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ABSTRACT. In this paper, we present some results
concerning the existence and global asymptotic stability of
solutions for a functional integral equation of fractional
order. We use Schauder’s fixed point theorem for the
existence of solutions, and we prove that all these solutions
are globally asymptotically stable.

1. Introduction. Integral equations are a useful mathematical tool
in both pure and applied analysis. This is particularly true of problems
in mechanical vibrations and the related fields of engineering and math-
ematical physics. We can find numerous applications of differential and
integral equations of fractional order in viscoelasticity, electrochemistry,
control, porous media, electromagnetism, etc., [10, 17, 20, 22, 24].
There has been a significant development in ordinary and partial frac-
tional differential equations in recent years; see the monographs of Ab-
bas, et al., [5, 6], Kilbas, et al., [18], Lakshmikantham [19], Miller and
Ross [20], Podlubny [22] and Zhou [25], and the papers by Abbas, et
al., [1, 2, 4, 8], Banaś, et al., [11, 12, 13], Darwish, et al., [15], and
the references therein.

In [3], Abbas and Benchohra studied the existence and stability of
solutions of the following nonlinear quadratic Volterra integral equation
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of Riemann-Liouville fractional order,

u(t) = f
(
t, u(α(t))

)
+

1

Γ(r)

∫ β(t)

0

(
β(t)− s

)r−1
g
(
t, s, u(γ(s))

)
ds,

for t ∈ R+, where α, β, γ : R+ → R+, f : R+ × R → R and
g : R+×R+×R → R are continuous functions, R+ = [0,∞), r ∈ (0,∞)
and Γ is the (Euler) gamma function defined by

Γ(ξ) =

∫ ∞

0

tξ−1e−t dt, ξ > 0.

In [7], Abbas, et al., considered the existence of solutions of frac-
tional order, Riemann-Liouville, Volterra-Stieltjes quadratic integral
equations of the form

u(t, x) = µ(t, x)

+
f(t, x, u(t, x))

Γ(r)

∫ t

0

(t− s)r−1h(t, x, s, u(s, x)) dsg(t, s)

for (t, x) ∈ J := [0, a] × [0, b], where a, b > 0, r ∈ (0,∞); µ : J → R,
g : R+ × R+ → R, f : J × R → R and h : J1 × R → R are given
continuous functions, and J1 = {(t, x, s) ∈ J × [0, a] : s ≤ t}.

Motivated by the above papers, this paper deals with the existence
of solutions to the following more general nonlinear functional equation

(1.1) u(t) = N(u)(t) := f
(
t, u(α(t)), Q(u)(t)

)
for t ∈ R+,

in which Q is the fractional order Riemann-Liouville, Volterra-Stieltjes
integral operator

(1.2) Q(u)(t) =
1

Γ(r)

∫ β(t)

0

(β(t)− s)r−1h
(
t, s, u(γ(s))

)
dsg(t, s),

and where r > 0; α, β : R+ → R+ are given uniformly continuous
functions; limt→∞ α(t) = ∞; γ : R+ → R+, f : R+ × R × R → R,
g : R+ × R+ → R and h : J1 × R → R are continuous functions; and
J1 := {(t, s) ∈ R2

+ : s ≤ β(t)}. We prove the existence of solutions of
equation (1.1) by using Schauder’s fixed point theorem, and we obtain
some results about the global asymptotic stability of solutions. An
example illustrating the main result is presented in the last section.
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2. Preliminaries. In this section, we introduce notation, defini-
tions and preliminary facts which are used throughout this paper. For
b > 0, let L1([0, b]) denote the space of Lebesgue-integrable functions
u : [0, b] → R with the norm

∥u∥1 =

∫ b

0

|u(t)| dt.

By BC := BC(R+), we denote the Banach space of all bounded and
continuous functions from R+ into R equipped with the standard norm

∥u∥BC = sup
t∈R+

|u(t)|.

For u0 ∈ BC and η ∈ (0,∞), we denote by B(u0, η) the closed ball
in BC centered at u0 with radius η.

Definition 2.1 ([18]). Let r > 0. For u ∈ L1([0, b]), the expression

(Ir0u)(t) =
1

Γ(r)

∫ t

0

(t− s)r−1u(s) ds, t ∈ R+,

is called the left-sided Riemann-Liouville fractional integral of order r.

In particular, (I00u)(t) = u(t) and (I10u)(t) =
∫ t

0
u(s) ds for almost

all t ∈ [0, b]. Note that Ir0u exists for all r > 0 when u ∈ L1([0, b]), and
that (Ir0u) ∈ C([0, b]) when u ∈ C([0, b]).

Example 2.2. Let ω, r ∈ (0,∞). Then

Ir0
tω

Γ(1 + ω)
=

tω+r

Γ(1 + ω + r)
for t ∈ [0, b].

If u is a real function defined on the interval [a, b], then the symbol∨b
a u denotes the variation of u on [a, b]. We say that u is of bounded

variation on the interval [a, b] whenever
∨b

a u is finite. For a function
w : [a, b] × [c, b] → R, the symbol

∨q
t=p w(t, s) indicates the variation

of the function t 7→ w(t, s) on the interval [p, q] ⊂ [a, b], where s is
arbitrarily fixed in [c, d]. In the same way, we define

∨q
s=p w(t, s). For

the properties of functions of bounded variation we refer to [9, 21].
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If u and φ are two real functions defined on the interval [a, b], then
under some conditions (see [9, 21]) we can define the Stieltjes integral
(in the Riemann–Stieltjes sense) of the function u with respect to φ,∫ b

a

u(t) dφ(t).

In this case we say that u is Stieltjes integrable on [a, b] with respect
to φ. Several conditions are known guaranteeing Stieltjes integrabil-
ity [9, 21, 23]. One of the most frequently used requires that u be
continuous and φ be of bounded variation on [a, b].

In what follows, we will use a few properties of the Stieltjes integral
contained in the lemmas given below.

Lemma 2.3 ([9]). If u is Stieltjes integrable on the interval [a, b] with
respect to a function φ of bounded variation, then∣∣∣∣∫ b

a

u(t) dφ(t)

∣∣∣∣ ≤ ∫ b

a

|u(t)| d
(∨t

a φ
)
.

Lemma 2.4 ([9]). Let u, v be Stieltjes integrable functions on the
interval [a, b] with respect to a nondecreasing function φ such that
u(t) ≤ v(t) for t ∈ [a, b]. Then∫ b

a

u(t) dφ(t) ≤
∫ b

a

v(t) dφ(t).

In the sequel, we will also consider Stieltjes integrals of the form∫ b

a

u(t) dsg(t, s),

and Riemann–Liouville Stieltjes integrals of fractional order of the form

1

Γ(r)

∫ t

0

(t− s)r−1u(s) dsg(t, s),

where g : R+ × R+ → R, r ∈ (0,∞) and the symbol ds indicates the
integration with respect to s.
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Let ∅ ̸= Ω ⊂ BC, let G : Ω → Ω, and consider the solutions of
equation

(2.1) (Gu)(t) = u(t).

We introduce the following concept of attractivity of such solutions.

Definition 2.5. Solutions of equation (2.1) are locally attractive if
there exists a ball B(u0, η) in the space BC such that, for arbitrary solu-
tions v = v(t) and w = w(t) of equation (2.1) belonging to B(u0, η)∩Ω,
we have

(2.2) lim
t→∞

(
v(t)− w(t)

)
= 0.

When the limit (2.2) is uniform with respect to B(u0, η) ∩ Ω, solu-
tions of equation (2.1) are said to be uniformly locally attractive (or
equivalently, the solutions are locally asymptotically stable).

Definition 2.6. The solution v = v(t) of equation (2.1) is said to be
globally attractive if (2.2) holds for each solution w = w(t) of (2.1).
If condition (2.2) is satisfied uniformly with respect to the set Ω,
solutions of equation (2.1) are said to be globally asymptotically stable
(or uniformly globally attractive).

Lemma 2.7 ([14], page 62). Let D ⊂ BC. Then D is relatively
compact in BC if the following conditions hold :

(a) D is uniformly bounded in BC;
(b) the functions belonging to D are almost equicontinuous on R+, that

is, equicontinuous on every compact subset of R+;
(c) the functions from D are equiconvergent, that is, given ϵ > 0,

there corresponds T (ϵ) > 0 such that |u(t) − limt→∞ u(t)| < ϵ for
any t ≥ T (ϵ) and u ∈ D.

3. Main results. In this section, we are concerned with the ex-
istence and the global asymptotic stability of solutions for the equa-
tion (1.1). Let us start by defining exactly what we mean by a solution.

Definition 3.1. A solution of equation (1.1) is any function u ∈ BC
such that u satisfies equation (1.1) on R+.
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The following hypotheses will be used in the sequel.

(H1) There exist constants 0 < M < 1 and L > 0 such that

|f(t, u1, v1)− f(t, u2, v2)| ≤
M |u1 − u2|+ L|v1 − v2|
1 + α(t) + |u1 − u2|

,

for t ∈ R+ and for u1, v1, u2, v2 ∈ R.
(H2) The function t 7→ f(t, 0, 0) is bounded on R+ with f∗ =

supt∈R+
f(t, 0, 0) and limt→∞ |f(t, 0, 0)| = 0.

(H3) For all t1 and t2 ∈ R+ such that t1 < t2, the function s 7→
g(t2, s)− g(t1, s) is nondecreasing on R+.

(H4) The function s 7→ g(0, s) is nondecreasing on R+.
(H5) The functions s 7→ g(t, s) and t 7→ g(t, s) are continuous on R+

for each fixed t ∈ R+ or s ∈ R+, respectively.
(H6) The function t 7→

∨s
0 g(t, s) is continuous on R+ for each

s ∈ R+.
(H7) There exists a continuous function p : J1 → R+ such that

|h(t, s, u)| ≤ p(t, s)

1 + α(t) + |u|
for (t, s) ∈ J1 and u ∈ R,

and, moreover,

lim
t→∞

∫ β(t)

0

(
β(t)− s

)r−1
p(t, s) dsg(t, s) = 0.

Remark 3.2. Set q∗ := supt∈R+
q(t) where

q(t) =
1

Γ(r)

∫ β(t)

0

(
β(t)− s

)r−1
p(t, s) ds

(∨s
k=0 g(t, k)

)
.

From hypothesis (H7), we infer that q∗ is finite, limt→∞ q(t) = 0, and
(3.1)

|(Qu)(t)| ≤ 1

Γ(r)

∫ β(t)

0

(
β(t)− s

)r−1
p(t, s)

1 + α(t) +
∣∣u(γ(t))∣∣ ds(∨s

0 g(t, ·)
)
≤ q(t).

Theorem 3.3. Assume that hypotheses (H1)–(H7) hold. Then equa-
tion (1.1) has at least one solution in the space BC. Moreover, solutions
of equation (1.1) are globally asymptotically stable.
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Proof. Recall the operator N defined by (1.1) and (1.2). It is clear
that the map t 7→ (Nu)(t) is continuous on R+. Now we prove that
N(u) ∈ BC for any u ∈ BC. For arbitrarily fixed t ∈ R+, assumptions
(H1) and (H7), together with (3.1), imply that

(3.2)

|(Nu)(t)| = |f(t, 0, 0)|+
∣∣f(t, u(α(t)), (Qu)(t)

)
− f(t, 0, 0)

∣∣
≤ |f(t, 0, 0)|+ M |u(α(t))|+ L|(Qu)(t)|

1 + α(t) + |u(α(t))|
≤ |f(t, 0, 0)|+M + Lq(t) ≤ f∗ +M + q∗,

so

(3.3) ∥N(u)∥BC ≤ f∗ +M + Lq∗.

Hence, N(u) ∈ BC. Equation (3.3) yields that N transforms the
ball Bη := B(0, η) into itself, where η = f∗ + M + Lq∗. We shall
show that N : Bη → Bη satisfies the assumptions of Schauder’s fixed
point theorem [16]. The proof will be given in several steps.

Step 1. N is continuous. Let ϵ > 0. By assumption (H7), we
can choose T > 0 such that q(t) < ϵ/(2L) for all (t, s) ∈ J1 such that
t > T . Let {un}n∈N be a sequence such that un → u in Bη. Then, for
each t ∈ R+, we have∣∣(Nun)(t)− (Nu)(t)

∣∣
=

∣∣f(t, un(α(t)), (Qun)(t)
)
− f

(
t, u(α(t)), (Qu)(t)

)∣∣
≤

M
∣∣un(α(t))− u(α(t))

∣∣+ L
∣∣(Qun)(t)− (Qu)(t)

∣∣
1 + α(t) +

∣∣un(α(t)− u(α(t))
∣∣

≤ M∥un − u∥BC + L
∣∣(Qun)(t)− (Qu)(t)

∣∣,
and

∣∣(Qun)(t)− (Qu)(t)
∣∣ is bounded by∫ β(t)

0

(
β(t)− s

)r−1∣∣h(t, s, un(γ(s))
)
− h

(
t, s, u(γ(s))

)∣∣ ds(∨s
0 g(t, ·)

)
.

These estimates show that, because h is continuous and g has bounded
variation,

max
0≤t≤T

∥N(un)(t)−N(u)(t)∥ −→ 0 as n → ∞,
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and by (3.1),∣∣(Qun)(t)− (Qu)(t)
∣∣ ≤ |(Qun)(t)|+ |(Qu)(t)| ≤ 2q(t),

so
sup
t>T

∥N(un)(t)−N(u)(t)∥ ≤ M∥un − u∥BC + ϵ.

It follows that ∥N(un)−N(u)∥BC → 0 as n → ∞.

Step 2. N(Bη) is uniformly bounded. This claim is clear since
N(Bη) ⊆ Bη and Bη is bounded.

Step 3. N(Bη) is equicontinuous on every compact inter-
val [0, a] ⊆ R+ (a > 0). Let t1 and t2 ∈ [0, a] with t1 < t2, let u ∈ Bη

and, without loss of generality, assume that β(t1) ≤ β(t2). We define

I1 =
∣∣f(t2, u(α(t2)), (Qu)(t2)

)
− f

(
t2, u(α(t1)), (Qu)(t1)

)∣∣,
I2 =

∣∣f(t2, u(α(t1)), (Qu)(t1)
)
− f

(
t1, u(α(t1)), (Qu)(t1)

)∣∣,
so that ∣∣(Nu)(t2)− (Nu)(t1)

∣∣ ≤ I1 + I2.

By assumption (H1),

I1 ≤
M

∣∣u(α(t2))− u(α(t1))
∣∣+ L

∣∣(Qu)(t2)− (Qu)(t1)
∣∣

1 + α(t) +
∣∣u(α(t2))− u(α(t1))

∣∣
≤ M

∣∣u(α(t2))− u(α(t1))
∣∣+ M

Γ(r)

(
I11 + I12 + I13

)
,

for

I11 =

∫ β(t2)

0

(
β(t2)− s

)r−1
h
(
t2, s, u(γ(s))

)
dsg(t2, s)

−
∫ β(t2)

0

(
β(t2)− s

)r−1
h
(
t1, s, u(γ(s))

)]
dsg(t2, s),

I12 =

∫ β(t2)

0

(
β(t2)− s

)r−1
h
(
t1, s, u(γ(s))

)
dsg(t2, s)

−
∫ β(t1)

0

(
β(t2)− s

)r−1
h(t1, s, u(γ(s))

)
dsg(t1, s),

I13 =

∫ β(t1)

0

(
β(t2)− s

)r−1
h
(
t1, s, u(γ(s))

)
dsg(t1, s)
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−
∫ β(t1)

0

(
β(t1)− s

)r−1
h
(
t1, s, u(γ(s))

)
dsg(t1, s).

Using the estimates

|I11| ≤
∫ β(t2)

0

(
β(t2)− s

)r−1

∣∣h(t2, s, u(γ(s)))− h
(
t1, s, u(γ(s))

)∣∣ ds(∨s
0 g(t2, ·)

)
,

|I12| ≤
∫ β(t2)

β(t1)

(
β(t2)− s

)r−1
p(t1, s) ds

(∨s
0 g(t2, ·)

)
+

∫ β(t1)

0

(
β(t2)− s

)r−1
p(t1, s) ds

(∨s
0

[
g(t2, ·)− g(t1, ·)

])
,

|I13| ≤
∫ β(t1)

0

∣∣(β(t2)− s
)r−1 − β(t1)− s

)r−1∣∣p(t1, s) ds(∨s
0 g(t2, ·)

)
,

and, from the continuity of α, β, f , g, h and p, we see that the terms
I1 and I2 tend to zero if t1 → t2, uniformly for u ∈ Bη.

Step 4. N(Bη) is equiconvergent. Let t ∈ R+ and u ∈ Bη.
From (3.2), we have

|(Nu)(t)| ≤ |f(t, 0, 0)|+ Mη

1 + α(t)
+ Lq(t),

and thus (Nu)(t) → 0 = (Nu)(+∞) as t → +∞, uniformly for u ∈ Bη.

As a consequence of Steps 1–4, together with Lemma 2.7, we can
conclude that N : Bη → Bη is continuous and compact. From an
application of Schauder’s theorem [16], we deduce that N has a fixed
point u which is a solution of the equation (1.1).

Step 5. Global asymptotic stability of solutions. Now we
investigate the stability of solutions to equation (1.1). Let us assume
that u and v are two solutions of (1.1). Then, for each t ∈ R+, we have

|u(t)− v(t)| =
∣∣(Nu)(t)− (Nv)(t)

∣∣
=

∣∣f(t, u(α(t)), (Qu)(t)
)
− f

(
t, v(α(t)), (Qu)(t)

)∣∣
≤

M
∣∣u(α(t))− v(α(t))

∣∣+ L
∣∣(Qu)(t)− (Qv)(t)

∣∣
1 + α(t) +

∣∣u(α(t))− v(α(t)
∣∣

≤ M
∣∣u(α(t))− v(α(t))

∣∣+ L
(
|(Qu)(t)|+ |(Qv)(t)|

)
,
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and thus

(3.4) |u(t)− v(t)| ≤ M |u(α(t))− v(α(t))|+ 2Lq(t).

Since α(t) → ∞ as t → ∞,

lim
t→∞

∣∣u(α(t))− v(α(t))
∣∣ = lim

t→∞
|u(t)− v(t)|,

and thus, by using (3.4) and our assumption that 0 < M < 1, we
deduce that

lim
t→∞

|u(t)− v(t)| ≤ lim
t→∞

2Lq(t)

1−M
= 0.

Consequently, all solutions of equation (1.1) are globally asymptotically
stable. �

4. An example. As an application of our results we consider the
following nonlinear, quadratic functional, Riemann-Liouville, Volterra-
Stieltjes integral equation of fractional order,

u(t) = f

(
t, u(t),

1

Γ(2/3)

∫ t

0

(t− s)−1/3h(t, s, u(s)) ds

)
(4.1)

for t ∈ R+,

which is of the form (1.1) and (1.2) with r = 2/3, α(t) = β(t) = γ(t) = t
and g(t, s) = s for (t, s) ∈ R2

+, and in which we put

f(t, u, v) =
1

2

1

|u|+ 2(1 + t+ |v|)
,

h(t, s, u) =
s|u|

(1 + t+ |u|)(1 + t4)
,

for (t, s) ∈ J1 := {(t, s) ∈ R2
+ : s ≤ t} and u, v ∈ R. For each t ∈ R+

and u1, u2, v1, v2 ∈ R,
∣∣f(t, u1, v1)− f(t, u2, v2)

∣∣ is bounded by

1

2

∣∣∣∣ |u1| − |u2|+ 2|v1| − 2|v2|(
|u1|+ 2 + 2t+ 2|v1|

)(
|u2|+ 2 + 2t+ 2|v2|

) ∣∣∣∣
≤ 1

2

∣∣|u1| − |u2|
∣∣+ 2

∣∣|v1| − |v2|
∣∣(

|u1|+ 2 + 2t+ 2|v1|
)(
|u2|+ 2 + 2t+ 2|v2|

) .
Since ∣∣|u1| − |u2|

∣∣ ≤ |u1 − u2| ≤ |u1|+ |u2|
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and(
|u1|+ 2 + 2t+ 2|v1|

)(
|u2|+ 2 + 2t+ 2|v2|

)
≥ 1 + t+ |u1|+ |u2|,

we get ∣∣f(t, u1, v1)− f(t, u2, v2)
∣∣ ≤ (1/2)|u1 − u2|+ |v1 − v2|

1 + t+ |u1 − u2|
,

so the function f is continuous and satisfies assumption (H1), with
M = 1/2 and L = 1. Also, f satisfies assumption (H2) with f∗ = 1/4.
Next, we can easily see that the function g satisfies hypotheses (H3)–
(H6). Finally, the function h satisfies assumption (H7), with

p(t, s) =
s

1 + t4
for (t, s) ∈ J1.

Indeed, we have,∫ β(t)

0

(
β(t)− s

)r−1
p(t, s) dsg(t, s) =

∫ t

0

(t− s)−1/3 s

1 + t4
ds

=
9t5/3

10(1 + t4)
→ 0 as t → ∞.

Hence, by Theorem 3.3, equation (4.1) has a solution defined on R+,
and all solutions of this equation are globally asymptotically stable.
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