Asymptotic Behavior of Smooth Solutions for

Dissipative Hyperbolic Systems with a Convex Entropy

Stefano Bianchini - IAC (CNR) ROMA

Bernard Hanouzet - Mathématiques Appliquées de Bordeaux

Roberto Natalini - IAC (CNR) ROMA

Hyperbolic systems of balance laws

Consider a system of balance laws with k conserved quantities,

$$\begin{aligned} \partial_t u + \partial_x F_1(w) &= 0 \\ \partial_t v + \partial_x F_2(w) &= q(w) \end{aligned}$$
(1)

with $w = (u, v) \in \Omega \subset \mathbb{R}^k \times \mathbb{R}^{n-k}$, and assume that there exists a strictly convex function $\mathcal{E} = \mathcal{E}(w)$ and a related entropy-flux $\mathcal{F} = \mathcal{F}(w)$, s.t. (for smooth solutions):

$$\partial_t \mathcal{E}(w) + \partial_x \mathcal{F}(w) = \mathcal{G}(w),$$
(2)

where

$$\mathcal{F}' = \mathcal{E}'F'(w) = \mathcal{E}' \qquad \frac{F'_1}{F'_2} \quad , \qquad \mathcal{G} = \mathcal{E}'G(w) = \mathcal{E}' \qquad \frac{0}{q(w)}$$

Equilibrium points: \bar{w} s.t. $G(\bar{w}) = 0$. Set $\gamma = \{w \in \Omega; G(w) = 0\}$.

Definition. The system (1) is entropy dissipative, if for every $\bar{w} \in \gamma$ and $w \in \Omega$,

$$\mathcal{R}(w,\bar{w}) := \mathcal{E}'(w) - \mathcal{E}'(\bar{w}) \cdot G(w) \le 0.$$

Set $W = (U, V) = \mathcal{E}'(w)$, $\Phi(W) := (\mathcal{E}')^{-1}(W)$, and rewrite (1) in the symmetric form

$$A_0(W)\partial_t W + A_1(W)\partial_x W = G(\Phi(W)) \tag{3}$$

with $A_0(W) := \Phi'(W)$ symmetric, positive definite and $A_1(W) := F'(\Phi(W))\Phi'(W)$ symmetric.

The system (3) is strictly entropy dissipative, if there exists a positive definite matrix $B = B(W, \overline{W}) \in \mathcal{M}^{(n-k) \times (n-k)}$ such that

$$Q(W) := q(\Phi(W)) = -D(W, \bar{W})(V - \bar{V}),$$
(4)

for every $W \in \mathcal{E}'(\Omega)$ and $\overline{W} = (\overline{U}, \overline{V}) \in \Gamma := \mathcal{E}'(\gamma) = \{W \in \mathcal{E}'(\Omega); G(\Phi(W)) = 0\}.$

In the following we just consider $\overline{W} = 0$ and systems like:

$$A_0(W)\partial_t W + A_1(W)\partial_x W = - \qquad \frac{0}{D(W)V} \quad , \tag{5}$$

with D positive definite.

Kawashima condition. Consider our original system

$$\partial_t w + F'(w)\partial_x w = G(w). \tag{6}$$

Condition K. Any eigenvector of F'(0) is not in the null space of G'(0), which can be rewritten in entropy framework as

$$[\lambda A_0(0) + A_1(0)] \quad \begin{array}{c} U \\ 0 \end{array} \neq 0 \qquad (K) \end{array}$$

Theorem 1. (Hanouzet-Natalini) Assume that system (5) is strictly entropy dissipative and condition **(K)** is satisfied. Then there exists $\delta > 0$ such that, if $||W_0||_2 \leq \delta$, there is a unique global solution W = (U, V) of (5), which verifies

$$W \in C^{0}([0,\infty); H^{2}(\mathbb{R})) \cap C^{1}([0,\infty); H^{1}(\mathbb{R})),$$

and

$$\sup_{\substack{0 \le t < +\infty}} \|W(t)\|_{2}^{2} + \int_{0}^{+\infty} \|\partial_{x}U(\tau)\|_{1}^{2} + \|V(\tau)\|_{2}^{2} d\tau \le C(\delta) \|W_{0}\|_{2}^{2},$$
(7)
where $C(\delta)$ is a positive constant.

In multiD the estimate is in H^s , with s sufficiently large (Yong).

The linearized problem. The system of balance law (1) becomes

$$\partial_t w + \begin{array}{ccc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \\ \partial_x w = - \begin{array}{ccc} 0 & 0 \\ D_1 & D_2 \end{array} w, \tag{8}$$

(H1) $\exists A_0$ symmetric positive such that AA_0 is symmetric and

$$A_0 = \begin{array}{ccc} A_{0,11} & A_{0,12} \\ A_{0,21} & A_{0,22} \end{array}, \qquad BA_0 = - \begin{array}{ccc} 0 & 0 \\ 0 & D \end{array},$$

with $D \in \mathbb{R}^{(n-k) \times (n-k)}$ positive definite;

(H2) any eigenvector of A is not in the null space of B.

Consider the projectors $Q_0 = R_0 L_0$ on the null space of B, and its complementary projector $Q_- = I - Q_0 = R_- L_-$, to which it corresponds the decomposition

$$w = A_0 \qquad \frac{(A_{0,11})^{-1/2}}{0} \qquad w_c + \qquad \frac{0}{((A_0^{-1})_{22})^{-1/2}} \qquad w_{nc}, \tag{9}$$

$$w_c = \begin{bmatrix} (A_{0,11})^{-1/2} & 0 \end{bmatrix} u, \qquad w_{nc} = \begin{bmatrix} 0 & ((A_0^{-1})_{22})^{-1/2} \end{bmatrix} A_0 u.$$
(10)

The system (8) takes now the form

where \tilde{A} is symmetric and \tilde{D} is strictly negative,

$$\tilde{D} \doteq L_{-}\tilde{B}R_{-} = ((A_{0}^{-1})_{22})^{-1}D((A_{0}^{-1})_{22})^{-1}$$

We want to study the Green kernel $\Gamma(t, x)$ of (11),

$$\begin{array}{rcl} \partial_t \Gamma + \tilde{A} \partial_x \Gamma &=& \tilde{B} \Gamma \\ \Gamma(0, x) &=& \delta(x) I \end{array} \qquad \begin{array}{rcl} \tilde{B} = & \begin{array}{cc} 0 & 0 \\ 0 & \tilde{D} \end{array} , \end{array}$$

by means of Fourier transform $\hat{\Gamma}(t,\xi)$ and perturbation analysis of the characteristic function

$$E(z) = \tilde{B} - zA$$

We will consider the Green kernel as composed of 4 parts,

$$\Gamma(t,x) = \begin{array}{cc} \Gamma_{00}(t,x) & \Gamma_{0-}(t,x) \\ \Gamma_{-0}(t,x) & \Gamma_{--}(t,x) \end{array}$$

For ξ small (large space scale), the reduction of E(z) on the eigenspace of the 0 eigenvalue of \tilde{B} is

$$-z\tilde{A}_{11}-z^{2}\tilde{A}_{12}\tilde{D}^{-1}\tilde{A}_{21}+\mathcal{O}(z^{3}),$$

and one has to consider the decomposition

$$\tilde{A}_{11} = \sum_{j} \ell_j r_j l_j, \qquad l_j \tilde{A}_{12} \tilde{D}^{-1} \tilde{A}_{21} r_j = \sum_{k} (c_{jk} I + d_{jk}) p_{jk},$$

with d_{jk} nilpotent matrix. Let us denote by $g_{jk}(t,x)$ the heat kernel of

$$g_t + \ell_j g_x = (c_{jk}I + d_{jk})g_{xx}.$$

For ξ large (small space scale), $E(z) = z(\tilde{A} + \tilde{B}/z)$, one has to consider the decomposition

$$\tilde{A} = \sum_{j} \lambda_j R_j L_j, \qquad L_j \tilde{B} R_j = \sum_k (b_{jk} I + e_{jk}) q_{jk},$$

and let $h_{jk}(t,x)$ be Green kernel of the transport system

$$h_t + \lambda_j h_x = (b_{jk}I + e_{jk})h.$$

Define the matrix valued functions

$$K(t,x) = \sum_{jk} \begin{bmatrix} r_j g_{jk}(t,x) p_{jk} l_j & -\frac{d}{dx} r_j g_{jk}(t,x) p_{jk} l_j \tilde{A}_{12} \tilde{D}^{-1} \\ -\frac{d}{dx} \tilde{D}^{-1} \tilde{A}_{21} r_j g_{jk}(t,x) p_{jk} l_j & \frac{d^2}{dx^2} \tilde{D}^{-1} \tilde{A}_{21} r_j g_{jk}(t,x) p_{jk} l_j \tilde{A}_{21} \tilde{D}^{-1} \end{bmatrix}$$
$$\mathcal{K}(t,x) = \sum_{jk} R_j (h_{jk}(t,x) q_{jk}) L_j.$$

Theorem. The Green kernel for (11) is

$$\Gamma(t,x) = K(t,x)\chi \ \underline{\lambda}t \le x \le \overline{\lambda}t, t \ge 1 + \mathcal{K}(t,x) + R(t,x)\chi \ \underline{\lambda}t \le x \le \overline{\lambda}t \ , \quad (12)$$

where $\underline{\lambda}$, $\overline{\lambda}$ are the minimal and maximal eigenvalue of \tilde{A} and the rest R(t, x) can be written as

$$R(t,x) = \sum_{j} \frac{e^{-(x-\ell_{j}t)^{2}/ct}}{1+t} \quad \begin{array}{c} \mathcal{O}(1) & \mathcal{O}(1)(1+t)^{-1/2} \\ \mathcal{O}(1)(1+t)^{-1/2} & \mathcal{O}(1)(1+t)^{-1} \end{array}$$

for some constant c.

Differences with the previous result by Y. Zeng (1999):

- 1. finite propagation speed (hyperbolic domain);
- 2. Structure of the diffusive part (operators R_0 and L_0);
- 3. BA_0 not symmetric $\Leftrightarrow \tilde{D}$ not symmetric (as in Hanouzet-Natalini (2002), Yong (2002)).

From a technical point of view, when we study the function

$$\hat{G}(t,\xi) = \exp(E(z)t) = \exp((\tilde{B} - z\tilde{A})t),$$

and we compute its inverse Fourier transform, the differences w.r.t. Y. Zeng are:

- a carefully analysis of the families of eigenvalues whose projectors do not blow up near the exceptional points $z = 0, z = \infty$;
- when estimating $e^{E(z)t}$, one has to deal always with matrices;
- the path of integration in the complex plane depends now on the viscosity coefficients c_{jk} , which is a complex number.

Asymptotic behavior

Consider now the original problem

$$w_t + F(w)_x = G(w) =$$
$$\begin{array}{c} 0 \\ q(w) \end{array}, \qquad w(x,0) = w_0 \end{array}$$
(13)

We have

$$w_t + F'(0)w_x - G'(0)w = F'(0)w - F(w) - G'(0)w - G(w)$$

Then we can write the solution as

$$w = \Gamma(t) * w_0 + \int_0^t \Gamma(t - \tau) * F'(0)w - F(w)_x - G'(0)w - G(w) d\tau.$$

Since for any vector vector $(0,V)\in\mathbb{R}^k\times\mathbb{R}^{n-k}$ one has for the principal part K of the kernel Γ

$$K(t,x) = \sum_{jk} \frac{d}{dx} = \sum_{jk} \frac{d}{dx} - r_j g_{jk}(t,x) p_{jk} l_j \tilde{A}_{12} \tilde{D}^{-1} \\ \frac{d}{dx} \tilde{D}^{-1} \tilde{A}_{21} r_j g_{jk}(t,x) p_{jk} l_j \tilde{A}_{21} \tilde{D}^{-1}$$

also the second term in the convolution contains an x derivative, so that one may use standard L^2 estimates.

Theorem. Let u(t) be the solution to the entropy strictly dissipative system (13), and let $w_c(t) = L_0 w(t)$, $w_{nc}(t) = L_- w(t)$. Then, if $||u(0)||_{H^s}$ is bounded and small for s sufficiently large, the following decay estimates holds: for all β ,

$$\|\partial_x^\beta w_c(t)\|_{L^p} \le C \min\left\{1, t^{-1/2(1-1/p)-\beta/2}\right\} \max \|u(0)\|_{L^1}, \|u(0)\|_{H^s} , \qquad (14)$$

$$\|\partial_x^\beta w_{nc}(t)\|_{L^p} \le C \min\left\{1, t^{-1/2(1-1/p)-1/2-\beta/2}\right\} \max \|u(0)\|_{L^1}, \|u(0)\|_{H^s} , \quad (15)$$

with $p \in [1, +\infty].$

Remark. These decay estimates correspond to the decay of the heat kernel $\frac{1}{\sqrt{2\pi t}}e^{-x^2/4t}$, and in particular the solution to the linearized problem

$$w_t + \tilde{A}w_x = \tilde{B}w$$

satisfies (14), (15). As a consequence these estimates cannot be improved.

Remark. Observe moreover that the non conservative variables w_{nc} decays as a derivative of w_c .

Chapman-Enskog expansion

Consider now the Chapman-Enskog expansion

$$A_0(W)\partial_t W + A_1(W)\partial_x W = - \qquad \begin{array}{c} 0\\ D(W)V \end{array}, \quad W = (U, V) \\ \end{array}$$

$$V \sim h(U, U_x) := -D^{-1} (A_1)_{21} - (A_0)_{21} (A_0)_{11}^{-1} (A_1)_{11} U_x$$

In the original coordinates, equilibrium at v = h(u) and

$$u_t + F_1 \ u, h(u) - D^{-1}(u, h(u)) \ F_2(u, h(u))_x - Dh(u)F_1(u, h(u))_x = 0$$
(16)

The linearized form of (16) is

$$u_t + \tilde{A}_{11}u_x - \tilde{A}_{12}\tilde{D}^{-1}\tilde{A}_{21}u_{xx} = 0,$$

so that its Green kernel G is

$$\tilde{\Gamma}(t) = K_{00}(t) + \tilde{\mathcal{K}}(t) + \tilde{R}(t), \qquad K_{00}(t,x) = \sum_{jk} r_j g_{jk}(t,x) p_{jk} l_j.$$

Since the principal part of the linear Green kernel is the same (up to the finite speed of propagation), one can prove

Theorem. If w(t) is the solution to the parabolic system (16), then for all $\kappa \in [0, 1/2)$

$$\|D^{\beta}(w_{c}(t) - w(t))\|_{L^{p}} \leq C \min\left\{1, t^{-m/2(1 - 1/p) - \kappa - \beta/2}\right\} \max \|u(0)\|_{L^{1}}, \|u\|_{H^{s}},$$

if the initial data is sufficiently small, depending on κ , and tending to 0 as $\kappa \to 1/2$.

Remark. At the linear level one gains exactly $t^{-1/2}$ (one derivative), but in dimension 1 the quadratic parts of F, G matter and this is way we can only prove the decay for all $k \in [0, 1/2)$.

A Glimm Functional for Relaxation

Stefano Bianchini - IAC (CNR) ROMA

Consider the Jin-Xin relaxation model

$$\begin{array}{rcl}
F_t^- - F_x^- &= & U - A(U) & -F^- \\
F_t^+ + F_x^+ &= & U + A(U) & -F^+
\end{array} \tag{17}$$

where A(u) is strictly hyperbolic with eigenvalues $|\lambda_i| < 1$, and

$$U = \frac{1}{2}(F^{-} + F^{+}) \in \mathbb{R}^{n}, \qquad M^{-}(u) = U - A(u), \quad M^{+}(u) = U + A(u).$$

To prove BV bounds, we follow an approach similar to vanishing viscosity:

1. decompose the derivatives f^- , f^+ of F^- , F^+ along travelling profiles,

$$f^{-} = \sum_{i} f_{i}^{-} \tilde{r}_{i}^{-}, \qquad f^{+} = \sum_{i} f_{i}^{+} \tilde{r}_{i}^{+};$$

2. write the $2n \times 2n$ system (17) as $n \ 2 \times 2$ systems

$$\begin{aligned}
f_{i,t}^{-} - f_{i,x}^{-} &= -a_{i}^{-}(t,x)f_{i}^{-} + (1 - a_{i}^{-}(t,x))f_{i}^{+} + s_{i}^{-}(t,x) \\
f_{i,t}^{+} + f_{i,x}^{+} &= a_{i}^{-}(t,x)f_{i}^{-} - (1 - a_{i}^{-}(t,x))f_{i}^{+} + s_{i}^{+}(t,x)
\end{aligned} \tag{18}$$

3. estimate the sources s_i^-, s_i^+ .

Center manifold. Let $U_x = v_i \tilde{r}_i(U, v_i, \sigma)$ be the center manifold for

$$-\sigma U_x + A(U)_x = U_{xx} - \sigma^2 U_{xx}$$

near the equilibrium $(U = 0, U_x = 0, \lambda_i(0))$, so that the center manifold for (17) can be written as

$$F^{-} = M^{-}(U) - (1 - \sigma^{2})v_{i}\tilde{r}_{i}(U, v_{i}, \sigma) \implies f^{-} = (1 + \sigma)v_{i}\tilde{r}_{i}(U, v_{i}, \sigma)$$

$$F^{-} = M^{-}(U) - (1 - \sigma^{2})v_{i}\tilde{r}_{i}(U, v_{i}, \sigma) \implies f^{-} = (1 - \sigma)v_{i}\tilde{r}_{i}(U, v_{i}, \sigma)$$

Define $g^- = F_t^-$, $g^+ = F_t^+$, and decompose the couple (f^-, g^-) by

$$f^{-} = \sum_{i} f_{i}^{-} \tilde{r}_{i} (U, f_{i}^{-} / (1 + \sigma_{i}^{-}), \sigma_{i}^{-}) = \sum_{i} f_{i}^{-} \tilde{r}_{i}^{-} (U, f_{i}^{-}, \sigma_{i}^{-})$$
$$g^{-} = \sum_{i} g_{i}^{-} \tilde{r}_{i} (U, f_{i}^{-} / (1 + \sigma_{i}^{-}), \sigma_{i}^{-}) = \sum_{i} g_{i}^{-} \tilde{r}_{i}^{-} (U, f_{i}^{-}, \sigma_{i}^{-})$$
(19)

with $\sigma_i^- = \theta_i(g_i^-/f_i^-)$. The same for the couple (f^+, g^+) , with $\tilde{r}_i^+(u, f_i^+, \sigma_i^+) = \tilde{r}_i(U, f_i^+/(1 - \sigma_i^+), \sigma_i^+), \sigma_i^+ = \theta_i(g_i^+/f_i^+)$.

We thus have 2n travelling waves, n for each family of particles, and the "interaction" among these profiles occurs because of the left hand side of (18). If we define

$$\tilde{\lambda}_i(u, v, \sigma) = \langle \tilde{r}_i(u, v, \sigma), DA(u) \tilde{r}_i(u, v_i, \sigma) \rangle,$$

one ends up with the system

$$\begin{cases} f_{i,t}^{-} - f_{i,x}^{-} = -\frac{1+\tilde{\lambda}_{i}^{-}}{2}f_{i}^{-} + \frac{1-\tilde{\lambda}_{i}^{-}}{2}f_{i}^{+} + s_{i}^{-}(t,x) \\ f_{i,t}^{+} + f_{i,x}^{+} = \frac{1+\tilde{\lambda}_{i}^{-}}{2}f_{i}^{-} - \frac{1-\tilde{\lambda}_{i}^{-}}{2}f_{i}^{+} + s_{i}^{+}(t,x) \end{cases}$$
(20)

$$\begin{cases} g_{i,t}^{-} - g_{i,x}^{-} = -\frac{1+\tilde{\lambda}_{i}^{-}}{2}g_{i}^{-} + \frac{1-\tilde{\lambda}_{i}^{-}}{2}g_{i}^{+} + r_{i}^{-}(t,x) \\ g_{i,t}^{+} + g_{i,x}^{+} = -\frac{1+\tilde{\lambda}_{i}^{-}}{2}g_{i}^{-} + \frac{1-\tilde{\lambda}_{i}^{-}}{2}g_{i}^{+} + r_{i}^{+}(t,x) \end{cases}$$
(21)

Among other terms, the source s^{\pm} , r^{\pm} contains the interaction term

$$f_i^- g_t^+ - f_t^+ g_i^- = f_i^- f_i^+ \ \sigma_i^+ - \sigma_i^- \ , \tag{22}$$

where the last equality holds for speeds close to $\lambda_i(0)$.

We want to show that (22) corresponds to an interaction term, to which we can associate a Glimm functional: we consider this as the kinetic interpretation of the Glimm interaction functional for waves of the same family.

For simplicity we will set $\tilde{\lambda}_i = 0$ in the following analysis.

The interaction functional

For a piecewise constant solution u of the scalar equation

$$u_t + f(u)_x = 0,$$

we consider the interaction functional Q(u) defined as (outside the interacting points)

$$Q(u) = \sum_{\text{jumps } i,j} |\delta_i| |\delta_j| |\sigma_i - \sigma_j|, \qquad \delta_i \text{ strength}, \sigma_i \text{ speed of the jump.}$$

This functional can be extended to the parabolic equation

$$u_t + f(u)_x = u_{xx},$$

and its "form" remains the same,

$$Q(u) = \iint_{\mathbb{R}^2} u_t(t,x) u_x(t,y) - u_t(t,y) u_x(t,x) \, dx \, dy$$

=
$$\iint_{\mathbb{R}^2} \frac{u_t(t,x)}{u_x(t,x)} - \frac{u_t(t,y)}{u_x(t,y)} |u_x(t,x)| \, dx |u_x(t,y)| \, dy.$$

We can interpret its time derivative as the area swept by the curve $\gamma = (u_x, u_t)$.

One can give another interpretation of the interaction functional for the scalar parabolic system by considering the variable $P(t, x, y) = u_t(t, x)u_x(t, y) - u_t(t, y)u_x(t, x)$, which satisfies

$$P_t + \operatorname{div} f'(u(t,x)), f'(u(t,y)) P = \Delta P$$

for $t \ge 0$, $x \ge y$ and the boundary condition P(t, x, x) = 0. The interaction functional Q(P) is now its L^1 norm in $\{x \ge y\}$,

$$Q(P) = \iint_{x \ge y} |P(t, x, y)| dx dy,$$

and the amount of interaction is the flux of P along the boundary $\{x = y\}$,

$$\frac{d}{dt}Q(P) \le -\int_{x=y} \nabla P \cdot (1,-1) \ dx = -2\int_{\mathbb{R}} u_{tx}u_x - u_t u_{xx} \ dx.$$

We will show how to interpret the interaction term

$$f^-g^+ - g^-f^+$$

as a flux along a boundary. As a consequence we will be able to construct a Glimm type functional, and prove that the above term is bounded and of second order w.r.t. the L^1 norm of the components.

Consider the system (20), (21), and construct the scalar variables

$$P^{--}(t, x, y) = f^{-}(t, x)g^{-}(t, y) - f^{-}(t, y)g^{-}(t, x)$$

$$P^{-+}(t, x, y) = f^{+}(t, x)g^{-}(t, y) - f^{-}(t, y)g^{+}(t, x)$$

$$P^{+-}(t, x, y) = f^{-}(t, x)g^{+}(t, y) - f^{+}(t, y)g^{-}(t, x)$$

$$P^{++}(t, x, y) = f^{+}(t, x)g^{+}(t, y) - f^{+}(t, y)g^{+}(t, x)$$

which satisfy the system

$$\begin{pmatrix}
P_t^{--} + \operatorname{div}((-1, -1)P^{--}) &= (P^{+-} + P^{-+})/2 - P^{--} \\
P_t^{-+} + \operatorname{div}((-1, 1)P^{-+}) &= (P^{--} + P^{++})/2 - P^{-+} \\
P_t^{+-} + \operatorname{div}((1, -1)P^{+-}) &= (P^{--} + P^{++})/2 - P^{+-} \\
P_t^{++} + \operatorname{div}((1, 1)P^{++}) &= (P^{+-} + P^{-+})/2 - P^{++}
\end{cases}$$
(23)

for $x \ge y$ and the boundary conditions

$$P^{-+}(t,x,x) + P^{+-}(t,x,x) = 0, \qquad P^{++}(t,x,x) = P^{--}(t,x,x) = 0.$$

We may read the boundary conditions as follows: a particle P^{-+} hits the boundary and bounce back as P^{+-} but with opposite sign. We are interested in an estimate of the number of particles colliding with the boundary $\{x = y\}$. To prove that the average numbers of collision with the boundary is finite if the initial number of particles is finite (note that this is quadratic w.r.t. the L^1 norm of f, g)

$$Q(P) = \iint_{x \ge y} |P^{--}| + |P^{+-}| + |P^{-+}| + |P^{++}| \, dxdy < +\infty,$$

we consider the system for P in \mathbb{R}^2 and an initial data of the form

$$P^{+-} = -P^{-+} = \delta(x, y), \qquad P^{++} = P^{--} = 0.$$

The solution will be constructed as the sum of the solutions of the cascade of systems:

$$\begin{split} P_t^{-+,0} + \operatorname{div}((-1,1)P^{-+,0}) &= -P^{-+,0}, \qquad P_t^{+-,0} + \operatorname{div}((1,-1)P^{+-,0}) = -P^{+-,0} \\ P_t^{--,1} + \operatorname{div}((-1,-1)P^{--,1}) &= (P^{+-,0} + P^{-+,0})/2 - P^{--,1} \\ P_t^{++,1} + \operatorname{div}((1,1)P^{++,1}) &= (P^{+-,0} + P^{-+,0})/2 - P^{++,1} \\ P_t^{-+,2} + \operatorname{div}(-1,1) \cdot P^{-+,2} &= \frac{1}{2}(P^{--,1} + P^{++,1}) - P^{-+,2} \\ P_t^{+-,2} + \operatorname{div}(1,-1) \cdot P^{+-,2} &= \frac{1}{2}(P^{--,1} + P^{++,1}) - P^{+-,2} \end{split}$$

The remaining terms are left as source terms for system (23).

The solution to the second equation is

$$P^{-+,2} = \frac{1}{16}e^{-t}\chi\Big\{|x|,|y| \le 2t\Big\}, \qquad P^{+-,2} = -\frac{1}{16}e^{-t}\chi\Big\{|x|,|y| \le 2t\Big\}$$

and the crossing due to this solution is

$$\frac{1}{4\sqrt{2}} \int_0^{+\infty} t e^{-t} dt = \frac{1}{4\sqrt{2}}.$$

Due to symmetry, the total mass disappearing is thus

$$\frac{1}{2} \int_0^{+\infty} t^2 e^{-t} dt = 1.$$

We thus obtain that the total crossing is less than.

$$2 + \frac{1}{2\sqrt{2}} \quad Q(u)$$

Remark. Observe that the amount of interaction is non local in time.