
1

g
Z ¼ sbð ~AAÞ:ð55Þ

2. In M, the periods of periodic orbits of ð ~TTðtÞÞtb0 are exactly g=Z.

Proof. Since a spectrum point ib A sbð ~AAÞ corresponds to a periodic orbit with period
2p
b

, by (44) we only need to prove that every period in M is of the form g=Z.

Suppose that m is a periodic orbit with period t and consider the Fourier coe‰cients
of (37) and the characteristic equation in (38). For every k A Z, we have that either
Ft; ~qqðkÞ is null or Ft; ~qqðkÞ is an eigenvector of the matrix At; ~qqðkÞ, defined in (36), with
eigenvalue 1, that is detðAt; ~qqðkÞ � 1Þ ¼ 0.

Using ð36Þ we apply Lemma 4.12 with

B0 ¼ At; ~qqð0Þ ¼ ðoi;pe�~qqti; pð0;1Þþxi; pð0;1ÞÞn
i;p¼1

and

B ¼ At; ~qqðkÞ ¼ ðoi;peð�~qqþ2pik=tÞti; pð0;1Þþxi; pð0;1ÞÞn
i;p¼1;

that is with Qi;p ¼ 2pk
ti; pð0;1Þ

t
for every k A Z. According to Proposition 4.7 and Def-

inition 4.20, b ¼ Ft; ~qq½u0�ð0Þ is a positive vector satisfying (45), so we have that either
Ft; ~qqðkÞ is null for every k 0 0 or
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Qs

l¼1

eiQil ; pl ¼
Qs

l¼1

e2pikðti; pð0;1Þ=tÞ ¼ exp

�
2kpi

t

Ps

l¼1

til ;pl
ð0; 1Þ

�
¼ 1

whenever the edges evil
; vpl

; . . . ; evis ; vps
form a cycle in G. Hence t is a possible period

only if

k

t

Ps

l¼1

til ;pl
ð0; 1Þ A Z

for every cycle and k is such that Ft; ~qqðkÞ0 0. Since then the actual period of the
orbit is t ¼ t=gcdfk : Ft; ~qqðkÞ0 0g (cf. (35)), we have that gcdfk : Ft; ~qqðkÞ0 0g ¼ 1.
This implies that

1

t

Ps

l¼1

til ;pl
ð0; 1Þ A Z

for every cycle. In particular, in the definition of g, c can be taken as 1=t. So
g ¼ lð1=tÞ

1=t ¼ tlð1=tÞ where lð1=tÞ A Z, so indeed t is of the form g=Z. This finishes the
proof. r

Applying now the result of Nagel [16, Theorem 4.3] generalized in [12, Theorem 4.5]
we obtain that under ðLDQÞ and strong connectivity of the graph, the rescaled
semigroup ð ~TTðtÞÞtb0 behaves asymptotically as a periodic group on a function space.

Theorem 4.14. Suppose that the condition ðLDQÞ holds and that the graph G is strongly

connected. Then the decomposition L ¼ L1 lL2 from Proposition 4.11 has the fol-

lowing additional properties.

1. L1 is a closed sublattice of L isomorphic to L1ðGÞ, where G is the unit circle.

2. The group ðSðtÞÞtb0 is isomorphic to the rotation group on L1ðGÞ with period

ð56Þ t ¼ g

¼ 1

c
gcdfcðtj1ð0; 1Þ þ � � � þ tjk ð0; 1ÞÞ; ej1 ; . . . ; ejk form a cycle in Gg;

where g is defined in (41) and c is any number such that cðtj1ð0; 1Þ þ � � � þ tjk ð0; 1ÞÞ A N
for all ej1 ; . . . ; ejk which form a cycle in G.

Proof. By Lemma 4.5, the semigroup ð ~TTðtÞÞtb0 is irreducible, positive and bounded.
Since sð ~AAÞ ¼ 0 and because of the compactness of the resolvent, 0 is a pole of
Rðl; ~AAÞ. By the above corollary, we also know that there are nonzero spectral points
on the imaginary axis. So, all the conditions of [17, C-IV, Lemma 2.12] and [17, C-
IV, Theorem 2.14] are fulfilled, and we obtain the statements 1. and the first half of 2.
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By [17, C-IV, Lemma 2.12 (c)] the period t equals 2p
a

, where a A R is determined by

sð ~AAÞX iR ¼ iaZ:

Due to (55), formula (56) holds. r

In less technical terms the above result can be expressed as follows.

Corollary 4.15. Under the assmptions of Theorem 4.14 the rescaled semigroup

ð ~TTðtÞÞtb0 is asymptotically periodic with period

t ¼ 1

c
gcdfcðtj1ð0; 1Þ þ � � � þ tjk ð0; 1ÞÞ; ej1 ; . . . ; ejk form a cycle in Gg;

where c is any number such that cðtj1ð0; 1Þ þ � � � þ tjk ð0; 1ÞÞ A N for all ej1 ; . . . ; ejk that

form a cycle in G.

Remark 4.16. Observe that the period does not depend on the weights on the edges.

We now state the corresponding result on the state space M.

Corollary 4.17. If ðLDQÞ holds, ~TTðtÞm converges in k:kM-norm to a periodic solution

for every m A M, as well.

Proof. With the notation of Proposition 4.11, we show first that for any positive C,

k ~TTðtÞm� ~TTðsÞmkM a 3Me�eC

whenever s; tbC and t � s is a multiple of t, the period of ðSðtÞÞ. Suppose that this is
not true, i.e., for a suitable functional j A C½0; 1�m with kjky ¼ 1 we have

jh ~TTðtÞm� ~TTðsÞm; jij > 3Me�eC :ð57Þ

Since ð ~TTðtÞÞtb0 on M is the w?-extension of ð ~TTðtÞÞtb0 on L, there is an f A L such
that

jh ~TTðtÞm� ~TTðtÞ f ; jij þ jh ~TTðsÞm� ~TTðsÞ f ; jijaMe�eC :

Then by Proposition 4.11.2,

jh ~TTðtÞm� TðsÞm; jija jh ~TTðtÞm� ~TTðtÞ f ; jij

þ jhð ~TTðtÞ � SðtÞÞ f � ð ~TTðsÞ � SðsÞÞ f ; jij

þ jh ~TTðsÞ f � ~TTðsÞm; jija 3Me�eC :

This contradicts (57).

454 T. Mátrai, E. Sikolya



So for every fixed tb 0, the sequence ð ~TTðt þ ntÞmÞn AN is Cauchy; thus since M is
complete ð ~TTðt þ ntÞmÞn AN converges. By the semigroup property, it defines a periodic
orbit, which finishes the proof. r

In [24, Chapter 4] one can find some examples for this phenomena on concrete ori-
ented graphs. In the following we present one of these. For the sake of simplicity, in
the system (F) we set constant velocities and no absorption—that is, cj 1 1 and
qj 1 0 on all edges. By Theorem 4.14 the system is periodic with period equal to
gcd{cycle lengths}, hence in our case equal to 1. As we also have noticed in Remark
4.16, the period does not depend on the weights of the edges in (BC). Investigating
the velocity of the convergence—that is the (optimal) value of e in Proposition 4.11
for which

k ~TTðtÞ � SðtÞkL aMe�et

—, it turns out that the weights can have an influence to it. From the characteristic
equation (24) for equal velocities (see also [12, Corollary 3.6]) and the Circular
Spectral Mapping Theorem (Theorem 4.10) follows that

e ¼ �log r;ð58Þ

where r is the second largest absolute value—that is, the largest absolute value dif-
ferent from 1—of the spectral points of A0 in (23) (in the case cj 1 1 and qj 1 0).

Fig. 1. An oriented Petersen graph
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Example 4.18. We consider an orientation of the well-known Petersen graph.‡

1. We first investigate in general how the weight in v1 as parameter e¤ects the con-
vergence speed to the periodic semigroup. Let

A0 :¼

0 0 0 0 0:5 0 0 0 0 0

a 0 0 0 0 0 0 0:5 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0:5 0 0 0 0 0 0 0:5

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0:5 0 0 0:5 0 0

1 � a 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0:5

0 0 0:5 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

for 0 < a < 1. The characteristic polynomial becomes pðzÞ ¼ z10 � 0:5z5 � 0:375z4 �
0:0625ð1 þ aÞ � z2 � 0:0625z þ 0:0625a. Clearly, z1 ¼ 1 is a root of pðzÞ. Dividing
pðzÞ by z � 1 yields a polynomial p1ðzÞ whose root with the greatest absolute value—
depending on a—is the value r occuring in (58). Actually, r is the greatest absolute
value of the roots of the polynomial ~pp1ðzÞ ¼ 16z9 þ 16z8 þ 16z7 þ 16z6 þ 16z5 þ
8z4 þ 2z3 þ 2z2 þ ð1 � aÞz � a.

One can compute that the value of r has a minimum at approximately aA
0:6085G 0:0003, which means that in this case the convergence speed is maximal.

2. We now take equal outgoing flow proportions in v1 and investigate the e¤ect of
di¤erent proportions in the ‘‘inner’’ vertex v8.

A0 :¼

0 0 0 0 0:5 0 0 0 0 0

0:5 0 0 0 0 0 0 a 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0:5 0 0 0 0 0 0 0:5

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0:5 0 0 1 � a 0 0

0:5 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0:5

0 0 0:5 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:

The maximal convergence speed now is attained at aA0:56295G 0:00006.

‡ The next computations are made with Maple.
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4.2 (LIQ) case

We have seen that linearly dependent average speeds result in periodic orbits. As we
will show now, ðLDQÞ is also necessary for the existence of nontrivial limit flows.
First we prove that under the condition ðLIQÞ the eigenvalue structure of ~AA is com-
pletely di¤erent from the ðLDQÞ case. Before giving the description of the spectrum,
we rewrite ðLIQÞ in an equivalent form.

Lemma 4.19. Under condition ðLIQÞ, for every fixed d > 0 and K A R there is a r > K

such that if the edges ei1;p1
; ei2;p2

; . . . ; eik ;pk
form a cycle in G one has

jrðti1;p1
ð0; 1Þ þ � � � þ tik ;pk

ð0; 1ÞÞ � 2plj < dð59Þ

for an appropriate l A Z depending on the cycle.

Proof. It follows from Diophantine approximation, see e.g. [20, Proposition V.58].
r

We now proceed to the description of the spectrum of ~AA. Proposition 4.7.1 in the first
part of this section allows the following definition.

Definition 4.20. We denote by u0 A L the unique positive element of L0 :¼ ker ~AA with
F½u0�1; ~qq1 ð0Þ þ � � � þF½u0�1; ~qqn ð0Þ ¼ 1, while PrL0

: M ! L0 is the projection mapping

u 7! ~uu :¼ ðF½u�1; ~qq1 ð0Þ þ � � � þF½u�1; ~qqn ð0ÞÞu0:

Theorem 4.21. Suppose that ðLIQÞ holds.

1. Then there is no nontrivial periodic orbit of ð ~TTðtÞÞtb0 in the state space M (so nei-

ther in L), or equivalently, with the notations of Proposition 4.7, L1 contains only the

trivial periodic solutions, that is L0 ¼ L1. In particular, sð ~AAÞX iR ¼ f0g.

2. On the other hand, for every h A sð ~AAÞ and every rectangle

Re;K ¼ fz A C jRe h� eaRe zaRe hþ e; Im hþ K a Im zg

we have sð ~AAÞXRe;K 0j.

Proof. For 1, suppose that ~TTðtÞm is a periodic orbit with period t. We show that, with
the notation of Definition 4.20, m ¼ ~mm. Consider the Fourier coe‰cients of (37) and
the characteristic equation in (38). For every k A Z, we have that either Ft; ~qqðkÞ is an
eigenvector of the matrix At; ~qqðkÞ with eigenvalue 1, that is detðAt; ~qqðkÞ � 1Þ ¼ 0, or
Ft; ~qqðkÞ is null.

Similarly to the ðLDQÞ case we apply Lemma 4.12 with B0 ¼ At; ~qqð0Þ, B ¼ At; ~qqðkÞ
for every k A Z. We have that either Ft; ~qqðkÞ is null for every k 0 0 or
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Qs

l¼1

eQil ; pl ¼
Qs

l¼1

e2pikðti; pð0;1Þ=tÞ ¼ exp

�
2kpi

t

Ps

l¼1

til ;pl
ð0; 1Þ

�
¼ 1

whenever the edges evil
; vpl

; . . . ; evis ; vps
form a cycle in G. This contradicts ðLIQÞ, so

Ft; ~qqðkÞ is null for every k 0 0, that is m ¼ ~mm.

We now prove the second statement. We consider the holomorphic function hðlÞ ¼
detð1�AlÞ. By (24), l A sð ~AAÞ if and only if hðlÞ ¼ 0.

For every h ¼ aþ ib A sð ~AAÞ and rectangle R :¼ Re;K we construct another rectangle
R 0 HR such that the curve hðqR 0Þ goes around zero with the multiplicity of the root
h. This clearly proves the existence of a root of h in Re;K .

Fix a d > 0 and take r > K according to Lemma 4.19. Being a determinant, hðzÞ is a
sum of terms of the form

cezðti1 ; p1
ð0;1Þþ���þtik ; pk

ð0;1ÞÞ:

For a� eaRza aþ e we have

ð60Þ jceðzþirÞðti1 ; p1
ð0;1Þþ���þtik ; pk

ð0;1ÞÞ � cezðti1 ; p1
ð0;1Þþ���þtik ; pk

ð0;1ÞÞj

ð61Þ a jcjeðaþeÞðti1 ; p1
ð0;1Þþ���þtik ; pk

ð0;1ÞÞjeirðti1 ; p1
ð0;1Þþ���þtik ; pk

ð0;1ÞÞ � 1j;

so by (59), there is a constant C ¼ CðA; hÞ for which

jhðz þ irÞ � hðzÞj < dCð62Þ

holds whenever a� eaRe za aþ e.

Since sð ~AAÞ is discrete, one can find a rectangle

R 00 H fa� eaRe za aþ eg

such that R 00 X sð ~AAÞ ¼ fhg. Since h is a root of h, the curve hðqR 00Þ goes around
zero with the multiplicity of h. If d is small enough, by (62) for R 0 :¼ R 00 þ ir the
curve hðqR 0Þ also goes around zero with the multiplicity of h, which completes the
proof. r

In case ðLIQÞ, not only the periodic orbits but the uniform convergence is lost. The
following theorem is the counterpart to the previous one.

Theorem 4.22. Under condition ðLIQÞ and using the notation of Definition 4.20 the

following holds.

1. ~TTðtÞ converges strongly to PrL0
on L.

2. ~TTðtÞ converges weakly uniformly to PrL0
on M.
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Proof. The strong convergence on L means that

kð ~TTðtÞ f � ~ff ÞkL ! 0ð63Þ

for every f A L. By Theorem 4.21.1, for the projection Q of Proposition 4.7.2 we
have ran Q ¼ L0, so Q ¼ PrL0

which gives (63).

From this weak uniform convergence on M immediately follows. For every function
j A C½0; 1�m, we show that h ~TTðtÞm� ~mm; ji ! 0 uniformly in m on the unit ball of M
denoted by BðMÞ. Fix an e > 0. Since L is dense in the weakly compact set BðMÞ, we
can find an e-net f f1; . . . ; fNgHL to j, that is for every m A BðMÞ there exists an in-
dex 1a i aN such that jhm� fi; jija e. By the strong convergence on L, there is a

t0 > 0 such that k ~TTðtÞ fi � ~ffikL a e for every t > t0 and 1a i aN. Let now m A BðMÞ
be arbitrary and assume that jhm� fi; jija e for a proper 1a i aN. Then for t > t0

ð64Þ jhð ~TTðtÞm� ~mmÞ; jij

¼ jhð ~TTðtÞðm� fiÞ � ð~mm� ~ffiÞ; jij þ jh ~TTðtÞ fi � ~ffi; jij

a ðM þ 1 þ kjkyÞe;

where M denotes a common norm bound of the projection PrL0
and ð ~TTðtÞÞtb0. This

gives weak uniform convergence and finishes the proof. r

Remark 4.23. The weak uniform and the strong but not uniform convergence of ~TTðtÞ
on M and L respectively proved in Theorem 4.22 are the best one can guarantee, in
general. To illustrate this, consider the orbit of a Dirac mass d under ð ~TTðtÞÞtb0 asso-
ciated to a network satisfying ðLIQÞ. By Theorem 4.22.2, ~TTðtÞd ! ~dd weakly.

The measure ~dd ¼ PrL0
d is nonzero, so k~ddkM 0 0. On the other hand, it is easy to see

that ~TTðtÞd is a finite sum of positive Dirac measures for every t > 0. So if t is fixed,
for every t su‰ciently small one has

supp ~TTðt þ tÞdX supp ~TTðtÞd ¼ j;ð65Þ

hence

k ~TTðt þ tÞd� ~TTðtÞdkM ¼ k ~TTðt þ tÞdkM þ k ~TTðtÞdkM ! 2k~ddkMð66Þ

as t ! y. So strong convergence on M is not possible under condition ðLIQÞ.

By approximating d with absolutely continuous measures we immediately
have that the convergence on L cannot be uniform. If for some t0; t1 > 0,
supp ~TTðt0ÞdX supp ~TTðt1Þd ¼ j holds, one can find a function j A C½0; 1�m, kjky a 1,
for which h ~TTðtiÞ; ji ¼ ik ~TTðt1ÞdkM, i ¼ 0; 1. Since ~TTðtÞ is weakly continuous and L is
weakly dense in M, we can find an ft0; t1

A L, kft0; t1
kL ¼ 1, satisfying
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jh ~TTðtiÞ ft0; t1
� ~TTðtiÞd; jija 1=3k~ddk; i ¼ 0; 1:

Applying this for any t0 ¼ t and t1 ¼ t þ t satisfying (65) we have a function
ft :¼ ft; tþt so that according to (66)

ð67Þ k ~TTðt þ tÞ ft � ~TTðtÞ ftkL b jh ~TTðt þ tÞ ft � ~TTðtÞ ft; jij

b jh ~TTðt þ tÞd� ~TTðtÞd; jij

� jh ~TTðt þ tÞd� ~TTðt þ tÞ ft; jij � jh ~TTðtÞ ft � ~TTðtÞd; jij

b k~ddkM � 1=3k~ddkM � 1=3k~ddkM ¼ 1=3k~ddkM

for every t su‰ciently large. By Theorem 4.22.1, ~TTðtÞ ft ! ~fft in norm so by (67) this
convergence cannot be uniform.

Note also that the converse of Theorem 4.22.2 is not true. To illustrate this, one
might take a purely atomic measure m so that in a suitable translated copy of m the
di¤erent atoms in m cancel each other, that is ~TTðtÞm ¼ 0 for every t su‰ciently large.
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