Erratum: Asymptotic Behavior of Periodic Dynamical on Banach Spaces (*).

MARSHALL SLEMROD (Jerusalem, Israel) (**)

There are errors in the proofs of Lemma 2.3 and Theorem 3.1. These are due to a mistake in Definition 2.7. The following revisions should be made:

1) After the words $\langle p \in \gamma^+(t_0, \varphi) \rangle$ in Definition 2.7 insert $\langle such that$ for each α there exists a sequence of integers $\{k_j\}$, increasing $k_j \to \infty$, so that $u(\sigma + k_j T, t_0, \varphi) \to U_{\alpha}(\sigma, t_0, p)$ uniformly for σ in compact subsets of $R \rangle$.

2) With the revision given 1) the inclusion $\Gamma^+(t_0, \varphi) \subset L^+(t_0, \varphi)$ in the proof of Lemma 2.3 is now valid. This was not necessarily true as originally given.

3) The proof of Theorem 3.1 should now read as follows:

Since G is compact and V is periodic in t, $V(t, u(t, t_0, \varphi))$ is nonincreasing and bounded from below for $t \ge t_0$. Hence, $\lim_{t\to\infty} V(t, u(t, t_0, \varphi)) = c$, a constant. Also, since G is compact, $\gamma^+(t_0, \varphi)$ is non-empty and by Lemma 2.2 $\Gamma^+(t_0, \varphi)$ is non-empty. Let $\bigcup_{\sigma \in R} U_{\alpha}(\sigma, t_0, p)$ be an arbitrary element of $\Gamma^+(t_0, \varphi)$ for some $p \in \gamma^+(t_0, \varphi)$, $\alpha \in \Lambda$. For each $\sigma \in R$ we have $u(\sigma + k_jT, t_0, \varphi) \rightarrow$ $\rightarrow U_{\alpha}(\sigma, t_0, p)$ uniformly for σ in compact subsets of R for some increasing sequence of integers $\{k_j\}, k_j \to \infty$. So for each $\sigma \in R$ we have $V(\sigma, u(\sigma + k_jT, t_0, \varphi) \rightarrow$ $+ k_jT, t_0, p) \rightarrow V(\sigma, U_{\alpha}(t, t_0, p))$ as $j \to \infty$ and by periodicity of V, $V(\sigma + k_jT, u(\sigma + t_jT, t_0, p)) \rightarrow V(\sigma, U_{\alpha}(\sigma, t_0, p))$ as $j \to \infty$. Hence it follows that for all $\sigma \in R, V(\sigma, U_{\alpha}(\sigma, t_0, p)) = c$ and $V(\sigma, U_{\alpha}(\sigma, t_0, p)) = 0$. By the definition of M and Definition 2.7 this implies $\Gamma^+(t_0, \varphi) \subset M$. By Lemma 2.3 we have $L^+(t_0, \varphi) \subset M$. Since $u(t, t_0, \varphi) \to L^+(t_0, \varphi)$ as $t \to \infty$ the theorem is proven.

^(*) Ann Mat. Pura Appl. (4), 86 (1970), pp. 325-330

^(**) Entrata in Redazione il 14 aprile 1971.