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1 Introduction

The asymptotic behavior of pseudoscalar transition form factors (TFFs)—describing the

decay of a pseudoscalar meson into two (virtual) photons P → γ∗(q1)γ
∗(q2) — has been

studied in detail in the literature using an expansion along the light cone x2 = 0, with

the central result that at leading order the corresponding TFF, e.g. for the pion, can be

expressed as [1–3]

Fπ0γ∗γ∗(q21, q
2
2) = −2Fπ

3

∫ 1

0
du

φπ(u)

uq21 + (1− u)q22
+O

(

q−4i

)

, (1.1)

in terms of the decay constant Fπ = 92.28(19)MeV [4] and the wave function φπ(u). This

approach has been widely applied both for kinematic configurations that follow from a

strict operator product expansion (OPE), in particular, the symmetric limit [5, 6]

Fπ0γ∗γ∗(q2, q2) = −2Fπ

3q2
+O

(

q−4
)

, (1.2)
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but also for the singly-virtual case

Fπ0γ∗γ∗(q2, 0) = −2Fπ

q2
+O

(

q−4
)

. (1.3)

The latter is obtained by formal evaluation of (1.1) for the asymptotic form of the wave

function φπ(u) = 6u(1 − u) and is often referred to as the Brodsky-Lepage (BL) limit

of the singly-virtual TFF. As pointed out in [7, 8], this goes beyond a strict OPE, in

the sense that the wave-function approach already resums higher-order terms. Moreover,

considerable effort has been devoted to extending the leading-order result (1.1) including αs

corrections [9, 10] and higher-order terms in the context of QCD sum rules [11–18]. Results

by the BaBar experiment for the singly-virtual pion TFF for space-like virtualities above

10GeV2 [19] suggested that there could be substantial corrections to the BL limit, while

later data by the Belle collaboration [20] did not point to a similarly fast rise of the TFF.

Moreover, the BaBar measurement of the η, η′ TFFs [21] proved in better agreement with

the BL expectation, although in this case the detailed interpretation depends on singlet

corrections and η–η′ mixing patterns.

In recent years, these constraints on the asymptotic behavior of pseudoscalar TFFs

have become vital ingredients for determinations of the contribution from pseudoscalar in-

termediate states to hadronic light-by-light scattering (HLbL) in the anomalous magnetic

moment of the muon (g − 2)µ. In fact, with the contribution of various hadronic inter-

mediate states organized in terms of dispersion relations [22–27], the pseudoscalar poles

are completely determined by the respective TFFs. For the pion, the TFF has, in turn,

been reconstructed from dispersion relations [28–34], leading to a result for the pion-pole

contribution in perfect agreement with calculations using Canterbury approximants [35],

lattice QCD [36], and Dyson-Schwinger equations [37, 38], and a similar program exists

for the η, η′ poles [39–43]. In either case, asymptotic constraints on the TFF are critical

in controlling the high-energy part of the g − 2 integral. This aspect becomes particularly

important when matching to short-distance constraints [44–47].

Going beyond pseudoscalar poles, the second most important intermediate states are

2π [26, 27], which require input on the amplitudes for γ∗γ∗ → ππ [48–53]. However, some

resonances in the 2π system, such as the f0(980) or the f2(1270), should be reasonably

well described by a narrow-width approximation (NWA), in which case information on the

respective TFFs would again be required. Moreover, for higher-multiplicity intermediate

states, such as 3π, a NWA may be the only realistic way to estimate their contribution,

given the complexity of the dispersion relations for a general three-particle intermedi-

ate state. Again, the TFFs would be key input quantities. Phenomenologically, there

is some information on the TFFs of scalar (f0(980) [54–57], a0(980) [58], f ′0(1370) [59],

a0(1450) [58]), axial-vector (f1(1285) [60–62], f
′
1(1420) [63]), and tensor (f2(1270) [54–57],

a2(1320) [64–66], f ′2(1525) [67–70], a′2(1700) [68, 69]) mesons, but in neither case is the

data situation comparable to the pseudoscalar TFFs. For the axial-vector resonances, an

additional complication arises due to the Landau-Yang theorem [71, 72], which forbids

a coupling to two on-shell photons. Finally, constraints on these TFFs can be obtained

when assuming the saturation of γγ sum rules with narrow resonances [73, 74]. Existing
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estimates for the contribution to HLbL scattering from such heavy intermediate states rely

on the available phenomenological information [75] and/or further input from the match-

ing to short-distance constraints [44, 76, 77], resonance chiral theory [78], or holographic

models [79, 80].

In all cases, however, the resulting estimates are still quite model dependent, with

major issues including — apart from the obvious scarcity of data — ambiguities in the

definition of resonance contributions (so far always taken from a Lagrangian formulation),

kinematic singularities in the TFF decomposition, and assumptions on the asymptotic be-

havior. In this paper we will address the latter two. First, for use in HLbL scattering a TFF

decomposition is required that is free of kinematic singularities, which does not apply to

the standard decomposition [81, 82] formulated in terms of helicity components (in the case

of scalar and tensor mesons, the decompositions in [83] are free of kinematic singularities,

but no proof is provided). In section 2 we will therefore derive Lorentz decompositions,

following the general recipe established by Bardeen, Tung, and Tarrach (BTT) [84, 85],

that are manifestly free of kinematic singularities. Second, the only available constraints on

the asymptotic behavior of the resulting TFFs originate from the quark model of [82], but

even there only for a subset of the TFFs, as well as for one particular limit of the scalar and

axial-vector TFFs from the OPE [77, 78] and from holographic QCD [79]. Scalar [86–88],

axial-vector [89, 90], and tensor [91–93] mesons have been studied using light-cone tech-

niques, with some early work already in [83]. However, we are not aware of representations

analogous to (1.1), certainly not in a basis useful for HLbL scattering. We will fill this

gap in section 3. Some phenomenological applications will be discussed in section 4, before

closing with a summary and outlook in section 5.

2 Lorentz structure and helicity amplitudes

2.1 Pseudoscalar mesons: JPC = 0−+

To define notation and conventions, we first consider the well-known case of a pseudoscalar

meson decaying into two off-shell photons. The meson P is treated as an asymptotic state,

i.e., in the NWA we have:

〈γ∗(q1, λ1)γ
∗(q2, λ2)|P (p)〉

= −e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)

∫

d4x d4y ei(q1·x+q2·y)〈0|T{jµem(x)jνem(y)}|P (p)〉

= −e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)

∫

d4x d4y eiq1·xei(q1+q2−p)·y〈0|T{jµem(x)jνem(0)}|P (p)〉

= −(2π)4δ(4)(q1 + q2 − p)e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)

∫

d4x eiq1·x〈0|T{jµem(x)jνem(0)}|P (p)〉

= i(2π)4δ(4)(q1 + q2 − p)e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)Mµν(p → q1, q2),

(2.1)

where we have introduced the T -matrix elements

Mµν(p → q1, q2) = i

∫

d4x eiq1·x〈0|T{jµem(x)jνem(0)}|P (p)〉 (2.2)

– 3 –
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involving the electromagnetic current

jµem(x) = q̄(x)Qγµq(x), q = (u, d, s)T , Q =
1

3
diag(2,−1,−1). (2.3)

The helicity amplitudes are defined by

Hλ1λ2 = ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)Mµν(q1, q2). (2.4)

We define polarization vectors in the rest frame of the meson as

ǫ±(q1) = ∓ 1√
2
(0, 1,±i, 0), ǫ0(q1) =

1

ξ1
(|~q|, 0, 0, E1),

ǫ±(q2) = ∓ 1√
2
(0, 1,∓i, 0), ǫ0(q2) =

1

ξ2
(−|~q|, 0, 0, E2). (2.5)

The momenta satisfy p = q1 + q2. In the meson rest frame, they are given by

q1 = (E1, 0, 0, |~q|), q2 = (E2, 0, 0,−|~q|), p = (mP , 0, 0, 0), (2.6)

where

E1=
√

q21 + |~q|2 = m2
P + q21 − q22

2mP
, E2=

√

q22 + |~q|2 = m2
P − q21 + q22

2mP
, |~q| = λ

1/2
P12

2mP
, (2.7)

and the Källén function is defined by λP12 := λ(m2
P , q

2
1, q

2
2), λ(a, b, c) = a2+b2+c2−2(ab+

bc+ ca).

In the pseudoscalar case, finding the decomposition of Mµν into scalar amplitudes

that are free of kinematic singularities is trivial, since there is only a single gauge-invariant

Lorentz structure that can be constructed, leading to the conventional parameterization in

terms of the pseudoscalar TFF FPγ∗γ∗(q21, q
2
2) according to

Mµν = ǫµναβq
α
1 q

β
2FPγ∗γ∗(q21, q

2
2), (2.8)

where ǫ0123 = +1. Its normalization is related to the on-shell decay width Γγγ by

|FPγ∗γ∗(0, 0)
∣

∣

2
=

4

πα2m3
P

Γγγ . (2.9)

2.2 Scalar mesons: JPC = 0++

For scalar mesons the Lorentz decomposition of the matrix element Mµν becomes slightly

less straightforward because now there are two independent structures that need to be

chosen in such a way that both are free of kinematic singularities. To illustrate the general

procedure in the more complicated axial-vector and tensor cases, we apply already here

the BTT recipe. First, crossing symmetry requires

Mµν(q1, q2) = Mνµ(q2, q1) (2.10)

– 4 –
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and parity conservation forbids the presence of an epsilon tensor. The elementary building

blocks are therefore gµν , qµ1 , q
µ
2 , i.e.

{Lµν
i } = {gµν , qµ1 qν1 , q

µ
1 q

ν
2 , q

µ
2 q

ν
1 , q

µ
2 q

ν
2}. (2.11)

Next, we impose gauge invariance by contracting these structures with the projector

Iµν = gµν − qµ2 q
ν
1

q1 · q2
, (2.12)

which satisfies

qµ1 Iµν = 0, qν2Iµν = 0, Iµµ′Mµ′ν = Mµ
ν , Iν′νMµν′ = Mµ

ν . (2.13)

Hence, we calculate the contracted Lorentz structures

L̄µν
i = Iµµ

′

Iν
′νLi,µ′ν′ . (2.14)

Three structures project to zero. We then remove the kinematic singularities by taking

linear combinations and multiplying the irreducible poles by q1 · q2. This leads to the

following gauge-invariant structures:

Tµν
1 = q1 · q2gµν − qµ2 q

ν
1 ,

Tµν
2 = q21q

2
2g

µν + q1 · q2qµ1 qν2 − q21q
µ
2 q

ν
2 − q22q

µ
1 q

ν
1 .

(2.15)

We define the photon crossing operator as

C12[f ] = f(µ ↔ ν, q1 ↔ q2). (2.16)

The Lorentz structures are both symmetric under crossing:

C12[Tµν
1,2 ] = Tµν

1,2 . (2.17)

Finally, to obtain dimensionless form factors FS
i , we define the Lorentz decomposition of

the amplitude as:

Mµν =
1

mS
Tµν
1 FS

1 +
1

m3
S

Tµν
2 FS

2 . (2.18)

Further, contracting the Lorentz structures with the polarization vectors and evaluat-

ing the expression in the rest frame of the meson, the only non-vanishing helicity ampli-

tudes, fulfilling λ1 = λ2, become

H++ = H−− = −m2
S − q21 − q22

2mS
FS
1 − q21q

2
2

m3
S

FS
2 ,

H00 =
q21q

2
2

ξ1ξ2

(

− 1

mS
FS
1 − m2

S − q21 − q22
2m3

S

FS
2

)

.

(2.19)
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The differential decay width for the process S(p) → γ∗(q1, λ1)γ
∗(q2, λ2) is given by

dΓγ∗γ∗ =
e4

32π2
|Hλ1λ2 |2

λ
1/2
S12

2m3
S

dΩ. (2.20)

In terms of the form factors, we obtain for the decay width summed over λ1,2 (with ξ1 =
√

q21, ξ2 =
√

q22)

Γγ∗γ∗ =
e4

16π

λ
1/2
S12

mS

(

λS12 + 6q21q
2
2

2m4
S

|FS
1 |2 +

q21q
2
2(λS12 + 12q21q

2
2)

4m8
S

|FS
2 |2

+
3q21q

2
2(m

2
S − q21 − q22)

m6
S

Re
(

FS
1 FS

2
∗)
)

.

(2.21)

Therefore, the normalization of FS
1 is given by the on-shell width (a factor of 1/2 in Γγγ

with respect to Γγ∗γ∗ is introduced for indistinguishable on-shell photons):

|FS
1 (0, 0)|2 =

4

πα2mS
Γγγ . (2.22)

2.3 Axial-vector mesons: JPC = 1++

In close analogy to the (pseudo-) scalar case we define for the axial-vector mesons

〈γ∗(q1, λ1)γ
∗(q2, λ2)|A(p, λA)〉

= −(2π)4δ(4)(q1 + q2 − p)e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)

∫

d4x eiq1·x〈0|T{jµem(x)jνem(0)}|A(p, λA)〉

= i(2π)4δ(4)(q1 + q2 − p)e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)Mµν({p, λA} → q1, q2)

= i(2π)4δ(4)(q1 + q2 − p)e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)ǫ

λA
α (p)Mµνα(q1, q2),

(2.23)

with T -matrix elements

Mµν({p, λA}→ q1, q2) = ǫλA
α (p)Mµνα(q1, q2) = i

∫

d4x eiq1·x〈0|T{jµem(x)jνem(0)}|A(p, λA)〉.

(2.24)

The helicity amplitudes are defined by

Hλ1λ2;λA
= ǫλ1

µ
∗
(q1)ǫ

λ2
ν
∗
(q2)ǫ

λA
α (p)Mµνα(q1, q2), (2.25)

with photon polarization vectors as given in (2.5). We define the polarization vectors of

the axial-vector meson as

ǫ±(p) = ∓ 1√
2
(0, 1,±i, 0), ǫ0(p) = (0, 0, 0, 1). (2.26)

For the BTT decomposition of Mµνα we first note that crossing symmetry requires

Mµνα(q1, q2) = Mνµα(q2, q1) (2.27)

– 6 –
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and that due to parity all structures need to involve one epsilon tensor. We write

Mµνα = ǫβγδηT
µναβγδη (2.28)

and construct the tensor Tµναβγδη with the elementary building blocks gµν , qµ1 , qµ2 . A

priori, the structures

gggq, ggqqq, gqqqqq, qqqqqqq, (2.29)

have to be considered, but due to the antisymmetry of the epsilon tensor the last two

structures immediately contract to zero. From the first two structures, we find the following

possibilities:

{Lµνα
i } = ǫβγδη

{

qβ1 g
µγgνδgαη, qβ2 g

µγgνδgαη, qµ1 g
νβgαγqδ1q

η
2 , q

µ
2 g

νβgαγqδ1q
η
2 ,

qν1g
µβgαγqδ1q

η
2 , q

ν
2g

µβgαγqδ1q
η
2 , q

α
1 g

νβgµγqδ1q
η
2 , q

α
2 g

νβgµγqδ1q
η
2

}

,
(2.30)

hence the set of naive Lorentz structures consists of eight elements

{Lµνα
i } =

{

ǫµναβq1β , ǫ
µναβq2β , ǫ

ναβγqµ1 q1βq2γ , ǫ
ναβγqµ2 q1βq2γ ,

ǫµαβγqν1q1βq2γ , ǫ
µαβγqν2q1βq2γ , ǫ

µνβγqα1 q1βq2γ , ǫ
µνβγqα2 q1βq2γ

}

.
(2.31)

Next, we impose gauge invariance by contracting these structures with the gauge projector

Iµν . Two structures project to zero. We then remove the kinematic singularities by taking

linear combinations and multiplying the irreducible poles by q1 · q2. This leads to the

following set of structures:

{T̄µνα
i } =

{

ǫαµβγq1βq2γq
ν
1 + ǫαµνβq1βq1 · q2,

ǫανβγq1βq2γq
µ
2 + ǫαµνβq2βq1 · q2,

ǫµνβγq1βq2γ(q
α
1 + qα2 ),

ǫµνβγq1βq2γ(q
α
1 − qα2 ),

ǫανβγq1βq2γq
µ
1 + ǫαµνβq2βq

2
1,

ǫαµβγq1βq2γq
ν
2 + ǫαµνβq1βq

2
2

}

.

(2.32)

In fact, these structures are not linearly independent due to the Schouten identity. We find

the linear relations

T̄µνα
1 = −1

2
T̄µνα
3 − 1

2
T̄µνα
4 + T̄µνα

5 ,

T̄µνα
2 =

1

2
T̄µνα
3 − 1

2
T̄µνα
4 + T̄µνα

6 .

(2.33)

Finally, in any observable, the tensor will be contracted with

sAαα′(p) :=
∑

λA

ǫλA
α (p)ǫλA

α′ (p)
∗ = −

(

gαα′ − pαpα′

m2
A

)

, (2.34)

– 7 –



J
H
E
P
0
5
(
2
0
2
0
)
1
5
9

which projects T̄µνα
3 to zero. Hence, the third structure does not contribute to physical

quantities and can be dropped. Therefore, we arrive at the final set of gauge-invariant

Lorentz structures:

{Tµνα
i } =

{

ǫµνβγq1βq2γ(q
α
1 − qα2 ),

ǫανβγq1βq2γq
µ
1 + ǫαµνβq2βq

2
1,

ǫαµβγq1βq2γq
ν
2 + ǫαµνβq1βq

2
2

}

.

(2.35)

The Lorentz structures transform under photon crossing as

C12[Tµνα
1 ] = −Tµνα

1 , C12[Tµνα
2 ] = −Tµνα

3 . (2.36)

We define dimensionless form factors FA
i , which are the scalar functions in the Lorentz

decomposition of the amplitude:

Mµνα =
i

m2
A

3
∑

i=1

Tµνα
i FA

i (q21, q
2
2). (2.37)

In terms of these form factors, the helicity amplitudes become

H++;0 = −H−−;0 =
λA12

2m3
A

FA
1 − q21(m

2
A − q21 + q22)

2m3
A

FA
2 − q22(m

2
A + q21 − q22)

2m3
A

FA
3 ,

H+0;+ = −H−0;− =
q21q

2
2

ξ2m2
A

FA
2 +

q22(m
2
A − q21 − q22)

2ξ2m2
A

FA
3 ,

H0+;− = −H0−;+ = −q21(m
2
A − q21 − q22)

2ξ1m2
A

FA
2 − q21q

2
2

ξ1m2
A

FA
3 ,

(2.38)

where λA12 := λ(m2
A, q

2
1, q

2
2) and all helicity combinations that do not fulfill λ1 = λ2 +

λA vanish. Since FA
1 (0, 0) = 0 due to the crossing property (2.36), these expressions

immediately show that the on-shell process A → γγ is forbidden, as stated by the Landau-

Yang theorem [71, 72]. Accordingly, to measure the differential decay width for the process

A(p, λA) → γ∗(q1, λ1)γ
∗(q2, λ2), given by

dΓ =
e4

32π2
|Hλ1λ2;λA

|2λ
1/2
A12

2m3
A

dΩ, (2.39)

one needs at least one virtual photon, with an equivalent two-photon decay width conven-

tionally defined as1

Γ̃γγ = lim
q21→0

m2
A

q21

1

2
Γ(A → γ∗LγT ). (2.40)

Averaging over λA and summing over λ2 = ±, we find (the polarization vectors are nor-

malized to one, i.e. ξ21 = q21):

Γ̃γγ =
πα2mA

12
|FA

2 (0, 0)|2 = πα2mA

12
|FA

3 (0, 0)|2. (2.41)

1We write everything in decay kinematics, hence for Γ̃γγ to be positive, we use the Minkowskian virtuality

q21 > 0.

– 8 –



J
H
E
P
0
5
(
2
0
2
0
)
1
5
9

2.4 Tensor mesons: JPC = 2++

For the matrix element of a massive tensor meson decaying into two off-shell photons

we have

〈γ∗(q1, λ1)γ
∗(q2, λ2)|T (p, λT )〉

= −(2π)4δ(4)(q1 + q2 − p)e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)

∫

d4x eiq1·x〈0|T{jµem(x)jνem(0)}|T (p, λT )〉

= i(2π)4δ(4)(q1 + q2 − p)e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)Mµν({p, λT } → q1, q2)

= i(2π)4δ(4)(q1 + q2 − p)e2ǫλ1
µ
∗
(q1)ǫ

λ2
ν
∗
(q2)ǫ

λT

αβ(p)Mµναβ(q1, q2), (2.42)

with the T -matrix elements

Mµν({p, λT }→ q1, q2) = ǫλT

αβ(p)Mµναβ(q1, q2) = i

∫

d4x eiq1·x〈0|T{jµem(x)jνem(0)}|T (p, λT )〉.

(2.43)

The helicity amplitudes are defined by

Hλ1λ2;λT
= ǫλ1

µ
∗
(q1)ǫ

λ2
ν
∗
(q2)ǫ

λT

αβ(p)Mµναβ(q1, q2) (2.44)

and the polarization tensor ǫλT

αβ is constructed as [81]

ǫ±2αβ(p) = ǫ±α (p)ǫ
±

β (p),

ǫ±1αβ(p) =
1√
2

(

ǫ±α (p)ǫ
0
β(p) + ǫ0α(p)ǫ

±

β (p)
)

,

ǫ0αβ(p) =
1√
6

(

2ǫ0α(p)ǫ
0
β(p) + ǫ+α (p)ǫ

−

β (p) + ǫ−α (p)ǫ
+
β (p)

)

,

(2.45)

where the polarization vectors are the same as in (2.26). The polarization sum is given by

sTαβα′β′(p) :=
∑

λT

ǫλT

αβ(p)ǫ
λT

α′β′(p)
∗ =

1

2

(

sαβ′sα′β + sαα′sββ′

)

− 1

3
sαβsα′β′ , (2.46)

where

sαα′ := −
(

gαα′ − pαpα′

m2
T

)

. (2.47)

It satisfies

gα
′α′′

gβ
′β′′

sTαβα′β′sTα′′β′′α′′′β′′′ = sTαβα′′′β′′′ . (2.48)

Crossing symmetry requires

Mµναβ(q1, q2) = Mνµαβ(q2, q1). (2.49)

Furthermore, only those structures can contribute to observables that do not vanish upon

contraction with the projector sTαβα′β′ . In particular they have to be symmetric in α ↔ β.

– 9 –



J
H
E
P
0
5
(
2
0
2
0
)
1
5
9

As for the scalar case, parity conservation excludes the presence of structures with an

epsilon tensor, hence the elementary building blocks are again gµν , qµ1 , q
µ
2 .

The BTT construction leads to 20 structures: 7 structures are odd in α ↔ β and 8

more structures vanish upon contraction with the tensor meson projector. Therefore, only

five structures contribute to observables:

Tµναβ
1 =gµαP νβ

21 +gναPµβ
12 +gµβP να

21 +gνβPµα
12 +gµν(qα1 q

β
2 +qα2 q

β
1 )− q1 · q2(gµαgνβ+gναgµβ),

Tµναβ
2 = (qα1 q

β
1 + qα2 q

β
2 )P

µν
12 ,

Tµναβ
3 = Pµα

11 P νβ
22 + Pµβ

11 P να
22 ,

Tµναβ
4 = Pµα

12 P νβ
22 + Pµβ

12 P να
22 ,

Tµναβ
5 = P να

21 Pµβ
11 + P νβ

21 P
µα
11 , (2.50)

where

Pµν
ij := gµνqi · qj − qνi q

µ
j . (2.51)

Under photon crossing, these Lorentz structures transform as

C12[Tµναβ
1,2,3 ] = Tµναβ

1,2,3 , C12[Tµναβ
4 ] = Tµναβ

5 . (2.52)

We define dimensionless form factors Fi, which are the scalar functions in the Lorentz

decomposition of the amplitude:

Mµναβ =
5
∑

i=1

Tµναβ
i

1

mni

T

FT
i (q

2
1, q

2
2), (2.53)

where n1 = 1 and the other ni = 3.

In terms of these form factors, the helicity amplitudes are

H++;0 = H−−;0 =
(q21−q22)

2 −m2
T (q

2
1 + q22)√

6m3
T

FT
1 −λT12(m

2
T − q21 − q22)

2
√
6m5

T

FT
2 −

√

2

3

q21q
2
2

m3
T

FT
3

− q22(m
2
T − q21 − q22)√
6m3

T

FT
4 − q21(m

2
T − q21 − q22)√
6m3

T

FT
5 ,

H+−;+2 = H−+;−2 = −m2
T − q21 − q22

mT
FT
1 − 2q21q

2
2

m3
T

FT
3 − q22(m

2
T − q21 − q22)

m3
T

FT
4

− q21(m
2
T − q21 − q22)

m3
T

FT
5 ,

H+0;+1 = H−0;−1 =
q22
ξ2

(

m2
T + q21 − q22√

2m2
T

FT
1 +

q21(m
2
T − q21 + q22)√
2m4

T

FT
3

+
(m2

T − q21 − q22)(m
2
T − q21 + q22)

2
√
2m4

T

FT
4 +

q21(m
2
T + q21 − q22)√
2m4

T

FT
5

)

,

H0+;−1 = H0−;+1 = −q21
ξ1

(

m2
T − q21 + q22√

2m2
T

FT
1 +

q22(m
2
T + q21 − q22)√
2m4

T

FT
3

+
q22(m

2
T − q21 + q22)√
2m4

T

FT
4 +

(m2
T − q21 − q22)(m

2
T + q21 − q22)

2
√
2m4

T

FT
5

)

,
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H00;0 =
q21q

2
2

ξ1ξ2

(

√

2

3

2

mT
FT
1 − λT12√

6m5
T

FT
2 +

m4
T − (q21 − q22)

2

√
6m5

T

FT
3

+
(m2

T − q21 + q22)
2

√
6m5

T

FT
4 +

(m2
T + q21 − q22)

2

√
6m5

T

FT
5

)

, (2.54)

where λT12 := λ(m2
T , q

2
1, q

2
2) and again only amplitudes fulfilling λ1 = λ2 + λT do not

vanish.

Finally, the differential decay width for the process T (p, λT ) → γ∗(q1, λ1)γ
∗(q2, λ2) is

given by

dΓ =
e4

32π2
|Hλ1λ2;λT

|2λ
1/2
T12

2m3
T

dΩ, (2.55)

leading to the on-shell result

Γγγ =
πα2mT

5

(

|FT
1 (0, 0)|2 +

1

24
|FT

2 (0, 0)|2
)

. (2.56)

3 Brodsky-Lepage limit for the transition form factors

3.1 Pseudoscalar mesons

We start again with a review of the familiar pseudoscalar case [1, 2], restricting the analysis

to the leading-order result. In addition to the definition of the TFF (2.8) we need the decay

constants F a
P

〈0|q̄(0)γµγ5
λa

2
q(0)|P (p)〉 = ipµF

a
P , (3.1)

with flavor decomposition using the Gell-Mann matrices λa and λ0 =
√

2/31. The wave

functions φa
P (u) are then defined as

〈0|q̄(x)γµγ5
λa

2
q(0)|P (p)〉 = ipµF

a
P

∫ 1

0
du e−iup·xφa

P (u), (3.2)

where the path-ordered gauge factor to connect the quark fields at points 0 and x on the

left-hand side has been omitted [94]. Asymptotically, the wave functions can be calculated

based on conformal symmetry of QCD (see [95] for a review), with the result

φa
P (u) = 6u(1− u) ≡ φ(u). (3.3)

For all TFFs, we will only consider asymptotic results, and to the extent possible we will

write the corresponding wave functions in terms of φ(u) as it appears in the pseudoscalar

case. Beyond the asymptotic result, the matrix element in (3.2) and thus the wave function

become scale dependent, but the conformal analysis shows that the higher-order terms can

be organized in an expansion in Gegenbauer polynomials C
3/2
n ,

φ(u, µ) = 6u(1− u)
∞
∑

n=0

an(µ)C
3/2
n (2u− 1), (3.4)
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with a0 = 1 and the scale dependence, affecting the coefficients with n > 1, determined by

an(µ) = an(µ0)

(

αs(µ)

αs(µ0)

)γ
(0)
n /β0

, (3.5)

where

γ(0)n = CF

(

1− 2

(n+ 1)(n+ 2)
+ 4

n+1
∑

m=2

1

m

)

, β0 =
11

3
Nc −

2

3
Nf , CF =

N2
c − 1

2Nc
. (3.6)

Due to C
3/2
0 = 1 and the orthogonality relation

∫ 1

0
duu(1− u)C3/2

n (2u− 1)C3/2
m (2u− 1) = δnm

(n+ 1)(n+ 2)

4(2n+ 3)
, (3.7)

the expansion (3.4) automatically fulfills the normalization condition

∫ 1

0
duφ(u, µ) = 1. (3.8)

Further, charge-conjugation and translation invariance imply φa
P (u) = η(a)φa

P c(1−u), with

η(a) = +1 for a ∈ {0, 1, 3, 4, 6, 8} and η(a) = −1 for a ∈ {2, 5, 7}, and where P c denotes

the C conjugate of P . In particular, for P = P c and a ∈ {0, 1, 3, 4, 6, 8} the odd coefficients

in the Gegenbauer expansion vanish.

The leading diagrams in the BL formalism are obtained from contracting the quark

fields in the time-ordered product using free propagators, which leads to

T{jµem(x)jνem(0)} = q̄(x)Q2γµγαγνq(0)SF
α (x) + q̄(0)Q2γνγαγµq(x)SF

α (−x), (3.9)

where

SF
µ (x) = i

∫

d4p

(2π)4
pµe
−ip·x

p2 + iǫ
=

ixµ
2π2(x2 − iǫ)2

. (3.10)

The remaining Dirac structure becomes

γµγαγν = gµαγν + gναγµ − gµνγα + iǫµανβγβγ5. (3.11)

Using translational invariance and the symmetry of the wave function under u → 1 − u,

both contractions yield the same result, and since the matrix element of the vector current

vanishes, this leads to

Mµν = i

∫

d4xeiq1·x(2iǫµανβ)〈0|q̄(x)Q2γβγ5q(0)|P (p)〉Sα
F (x)

= −4i
∑

a

CaF
a
P ǫµανβ(q1 + q2)

β

∫ 1

0
duφ(u)

∫

d4xeiq1·xe−iup·xSα
F (x), (3.12)

with flavor weights Ca = 1
2Tr(Q2λa), i.e.,

C3 =
1

6
, C8 =

1

6
√
3
, C0 =

2

3
√
6
. (3.13)
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The Feynman propagator fulfills the relations

∫

d4xSµ
F (x)e

iq·x = i
qµ

q2
,

∫

d4xxµSν
F (x)e

iq·x =
gµν

q2
− 2qµqν

q4
,

∫

d4xxµxνSλ
F (x)e

iq·x =
2i

q4

(

gµνqλ + gµλqν + gνλqµ − 4qµqνqλ

q2

)

, (3.14)

leading to (q = q1 − up)

Mµν = 4
∑

a

CaF
a
P ǫµανβ(q1 + q2)

β

∫ 1

0
duφ(u)

qα

q2

= −4
∑

a

CaF
a
P ǫµναβq

α
1 q

β
2

∫ 1

0
du

φ(u)

(1− u)q21 + uq22 − u(1− u)m2
P

. (3.15)

Reading off the result for the TFF,

FPγ∗γ∗(q21, q
2
2) = −4

∑

a

CaF
a
P

∫ 1

0
du

φ(u)

uq21 + (1− u)q22 − u(1− u)m2
P

, (3.16)

this reproduces the expected asymptotic behavior (1.1).

We stress that while we have kept the mass mP in the final result, this leading-order

derivation does not provide a consistent treatment of mass effects. To this end, one would

have to differentiate between the meson momentum p and the light-cone momentum

kµ = pµ − xµ
m2

P

2p · x, (3.17)

which would appear in the exponential in (3.2). Accordingly, including terms of O(m2
P )

would require the consideration of subleading terms in the light-cone expansion. Moreover,

we stress that the result (3.16) can only be strictly justified from an OPE in the limit in

which both photon virtualities are large, otherwise, the wave function approach amounts

to a resummation of higher-order terms in the OPE [8]. This BL factorization into a

non-perturbative wave function and a perturbatively calculable kernel can be derived in

soft-collinear effective theory (SCET) [96, 97], see also [98]. In this language, the SCET

Wilson coefficient is calculable in perturbation theory and the pion wave function becomes

the matrix element of a SCET operator.

3.2 Scalar mesons

For the scalar mesons we largely follow the definition of the wave functions from [86, 87].

First, in general, the decay constant can be equivalently defined for the vector or the scalar

current

〈0|q̄(0)γµ
λa

2
q(0)|S(p)〉 = −pµF

a
S ,

〈0|q̄(0)λ
a

2
q(0)|S(p)〉 = mSF̄

a
S (µ), (3.18)
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related by the conservation of the vector current according to

F a
S = ifabcF̄ b

S(µ)
Tr(Mλc)

mS
, M = diag

(

mu,md,ms

)

, (3.19)

where the scale dependence in F̄ a
S (µ) is canceled by the one of the quark masses. However,

for a = 0, 3, 8 this implies F a
S = 0, in such a way that the leading term in the light-cone

expansion vanishes. In fact, contrary to the pseudoscalar mesons, only odd powers in the

Gegenbauer expansion contribute, where the normalization

∫ 1

0
duφa

S(u, µ) = 0 (3.20)

reflects the fact that F a
S = 0. Therefore, the first non-vanishing term involves an unknown

Gegenbauer coefficient, which could be made dimensionless by factoring out the scalar

decay constant F̄ a
S . Following the notation in the literature [86–88] we write

〈0|q̄(x)γµ
λa

2
q(0)|S(p)〉 = −pµF̄

a
S (µ)B1(µ)

∫ 1

0
du e−iup·x3(2u− 1)φ(u), (3.21)

where B1(µ) refers to the Gegenbauer coefficient (assuming that all the flavor dependence

is captured by F̄ a
S (µ)). In close analogy to the calculation for the pion TFF this leads to

Mµν = 4
∑

a

CaF̄
a
S (µ)B1(µ)

∫ 1

0
du

3(2u− 1)φ(u)

q2
(

qµpν + qνpµ − gµνp · q
)

, (3.22)

where again q = q1 − up. In contrast to the pseudoscalar case this expression is only

manifestly gauge invariant for mS = 0. In this limit, direct projection onto the BTT

structures produces a singularity in FS
2 at q1 · q2 = 0, which, however, is only apparent. It

can be removed using m2
S = q21 + 2q1 · q2 + q22 = 0 and integration by parts. This leads to

our final result for the scalar TFFs:

FS
1 (q

2
1, q

2
2) = 4

∑

a

CaF̄
a
S (µ)B1(µ)mS

∫ 1

0
du

3(2u− 1)2φ(u)

uq21 + (1− u)q22
,

FS
2 (q

2
1, q

2
2) = 4

∑

a

CaF̄
a
S (µ)B1(µ)m

3
S

∫ 1

0
du

3u(1− u)φ(u)

(uq21 + (1− u)q22)
2
. (3.23)

3.3 Axial-vector mesons

We will use the axial-vector distribution amplitudes from [89, 90], which are derived in

close analogy to the vector-meson case [99, 100]. First, the decay constants are defined as

〈0|q̄(0)γµγ5
λa

2
q(0)|A(p, λA)〉 = F a

AmAǫµ. (3.24)

The main complication compared to the (pseudo-) scalar mesons is that the polarization

vector contributes to different orders in the twist expansion, so that, at each order, a

different wave function may occur. The different orders are separated by defining a light-

cone vector

kµ = pµ − xµ
m2

A

2p · x, (3.25)
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which on the light cone x2 = 0 fulfills k2 = 0. The polarization vector is then decomposed

according to

ǫµ =
ǫ · x
k · xk

µ +
ǫ · k
k · xx

µ + ǫµ
⊥
=

ǫ · x
k · x

(

kµ − m2
A

2k · xx
µ

)

+ ǫµ
⊥
, (3.26)

because due to p · ǫ = 0 one has ǫ · k = −ǫ · x m2
A

2k·x . This decomposition gives rise to three

different wave functions occurring in the axial-vector matrix element

〈0|q̄(x)γµγ5
λa

2
q(0)|A(p, λ)〉

= F a
AmA

∫ 1

0
du e−iuk·x

[

kµ
ǫ · x
k · xφ(u) + ǫµ

⊥
φ⊥(u)− xµ

m2
A ǫ · x

2(k · x)2φ3(u)

]

. (3.27)

Here, φ⊥(u) and φ3(u) are of higher twist. To obtain a gauge-invariant result for the TFFs,

these wave functions should be replaced by so-called Wandzura-Wilczek relations [101] in

terms of the leading twist-2 distribution amplitudes, which effectively neglects three-parton

contributions. In this approximation we have [90]

φ⊥(u) =
1

2

(
∫ u

0
dv

φ(v)

1− v
+

∫ 1

u
dv

φ(v)

v

)

=
1

2

(

3− φ(u)
)

(3.28)

for the asymptotic φ(u) from (3.3), while φ3(u) does not actually contribute due to the

antisymmetry of the ǫ tensor, but could be obtained with similar methods from [100]. In

contrast to the pseudoscalar case, there is now also a non-vanishing contribution from the

vector matrix element

〈0|q̄(x)γµλ
a

2
q(0)|A(p, λA)〉 = −1

4
F a
AmAǫ

µναβǫνkαxβ

∫ 1

0
du e−iuk·xφ(u). (3.29)

This is again a twist-3 contribution, which technically requires another wave function, but

in the same approximation as (3.28) this new wave function becomes

2(1− u)

∫ u

0
dv

φ(v)

1− v
+ 2u

∫ 1

u
dv

φ(v)

v
= φ(u) (3.30)

asymptotically.

Starting from

ǫαM
µνα = 4i

∑

a

Ca

∫

d4x eiq1·x
(

iǫµανβ〈0|q̄(x)γβγ5
λa

2
q(0)|A(p, λA)〉

+ 〈0|q̄(x)
(

gµαγν + gναγµ − gµνγα
)λa

2
q(0)|A(p, λA)〉

)

SF
α (x), (3.31)

the decomposition of the vector and axial-vector matrix elements (3.27) and (3.29) gives

ǫαM
µνα=4i

∑

a

CaF
a
AmA

∫ 1

0
du

∫

d4xeiq·x
[

iǫµνβαSF
α (x)

(

pβ
ǫ · x
p · x

(

φ(u)− φ⊥(u)
)

+ ǫβφ⊥(u)

)

− 1

4
ǫναβγǫαpβxγS

µ
F (x)φ(u)−

1

4
ǫµαβγǫαpβxγS

ν
F (x)φ(u)

]

, (3.32)
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where we have again neglected higher terms in the light-cone expansion. To perform the

integral, we define

Φ(u) =

∫ u

0
dv
(

φ(v)− φ⊥(v)
)

=
2u− 1

4
φ(u) (3.33)

and integrate by parts to obtain

∫ 1

0
du

∫

d4xeiq·xSµ
F (x)

xν

p · x
(

φ(u)− φ⊥(u)
)

= i

∫ 1

0
du

∫

d4xeiq·xSµ
F (x)x

νΦ(u)

= i

∫ 1

0
duΦ(u)

(

gµν

q2
− 2qµqν

q4

)

. (3.34)

The integrals in (3.32) become

ǫαM
µνα = 4i

∑

a

CaF
a
AmAǫα

∫ 1

0
du

[

Φ(u)

(

ǫαµνβ
pβ
q2

− 1

q4
ǫµνβγ(q1 − q2)

αq1βq2γ

)

− ǫαµνβ
qβ
q2

φ⊥(u) +
1

2q4
φ(u)

(

ǫαµβγqνq1βq2γ + ǫανβγqµq1βq2γ

)

]

. (3.35)

This expression is already manifestly gauge invariant even for non-zero mA:

q1µǫαM
µνα = 4i

∑

a

CaF
a
AmAǫαǫ

αµνβq1µq2β

∫ 1

0
du

1

q4

[

q2
(

Φ(u) + uφ⊥(u)
)

− q1 · q
2

φ(u)

]

= 4i
∑

a

CaF
a
AmAǫαǫ

αµνβq1µq2β

∫ 1

0
du

∂

∂u

(

3u2(u− 1)

2q2

)

= 0. (3.36)

Therefore, the form factors (2.37) can be obtained directly by projecting onto the BTT

decomposition. The projectors following from the BTT derivation in section 2.3 lead to

spurious divergences in 1
q1·q2

, which, however, can be shown to vanish by expressing all

scalar products in terms of q1 · q2, q2, and ∂
∂u

1
q2
, as well as integration by parts. This leads

to the following results for the axial-vector TFFs:

FA
1 (q21, q

2
2) = O

(

q−6i

)

,

FA
2 (q21, q

2
2) = 4

∑

a

CaF
a
Am

3
A

∫ 1

0
du

uφ(u)

(uq21 + (1− u)q22 − u(1− u)m2
A)

2
,

FA
3 (q21, q

2
2) = −4

∑

a

CaF
a
Am

3
A

∫ 1

0
du

(1− u)φ(u)

(uq21 + (1− u)q22 − u(1− u)m2
A)

2
. (3.37)

We checked that the same results are obtained by expressing (3.35) explicitly in terms of

the T̄µνα
i and reducing the final result by means of the Schouten identities. In particular,

we find that the contribution to F1 cancels altogether at this order, and that F2(0, q
2)

does not converge. This logarithmic end-point singularity has been observed before in the

context of holographic models of QCD [79]. Since (3.35) is gauge invariant and free of

kinematic singularities even for finite mA, it is meaningful to keep the axial-vector mass

in our final result (3.37), similarly to the pseudoscalar case. Finally, we note that the

predictions for the helicity amplitudes (2.38) are not affected by the divergence, since the

TFFs contributing in the respective singly-virtual limits are well-behaved.
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3.4 Tensor mesons

In the same way as for the scalar mesons, the leading-order coupling of tensor mesons to

vector and axial-vector currents vanishes, so that again the result of the light-cone analysis

would be sensitive to the first Gegenbauer coefficient. This Gegenbauer coefficient is usually

replaced in terms of decay constants F a
T defined as [91, 92]

〈0|jµν(0)|T (p, λT )〉 = F a
Tm

2
T ǫ

λT
µν , jµν(x) = q̄(x)

1

2

(

γµi
↔

Dν + γνi
↔

Dµ

)λa

2
q(x), (3.38)

with covariant derivative
↔

Dµ = Dµ−
←

Dµ. In terms of these decay constants the expressions

for the matrix elements become [91, 92]

〈0|q̄(x)γµγ5
λa

2
q(0)|T (p, λT )〉= F a

Tm
2
T ǫ

µναβǫβδxν
kαx

δ

2k · x

∫ 1

0
du e−iuk·xφa(u),

〈0|q̄(x)γµλ
a

2
q(0)|T (p, λT )〉= F a

Tm
2
T

∫ 1

0
du e−iuk·x (3.39)

×
[

kµ
ǫαβx

αxβ

(k · x)2 φ1(u) +
ǫµα
⊥

xα
k · x φ2(u)− xµ

ǫαβx
αxβ

2(k · x)3m
2
Tφ3(u)

]

,

with asymptotic wave functions

φ1(u) = 5(2u− 1)φ(u), φ2(u) = 5(2u− 1)3, φa(u) =
1

3
φ1(u), (3.40)

and

ǫαβ
⊥

xβ = ǫαβxβ − ǫβγxβxγ
k · x

(

kα − m2
T

2k · xx
α

)

. (3.41)

As before, we do not keep subleading terms in the light-cone expansion, including terms

proportional to m2
T , so that again φ3(u) does not play a role.

Removing the poles in k ·x = p ·x using the same strategy as for the axial-vector case,

we obtain as intermediate result

Mµναβ =4
∑

a

CaF
a
Tm

2
T

∫ 1

0
du

5

6
φ(u)

[

1− 2u(1−u)

q2
(

gµαgνβ + gµβgνα
)

+
6u(1−u)

q4
gµνqαqβ

+
u

q4
(

(4u2 − 5u+ 1)qν1 + (4u2 − 3u+ 1)qν2
)(

gµαqβ + gµβqα
)

− 1− u

q4
(

(4u2 − 5u+ 2)qµ1 + u(4u− 3)qµ2
)(

gναqβ + gνβqα
)

(3.42)

+
8u(1− u)qαqβ

q6

(

(2u− 1)
(

(1− u)qµ1 q
ν
1 − uqµ2 q

ν
2

)

− (1− 2u(1− u))qµ1 q
ν
2 + 2u(1− u)qµ2 q

ν
1

)

]

,

where we have already dropped terms involving gαβ because they cancel upon contraction

with the (trace-free) polarization tensor. The expression (3.42) is not manifestly gauge

invariant yet, as the contraction with qµ1 only vanishes up to terms that disappear after
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contraction with the polarization tensor. To remove these unphysical terms we apply

projectors onto the five relevant structures (2.50), which allows us to identify

FT
1 (q

2
1, q

2
2) = 4

∑

a

CaF
a
Tm

3
T

∫ 1

0
duφ(u)

5u(1− u)(3− 20u(1− u))

6(uq21 + (1− u)q22)
2

,

FT
2 (q

2
1, q

2
2) = −4

∑

a

CaF
a
Tm

5
T

∫ 1

0
duφ(u)

20u2(1− u)2

3(uq21 + (1− u)q22)
3
,

FT
3 (q

2
1, q

2
2) = 4

∑

a

CaF
a
Tm

5
T

∫ 1

0
duφ(u)

10u(1− u)(1− 2u(1− u))

3(uq21 + (1− u)q22)
3

,

FT
4 (q

2
1, q

2
2) = −4

∑

a

CaF
a
Tm

5
T

∫ 1

0
duφ(u)

10(2u− 1)u(1− u)2

3(uq21 + (1− u)q22)
3
,

FT
5 (q

2
1, q

2
2) = 4

∑

a

CaF
a
Tm

5
T

∫ 1

0
duφ(u)

10(2u− 1)u2(1− u)

3(uq21 + (1− u)q22)
3
. (3.43)

As in the case of the scalar meson, the kinematic singularities at q1 · q2 indeed cancel, but

only as long as mT = 0. For that reason, our calculation again does not capture terms

O(m2
T ) consistently. Similarly to the axial-vector case, we find singularities in the singly-

virtual limits of FT
3–5. However, the helicity amplitudes (2.54) are still well-defined even

for singly-virtual kinematics, because only TFFs that remain finite in the respective limits

contribute.

3.5 Summary of Brodsky-Lepage scaling

We summarize our results in terms of their scaling in the average photon virtualities Q2

and the asymmetry parameter w

Q2 =
q21 + q22

2
, w =

q21 − q22
q21 + q22

. (3.44)

Separating the flavor decomposition and mass factors, we have

FPγ∗γ∗(q21, q
2
2) =

4
∑

aCaF
a
P

Q2
fP (w),

FS
1 (q

2
1, q

2
2) =

4
∑

aCaF̄
a
S (µ)B1(µ)mS

Q2
fS
1 (w),

FS
2 (q

2
1, q

2
2) =

4
∑

aCaF̄
a
S (µ)B1(µ)m

3
S

Q4
fS
2 (w),

FA
1 (q21, q

2
2) = O(Q−6),

FA
i (q21, q

2
2) =

4
∑

aCaF
a
Am

3
A

Q4
fA
i (w), i ∈ {2, 3},

FT
1 (q

2
1, q

2
2) =

4
∑

aCaF
a
Tm

3
T

Q4
fT
1 (w),

FT
i (q

2
1, q

2
2) =

4
∑

aCaF
a
Tm

5
T

Q6
fT
i (w), i ∈ {2, 3, 4, 5}, (3.45)
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with asymmetry functions

fP (w) = − 3

2w2

(

1 +
1− w2

2w
log

1− w

1 + w

)

,

fS(w) ≡ fS
1 (w) = fS

2 (w) =
3

2w4

(

3− 2w2 + 3
1− w2

2w
log

1− w

1 + w

)

,

fA
2 (w) =

3

4w3

(

3− 2w +
(3 + w)(1− w)

2w
log

1− w

1 + w

)

,

fA
3 (w) =

3

4w3

(

3 + 2w +
(3− w)(1 + w)

2w
log

1− w

1 + w

)

,

fT
1 (w) =

5(1− w2)

8w6

(

15− 4w2 +
3(5− 3w2)

2w
log

1− w

1 + w

)

, (3.46)

fT
2 (w) = − 5

8w6

(

15− 13w2 +
3(1− w2)(5− w2)

2w
log

1− w

1 + w

)

,

fT
3 (w) = − 5

8w6

(

15− w2 − w4 + 6w2 − 15

2w
log

1− w

1 + w

)

,

fT
4 (w) = − 5

24w6

(

45 + 30w − 21w2 − 8w3 +
3(1 + w)(15− 5w − 7w2 + w3)

2w
log

1− w

1 + w

)

,

fT
5 (w) = − 5

24w6

(

45− 30w − 21w2 + 8w3 +
3(1− w)(15 + 5w − 7w2 − w3)

2w
log

1− w

1 + w

)

.

These functions are shown in figure 1, together with their limiting cases in table 1.

The BL scalings can be compared with the quark-model approach from [82], whose

results, translated to our notation, become

FPγ∗γ∗(q21, q
2
2)

FPγ∗γ∗(0, 0)

∣

∣

∣

∣

[82]

=
m2

P

m2
P − q21 − q22

∼ 1

Q2
,

FS
1 (q

2
1, q

2
2)

FS
1 (0, 0)

∣

∣

∣

∣

[82]

=
m2

S(3m
2
S − q21 − q22)

3(m2
S − q21 − q22)

2
∼ 1

Q2
,

FS
2 (q

2
1, q

2
2)

FS
1 (0, 0)

∣

∣

∣

∣

[82]

= − 2m4
S

3(m2
S − q21 − q22)

2
∼ 1

Q4
,

FA
1 (q21, q

2
2)
∣

∣

[82]
= 0,

FA
2 (q21, q

2
2)

FA
2 (0, 0)

∣

∣

∣

∣

[82]

=
FA
3 (q21, q

2
2)

FA
3 (0, 0)

∣

∣

∣

∣

[82]

=

(

m2
A

m2
A − q21 − q22

)2

∼ 1

Q4
,

FT
1 (q

2
1, q

2
2)

FT
1 (0, 0)

∣

∣

∣

∣

[82]

=

(

m2
T

m2
T − q21 − q22

)2

∼ 1

Q4
,

FT
i (q

2
1, q

2
2)
∣

∣

[82]
= 0, i ∈ {2, 3, 4, 5}, (3.47)

where in all cases we have replaced the decay constants directly in terms of the TFF

normalizations. In particular, FS
2 (q

2
1, q

2
2) is indeed proportional to the normalization of

FS
1 because in this framework the cross section is assumed to be proportional to the on-

shell two-photon width Γγγ (or Γ̃γγ in the case of the axial-vector mesons). Moreover, the
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-1 -0.5 0 0.5 1
-1

0

1

2

3

w

fP

fS

fA
2

fA
3

fT
1

fT
2

fT
3

fT
4

fT
5

Figure 1. Asymmetry functions for pseudoscalar, scalar, axial-vector, and tensor mesons. All

functions are normalized to their value at w = 0.

w +1 0 −1

fP −3
2 −1 −3

2

fS 3
2

3
5

3
2

fA
2

3
4

1
2 ∞

fA
3 −∞ −1

2 −3
4

fT
1 0 − 3

14 0

fT
2 −5

4 −2
7 −5

4

fT
3 ∞ 8

21 ∞
fT
4 ∞ 1

21 − 5
12

fT
5 − 5

12
1
21 ∞

Table 1. Asymmetry functions evaluated at w = 0,±1. Note that none of the singularities

contribute to physical helicity amplitudes. In the singly-virtual limits the overall scaling also involves

factors (1/2)−n according to the definition of Q2 in (3.44).

antisymmetric part of FA
2 (q21, q

2
2) is assumed to vanish, which, apart from the overall sign

due to FA
2 (0, 0) = −FA

3 (0, 0), makes the two non-zero axial-vector TFFs coincide. For the

tensor mesons all TFFs except for FT
1 (q

2
1, q

2
2) vanish.

In all cases the non-vanishing TFFs follow the same asymptotic behavior as given

in (3.45). For the scalar TFFs, the one case in which two distinct TFFs occur, we may also

check the ratio of the two, again reproducing the BL result FS
2 (q

2
1, q

2
2)/FS

1 (q
2
1, q

2
2) ∼ m2

S/Q
2

asymptotically.
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4 Comparison to data

With the exception of [102] for the η′ TFF, all available data are currently restricted to

singly-virtual kinematics. Moreover, while the on-shell couplings are known for a number

of resonances, information on the momentum dependence is scarce, for scalar and ten-

sor mesons the most comprehensive study comes from [57], addressing the f0(980) and

f2(1270) resonances. For the axial-vector mesons, due to the Landau-Yang theorem all

data are necessarily at least singly-virtual, with results available for the f1(1285) [62] and

the f ′1(1420) [63]. In this section, we will compare our asymptotic results to these data sets.

4.1 Axial-vector mesons

The axial-vector TFFs for A = f1(1285), f
′
1(1420) have been measured by the L3 collabo-

ration in space-like e+e− → e+e−A two-photon reactions [62, 63], analyzed in terms of a

dipole ansatz for FA
2 (q2, 0) and assuming FA

1 = 0

FA
2 (q2, 0) = FA

2 (0, 0)

(

1− q2

Λ2

)−2

, FA
1 (q2, 0) = 0. (4.1)

The measured parameters are2

Γ̃γγ(f1(1285)) = 3.5(6)(5) keV, Λ(f1(1285)) = 1.04(6)(5)GeV,

Γ̃γγ(f
′
1(1420))BR(KK̄π) = 3.2(6)(7) keV, Λ(f ′1(1420)) = 0.926(72)(31)GeV. (4.2)

Further, the analysis is based on the cross section

σγ∗γ→A = 2π2α2 mAΓA

(s−m2
A)

2 +m2
AΓ

2
A

(

1− q2

m2
A

)

×
[

∣

∣

∣

∣

(

1− q2

m2
A

)

FA
1 (q2, 0)− q2

m2
A

FA
2 (q2, 0)

∣

∣

∣

∣

2

− 2q2

m2
A

∣

∣FA
2 (q2, 0)

∣

∣

2

]

FA
1 →0
= 24π

ΓAΓ̃γγ

(s−m2
A)

2 +m2
AΓ

2
A

(

1− q2

m2
A

)−q2

m2
A

(

2− q2

m2
A

)∣

∣

∣

∣

FA
2 (q2, 0)

FA
2 (0, 0)

∣

∣

∣

∣

2

, (4.3)

where the simplification for FA
1 = 0 reproduces the expression in [62]. Unfortunately, the

original data for σγ∗γ→A cannot be extracted from [62, 63], accordingly, we will compare to

the band for FA
2 given by the dipole ansatz (4.1). Defining an effective decay constant by

F eff
A = 4

∑

a

CaF
a
A, (4.4)

we have the asymptotic limits

FA
2 (q2, q2) =

F eff
A m3

A

2q4
+O

(

q−6
)

, FA
2 (q2, 0) =

3F eff
A m3

A

q4
+O

(

q−6
)

, (4.5)

2We will assume that BR(KK̄π) = 1 within uncertainties for the f ′

1(1420), given that [4, 103] quotes

for the second-most important channel Γ(ηππ)/Γ(KK̄π) < 0.1.
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and

FA
2 (q2, 0) =

3F eff
A m3

A

q4
× 2

x2

(

x

1− x
+ log(1− x)

)

, x =
m2

A

q2
, (4.6)

when keeping the axial-vector mass in (3.37).

Since additional phenomenological input that could constrain F eff
A is scarce, we will

now consider these decay constants as have been estimated using light-cone sum rules

(LCSRs) [90]. In particular, results are provided for the a = 0, 3, 8 components, but to

extract F eff
A for the physical mesons, mixing effects need to be taken into account. We

introduce the mixing angle θA via
(

f1
f ′1

)

=

(

cos θA sin θA
− sin θA cos θA

)(

f0

f8

)

, (4.7)

in terms of which

Γ̃γγ(f1)

Γ̃γγ(f ′1)
=

mf1

mf ′

1

cot2(θA − θ0), θ0 = arcsin
1

3
. (4.8)

θ0 is the mixing angle that leads to a vanishing two-photon coupling of f ′1. Octet/singlet

mixing is reproduced for θA = π/2, ideal mixing for θA = arctan 1/
√
2 = 35.3◦, and the L3

results (4.2) imply θA = 62(5)◦ [63]. Further, we can use SU(3) symmetry to extract an

empirical width for the a1(1260)

Γ̃γγ(a1) =
Γ̃γγ(f1)

3 cos2(θA − θ0)

ma1

mf1

= ma1

mf1Γ̃γγ(f
′
1) +mf ′

1
Γ̃γγ(f1)

3mf1mf ′

1

= 2.0(7) keV, (4.9)

where we added in quadrature the uncertainties from Γ̃γγ(f1), Γ̃γγ(f
′
1), ma1 , as well as a

generic 30% SU(3) uncertainty.

Denoting the decay constants and masses in Cartesian basis by F a
A and ma

A, we obtain

for the decay constants parameterizing the q = u, d, s currents

F u
f1 = F d

f1 = F 0
A

√

2

3

m0
A

mf1

cos θA +
F 8
A√
3

m8
A

mf1

sin θA,

F s
f1 = F 0

A

√

2

3

m0
A

mf1

cos θA − 2F 8
A√
3

m8
A

mf1

sin θA,

F u
f ′

1
= F d

f ′

1
= −F 0

A

√

2

3

m0
A

mf ′

1

sin θA +
F 8
A√
3

m8
A

mf ′

1

cos θA,

F s
f ′

1
= −F 0

A

√

2

3

m0
A

mf ′

1

sin θA − 2F 8
A√
3

m8
A

mf ′

1

cos θA,

F u
a1 = −F d

a1 = F 3
A, F s

a1 = 0, (4.10)

where we have further assumed isospin symmetry and allowed for the physical masses of

the f1 and f ′1 to differ from the singlet and octet ones. The relations for f1 and f ′1 differ

by a factor of
√
2 from [90], which leads us to the identification

√
2F 0

A = 245(13)MeV,
√
2F 8

A = 239(13)MeV,
√
2F 3

A = 238(10)MeV. (4.11)
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Together with the masses m0
A = 1.28(6)GeV and m8

A = 1.29(5)GeV, this leads to

F eff
f1 = 2F 0

A

(

2

3

)3/2 m0
A

mf1

cos θA +
2F 8

A

3
√
3

m8
A

mf1

sin θA = 146(7)(12)MeV,

F eff
f ′

1
= −2F 0

A

(

2

3

)3/2 m0
A

mf ′

1

sin θA +
2F 8

A

3
√
3

m8
A

mf ′

1

cos θA = −122(11)(11)MeV,

F eff
a1 =

2

3
F 3
A = 112(5)MeV, (4.12)

where the first uncertainty is propagated from the LCSRs, while the second refers to

the uncertainty in the mixing angle. We note that in all cases the effective decay con-

stants F eff
A = FA

2 (0, 0)mA/2 suggested by [82], when matching in the doubly-virtual di-

rection (3.47), exceed the LCSR estimates by about a factor 2, indicating that the quark

model overestimates the asymptotic coefficients.3 Finally, extrapolating the dipole fit (4.1)

would imply an even lower coefficient

F eff
f1 = 82(26)MeV, F eff

f ′

1
= −34(12)MeV, (4.13)

but in both cases there is only a single bin above 1GeV2, rendering conclusions about the

asymptotics highly uncertain.

Beyond LCSRs, the effective decay constant F eff
a1 can, in principle, be extracted from

τ → 3πντ decays. Such extractions typically lead to F eff
a1 = (95 . . . 100)MeV [104, 105], in

reasonable agreement with the LCSR value in (4.12), but the systematic uncertainties due

to the a1 spectral shape are substantial. In contrast, as isospin singlets the neutral f1, f
′
1

cannot be produced in τ decays. Further, there is an early lattice-QCD calculation that

quotes F eff
a1 = 113(13)MeV [106], while more recent calculations of the a1 have concentrated

on mass and width [107, 108]. Especially for f1 and f ′1, additional input would be highly

welcome, as it would remove the main uncertainty in the asymptotic BL relations.

The comparison to the L3 dipole fit is shown in figure 2. In both cases the quark-model

result decreases more slowly than the BL bands, but especially for the f ′1 both quark model

and BL lie significantly above the extrapolated L3 fit. However, the fit is dominated by

the bins below 1GeV2, while mass corrections are important well beyond, as indicated by

the comparison of the two BL bands. In addition, while FA
1 is suppressed both for small

virtualities (its symmetry properties require FA
1 (−Q2, 0) ∼ Q2) and for large virtualities

(FA
1 (−Q2, 0) ∼ 1/Q6 according to (3.37)), there may still be a significant contribution

for intermediate virtualities, which by means of the relative signs in (4.3) could indeed

effectively suppress the results for FA
2 extracted under the assumption (4.1).

4.2 Scalar and tensor mesons

The singly-virtual TFFs for scalar and tensor mesons have been studied using light-cone

methods in [88] and [93], respectively, including terms beyond the asymptotic results we

3When matching in the singly-virtual direction the mismatch would reduce because instead of the relative

factor 6 as in (4.5) the quark model only has a factor 4. However, in both cases the doubly-virtual prediction

is expected to be more reliable. For this comparison, we adjust the normalization of the quark model to

the L3 data.
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Figure 2. Axial-vector TFF FA
2 for f1(1285) (left) and f ′

1(1420) (right). In each case, the gray band

refers to the dipole fit (4.1) with parameters (4.2), the orange band to the quark model from [82],

see (3.47) (with normalization adjusted to the L3 data), the green band to the asymptotic BL

result (4.5), and the blue band to the variant including the axial-vector mass (4.6). The uncertainties

are propagated from (4.2) and (4.12), respectively. The L3 dipole fit is indicated by dashed lines

above 3GeV2 (close to the center of the last bin), to emphasize the fact that only a single bin

probes the region above 1GeV2.

considered here. We refer to these works regarding the potential impact of these subleading

contributions, but show here how the leading terms compare to phenomenology.

For the scalar mesons in the singly-virtual limit only the helicity amplitude H++ is

relevant, and therein only the contribution from FS
1 . Accordingly, the results for the

f0(980) in [57] can be interpreted as FS
1 (−Q2, 0)/FS

1 (0, 0), where for the normalization

a two-photon width Γγγ = 0.29+0.07
−0.06 keV and mf0 = 0.98GeV were assumed. With this

input, we can reconstruct the data points for FS
1 (−Q2, 0). For a definite comparison to the

BL result one would need independent input for the effective decay constant

F eff
S = 4

∑

a

CaF̄
a
S (µ)B1(µ). (4.14)

Absent such information, we can again match to [82] in the doubly-virtual direction,

which gives

F eff
S =

5

18
FS
1 (0, 0)mS , (4.15)

and thus F eff
f0

= 24(2)MeV (using current PDG numbers Γγγ = 0.31+0.05
−0.04 keV, mf0 =

0.99(2)GeV [4]), while the result for the matching in the singly-virtual direction would be

lower by a factor 5/2. In figure 3 we show the comparison to the resulting

FS
1 (−Q2, 0) =

3F eff
S mS

Q2
, (4.16)

which asymptotically indeed indicates better agreement with the data for the doubly-virtual

matching.

For the comparison of the tensor TFFs, we first need to map conventions. The re-

sults in [57] are presented in helicity basis, and according to (2.54) this probes the linear
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Figure 3. Scalar TFF FS
1 for the f0(980), in comparison to the Belle data [57]. The orange

band refers to the quark model from [82], see (3.47), and the green band to the asymptotic BL

result (4.16), with effective decay constant determined by matching to [82] in the doubly-virtual

direction. In both cases, the uncertainties are propagated from Γγγ [4].

combinations

FT
λ=0(−Q2, 0) =

Q2

√
6m2

T

FT
1 (−Q2, 0)− (m2

T +Q2)2

2
√
6m4

T

FT
2 (−Q2, 0) +

Q2

√
6m2

T

FT
5 (−Q2, 0),

FT
λ=1(−Q2, 0) =

√

Q2

√
2mT

FT
1 (−Q2, 0) +

√

Q2(m2
T −Q2)

2
√
2m3

T

FT
5 (−Q2, 0),

FT
λ=2(−Q2, 0) = −FT

1 (−Q2, 0) +
Q2

m2
T

FT
5 (−Q2, 0). (4.17)

Moreover, the normalization of the results accounts for the small contribution from

F2(0, 0) to Γγγ , see (2.56), so that the full results are restored by multiplication with
√

5Γγγ/(πα2mT ) with Γγγ = 3.0(4) keV. Finally, the data only provide information on

the absolute values, but not the relative signs, so that an explicit inversion for the FT
i

requires assumptions on these relative phases. For this reason, we will work directly with

the helicity combinations (4.17), in terms of which the BL constraints become

FT
λ=0(−Q2, 0) = −5F eff

T mT

3
√
6Q6

(

3Q4 + 4m2
TQ

2 + 3m4
T

)

,

FT
λ=1(−Q2, 0) = −5

√
2F eff

T m2
T (Q

2 −m2
T )

6Q5
,

FT
λ=2(−Q2, 0) =

10F eff
T m3

T

3Q4
, (4.18)

with effective decay constant

F eff
T = 4

∑

a

CaF
a
T . (4.19)

The non-strangeness components have been estimated from LCSRs in [92, 93, 109], which

provides by far the dominant contribution given that the f2(1270)–f
′
2(1525) system is close
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Figure 4. Tensor TFFs for helicities λ = 2, 1, 0 for the f2(1270), in comparison to the Belle

data [57]. The orange band refers to the quark model from [82], see (3.47), and the green band

to the asymptotic BL result (4.18), with effective decay constant from (4.20). For the quark-

model normalization uncertainties are propagated from Γγγ [4], assuming that this also covers the

contribution from FT
2 (0, 0) in (2.56).

to ideal mixing.4 Numerically, we will use [93]

F eff
T =

5

9

√
2F q

T = 79(8)MeV. (4.20)

In this case, we do not attempt to match to the quark model, given that the structure of the

tensor amplitudes is fundamentally different: in [82], all FT
i except for FT

1 vanish, while

in the BL case it is precisely FT
1 that vanishes in the singly-virtual limit. Even for doubly-

virtual kinematics the coefficient is very small, see table 1, so that the matching to (3.47)

would lead to F eff
T almost a factor 5 above the LCSR estimate. The comparison to the data

is shown in figure 4. It is quite remarkable that the helicity-2 form factor is well described in

either formalism, given that the contributions originate from completely different Lorentz

structures. That is, in the quark model the vanishing TFFs FT
2,5 are compensated by FT

1 .

For the helicity-1 form factor we observe excellent agreement between data and the BL

result, while for the helicity-0 projection the asymptotic behavior appears to set in rather

4Using Γγγ(f2) = 2.6(5) keV, Γγγ(f
′

2) = 0.081(9) keV [4], the analog of (4.8) gives θT = 29(1)◦, indeed

very close to arctan 1/
√
2 = 35.3◦.
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late. The agreement in the helicity-0 TFF seems to improve when including subleading

corrections [93], but the uncertainties associated with the additional matrix elements are

substantial.

5 Summary and outlook

In this paper we studied the asymptotic behavior of meson TFFs as motivated by resonance

contributions to HLbL scattering in (g − 2)µ. To this end, we first applied the BTT

procedure to the two-photon matrix elements of pseudoscalar, scalar, axial-vector, and

tensor mesons to obtain a gauge-invariant Lorentz decomposition that is demonstrably

free of kinematic singularities. Using light-cone distribution amplitudes from the literature,

we then derived the leading asymptotic behavior for the TFFs that emerge in the BTT

decomposition and compared the results to quark-model expectations. For the axial-vector

mesons we compared to the available phenomenological information on the singly-virtual

process from L3, which, however, does not suffice to conclusively challenge the prediction

for the asymptotic coefficient obtained when combining the BL limit with LCSR estimates

of the decay constants. In addition, we compared the asymptotic results for scalar and

tensor mesons to singly-virtual data from Belle. In all cases, the main uncertainty in

the asymptotic coefficient arises from limited knowledge of the decay constants, which in

principle could be calculated in lattice QCD.

The results presented here provide valuable constraints on the TFFs required to esti-

mate the contribution from multi-hadron channels to HLbL scattering in terms of narrow

resonances. In close analogy to the pseudoscalar poles, information about the asymptotic

behavior is necessary to assess the impact of the high-energy tails in the (g − 2)µ inte-

gral. Here, we derived the corresponding limits for scalar, axial-vector, and tensor mesons,

as well as suitable Lorentz decompositions that avoid introducing kinematic singularities,

contrary to decompositions into definite helicity components. In particular, we expect that

our results will facilitate improved estimates for the contribution from intermediate ener-

gies around 1–2GeV to HLbL scattering, to help further elucidate the critical interplay of

exclusive hadronic channels, resonance contributions, and short-distance constraints.
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