Asymptotic Behavior of Smooth Solutions for

Dissipative Hyperbolic Systems with a Convex Entropy

Stefano Bianchini - IAC (CNR) ROMA
Bernard Hanouzet - Mathématiques Appliquées de Bordeaux
Roberto Natalini - IAC (CNR) ROMA

Hyperbolic systems of balance laws

Consider a system of balance laws with k conserved quantities,

$$
\begin{array}{llc}
\partial_{t} u+\partial_{x} F_{1}(w) & = & 0 \\
\partial_{t} v+\partial_{x} F_{2}(w) & = & q(w) \tag{1}
\end{array}
$$

with $w=(u, v) \in \Omega \subset \mathbb{R}^{k} \times \mathbb{R}^{n-k}$, and assume that there exists a strictly convex function $\mathcal{E}=\mathcal{E}(w)$ and a related entropy-flux $\mathcal{F}=\mathcal{F}(w)$, s.t. (for smooth solutions):

$$
\begin{equation*}
\partial_{t} \mathcal{E}(w)+\partial_{x} \mathcal{F}(w)=\mathcal{G}(w), \tag{2}
\end{equation*}
$$

where

$$
\mathcal{F}^{\prime}=\mathcal{E}^{\prime} F^{\prime}(w)=\mathcal{E}^{\prime} \quad \begin{aligned}
& F_{1}^{\prime} \\
& F_{2}^{\prime}
\end{aligned}, \quad, \quad \mathcal{G}=\mathcal{E}^{\prime} G(w)=\mathcal{E}^{\prime} \quad \begin{gathered}
0 \\
q(w)
\end{gathered}
$$

Equilibrium points: \bar{w} s.t. $G(\bar{w})=0$. Set $\gamma=\{w \in \Omega ; G(w)=0\}$.
Definition. The system (1) is entropy dissipative, if for every $\bar{w} \in \gamma$ and $w \in \Omega$,

$$
\mathcal{R}(w, \bar{w}):=\mathcal{E}^{\prime}(w)-\mathcal{E}^{\prime}(\bar{w}) \cdot G(w) \leq 0 .
$$

Set $W=(U, V)=\mathcal{E}^{\prime}(w), \Phi(W):=\left(\mathcal{E}^{\prime}\right)^{-1}(W)$, and rewrite (1) in the symmetric form

$$
\begin{equation*}
A_{0}(W) \partial_{t} W+A_{1}(W) \partial_{x} W=G(\Phi(W)) \tag{3}
\end{equation*}
$$

with $A_{0}(W):=\Phi^{\prime}(W)$ symmetric, positive definite and $A_{1}(W):=F^{\prime}(\Phi(W)) \Phi^{\prime}(W)$ symmetric.

The system (3) is strictly entropy dissipative, if there exists a positive definite matrix $B=B(W, \bar{W}) \in \mathcal{M}^{(n-k) \times(n-k)}$ such that

$$
\begin{equation*}
Q(W):=q(\Phi(W))=-D(W, \bar{W})(V-\bar{V}) \tag{4}
\end{equation*}
$$

for every $W \in \mathcal{E}^{\prime}(\Omega)$ and $\bar{W}=(\bar{U}, \bar{V}) \in \Gamma:=\mathcal{E}^{\prime}(\gamma)=\left\{W \in \mathcal{E}^{\prime}(\Omega) ; G(\Phi(W))=0\right\}$.
In the following we just consider $\bar{W}=0$ and systems like:

$$
A_{0}(W) \partial_{t} W+A_{1}(W) \partial_{x} W=-\quad \begin{gather*}
0 \tag{5}\\
D(W) V
\end{gather*}
$$

with D positive definite.

Kawashima condition. Consider our original system

$$
\begin{equation*}
\partial_{t} w+F^{\prime}(w) \partial_{x} w=G(w) . \tag{6}
\end{equation*}
$$

Condition K. Any eigenvector of $F^{\prime}(0)$ is not in the null space of $G^{\prime}(0)$, which can be rewritten in entropy framework as

$$
\left[\lambda A_{0}(0)+A_{1}(0)\right] \quad \begin{gather*}
U \tag{K}\\
0
\end{gather*} \neq 0
$$

Theorem 1. (Hanouzet-Natalini) Assume that system (5) is strictly entropy dissipative and condition (K) is satisfied. Then there exists $\delta>0$ such that, if $\left\|W_{0}\right\|_{2} \leq \delta$, there is a unique global solution $W=(U, V)$ of (5), which verifies

$$
W \in C^{0}\left([0, \infty) ; H^{2}(\mathbb{R})\right) \cap C^{1}\left([0, \infty) ; H^{1}(\mathbb{R})\right)
$$

and

$$
\begin{equation*}
\sup _{0 \leq t<+\infty}\|W(t)\|_{2}^{2}+\int_{0}^{+\infty}\left\|\partial_{x} U(\tau)\right\|_{1}^{2}+\|V(\tau)\|_{2}^{2} d \tau \leq C(\delta)\left\|W_{0}\right\|_{2}^{2}, \tag{7}
\end{equation*}
$$

where $C(\delta)$ is a positive constant.
In multiD the estimate is in H^{s}, with s sufficiently large (Yong).

The linearized problem. The system of balance law (1) becomes

$$
\partial_{t} w+\begin{array}{ll}
A_{11} & A_{12} \tag{8}\\
A_{21} & A_{22}
\end{array} \quad \partial_{x} w=-\begin{array}{cc}
0 & 0 \\
D_{1} & D_{2}
\end{array} \quad w,
$$

(H1) $\exists A_{0}$ symmetric positive such that $A A_{0}$ is symmetric and

$$
A_{0}=\begin{array}{ll}
A_{0,11} & A_{0,12} \\
A_{0,21} & A_{0,22}
\end{array} \quad, \quad B A_{0}=-\quad \begin{array}{cc}
0 & 0 \\
0 & D
\end{array},
$$

with $D \in \mathbb{R}^{(n-k) \times(n-k)}$ positive definite;
(H2) any eigenvector of A is not in the null space of B.
Consider the projectors $Q_{0}=R_{0} L_{0}$ on the null space of B, and its complementary projector $Q_{-}=I-Q_{0}=R_{-} L_{-}$, to which it corresponds the decomposition

$$
\begin{gather*}
w=A_{0} \tag{9}\\
\begin{array}{cc}
\left(A_{0,11}\right)^{-1 / 2} & w_{c}+ \\
\left(\left(A_{0}^{-1}\right)_{22}\right)^{-1 / 2} & w_{n c} \\
w_{c}=\left[\begin{array}{ll}
\left(A_{0,11}\right)^{-1 / 2} & 0
\end{array}\right] u, & w_{n c}=\left[\begin{array}{cl}
0 & \left(\left(A_{0}^{-1}\right)_{22}\right)^{-1 / 2}
\end{array}\right] A_{0} u .
\end{array} . \tag{10}
\end{gather*}
$$

The system (8) takes now the form

$$
\begin{gather*}
w_{c} \tag{11}\\
w_{n c}
\end{gather*}+\begin{array}{cccccc}
\tilde{A}_{11} & \tilde{A}_{12} & w_{c} \\
\tilde{A}_{21} & \tilde{A}_{22} & w_{n c} & = & 0 & 0 \\
0 & \tilde{D} & w_{c} \\
w_{n c}
\end{array}
$$

where \tilde{A} is symmetric and \tilde{D} is strictly negative,

$$
\tilde{D} \doteq L_{-} \tilde{B} R_{-}=\left(\left(A_{0}^{-1}\right)_{22}\right)^{-1} D\left(\left(A_{0}^{-1}\right)_{22}\right)^{-1}
$$

We want to study the Green kernel $\Gamma(t, x)$ of (11),

$$
\begin{array}{clc}
\partial_{t} \Gamma+\tilde{A} \partial_{x} \Gamma & = & \tilde{B} \Gamma \\
\Gamma(0, x) & = & \delta(x) I
\end{array} \quad \tilde{B}=\begin{array}{ll}
0 & 0 \\
0 & \tilde{D}
\end{array}
$$

by means of Fourier transform $\hat{\Gamma}(t, \xi)$ and perturbation analysis of the characteristic function

$$
E(z)=\tilde{B}-z A
$$

We will consider the Green kernel as composed of 4 parts,

$$
\Gamma(t, x)=\begin{array}{cc}
\Gamma_{00}(t, x) & \Gamma_{0-}(t, x) \\
\Gamma_{-0}(t, x) & \Gamma_{--}(t, x)
\end{array} .
$$

For ξ small (large space scale), the reduction of $E(z)$ on the eigenspace of the 0 eigenvalue of \tilde{B} is

$$
-z \tilde{A}_{11}-z^{2} \tilde{A}_{12} \tilde{D}^{-1} \tilde{A}_{21}+\mathcal{O}\left(z^{3}\right)
$$

and one has to consider the decomposition

$$
\tilde{A}_{11}=\sum_{j} \ell_{j} r_{j} l_{j}, \quad l_{j} \tilde{A}_{12} \tilde{D}^{-1} \tilde{A}_{21} r_{j}=\sum_{k}\left(c_{j k} I+d_{j k}\right) p_{j k}
$$

with $d_{j k}$ nilpotent matrix. Let us denote by $g_{j k}(t, x)$ the heat kernel of

$$
g_{t}+\ell_{j} g_{x}=\left(c_{j k} I+d_{j k}\right) g_{x x}
$$

For ξ large (small space scale), $E(z)=z(\tilde{A}+\tilde{B} / z)$, one has to consider the decomposition

$$
\tilde{A}=\sum_{j} \lambda_{j} R_{j} L_{j}, \quad L_{j} \tilde{B} R_{j}=\sum_{k}\left(b_{j k} I+e_{j k}\right) q_{j k}
$$

and let $h_{j k}(t, x)$ be Green kernel of the transport system

$$
h_{t}+\lambda_{j} h_{x}=\left(b_{j k} I+e_{j k}\right) h .
$$

Define the matrix valued functions

$$
K(t, x)=\sum_{j k}\left[\begin{array}{cc}
r_{j} g_{j k}(t, x) p_{j k} l_{j} & -\frac{d}{d x} r_{j} g_{j k}(t, x) p_{j k} l_{j} \tilde{A}_{12} \tilde{D}^{-1} \\
-\frac{d}{d x} \tilde{D}^{-1} \tilde{A}_{21} r_{j} g_{j k}(t, x) p_{j k} l_{j} & \frac{d^{2}}{d x^{2}} \tilde{D}^{-1} \tilde{A}_{21} r_{j} g_{j k}(t, x) p_{j k} l_{j} \tilde{A}_{21} \tilde{D}^{-1}
\end{array}\right]
$$

Theorem. The Green kernel for (11) is

$$
\begin{equation*}
\Gamma(t, x)=K(t, x) \chi \quad \underline{\lambda} t \leq x \leq \bar{\lambda} t, t \geq 1+\mathcal{K}(t, x)+R(t, x) \chi \quad \underline{\lambda} t \leq x \leq \bar{\lambda} t \tag{12}
\end{equation*}
$$

where $\underline{\lambda}, \bar{\lambda}$ are the minimal and maximal eigenvalue of \tilde{A} and the rest $R(t, x)$ can be written as

$$
R(t, x)=\sum_{j} \frac{e^{-\left(x-\ell_{j} t\right)^{2} / c t}}{1+t} \quad \begin{array}{cc}
\mathcal{O}(1) & \mathcal{O}(1)(1+t)^{-1 / 2} \\
\mathcal{O}(1)(1+t)^{-1 / 2} & \mathcal{O}(1)(1+t)^{-1}
\end{array}
$$

for some constant c.

Differences with the previous result by Y. Zeng (1999):

1. finite propagation speed (hyperbolic domain);
2. Structure of the diffusive part (operators R_{0} and L_{0});
3. $B A_{0}$ not symmetric $\Leftrightarrow \tilde{D}$ not symmetric (as in Hanouzet-Natalini (2002), Yong (2002)).

From a technical point of view, when we study the function

$$
\hat{G}(t, \xi)=\exp (E(z) t)=\exp (\tilde{B}-z \tilde{A}) t
$$

and we compute its inverse Fourier transform, the differences w.r.t. Y. Zeng are:

- a carefully analysis of the families of eigenvalues whose projectors do not blow up near the exceptional points $z=0, z=\infty$;
- when estimating $e^{E(z) t}$, one has to deal always with matrices;
- the path of integration in the complex plane depends now on the viscosity coefficients $c_{j k}$, which is a complex number.

Asymptotic behavior

Consider now the original problem

$$
w_{t}+F(w)_{x}=G(w)=\begin{gather*}
0 \tag{13}\\
q(w)
\end{gather*} \quad, \quad w(x, 0)=w_{0}
$$

We have

$$
w_{t}+F^{\prime}(0) w_{x}-G^{\prime}(0) w=F^{\prime}(0) w-F(w)_{x}-G^{\prime}(0) w-G(w)
$$

Then we can write the solution as

$$
w=\Gamma(t) * w_{0}+\int_{0}^{t} \Gamma(t-\tau) * \quad F^{\prime}(0) w-F(w)_{x}-G^{\prime}(0) w-G(w) \quad d \tau
$$

Since for any vector vector $(0, V) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}$ one has for the principal part K of the kernel Γ

$$
K(t, x) \quad \begin{aligned}
& 0 \\
& V
\end{aligned}=\sum_{j k} \frac{d}{d x} \quad \frac{d}{d x} \tilde{D}^{-1} \tilde{r}_{j} g_{j k}(t, x) p_{j k} l_{j} \tilde{A}_{12} \tilde{D}_{j} \tilde{D}_{j k}^{-1}(t, x) p_{j k} l_{j} \tilde{A}_{21} \tilde{D}^{-1}
$$

also the second term in the convolution contains an x derivative, so that one may use standard L^{2} estimates.

Theorem. Let $u(t)$ be the solution to the entropy strictly dissipative system (13), and let $w_{c}(t)=L_{0} w(t)$, $w_{n c}(t)=L_{-} w(t)$. Then, if $\|u(0)\|_{H^{s}}$ is bounded and small for s sufficiently large, the following decay estimates holds: for all β,

$$
\begin{gather*}
\left\|\partial_{x}^{\beta} w_{c}(t)\right\|_{L^{p}} \leq C \min \left\{1, t^{-1 / 2(1-1 / p)-\beta / 2}\right\} \max \|u(0)\|_{L^{1}},\|u(0)\|_{H^{s}} \tag{14}\\
\left\|\partial_{x}^{\beta} w_{n c}(t)\right\|_{L^{p}} \leq C \min \left\{1, t^{-1 / 2(1-1 / p)-1 / 2-\beta / 2}\right\} \max \|u(0)\|_{L^{1}},\|u(0)\|_{H^{s}} \tag{15}
\end{gather*}
$$

with $p \in[1,+\infty]$.
Remark. These decay estimates correspond to the decay of the heat kernel $\frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 4 t}$, and in particular the solution to the linearized problem

$$
w_{t}+\tilde{A} w_{x}=\tilde{B} w
$$

satisfies (14), (15). As a consequence these estimates cannot be improved.
Remark. Observe moreover that the non conservative variables $w_{n c}$ decays as a derivative of w_{c}.

Chapman-Enskog expansion

Consider now the Chapman-Enskog expansion

$$
\begin{gathered}
A_{0}(W) \partial_{t} W+A_{1}(W) \partial_{x} W=-\quad \begin{array}{c}
0 \\
D(W) V
\end{array}, \quad W=(U, V) \\
V \sim h\left(U, U_{x}\right):=-D^{-1}\left(A_{1}\right)_{21}-\left(A_{0}\right)_{21}\left(A_{0}\right)_{11}^{-1}\left(A_{1}\right)_{11} \quad U_{x}
\end{gathered}
$$

In the original coordinates, equilibrium at $v=h(u)$ and

$$
\begin{equation*}
u_{t}+F_{1} u, h(u)-D^{-1}(u, h(u)) F_{2}(u, h(u))_{x}-D h(u) F_{1}(u, h(u))_{x} \quad=0 \tag{16}
\end{equation*}
$$

The linearized form of (16) is

$$
u_{t}+\tilde{A}_{11} u_{x}-\tilde{A}_{12} \tilde{D}^{-1} \tilde{A}_{21} u_{x x}=0
$$

so that its Green kernel G is

$$
\tilde{\Gamma}(t)=K_{00}(t)+\tilde{\mathcal{K}}(t)+\tilde{R}(t), \quad K_{00}(t, x)=\sum_{j k} r_{j} g_{j k}(t, x) p_{j k} l_{j}
$$

Since the principal part of the linear Green kernel is the same (up to the finite speed of propagation), one can prove

Theorem. If $w(t)$ is the solution to the parabolic system (16), then for all $\kappa \in[0,1 / 2)$

$$
\left\|D^{\beta}\left(w_{c}(t)-w(t)\right)\right\|_{L^{p}} \leq C \min \left\{1, t^{-m / 2(1-1 / p)-\kappa-\beta / 2}\right\} \max \|u(0)\|_{L^{1}},\|u\|_{H^{s}}
$$

if the initial data is sufficiently small, depending on κ, and tending to 0 as $\kappa \rightarrow 1 / 2$.
Remark. At the linear level one gains exactly $t^{-1 / 2}$ (one derivative), but in dimension 1 the quadratic parts of F, G matter and this is way we can only prove the decay for all $k \in[0,1 / 2)$.

A Glimm Functional for Relaxation

Stefano Bianchini - IAC (CNR) ROMA

Consider the Jin-Xin relaxation model

$$
\begin{align*}
& F_{t}^{-}-F_{x}^{-}=U-A(U)-F^{-} \\
& F_{t}^{+}+F_{x}^{+}=U+A(U)-F^{+} \tag{17}
\end{align*}
$$

where $A(u)$ is strictly hyperbolic with eigenvalues $\left|\lambda_{i}\right|<1$, and

$$
U=\frac{1}{2}\left(F^{-}+F^{+}\right) \in \mathbb{R}^{n}, \quad M^{-}(u)=U-A(u), \quad M^{+}(u)=U+A(u) .
$$

To prove BV bounds, we follow an approach similar to vanishing viscosity:

1. decompose the derivatives f^{-}, f^{+}of F^{-}, F^{+}along travelling profiles,

$$
f^{-}=\sum_{i} f_{i}^{-} \tilde{r}_{i}^{-}, \quad f^{+}=\sum_{i} f_{i}^{+} \tilde{r}_{i}^{+} ;
$$

2. write the $2 n \times 2 n$ system (17) as $n 2 \times 2$ systems

$$
\begin{align*}
f_{i, t}^{-}-f_{i, x}^{-} & =-a_{i}^{-}(t, x) f_{i}^{-}+\left(1-a_{i}^{-}(t, x)\right) f_{i}^{+}+s_{i}^{-}(t, x) \tag{18}\\
f_{i, t}^{+}+f_{i, x}^{+} & =a_{i}^{-}(t, x) f_{i}^{-}-\left(1-a_{i}^{-}(t, x)\right) f_{i}^{+}+s_{i}^{+}(t, x)
\end{align*}
$$

3. estimate the sources s_{i}^{-}, s_{i}^{+}.

Center manifold. Let $U_{x}=v_{i} \tilde{r}_{i}\left(U, v_{i}, \sigma\right)$ be the center manifold for

$$
-\sigma U_{x}+A(U)_{x}=U_{x x}-\sigma^{2} U_{x x}
$$

near the equilibrium $\left(U=0, U_{x}=0, \lambda_{i}(0)\right)$, so that the center manifold for (17) can be written as

$$
\begin{aligned}
& F^{-}=M^{-}(U)-\left(1-\sigma^{2}\right) v_{i} \tilde{r}_{i}\left(U, v_{i}, \sigma\right) \\
& F^{-}=M^{-}(U)-\left(1-\sigma^{2}\right) v_{i} \tilde{r}_{i}\left(U, v_{i}, \sigma\right)
\end{aligned} \Longrightarrow \begin{aligned}
& f^{-}=(1+\sigma) v_{i} \tilde{r}_{i}\left(U, v_{i}, \sigma\right) \\
& f^{-}=(1-\sigma) v_{i} \tilde{r}_{i}\left(U, v_{i}, \sigma\right)
\end{aligned}
$$

Define $g^{-}=F_{t}^{-}, g^{+}=F_{t}^{+}$, and decompose the couple (f^{-}, g^{-}) by

$$
\begin{align*}
& f^{-}=\sum_{i} f_{i}^{-} \tilde{r}_{i}\left(U, f_{i}^{-} /\left(1+\sigma_{i}^{-}\right), \sigma_{i}^{-}\right)=\sum_{i} f_{i}^{-} \tilde{r}_{i}^{-}\left(U, f_{i}^{-}, \sigma_{i}^{-}\right) \\
& g^{-}=\sum_{i} g_{i}^{-} \tilde{r}_{i}\left(U, f_{i}^{-} /\left(1+\sigma_{i}^{-}\right), \sigma_{i}^{-}\right)=\sum_{i} g_{i}^{-} \tilde{r}_{i}^{-}\left(U, f_{i}^{-}, \sigma_{i}^{-}\right) \tag{19}
\end{align*}
$$

with $\sigma_{i}^{-}=\theta_{i}\left(g_{i}^{-} / f_{i}^{-}\right)$. The same for the couple $\left(f^{+}, g^{+}\right)$, with $\tilde{r}_{i}^{+}\left(u, f_{i}^{+}, \sigma_{i}^{+}\right)=$ $\tilde{r}_{i}\left(U, f_{i}^{+} /\left(1-\sigma_{i}^{+}\right), \sigma_{i}^{+}\right), \sigma_{i}^{+}=\theta_{i}\left(g_{i}^{+} / f_{i}^{+}\right)$.

We thus have $2 n$ travelling waves, n for each family of particles, and the "interaction" among these profiles occurs because of the left hand side of (18).

If we define

$$
\tilde{\lambda}_{i}(u, v, \sigma)=\left\langle\tilde{r}_{i}(u, v, \sigma), D A(u) \tilde{r}_{i}\left(u, v_{i}, \sigma\right)\right\rangle
$$

one ends up with the system

$$
\begin{align*}
& \left\{\begin{array}{c}
f_{i, t}^{-}-f_{i, x}^{-}=-\frac{1+\tilde{\lambda}_{i}^{-}}{2} f_{i}^{-}+\frac{1-\tilde{\lambda}_{i}^{-}}{2} f_{i}^{+}+s_{i}^{-}(t, x) \\
f_{i, t}^{+}+f_{i, x}^{+}=\frac{1+\tilde{\lambda}_{i}^{-}}{2} f_{i}^{-}-\frac{1-\tilde{\lambda}_{i}^{-}}{2} f_{i}^{+}+s_{i}^{+}(t, x)
\end{array}\right. \tag{20}\\
& \left\{\begin{array}{c}
g_{i, t}^{-}-g_{i, x}^{-}=-\frac{1+\tilde{\lambda}_{i}^{-}}{2} g_{i}^{-}+\frac{1-\tilde{\lambda}_{i}^{-}}{2} g_{i}^{+}+r_{i}^{-}(t, x) \\
g_{i, t}^{+}+g_{i, x}^{+}=-\frac{1+\tilde{\lambda}_{i}^{-}}{2} g_{i}^{-}+\frac{1-\tilde{\lambda}_{i}^{-}}{2} g_{i}^{+}+r_{i}^{+}(t, x)
\end{array}\right. \tag{21}
\end{align*}
$$

Among other terms, the source $s^{ \pm}, r^{ \pm}$contains the interaction term

$$
\begin{equation*}
f_{i}^{-} g_{t}^{+}-f_{t}^{+} g_{i}^{-}=f_{i}^{-} f_{i}^{+} \sigma_{i}^{+}-\sigma_{i}^{-}, \tag{22}
\end{equation*}
$$

where the last equality holds for speeds close to $\lambda_{i}(0)$.
We want to show that (22) corresponds to an interaction term, to which we can associate a Glimm functional: we consider this as the kinetic interpretation of the Glimm interaction functional for waves of the same family.

For simplicity we will set $\tilde{\lambda}_{i}=0$ in the following analysis.

The interaction functional

For a piecewise constant solution u of the scalar equation

$$
u_{t}+f(u)_{x}=0,
$$

we consider the interaction functional $Q(u)$ defined as (outside the interacting points)

$$
Q(u)=\sum_{\text {jumps } i, j}\left|\delta_{i}\right|\left|\delta_{j}\right|\left|\sigma_{i}-\sigma_{j}\right|, \quad \delta_{i} \text { strength, } \sigma_{i} \text { speed of the jump. }
$$

This functional can be extended to the parabolic equation

$$
u_{t}+f(u)_{x}=u_{x x}
$$

and its "form" remains the same,

$$
\begin{aligned}
Q(u) & =\iint_{\mathbb{R}^{2}} u_{t}(t, x) u_{x}(t, y)-u_{t}(t, y) u_{x}(t, x) d x d y \\
& =\iint_{\mathbb{R}^{2}} \frac{u_{t}(t, x)}{u_{x}(t, x)}-\frac{u_{t}(t, y)}{u_{x}(t, y)}\left|u_{x}(t, x)\right| d x\left|u_{x}(t, y)\right| d y
\end{aligned}
$$

We can interpret its time derivative as the area swept by the curve $\gamma=\left(u_{x}, u_{t}\right)$.

One can give another interpretation of the interaction functional for the scalar parabolic system by considering the variable $P(t, x, y)=u_{t}(t, x) u_{x}(t, y)-u_{t}(t, y) u_{x}(t, x)$, which satisfies

$$
P_{t}+\operatorname{div} \quad f^{\prime}(u(t, x)), f^{\prime}(u(t, y)) P=\Delta P
$$

for $t \geq 0, x \geq y$ and the boundary condition $P(t, x, x)=0$.
The interaction functional $Q(P)$ is now its L^{1} norm in $\{x \geq y\}$,

$$
Q(P)=\iint_{x \geq y}|P(t, x, y)| d x d y
$$

and the amount of interaction is the flux of P along the boundary $\{x=y\}$,

$$
\frac{d}{d t} Q(P) \leq-\int_{x=y} \nabla P \cdot(1,-1) d x=-2 \int_{\mathbb{R}} u_{t x} u_{x}-u_{t} u_{x x} d x
$$

We will show how to interpret the interaction term

$$
f^{-} g^{+}-g^{-} f^{+}
$$

as a flux along a boundary. As a consequence we will be able to construct a Glimm type functional, and prove that the above term is bounded and of second order w.r.t. the L^{1} norm of the components.

Consider the system (20), (21), and construct the scalar variables

$$
\begin{aligned}
& P^{--}(t, x, y)=f^{-}(t, x) g^{-}(t, y)-f^{-}(t, y) g^{-}(t, x) \\
& P^{-+}(t, x, y)=f^{+}(t, x) g^{-}(t, y)-f^{-}(t, y) g^{+}(t, x) \\
& P^{+-}(t, x, y)=f^{-}(t, x) g^{+}(t, y)-f^{+}(t, y) g^{-}(t, x) \\
& P^{++}(t, x, y)=f^{+}(t, x) g^{+}(t, y)-f^{+}(t, y) g^{+}(t, x)
\end{aligned}
$$

which satisfy the system

$$
\left\{\begin{array}{cc}
P_{t}^{--}+\operatorname{div}\left((-1,-1) P^{--}\right) & =\left(P^{+-}+P^{-+}\right) / 2-P^{--} \tag{23}\\
P_{t}^{--+}+\operatorname{div}\left((-1,1) P^{-+}\right) & =\left(P^{--}+P^{++}\right) / 2-P^{-+} \\
P_{t}^{+-}+\operatorname{div}\left((1,-1) P^{+-}\right) & =\left(P^{--}+P^{++}\right) / 2-P^{+-} \\
P_{t}^{++}+\operatorname{div}\left((1,1) P^{++}\right) & =\left(P^{+-}+P^{-+}\right) / 2-P^{++}
\end{array}\right.
$$

for $x \geq y$ and the boundary conditions

$$
P^{-+}(t, x, x)+P^{+-}(t, x, x)=0, \quad P^{++}(t, x, x)=P^{--}(t, x, x)=0 .
$$

We may read the boundary conditions as follows: a particle P^{-+}hits the boundary and bounce back as P^{+-}but with opposite sign. We are interested in an estimate of the number of particles colliding with the boundary $\{x=y\}$.

To prove that the average numbers of collision with the boundary is finite if the initial number of particles is finite (note that this is quadratic w.r.t. the L^{1} norm of f, g)

$$
Q(P)=\iint_{x \geq y}\left|P^{--}\right|+\left|P^{+-}\right|+\left|P^{-+}\right|+\left|P^{++}\right| d x d y<+\infty
$$

we consider the system for P in \mathbb{R}^{2} and an initial data of the form

$$
P^{+-}=-P^{-+}=\delta(x, y), \quad P^{++}=P^{--}=0 .
$$

The solution will be constructed as the sum of the solutions of the cascade of systems:

$$
\begin{aligned}
P_{t}^{-+, 0}+\operatorname{div}\left((-1,1) P^{-+, 0}\right)=-P^{-+, 0}, & P_{t}^{+-, 0}+\operatorname{div}\left((1,-1) P^{+-, 0}\right)=-P^{+-, 0} \\
P_{t}^{--, 1}+\operatorname{div}\left((-1,-1) P^{--, 1}\right) & =\left(P^{+-, 0}+P^{-+, 0}\right) / 2-P^{--, 1} \\
P_{t}^{++, 1}+\operatorname{div}\left((1,1) P^{++, 1}\right) & =\left(P^{+-, 0}+P^{-+, 0}\right) / 2-P^{++, 1} \\
P_{t}^{-+, 2}+\operatorname{div}(-1,1) \cdot P^{-+, 2} & =\frac{1}{2}\left(P^{--, 1}+P^{++, 1}\right)-P^{-+, 2} \\
P_{t}^{+-, 2}+\operatorname{div}(1,-1) \cdot P^{+-, 2} & =\frac{1}{2}\left(P^{--, 1}+P^{++, 1}\right)-P^{+-, 2}
\end{aligned}
$$

The remaining terms are left as source terms for system (23).

$\mathrm{P}^{-+, 2+\mathrm{P}^{+-, 2}}$

The solution to the second equation is

$$
P^{-+, 2}=\frac{1}{16} e^{-t} \chi\{|x|,|y| \leq 2 t\}, \quad P^{+-, 2}=-\frac{1}{16} e^{-t} \chi\{|x|,|y| \leq 2 t\}
$$

and the crossing due to this solution is

$$
\frac{1}{4 \sqrt{2}} \int_{0}^{+\infty} t e^{-t} d t=\frac{1}{4 \sqrt{2}}
$$

Due to symmetry, the total mass disappearing is thus

$$
\frac{1}{2} \int_{0}^{+\infty} t^{2} e^{-t} d t=1
$$

We thus obtain that the total crossing is less than.

$$
2+\frac{1}{2 \sqrt{2}} \quad Q(u)
$$

Remark. Observe that the amount of interaction is non local in time.

