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Abstract. We consider thermoelastic systems in two or three space dimensions where

thermal disturbances are modeled propagating as wavelike pulses traveling at finite speed.

This is done using Cattaneo's law for heat conduction instead of Fourier's law. For

Dirichlet type boundary conditions, the exponential stability of the now purely, but

slightly damped, hyperbolic system is proved in the radially symmetric case.

1. Introduction. We consider two- or three-dimensional thermoelastic bodies in-

cluding the second sound effect. The latter turns the classical thermoelastic system

of hyperbolic-parabolic coupled type into a purely hyperbolic, but damped hyperbolic

one. This way the paradox of infinite propagation speed of heat pulses is overcome,

which is regarded as being important in some applications like pulsed laser heating of

solids; compare [11, 18]. The governing differential equations for the displacement vector

u — u(t,x) g K™, n = 2 or 3, the temperature difference 0 = 9(t,x), and the heat flux

vector q = q(t,x) G Rra, where t > 0 and x € fl C R4, denoting the bounded reference

configuration with smooth boundary dfl (C2 is sufficient), are the following (compare

[2, 10, 14, 16]) for a homogeneous isotropic medium:

utt - nAu - (/u + A)Vdivu + /3W8 — 0, (1.1)

6t + 7 div q + 6 div ut = 0, (1-2)

Toqt + Q + kVO = 0. (1.3)

These equations are completed by initial conditions

it(0, •) = u0, ut(0, ■) = iti, 0(0, •) = 0O, <7(0,') = ®) (1-4)

and the following boundary conditions for a rigidly clamped body held at constant tem-

perature on the boundary:

u(t, •) = 0, 0(t, ■) = 0 on dfl, t > 0. (1.5)
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The parameters fj, (3,7,<5, To and k are positive constants, A + 2ju > 0, where fi and A

represent the Lame moduli and To is the relaxation time, a small parameter compared

to the others. For To = 0 we return to classical thermoelasticity since in this case

Cattaneo's law for heat conduction, expressed in (1.3) and responsible for the overall

hyperbolic character of the system, turns into Fourier's law

q = —kV0

making (1.2), (1.3) a parabolic equation for the temperature:

6t — 7kA0 + S div ut = 0. (1-6)

It is known for classical thermoelasticity (1.1), (1.6) that in general bounded domains,

for instance in all domains that allow reflecting rays, there is no uniform decay rate

for the energy; see [6, 7, 5]. On the other hand, it has been proved that whenever the

rotation rot u vanishes identically— for instance in a radially symmetric domain il with

radially symmetric data—then the energy decays exponentially; see [4, 5]. Now back

to thermoelasticity with second sound (1.1)—(1.3). What can one expect for this even

less dissipative—while only damped- hyperbolic system? Will the dissipation which

is still given through heat conduction be strong enough at least in radially symmetric

situations to exponentially stabilize all components u,0, and q? We recall that in [13]

the corresponding question was answered in the affirmative even for nonlinear systems.

Here we shall prove the same for the radially symmetric case after a discussion of the

general asymptotic behavior in terms of possible oscillatory behavior.

There seems to be 110 result on the precise decay up to now. I11 [15] the stability of

the null solution was investigated; compare also [17] in one dimension. Thus we present

the first description of the exponential stability. For the proof, appropriate Lyapunov

functions have to be found, combining techniques from classical thermoelasticity [4] and

from one-dimensional situations [13].

We remark that corresponding nonlinear problems are also of interest for the applica-

tions, and are under investigation. Another class of problems concerns Cauchy problems,

i.e., Q = IR"\ m = 1,2,3.

In Sec. 2 we look at the well-posedness in suitable Sobolev spaces that will allow a clear

description of the generic asymptotic behavior; in particular, the connection to classical

thermoelasticity will become apparent. In Sec. 3 the exponential decay will be proved

for systems where rot u = 0 = rot q, which has its application in Sec. 4 for radially

symmetric situations.

2. Well-posedness and remarks on general asymptotics. We transform the

initial boundary value problem (1.1)—(1.5) for (u,0,q) to a first-order system for

V =
(V\\

V2

V3

W4/

/u\

e
W

V(0) = v0 :=

(u°\

Ul

do

W

(2.1)



LINEAR 2- OR 3-D THERMOELASTICITY WITH SECOND SOUND 317

observing that (1.1)—(1.3) is equivalent to

k5utt + kSEu, + k5i3\79 = 0, (2-2)

nffOt + k/37 div q + kS/3 div Ut = 0, (2-3)

PlT0qt + fryq + k/37V(9 = 0, (2.4)

where

Eu := —/iAu — (fi + A)V div u. (2-5)

Let

Q :=

/I 0 0 0 \ / 0 -1 0 0 \

kSE 0 k6/?V 0

0 n5f3 div 0 k(37 div

V 0 0 np7V /J7 J

0 kS 0 0

0 0 k/3 0

\0 0 0 /37t0/

JV :=

in obvious notation, because "0" can denote a column or row vector in R™ with zero

entries or the null matrix in K" .

Then V satisfies

Vt{t)+Q~lNV{t)= 0, ^(0) = Vb. (2.6)

Solving (2.6) in appropriate spaces is equivalent to solving (1.1)—(1.4) in appropriate

spaces.

Let the operator E. formally defined in (2.5), be given by

E : D(E) c (L2(Q))n -► {L2(n))n,

D(E) := (H2(S2)nH01(Sl))n,

Eu := —fi.Au — (/i + A)V div-u.

Then E is positively definite and selfadjoint (see [8]), and we can define

H := (H^fl))n x (L2(n))n x L2(fl) x (L2(fl))n

with inner product

4

(V,W)H := (E^2V\E1^2W1) +J2(v^Wj),
j=2

where (•,•) denotes the usual L2(f2)["l inner product and norm (g,h) — fQg(x)h(x)dx

and respectively.

A : D(A) CH^H,

D{A) := {V £ H | V1 G {H2(fl))n, V2 G Vs G Hq(Q),V4 G D},

where

D {G e (L2{n))n | div G G L2(ft)},

and

AV := Q~lNV for V G D(A).

Then (2.6) turns into

Vt(t) + AV{t)= 0, V(0) = VoeD(A). (2.7)
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Lemma 2.1. (i) D(A) is dense in Tt and —A is dissipative.

(ii) 0 G £>(A)(= resolvent set of A).

Proof. (i) The density of D(A) is obvious. Let W G D{A), then

Re(-AW,W)n = -f3>y [ \W4\2 dx < 0. (2.8)
Jn

(ii) Let W G D(A) with AW = 0. Then by (2.8) we conclude

W4 = 0.

{AW)1 = 0 implies that

W2 = 0

then (AW)4 = 0 implies that

Vff3 = 0

whence, since W3 G Hq(Q),

IF3 = 0

follows. Finally, we get from (AW)2 = 0

EW1 = 0, W1 G D(E),

implying
Wl = 0,

altogether: W = 0, i.e., A"1 exists.

Now we solve AW = F for arbitrary F G H.

AW = F

is equivalent to

-W2 = F1, (2.9)

EW1 +0VW3 = F3, (2.10)

(3 div W2 + 7 div W4 = F3, (2.11)

kVW3 + I¥4 = t0F4. (2.12)

In view of (2.9) we define

W2 := -F1 G

also yielding

||w2|| - IIF1!! < ||F||. (2.13)

In view of (2.11), W4 should satisfy

7 div W4 = F3 - f3 div Fl (2.14)

or, looking at (2.12), W3 should satisfy

7K AVF3 = 7r0 div F4 — F3 — (3 div F1, (2.15)

where the right-hand side belongs to //-1(fi), which is the dual space of Hq(SI).

For (2.15) there exists a unique solution W3 G Hq(£1) satisfying

j|IF3|| + ||VW3|| < c(||F4|| + ||F3|| + IIF1!!) < CI|F||, (2.16)
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where c here and in the sequel will denote a generic constant possibly varying from

estimate to estimate. Now let

W4 := t0F4 - kVW3.

Then W4 G D and

\\W*l< c||F||. (2.17)

Finally, let W1 £ D(E) be the unique solution to

EW1 = -I3VW3 + F2

which satisfies

\\E1/2Wl\\<c\\F\\. (2.18)

Then the construct W = (W1, W2, W3, W4)' satisfies W £ D(A), AW = F, and by

(2.13), (2.16)—(2.18),

]|W||k<c||F||„, (2.19)

i.e., the range of A is all Ti and A~1 is continuous, which proves 0 G £>(^4). Q.E.D.

As a corollary (compare, e.g., Theorem 1.2.4 in [9]) we obtain that —A generates a

Co-semigroup of contractions {e_t'4}(>o on TL and we solve (2.7) as follows.

Theorem 2.2. The unique solution V G Co([0, oo), D(A)) fl C'1([0, oo), Ti) to (2.7)

Vt(t) + AV{t) = 0, V(0) = V0 G D(A)

is given by

V(t) = e-tAVo.

Higher regularity is obtained observing V(t) £ D(Am) if Vo G D(Am), m £ N.

We observe that Ais not compact in general: Let

( ° \
0

0

\ rot ipn/

Let AUn = Fn. Then we see that

( ° \
0

0

\t0 rot ipn)

but (Un)n does not have a convergent subsequence in general.

Purely oscillatory behavior is observed if there exist purely imaginary eigenvalues of

A, because if

AW = i£W, W £ D(A)\{0}, £ G R\{0}, (2.20)

then

Vf > 0 : \\e-tAW\\n = \\e-^W\\n = ||^||. (2.21)

We remark that the spaces and the norms have been chosen such that §'|iV(.£)||^ equals

the energy of first order to be studied in the next sections. Hence (2.21) expresses

Fr, := fcGC1^):, || rot -V>„II := 1-

Un =
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conservation of energy for data W satisfying (2.20), in particular no decay rate at all, in

this case.

Let W satisfy (2.20). Then we conclude

0l\\W4\\2 = Re(i£||W|&) = 0.

Hence

W'4 = 0

which implies

-W2 = i£W\

EW1 + (3\7WZ = i£W2,

/3dwW2 = i£W3,

kVW3 = 0,

from which we conclude successively

IV3 = 0

and

EW1 = |£|2W\ W1 e D(A), (2.22)

div W1 = 0. (2.23)

That is, there are purely imaginary eigenvalues if and only if the eigenvalue problem

(2.22) has a solution satisfying side condition (2.23). This is the same situation as in

classical thermoelasticity (to = 0; see [3] or [12, 5]) and leads to the conjecture that the

asymptotic behavior in thermoelasticity with second sound is essentially the same as that

in classical thermoelasticity, not, worse in general. We shall prove in the next sections

that this is true concerning exponential stability in symmetrical situations.

As is proved in [3] (compare also [12]), solutions to initial data essentially orthogonal

to the eigenspace corresponding to purely imaginary eigenvalues tend to zero. In cases

where A-1 can be shown to be compact, for example in the radially symmetric case

where in particular rot q = 0 and v x q = 0, the same behavior can also be proved;

compare [12, 3]. Here, the question of exponential stability for special cases is investi-

gated, namely for those only known situations where exponential stability is known for

the "more dissipative" system of classical thermoelasticity.

We remark that (2.22), (2.23) has or has no solutions depending on the domain; e.g.,

in balls there are solutions and hence an oscillating behavior of solutions is possible in

general (see for instance [12, 5]). Another comparison with the limit To —> 0 is given in

the next section.

3. Exponential stability if rotw = rot q = 0. In this section we assume a priori

that the solution (u,8,q) to (1.1)—(1.5) additionally satisfies

rot u = rot q = 0 in [0, oo) x f2, (3-1)

v x q = 0 in [0, oo) x <9Q, (3-2)
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where the rotation is defined for n = 2 as the scalar

rot := d\u2 — d2ux,

and v = v{x) denotes the exterior normal vector in x G dil. If the rotation of a scalar

field / is defined in R2 as

. , , d2f
rot / :=

then the formula

~di fj

A = V div — rot rot

holds in two and three space dimensions; moreover, if rot it = 0 and u G (H2(yi) fl

H^(Q))n, then

Vdivu = Aw and ||Vu|| = || divu|| (3.3)

and

fiA + (/.t + A) V div u = aAu,

where

ct *2/1 A.

We remark that the condition rotg = 0 is compatible with classical thermoelasticity

where q = —kV6, and not a serious restriction, while the condition rotu = 0 will be

satisfied in the radially symmetric case. From Sec. 2 we know that we cannot expect a

decay of solutions in general.

Let the energy terms of first and second order be defined as

:= o I {K^\ut\2 + K§a\Wu\2 + Kf3\0\2 + rp^\q\2}{t,x)dx
2 Jn

= E(t\ it, 0, q),

E2(t) := E(t;ut,Ot,qt).

We shall prove the exponential decay of E\{t) + E2{t) as t —> oo. For this purpose we

shall have to combine multiplier techniques and boundary control estimates used in [4]

for classical thermoelasticity with those used in [13], the latter of course adapted to the

multi-dimensional case requiring additional considerations.

Theorem 3.1. Let (u,0,q) be the solution to (1.1)—(1.5) satisfying (3.1), (3.2). Then

the associated energy

E(t) := Ex{t) + E2(t)

decays exponentially, i.e.,

3d0,C0 >0 Vt > 0 : E{t) < Coe~dotE(0).

Proof. One easily computes

jE,{t) = -Mqf, (3.4)

JtE2{t) = —II2- (3-5)

Of course, this corresponds to the dissipativity of the operator —A in (2.8).
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The differential equation (1.3) yields

2 o

l|W||2<^H|?tf + ~\\qr. (3.6)
Av

Multiplying (1.1) by —observing (3.3)—we get

|| A«||2 = —{utt, Att) + — (V0, Am)
a a:

implying

< Vu> + —1|Vut||2 + + i||Au||2
a at a 4 az 6

2 1 d 1 S fl2
-||Au||2 + --(Vut, Vu> < — II Vut||2 + Z4||V0||2. (3.7)
3 a at a 4r

Multiplying (1.2) by divut, we obtain

-|| divut||2 = - —t(divq, divut) - {61, divut)
a ad ad

= — (q, Vdivut) -(i/g, divut)anH -{VOt,ut),
ad ad ao

where (•, -)aa denotes the L2(<9fi)-inner product with norm || ■ ||an-

Thus, using the equations (1.1), (1.3) again,

!11 divf = S s <*• A">" 3 <"• A">+ 31(w- ->
3 37

 -(V6>,zttt) 5(i/g, divut)ao
Qd ad

37 d ^3/37(1 37

+ 44<vc.»,) - |(V«, Au) + ^||V«||2 - divifc)« (3.8)
ao ac d ao ao

37 fi 3/377-0 d 3/?7 d 2

+ i^iii.ii2+ ^««2 - ̂ 5 <«""<>" dbl <«•<*>
+ pllv^ll2 + + ^l|V0||2 - divu()^n-

Combining (3.7) and (3.8) we obtain, observing (3.3),

V«<ll2 + i||i«ll2 + 4ci(»)sd§ + § + S) ||V«||=
a 2 dt \4a2 d~2 nrf /

+ ~^2 H^f ~ divutW

where

e<"i(0 := — (Vm(. Vtt) - -^r(9,utt) + '^Tp-{<i-<ii) 1 3/^7 "~"2

(3.9)

a ' a2<5 ' a26/% ' a2SK

3t-0 . , 3
+ — (qtut) + ——{q,ut).

adK aon

(3.10)
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Using the first Poincare estimate for Ut and 9, as well as (1.1) for Utt, we obtain

ll^ttll2 + IKII2 + ll$ll2 < c(l|Au||2 + l|V0f + ||VMt||2), (3.ii)

where c > 0 will again denote a constant that may take different, values at different

places, c = c(a, f3,7, To, 0).

Multiplying (1.1) by u, we get

—a|| Vm||2 = (utt,u) + /?(V0,it)

which gives, using Poincare again,

f!|VH|2<c(|M|2 + l|W||2). (3.12)

A multiplication of (1.2) by 9t yields

ll^tll2 = -7(divq,9t) - S(di\ut,Bt)

< 7(<7, V6»t) + y ||div?tt||2 + i||6»(||2

= jt{q, V0> - 7(qtye) + j\\ divUt||2 + \\\9t\\2

whence, for arbitrary jl > 0,

p-pt f - V6>) ̂ MhtW2 + M7||V(9||2 + 52fi II div ut\\2 (3.13)

follows, and jl will be determined later.

The boundary term appearing in (3.9) will be treated next, in various steps using

boundary control estimates; compare [4] for the simpler situation in classical thermoe-

lasticity.

^:(vq, div ut)an < jlMlin + e||divtit||in, (3.14)

where 1 > i > 0 is still arbitrary and will be determined later, and ci (similarly C2, C3,...)

denotes a fixed constant.

Let <j £ (C^il))3 be such that <7 = (<7,),=i..,n with crk = vk 011 0Q, and let dk :=

k = 1, •, n.

Multiplying (1.2) by — |<Jkdk9t (summation convention), we obtain

0 = ~^(0tlcrkdk6t) - n?(divq,akdk9t) - (3{divut, crkdk0t)
0 0

= -^ll^llan + ^j((div<T)0t,0t) - ^j-^(dwq,<rkdk6) + ~(div qt,akdk0)

- P(d\vuuokdket) (3.15)

= -j-PtWdti + ^(( div a)6t, 0t) - y^(divq,akdk6)

- —j(dwq,<jkdk6) - ^^-(A9,akdk9) - j3( divut, crkdk0t).
T00 TqO
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Since

(A6,akdk6) = {vVO,vkdkd)aa ~ (V0, (,Vak)dkO) - (V9,akdkV0)

86 2

du
- <V0, &ak)dk6) - ~||V0||L + J((diva)V0, W>

an z

80

du

2 1

- (ve, cVak)dke) + -({dwa)ve, w),
an ^

where we used the boundary condition 6\qq, = 0 to conclude that V9 = • u, we get

from (3.15)

o = ItlNlIn - |<(di vcr)6t,6t) + 2^1 ̂  (div q, a kdk9)

, / a- » a\ , PiKH j(divq,akdk6) H  
T0d r0d

80

du
_M^(V0,(Vafe)afe0) (3.16)

an T°"

- —((div <r)V0, V0) + 2/3 (div ut,crkdk9t).
too

On the other hand we obtain in the same way, differentiating (1.1) with respect to t and

multiplying by akdkUt—actually an application of Lemma 2.3 from [4]—:

0 =
du 2

+ (n + A)|| div ut||~ £4.(utt,VkdkUt)
an atdu

- ((div a)utu utt) - 2n(dju\, (8j<jk)8ku\) (3.17)

+ n(( div cr)Vuf, Vut) - 2(/x + A)(divut, {Vak)8kut)

+ (n + X)({ diver) divut, divut) -2p(V9t,ak8kut).

Moreover, we have

Re(div Ut, akdk9k) = -Re(dkdmu™,crk6t) - Re(dmu™, {dk(jk)9t)

= •^Re(0t,akdkdmu^1) - k(9t(dmak)dku,ln)

+ Re(9t, (dm&^dkU™ - {d,,crk)dm //"') (3.18)

= Re(dm6t: <jkdkU™) + Re(0t, (dmcrk)dku™ - (dtcjk)dmu™)

= R e(V6t,akdkUt) + R .e(0t,{Vak)dkut - (diver) divut).

Adding (3.16) and (3.17), taking real parts and observing (3.18), we obtain

2/3 II All 2 ,
T1' "a!2 ~rrf

09

du

2

+

an

du-

dv

2

+ (/* + A) || divut |||n
an

+ ^Re (div q,crkdk9) - 2{utt,akdkut)\ ^3'19^

< c2(||0f||2 + 11V^112 + ||Vi/.f ||2 + ||Au||2).

Until now we only used rotu = 0 from the assumptions (3.1), (3.2). In the next step we

also exploit rot q = 0 and u x q = 0 on 8fl.

Multiplying (1.2) by aq yields

To(Ot,crq) + 7{ divq, aq) + 6(divut, crq) = 0 (3.20)
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with

\T0(et,aq}\ < e\\6tf + j||g||2 (3.21)

for some i > 0 to be determined later.

|<S(divut,<jg)| < e|| divwt||2 + %\q\ |2, (3.22)
£

(divq.aq) = (djqj,crkqk) = {vjqj,0kqk)dn. - (q3,(djcrk)gk) - {qj,crkdjgk)

= INIlL - (qj,(dj<?k)qk) - (<qj,vkdkqj)

2 /„  \ i||gll?_ _i_ I/« (3.23)

I I

= Hf " (?ji {dj(Tk)qk) ~ ̂ Ikllln + (divcr)«)

= 2 II^IJ - (Qj,(dj°k)qk) + -{q,(d™a)q).

Combining (3.20)-(3.23), we conclude (i small):

||^!|2<£(||^||2 + l|divMt||2) + |lkl|2 (3-24)

From (3.9), (3.13), (3.14), (3.19) (multiplied by (3.24) follows for sufficiently

small fl,£,e:

~llVut||2 + i||Au||2 + cell^H2 + jH{t) < c7(|M|2 + ||g||2), (3.25)

where (compare (3.10) for Gi{t))

H{t) := G\{t) + ——-Re (^^(dwq, akdk9) - 2(utt,crkdkut)) -2jl(q,V9). (3.26)
\x + A \ o )

A suitable Lyapunov function F is defined by

F(t) := + E2(t)) + H(t),

where e > 0.

Combining (3.3), (3.5), (3.11), (3.12), and (3.25), we see that F satisfies, for sufficiently

small e,

jtF(t) < -d1(El(t) + E2(t)) (3.27)

for some d\ > 0. On the other hand (e small enough),

3C1}C3 >0 Vt > 0 : CiE(t) < F{t) < C2E{t),

with

E(t) = El(t)+E2(t). (3.28)

Hence, we conclude from (3.27),

jtF(t) < —d0F(t),

with
,

°- cv
whence

F(t) < e~dotF(0)
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follows. Using (3.28) again, we conclude

E{t) < Coe~dotE{0)

with

C°- CV

Q.E.D.

Remarks.

(1) The conditions (3.1), (3.2) will he satisfied in the radially symmetric case; see

Sec. 4. The conditions on q, i.e., rotg = 0 and v x q = 0 on <9S1 are not very

restrictive, since for qo with rot qo = 0 and v x q0 = 0 on SO, it follows from the

differential equation (1.3). It is not known whether there are other applications.

(2) The constants dy and Co in Theorem 3.1 depend on T := (cc, (3,7,6, To) and on

(.l. where the latter dependence is given through the constant Cp in the first

Poincare estimate for v in

IMI < Cp\\\7v[\,

and through the estimates 011 a, Vcr. The dependence on T could be described

explicitly. Bounds for cio calculated in [13] in one dimension indicate a small

decay rate.

(3) Using properties of the generator of the semigroup A, it could also be shown

that the first energy E\ alone tends to zero uniformly; compare [19, p. 64], The

estimates here allow to estimate the constants; see Remark 2.

As in one dimension [13], it can be shown that the energy of the difference of the solution

(uT°,6T°,qT°) to (1.1)-(1.5) and the solution (u,6,q) to the corresponding system with

To = 0 vanishes of order Tq , provided the compatibility condition

<7(0, ■) = -kV0(O, •)

holds. If EJ" denotes the first-order energy for the difference (uTa — u, 8T° — 0, qT° — q) =

(v, q, z), then

dt

implying

^:Ela{t) = -P-)\\z\\2 ~ T0p-yK{Vet,z),

< r02^ f ||V^(S, -)||2 ds, (3.29)
/o

which holds in general, i.e., without assuming (3.1), (3.2).

Under the assumptions (3.1), (3.2) we have from [4]

||V0t(s, -)|| ds < 00,
10

implying

3C > 0 Vt > 0 : El°{t) < Ct%
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4. Radial symmetry. Having proved Theorem 3.1 it follows now as in classical

thermoelasticity (to = 0), see [4], the exponential stability for radially symmetric do-

mains fl and radially symmetric data. We recall that in a ball there are—nonradially

symmetric—data for which the energy E(t) does not decay at all; compare Sec. 1. We

summarize the considerations from [4] carried over to our case To ̂  0:

Let fl be a smoothly bounded, radially symmetrical domain; i.e.,

x £ => V.R € 0(2) (if 7i = 2) resp. 50(3) (if n = 3) : Rx € fl,

where (5)0 denotes the (special) orthogonal group. A vector field v and a function ip

from H to Rn and R, respectively, are called radially symmetric if

\/R E 0(2) (if n = 2) or 50(3) (if n = 3) Vx € Q : v(Rx) = Rv(x)

and ip{Rx) = ip{x), resp.

v and are radially symmetric if and only if there are x : [0, oc) —» R and £ : [0, oo) such

that for x € Q,

v{x) = xx(\x\), ip(x) = ((\x\).

Any radially symmetric vector field v satisfies

rot?; = 0 in Q, v x v = 0 on dQ. (4-1)

If the data uq, tti, <?o in (1-4) are radially symmetric, then the solution (u,9,q) to

(1.1)—(1.5) is radially symmetric for all times. This can be seen taking for R G 0(2)

resp. 50(3) (i?4: transposed matrix)

v(t, x) := Rtu{t, Rx), g(t, x) := 9(t, Rx),h(t, x) := Rtq(t, Rx).

Then (v,g,h) also satisfies (1.1)—(1.5); hence (v,g,h) = (u,0,q), implying the radial

symmetry. In particular, it and q satisfy (4.1); hence (3.1), (3.2) is satisfied, and we can

apply Theorem 3.1.

Theorem 4.1. Let Q be radially symmetric and let the initial data uo,mi,#Oi<7o be

radially symmetric. Then the energy E(t) = E\{t) + E2(t) associated to the solution

(u,0,q) if (1.1)—(1.4) decays exponentially; i.e.,

3d0, Co > 0 Vt > 0, E(t) < C0e~dotE(0).
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