
Annals of University of Craiova, Math. Comp. Sci. Ser.

Volume 32, 2005, Pages 1–8

ISSN: 1223-6934

Asymptotic behavior of large solutions of elliptic equations

Catherine Bandle

Abstract. In this paper we give a survey of the result concerning the asymptotic behavior
of the solutions of △u = f(u) in D which blow up at the boundary. We concentrate ourselves
to the case where the blowup occurs on the whole boundary. The main tools to derive sharp

estimates are the comparison principle and the method of upper and lower solutions. A list
of references is given which are closely related to the specific aspects discussed in this survey.
This list is by no means complete.
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1. Introduction

Let D ⊂ R
N be an arbitrary domain the boundary of which satisfies an inner and

outer sphere condition, and let f be a positive, increasing function. In this paper we
recount some results on the asymptotic behavior of the solutions of

△u = f(u) in D, u(x) → ∞ as x→ ∂D. (1)

From the maximum principle it follows that u(x) ≥ v(x) for any other solution of
△v = f(v) with bounded boundary values. Therefore u(x) is called a large solution.
Problem (1) is best understood by first looking at the one-dimensional case

φ′′ = f(φ), x > 0, φ(x) → ∞ as x→ 0. (2)

The solutions are given implicitely by

x =

∫ ∞

φ

ds
√

2F (s)
=: ψ(φ), where F ′ = f.

Clearly blow-up occurs if and only if
∫ ∞ ds

√

2F (s)
<∞. (3)

Observe that this condition is independent of the particular choice of the primitive
F .

It turns out [14] that also in general bounded domains (3) is necessary and sufficient
for the existence of a solution of (1).

The following observation [7] will be crucial for some of our next results.

Remark 1.1. Let φ and φc solutions of (2) corresponding to the primitives F and
F + c, respectively. Then φ(x) − φc(x) → 0 as x→ 0.
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2 C. BANDLE

Surprisingly the asymptotic behavior of the solutions of (1) does not depend, in the
first order approximation, on the geometry ofD. In fact, if δ(x) stands for the distance
of a point x ∈ D to the boundary, then [6], [1]

lim
x→∂D

ψ[u(x)]/δ(x) = 1. (4)

In order to conclude that

lim
x→∂D

u(x)

φ(δ(x))
= 1 (5)

an additional assumption on ψ, e.g.

lim inf
t→∞

ψ(βt)(ψ(t) > 1, ∀β ∈ (0, 1) (6)

is needed. The latter condition is not a serious restriction. It is clearly satisfied for
the classical model cases such as f(t) = tp and et.

Problem (1) has a long history which can be traced back to Bieberbach [8] who
studied the existence and asymptotic behavior for f(t) = et in planar domains. He
showed that in this case |u(x) − φ(δ(x))| < c near the boundary. Because of Remark
1 this is true for any solution φ. In simply connected domains the large solutions are
expressed by means of the conformal map f : D → {|z| < 1}. Liouville cf. also [8]
showed that

u(z) = log
8|f ′(z)|2

(1 − |f(z)|2)2
, z ∈ D.

Lazer and McKenna [18], motivated by Bieberbach’s result asked the following ques-
tion: Under what conditions on f do the solutions of (1) satisfy

u(x) − φ(δ(x)) → 0, as x→ ∂D?

They were able to establish this property for a class of functions with fast growth
at infinity such as f = et and f = tp, for p > 3. Some generalizations and further
discussion are found in [7].

The question we want to address here is: when does the geometry of D come into
play in the asymptotic development?

A first answer comes from the following result for large radial solutions in an
annulus {R0 < |x| < R1}, [7], namely:

u(δ) = φ

(

δ −
N − 1

2R1
(1 + o(1))

∫ δ

0

Γ(φ(s))ds

)

as r → R1,

u(δ) = φ

(

δ +
N − 1

2R0
(1 + o(1))

∫ δ

0

Γ(φ(s))ds

)

as r → R0,

where Γ(t) :=

∫ t

0

√

2F (s)ds

F (t)
.

Condition (3) implies that limt→∞ Γ(t) = 0 (cf. first remark at the end of the section).

Therefore the term
∫ δ

0
Γ(φ)ds represents a secondary effect in the blowup behavior

of the solutions. The expressions −1/R0 and 1/R1 can be interpreted as the mean
curvature of the inner, resp. outer boundary.

The result for the annulus leads to the conjecture that the second order effect
involves the mean curvature H0 of the projection σ of x on the boundary. The first
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result in this direction is due to del Pino and Letelier [9] who proved that for f(t) = tp

with p < 3

u(x) = Φ(δ(x))

(

1 +
N − 1

p+ 3
H0(σ(x))δ(x) + o(δ(x))

)

as x→ ∂D,

where Φ(δ) = cpδ
− 2

p−1 , cp := ((p− 1)/
√

2(p+ 1))−2/(p−1). (7)

It follows from the results in [4] that (7) holds for all p > 1. A different approach
via Fuchsian reduction was used by Kichenassamy [15] for the Loewner-Nirenberg

problem where f(t) = N(N − 2)t
N+2

N−2 . He was able to establish (7) for this particular
case. For f(t) = et it turns out [4], cf. also [16] that

u(x) = log
2

δ2(x)
+ (N − 1)H0(σ(x))δ(x) + o(δ(x)) as x→ ∂D. (8)

At present, the most general result on the influence of the mean curvature is given
in [4]. In order to state it we have to introduce the following expressions .

B(t) =
f(t)

√

2F (t)
=

d

dt

√

2F (t),

J(t) =
N − 1

2

∫ t

0

Γ(φ(s))ds,

where φ is any solution of (2).

Suppose that

(i) lim
δ→0

B(φ(δ(1 + o(1)))

B(φ(δ))
= 1,

(ii) lim sup
t→∞

B(t)Γ(t) <∞. (9)

Then

Assume (3), (6), (9) and ∂D ∈ C4. Then the large solutions satisfy

|u(x) − φ(δ −H0J(δ))| ≤ φ(δ)o(δ). (10)

As a consequence we get (7) and (8) for domains with smooth boundaries.

By means of a scaling argument [1] and [5] it is possible to determine the asymptotic
behavior of the gradient of a solution of (1) when f(t) behaves for large t like a power
tp, p > 1 or like the exponential et. In fact we have

|∇u|2

φ′2(δ(x))
→ 1 as x→ ∂D, (11)

where φ is a solution of (2) corresponding to f(t) = tp or et.

1.1. Remarks and open problems.

(1) For monotone functions condition (3) implies that

B(t) → ∞, as t→ ∞,

(

B(t) = −
φ′′

φ′

)

.

From here it follows that F (t)
t2 → ∞ as t → ∞. This observation is well-

known. The simplest proof is found in [12]. Assumption (9) are satisfied for the
standard nonlinearities. It would be interesting to know whether or not this is a
serious restriction and for what nonlinearities it does not hold.
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(2) It is clear that in non-smooth domains even (5) can not be true. The first result
in non-smooth domains seems to go back to [25]. If the domain is Lipschitz and
f(t) = tp, (5) remains valid if x tends to a regular point on ∂D, [25]. However
if the limiting point is irregular, e.g. a corner, the rate of blow-up depends on
the direction of approach. This behavior is illustrated by the large solutions for
f(t) = tp, 1 < p < N

N−2 in open cones C = {x = rθ : r > 0, θ ∈ Ω ⊂ S
N−1},

S
N−1 = {|x| = 1}. Let △θ be the Laplace-Beltrami operator on S

N−1 and let
α(θ) be the large solution of

△θα = αp −
2

p− 1
(2 −N + 2/(p− 1))α in Ω.

The large solutions in the cone can then be written as

u(x) = r−
2

p−1α(θ),

where in accordance with the observation in Sec. 3.1
(

(p− 1)/
√

2(p+ 1)
)2/(p−1)

δ̃(θ)2/(p−1)α(θ) → 1, as θ → ∂Ω,

δ̃(θ) = distance{θ, ∂Ω} on S
N−1.

Similarly for f(t) = et, [22] there exist large solutions in C of the form

u(x) = α(θ) − 2 log r,

where α solves

△θα = 2(N − 2) + eα in Ω, α→ ∞ if θ → ∂Ω.

In [22] J. Matero studied large solutions in fractal domains and derived estimates
near the boundary. In his thesis [24] he gave a fairly complete list of references
for the blow-up problem up to 1997.

(3) It has already been observed in the seminal paper by Loewner and Nirenberg
[20] that (5) leads to the uniqueness of large solutions if f(t)/t is increasing.
This applies to all power nonlinearities f(t) = tp with p > 1. The uniqueness for
the exponential function was discussed in [19]. The case of non-smooth domains
where (5) does not hold precisely, was studied for f(t) = tp in [25], cf. also [11]
for a problem with variable coeffficients. A further uniqueness result follows from
(10). Namely if

δφ(δ(1 + o(1))) <∞ for δ < δ0

or equivalently
F (t)

t4
<∞ as t→ ∞,

then there exists a unique large solution. Indeed since the difference of two large
solutions tends to zero as x approaches the boundary, by the maximum principle
they have to coincide.

If there exists more than one large solution there is a maximal one, U(x) obtained
by the Perron process

U(x) = sup{v(x) : v(x) solution of △v = f(v) in D}.

The minimal large solution, ω(x) can be constructed by means of the iteration
process

△ωn = f(ωn−1) in D, ωn = n on ∂D,

if we set ω =limn→∞ωn. All other large solutions satisfy ω(x) ≤ u(x) ≤ U(x) in
D.
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Except in strips (cf. Remark 1) it is not yet clear whether the large solution is
unique only under the assumption that f is monotone. No example with two
large solutions is known up to now. It is possible that the uniqueness property
is not only related to the nonlinearity but also to the geometry of the domain.

(4) The global geometry of D can already appear in the third term of the asymptotic
behavior. For instance if f = et and D is a strip, then the general solutions which
blow up at the origin are

φ(x) =















log a2

sinh2(ax/
√

2)

or

log a2

sin2(ax/
√

2)

The constant a is determined by the width of the strip.
Near the origin φ assumes the form

φ(x) = log
2

x2
±

(ax)2

6
+ o((ax)2).

2. Tools

The main tools for deriving estimates are the comparison principle and upper and
lower solutions.

Comparison principle Let D1 ⊂ D2 and let u1 and u2 be corresponding large
solutions. Then u1 ≥ u2 in D1.

Definition 2.1. A function u, (u) is called an upper (lower) solution of (1) in Ω if

△u ≤ f(u) in Ω.

For the lower solution the inequality sign is reversed.

From the maximum principle it follows that, if u ≤ u on ∂Ω then u ≤ u in Ω and
similarly if u ≥ u on ∂Ω then u ≥ u in Ω .

The asymptotic estimate (10) follows from suitable choice of upper and lower so-
lutions in the parallel strip near the boundary Dρ = {x ∈ D : dist(x, ∂D) < ρ}.

Candidates are cf. [4] and [9], u := ν+ and u := ν−, where

v±(δ, σ) := Φ

(

δ −
N − 1

2
(H0(σ) ± ν)

∫ δ

0

Γ(φ(s))ds

)

. (12)

Here φ is a solution of the one-dimensional problem (2). Then under the assumptions
of Theorem 1 , there exists ρ0 > 0 and a decreasing function ν : (0, ρ0) 7→ (0,∞) such
that ν(ρ) → 0 as ρ → 0 and, for every ρ ∈ (0, ρ0), the function v+ (resp. v−) with
ν = ν(ρ), is an upper (resp. lower) solution in Dρ. By a shift δ± ǫ, it can be achieved
that u ≤ ν+ and u ≥ ν− on the boundary of Dρ which implies that these inequalities
hold in the whole parallel strip Dρ.
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2.1. Remark and open problem. In order to show that ν± are upper and lower
solutions in the classical sense the mean curvature H0 has to be in C2. This implies
that ∂D ∈ C4. The approach by Kichenassamy [15] and [16] for f(t) = et and
f(t) = t(N+2)/(N−2) indicates that ∂D ∈ C2+α should suffice. What is the third
order term in non-smooth domains?

3. Generalizations

3.1. Inhomogeneous problems. The results of Section 1 have been generalized in
many directions. In [5] the Laplace operator was replaced by a second order uniformly
elliptic operator

L =
N
∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

N
∑

i=1

bi(x)
∂

∂xi
, bi, aij = aji ∈ Cα(D).

and by a inhomogeneous nonlinearity of the following type

g(x, t)/f(t) → h(x) > 0 in D, as t→ ∞.

It turns out that the asymptotic behavior of

Lu = g(x, u) in D, u(x) → ∞, as x→ ∂D

is similar as for the homogeneous problem (1). If δ̃ stands for the distance with respect
to the Riemannian metric given by

ds2 =
N
∑

i,j=1

Aijdxidxj , Aij inverse matrix of aij ,

then

u(x)

φ(
√

h(x)δ̃(x))
→ 1 as x→ ∂D. (13)

Notice that this expression depends only on the principal part of L.

From this result we obtain immediately the asymptotic behavior of large solutions
of (1) on manifolds. Indeed if △M is the Laplace Beltrami operator on the manifold
M then the large solutions of

△Mu = h(x)f(u) in D ⊂ M, u(x) → ∞ on ∂D

satisfy u(x)φ(
√

h(x)δ̃(x)) → 1 as x tends to the boundary. Here δ̃ denotes the distance
related to metric of M.

3.2. Nonlinear differential operators. A lot of attention has been given to large
solutions in the case of more general operators. J. Matero extended the results of [1]
concerning the asymptotic behaviour of the large solutions and theirs gradients to the
pseudo-Laplacian

△pu = div(|∇u|p−2∇u).

The results are very similar to the ones for the ordinary Laplacian. For instance the
blow-up condition (4) reads as

∫ ∞ ds

F 1/p(s)
<∞.
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and (5) holds if φ is replaced by the inverse φp of

ψp(t) =

∫ ∞

t

[

p

p− 1
F (s)

]−1/p

ds.

An interesting extension is the case with nonlinear gradient terms [2],

△u± |∇u|q = f(u) , q > 0.

The presence of the nonlinear gradient term has a significant influence on the existence
and asymptotic behavior of large solutions. Different mechanisms are in competition,
diffusion, convection and absorption. For instance, if f(t) = et and q < 2 then the
diffusion prevails and we have u(x)/ log δ−1(x) → 2 as x → ∂D whereas if q ≥ 2 in
the case of positive convection (+|∇u|q), we find log u(x)/ log δ−1(x) → q as x →
∂D. Hence the behavior of the large solutions at the boundary is governed by the
convection.

Problems of the type

divg(|∇u|∇u) = f(u)k(|∇u|)

were discussed in [3] by means of the methods introduced in [18].

3.3. Problems and Remarks.

(1) An unexpected observation was made in [17] where it was shown that under
condition (3) the problem

△u = h(x)f(u) in D, u(x) → ∞ asx→ ∂D,

has a large solution even if h vanishes on ∂D provided that it is positive in a
neighborhood of ∂D. It would be interesting to see if this is still true if h vanishes
on a connected set insideD, reaching the boundary, e.g. ifD = {|x| < 1, x ∈ R

2},
h = 0 on x2 = 0, and if it is positive elsewhere in D. It is clear that (13) makes
no sense if h is zero on the boundary.

(2) It would be interesting to know if the mean of curvature plays a role in the case
of nonlinear operators and where does it appear.

(3) The gradient estimate (11) extends to problems with variable coefficients con-
sidered in Section 3.1 [5].

(4) A challenging problem posed by Dynkin and Kuznetzov [10] in connection with
the study of superdiffusion is to characterize the trace of Lu = |u|p−1u in D. For
recent progress on this question cf. [21].
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[21] M. Marcus and L. Véron, The boundary trace and generalized boundary value problems for

semilinear elliptic equations with coercive absorption, Comm. Pure Appl. Math. 56 (2003),
689-731.

[22] J. Matero, Boundary-blow-up problems infractal domains, ZAA 15 (1996), 419-444.

[23] J. Matero, Quasilinear eiilptic equations with boundary blow-up, J. d’Anal. Mathém., 96 (1996),
229-247.

[24] J. Matero, Nonlinear elliptic problems with boundary blow-up, Uppsala Dissertations in Math-
ematics 6, (1997), 181 p.
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