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Abstract. We consider thermoelastic systems in two or three space dimensions where
thermal disturbances are modeled propagating as wavelike pulses traveling at finite speed.
This is done using Cattaneo’s law for heat conduction instead of Fourier’s law. For
Dirichlet type boundary conditions, the exponential stability of the now purely, but
slightly damped, hyperbolic system is proved in the radially symmetric case.

1. Introduction. We consider two- or three-dimensional thermoelastic bodies in-
cluding the second sound effect. The latter turns the classical thermoelastic system
of hyperbolic-parabolic coupled type into a purely hyperbolic, but damped hyperbolic
one. This way the paradox of infinite propagation speed of heat pulses is overcome,
which is regarded as being important in some applications like pulsed laser heating of
solids; compare [11, 18]. The governing differential equations for the displacement vector
u = u(t,z) € R™, n =2 or 3, the temperature difference 6 = 6(t, r), and the heat flux
vector ¢ = q(t,z) € R", where t > 0 and = € Q C R*%, 2 denoting the bounded reference
configuration with smooth boundary 9§ (C? is sufficient), are the following (compare
(2, 10, 14, 16]) for a homogeneous isotropic medium:

g — pAu — (L + A)Vdivu + V6 = 0, (1.1)
0; +~vdivg+ ddivuy =0, (1.2)
Toqt+q+liv9=(). (]3)

These equations are completed by initial conditions
U(O, ) = Ug, Ut(o, ) = u, 6(07 ) = 00» CI(O’ ) = qo (14)

and the following boundary conditions for a rigidly clamped body held at constant tem-
perature on the boundary:

u(t,r) =0, 8(t,-) =0 ondQ, t>0. (1.5)
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The parameters pu, (3,7,d, 79 and w are positive constants, A + 2 > 0, where g and A
represent the Lamé moduli and 7 is the relaxation time, a small parameter compared
to the others. For 7y = 0 we return to classical thermoelasticity since in this case
Cattaneo’s law for heat conduction, cxpressed in (1.3) and responsible for the overall
hyperbolic character of the system. turns into Fourier’s law

q=—rV0
making (1.2), (1.3) a parabolic equation for the temperature:
0 — yRAG + ddivuy, = 0. (1.6)

It is known for classical thermoclasticity (1.1), (1.6) that in gencral bounded domains,
for instance in all domains that allow reflecting rays, there is no uniform decay rate
for the energy: see [6, 7. 5]. On the other hand, it has been proved that whenever the
rotation rotwu vanishes identically - for instance in a radially symmetric domain € with
radially symmetric data—then the cnergy decays exponentially: sce [4, 5]. Now back
to thermoelasticity with second sound (1.1)-(1.3). What can one expect for this even
less dissipative-- while only damped—hyperbolic system? Will the dissipation which
is still given through heat conduction be strong enough at least in radially symmetric
situations to exponentially stabilize all components u. 6, and ¢? We recall that in [13]
the corresponding question was answered in the affirmative even for nonlinear systems.
Here we shall prove the same for the radially symmetric case after a discussion of the
general asymptotic behavior in terms of possible oscillatory behavior.

There seems to be no result on the precise decay up to now. In [15] the stability of
the null solution was investigated; compare also [17] in one dimension. Thus we present
the first description of the exponential stability. For the proof, appropriate Lyapunov
functions have to be found, combining techniques from classical thermoelasticity [4] and
from one-dimensional situations [13].

We remark that corresponding nonlinear problems are also of interest for the applica-
tions, and are under investigation. Another class of problems concerns Cauchy problems,
ie, Q=R"™ m=1,223.

In Sec. 2 we look at the well-posedness in suitable Sobolev spaces that will allow a clear
description of the generic asymptotic behavior; in particular, the connection to classical
thermoelasticity will become apparent. In Sec. 3 the exponential decay will be proved
for systems where rotu = 0 = rotgq, which has its application in Sec. 4 for radially
symmetric situations.

2. Well-posedness and remarks on general asymptotics. We transform the
initial boundary value problem (1.1)-(1.5) for (u,,¢q) to a first-order system for

Vl u Uy
2 ,
V= 53 =% erm v == ;; , (2.1)

v q 90
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observing that (1.1)-(1.3) is equivalent to

kdug, + kOEu + kGVE = 0, (2.2)
k0B0: + kBydivqg + k6 divus = 0, (2.3)
ByTog: + Byvg + kByVEO =0, (2.4)
where
Fu:=—pAu— (p+ M)V divu. (2.5)
Let
1 0 0 0 0 -1 0 0
Q= 0 k6 O 0 N o KOE 0 KOV 0
“lo 0o xkB o0 | 1 0 ké3div 0 kBydiv |’
0 0 0 By 0 0 kBYV By

in obvious notation, because “0” can denote a column or row vector in R"™ with zero
entries or the null matrix in R™".
Then V satisfies
Vi) + QTINV(t) =0, V(0)=V,. (2.6)
Solving (2.6) in appropriate spaces is equivalent to solving (1.1)-(1.4) in appropriate
spaces.
Let the operator E, formally defined in (2.5), be given by

E:D(E) C (L*(@))" — (L*(Q)",
D(E) = (H*(Q) N Hg ()",
Eu:=—pAu— (u+ A\)Vdivu.
Then FE is positively definite and selfadjoint (see [8]), and we can define
H = (Hg ()™ x (LAH(Q)" x L2(Q) x (L2 ()"
with inner product
(V, W)y := (EY2VE EV2W Y 4 i(vf, w9),
j=2

where (-,-) denotes the usual L?(2)[ inner product and norm (g,h) = Ja g(z)h(x)dx
and ||g||, respectively.

A:D(A)CH—H,
D(A) :={VeH |V c(H}Q)", VZc(HI} V)", V3eH}Q),V*e D},
where
D :={G e (L*(Q))" | divG e L*(Q)},
and
AV := Q7 'NV for V € D(A).

Then (2.6) turns into
Vi(t) + AV () =0, V(0) =V, € D(A). (2.7)
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LEMMA 2.1. (i) D(A) is dense in H and —A is dissipative.

(ii) 0 € o(A)(= resolvent set of A).

Proof. (i) The density of D(A) is obvious. Let W € D(A), then

Re(—AW W)y = —,6’7/ W4 2dz < 0. (2.8)
Q

(ii) Let W € D(A) with AW = 0. Then by (2.8) we conclude
w*=0.

(AW)! = 0 implies that
wW?2=0
then (AW)* = 0 implies that

whence, since W3 € H}(Q),

follows. Finally, we get from (AW)? =0
EW! =0, W!e D(E),

implying
Wl =0,
altogether: W =0, i.c., A~} exists.
Now we solve AW = F for arbitrary F € H.

AW =F
is equivalent to
-W?=F", (2.9)
EW! 4+ 3vws3 = F3, (2.10)
FdivIW? + ydiviv? = F3, (2.11)
KVW?3 + W* = 7o F*. (2.12)

In view of (2.9) we define
W? .= -F!'c H}(Q)
also yielding

W2l = [|F*| < [|F. (2.13)
In view of (2.11), W* should satisfy
ydivW* = F3 — gdiv F! (2.14)
or, looking at (2.12), W3 should satisfy
YRAW? = 1y div F* — F3 — 3div F!, (2.15)

where the right-hand side belongs to H (), which is the dual space of H}(1).
For (2.15) there exists a unique solution W* € H}(Q) satisfying

W2+ IVWE < c(IEY + IE2 ]+ ILFHD < el Fl (2.16)
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where ¢ here and in the sequel will denote a generic constant possibly varying from
estimate to estimate. Now let

W4 = roFy — kVW?.
Then W* € D and
W4 < ellFl- (2.17)
Finally, let W! € D(FE) be the unique solution to
EW! = —BVW3 + F,
which satisfies
IEV2WH| < e FII. (2.18)
Then the construct W = (W, W2 W3 W4 satisfies W € D(A), AW = F, and by

(2.13), (2.16)~(2.18),
Wl < cl|Flln, (2.19)

i.e., the range of A is all H and A~! is continuous, which proves 0 € o(A4). Q.E.D.
As a corollary (compare, e.g., Theorem 1.2.4 in [9]) we obtain that —A generates a
Co-semigroup of contractions {e~*4},5¢ on H and we solve (2.7) as follows.

THEOREM 2.2. The unique solution V € Cy([0, 00), D(A)) N C([0,00), H) to (2.7)
Vi(t) + AV() =0, V(0) = Vo € D(A)
is given by
V(t) = €_tAV().
Higher regularity is obtained observing V' (¢) € D(A™) if Vo € D(A™), m € N.
We observe that A~! is not compact in general: Let

0

Fo=| . Y €CHQ), |Irotyy] =1

rot ¥y
Let AU,, = F,,. Then we see that

0
0
To rot Y,

Un =

but (U, ), does not have a convergent subsequence in general.
Purely oscillatory behavior is observed if there exist purely imaginary eigenvalues of
A, because if
AW =1i€W, W € D(A)\{0}, € € R\{0}, (2.20)
then

V20 e Wl = lle” S Wl = |W]]. (2.21)

We remark that the spaces and the norms have been chosen such that 3|V (¢)|3, equals
the encrgy of first order to be studied in the next sections. Hence (2.21) expresses
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conservation of energy for data W satisfyving (2.20), in particular no decay rate at all, in
this case.
Let W satisfy (2.20). Then we conclude

BI[WH? = Re(i€||W||3,) = 0.
Hence
wt=o0
which implies
—W? =iewt,
EW?! + BVW? = ieW?,
BdivW? = igW3,

KVIW? =0,
from which we conclude successively
W?=0
and
EW! =W, W!e D(A). (2.22)
diviwt = 0. (2.23)

That is, there are purely imaginary cigenvalues if and only if the eigenvalue problem
(2.22) has a solution satisfying side condition (2.23). This is the same situation as in
classical thermoelasticity (7 = 0; see [3] or [12, 5]) and leads to the conjecture that the
asymptotic behavior in thermoelasticity with second sound is essentially the same as that
in classical thermoelasticity. not worse in general. We shall prove in the next sections
that this is true concerning exponential stability in symmetrical situations.

As is proved in [3] (compare also [12]), solutions to initial data essentially orthogonal
to the eigenspace corresponding to purely imaginary cigenvalues tend to zero. In cases
where A™! can be shown to be compact, for example in the radially symmetric case
where in particular rotq = 0 and v x ¢ = 0, the same behavior can also be proved;
compare [12, 3]. Here, the question of exponential stability for special cases is investi-
gated, namely for those only known situations where exponential stability is known for
the “more dissipative” system of classical thermoelasticity.

We remark that (2.22), (2.23) has or has no solutions depending on the domain; e.g.,
in balls there are solutions and hence an oscillating behavior of solutions is possible in
general (see for instance [12. 5]). Another comparison with the limit 79 — 0 is given in
the next section.

3. Exponential stability if rotu = rotq = 0. In this section we assume a priori
that the solution (u, 8, q) to (1.1)-(1.5) additionally satisfies

rotu = rotg=0 1in[0,0c) x Q, (3.1)
vrxq=0 in[0,00) x O,
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where the rotation is defined for n = 2 as the scalar
1
U
rot <u2> = 91u? — Bt

and v = v(x) denotes the exterior normal vector in z € 9. If the rotation of a scalar

field f is defined in R? as
Oz f >
rot f := ,
/ (—&f

A = Vdiv — rot rot

then the formula

holds in two and three space dimensions; moreover, if rotu = 0 and u € (H?(Q) N
HL(Q))™, then

Vdivu = Au and [[Vu| = | divul (3.3)
and

pA + (u + AV divu = aAu,
where
o =2u+ A
We remark that the condition rotq = 0 is compatible with classical thermoelasticity
where ¢ = —kV#0, and not a serious restriction, while the condition rotu = 0 will be
satisfied in the radially symmetric case. From Sec. 2 we know that we cannot expect a
decay of solutions in general.
Let the energy terms of first and second order be defined as

1
E(t) := 3 /Q{l~c<5|ut|2 + 56a|Vu]2 + Iiﬁ|9|2 + Tﬁ'y|q|2}(t,x)d:c

= E(t;u,0,q),
EQ(t) = E(t, U, 0,5, qt)
We shall prove the exponential decay of F1(t) + E2(t) as ¢ — oo. For this purpose we
shall have to combine multiplier techniques and boundary control estimates used in [4]

for classical thermoelasticity with those used in [13], the latter of course adapted to the
multi-dimensional case requiring additional considerations.

THEOREM 3.1. Let (u,6,¢q) be the solution to (1.1)—(1.5) satisfying (3.1), (3.2). Then
the associated energy
E(t) := Ex1(t) + Ea(t)
decays exponentially, i.e.,
3do,Co >0 Vt>0: E(t) < Coe~ D E(0).

Proof. One easily computes
d

ZEi1(t) = =pllal’, (3.4)
d
S E2(t) = =Byllal®. (3.5)

Of course, this corresponds to the dissipativity of the operator —A in (2.8).
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The differential equation (1.3) vields
272 2
V811> < = llgell + = llall*.
K K

Multiplying (1.1) by 1 Au—observing (3.3)—we get

] ,
|Aul? = E(utt.Au) + g(VG, Au)

1d 1 3 32 1
< -2y - 2 9M 2, 2
adt< ut,Vu)—l—aIIVutll +402||V9|l +3||AU||

implying
2 3 3 .
-||Au||2 + —%(Vut Vu) < —||Vut,||2 + 531Vl
Multiplying (1.2) by = d1v u¢, we obtain

. 3y, .. . 3 .
E” divug||? = —al(dlv q, divug) — J«)t’ div uy)
37
-5

i vq, divug)an + VO, us).

3

a(5< 5<

where (-, -)p denotes the LQ(OQ)—IHHGI‘ product with norm || - ||aq.
Thus, using the equations (1.1), (1.3) again,

q, Vdivu) —

a||d1vut|| 5(#( q. Au) a(s(qt,Au>+ 5dt (VH ug)
3 3 .
- $<V6’,utt) - a—’;('/q, div ug) o0
3y d 33y d

q. Vo) — —(qt Au)

= g ar ) + Las g le pv;

3 d 3 33
+ —OE(VG,UQ — g(VG,Au) 27 ||Vl9||2 5(z/q, div u)on
3y d 3Byt d 33’7 d 2
< 22 _ 20T % _
- (125 df {0, uie) a?dk dt {g. a0) a8k df” al
319 d 3
2, 1 2 0 a
i 52||qt|| R . o
Bﬁ

2 . 2 2 3 .
+ 22Ivel +ﬁnAuu SRV ~ 2 (v, divug)an.

Combining (3.7) and (3.8) we obtain, observmg (3.3),

2 2 1 2, d 3 33 2
z Z = < s
217w + glaul? + FG) < (3o + 55 + o5 ) 1961
277 3 .
282 ”(11‘“2 - _’Z;<U(L div u)aqs
where
_ 1 3y 36770
G1(t) = a(Vut.Vu) — —025(q,utt) + e (g, qt) +

37'() 3
+ m((huﬁ + $<Q»Ut>'

(3.6)

(3.8)

(3.10)
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Using the first Poincaré estimate for u; and 6, as well as (1.1) for u;, we obtain
et |® + luell® + 1017 < c(l|Aul]® + IVO]* + |V [?), (3.11)

where ¢ > 0 will again denote a constant that may take different values at different
places, ¢ = ¢(a, 8,7, 70, §2).
Multiplying (1.1) by u, we get

—a||Vu? = (s, u) + BV, u)
which gives, using Poincaré again,
a
SIVull® < elllual® + 1VOI?). (3.12)

A multiplication of (1.2) by 6, yields

||0t”2 = _'7<d1Vq,0t> - 6<divut,0t>
T SR
< (g, VO) + E” div | + 5||0t||

= 0. 90) — Aqn V) + S divue]? + 6,2
_dtq’ Y Gt D) Vut 5 t

whence, for arbitrary g > 0,
d 2 2 52 2
6e)1% — 2=, V) < ivllael)” + pylI VO™ + 0% 4] div | (3.13)

follows, and & will be determined later.

The boundary term appearing in (3.9) will be treated next, in various steps using
boundary control estimates; compare [4] for the simpler situation in classical thermoe-
lasticity.

3y . c1 N
J(WL divue)an| < g”l/(lngn + €[l div Ut”?mv (3.14)

where 1 > ¢ > 0 is still arbitrary and will be determined later, and ¢; (similarly co,c3,...)
denotes a fixed constant.

Let o € (C*(Q))? be such that o = (0;)i=1..., With o) = 14 on 99, and let 9 := %,
k=1,n

Multiplying (1.2) by —%ak(f)kﬂt (summation convention), we obtain

0= —E(Gt,ok(‘}‘kﬂﬁ - ﬁ(div q,0x0:0;) — B{divus, 040k 0:)

6 0
3 3 .
||0t||3Q + 2/5((divo)9t,9t) [6’yd (div q, o, O0) + '[57<d1vqt,ak8k(7’>
- /3<d1v ug, 0k Ok 0t) (3.15)
3~ d
210l + (v o) 0 — 2 L v g i)
By 137

—(div q, 01.0,0) — <A0 orOk0) — B{div uy, 010k6;).

7'0(5
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Since
(Aa,akﬁk@) = (l/v9 l/kak9>ag - <V9 (VO’]J@&G) — <V9,ak6kV0)
_|logy
~lov
1
2
where we used the boundary condition 6|50 = 0 to conclude that V6§ = % - v, we get
from (3.15)

— (V0. (Voy)ob) — ||v9||69+ <(d1va)v0 Vo)
N

%2
ov

— (V0. (Vor)ob) + %((div a)VH,Vo),

o0

20 20
= _ﬁnet”?m §<(d1"0)9t 6:) + Tvd— div q, 01,0,0)
20y Bk 2Bk
+ " (div ¢, 01,0,0) + 8 81/ o py (VE, (Vo )oL0) (3.16)
el

- —((divo)V,V0) + 23(div us, 01,0k6;).

On the other hand we obtain in the same way, differentiating (1.1) with respect to ¢ and
multiplying by o,0,us—actually an application of Lemma 2.3 from [4]-—

ou ||? . d
0= ’ a—l/t o0 + (/1 + /\)H div utH(?)Q — 2&(“&. O'kak‘llt>
— ((div o )ure, wee) — 20(0jul. (Oj0 ) Oruy) (3.17)

+ p{(divo)Vue, Vur) — 2(p0 + A){div ug, (Vo) Orur)
+ (1t + A {(div o) divug, divug) — 28(V;, 010 us).
Moreover, we have
Re(divu;, 01.0k01) = —Re(0p0nui", 01.0;) — Re(Omul. (Oror )0:)
= —Re(0;, 010, Op uf") — k(0:(Omok)Okui™)
+ Re(br. (Omor)Okuy™ — (Opok ) Omui™) (3.18)
= Re(0p0t, 01.0ku}") + Re(by, (0o )Oruy™ — (Opok ) Omul™)
= Re(Vb;,01.0kus) + Re(by, (Vor)Orur — (divo) div uy).
Adding (3.16) and (3.17), taking real parts and observing (3.18), we obtain

2
8ut
o |0

2 /375

I54 .
||9t||asz + (e A divug||3g

2
o0 }

v
2/
+ dtR (%(divq. orOkb) —2('11”,0;\.81\‘,1”))

< ea([l6e]® + [IVOI* + [[Vue | + | Au?).

(3.19)

Until now we only used rotu = 0 from the assumptions (3.1), (3.2). In the next step we
also exploit rotg =0 and v x ¢ = 0 on 9.
Multiplying (1.2) by oq yiclds

10(0:, 0q) + y(divq,oq) + 6{divus. oq) =0 (3.20)
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with
~ C
7046, 00)] < E60.]1° + Z |
for some € > 0 to be determined later.
. - . C.
|0(divus, 0q)| < || divug|® + g‘lIQI 2,
(divg,oq) = (0;45,0kqr) = (V3¢5 okqk)a0 — (a5, (Oj0k)gk) — (a5, Tk0;Gx)
= lvall3q — (a5, (O01)ar) — {4, oxOka;)
1 1 .
= llvall® = (a5, (9;0)ak) = 5llallza + 3{g. (divo)g)

1 1 .
= 5 lvall® = (g5, (Bjon)ak) + 5{g, (div o)g).
Combining (3.20)-(3.23), we conclude (¢ small):
~ . Cs
lvgl® < E(16eN® + I divue|?) + gllqll2

From

(
small fi, €,

£:

LTl + 1Au? + ol + 5 H () < erlladl’? + ),

where (compare (3.10) for G;(t))
é

+A
A suitable Lyapunov function F is defined by

H(t) = Gl(t) + 1

F(0) = Z(By(0) + Ba0) + H(0),

where £ > 0.

(3.21)

(3.22)

(3.23)

(3.24)

3.9), (3.13), (3.14), (3.19) (multiplied by ui—A)’ (3.24) follows for sufficiently

(3.25)

Re (?%qu,akakw - 2<utt,okakut>) — 20, V6). (3.26)

Combining (3.3), (3.5), (3.11), (3.12), and (3.25), we see that F' satisfies, for sufficiently

small g,
LF(1) < ~d(Ea(1) + Ba(1)
for some d; > 0. On the other hand (¢ small enough),
3C1,C >0 VE>0:CLE(t) < F(t) < CLE(t),
with
E(t) = Eq1(t) + Ex(t).

Hence, we conclude from (3.27),

d
fad < _
ZF(t) < ~doF (1),
with g
dp = —%
0 CQ )
whence

F(t) < e"%!F(0)

(3.27)

(3.28)
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follows. Using (3.28) again. we conclude
E(t) < Coe™“tE(0)

with

Co =
Q.E.D.

Remarks.

(1) The conditions (3.1), (3.2) will be satisfied in the radially symmetric case; see
Sec. 4. The conditions on ¢, i.e., rotqg = 0 and v x ¢ = 0 on I are not very
restrictive, since for gy with rotgy = 0 and v x ¢y = 0 on 912, it follows from the
differential equation (1.3). It is not known whether there are other applications.

(2) The constants dyp and Cy in Theorem 3.1 depend on I' := (a, 3,7.4.79) and on
2, where the latter dependence is given through the constant (), in the first
Poincaré estimate for v in Hy(§2),

[oll < Cpl Vo],

and through the estimates on o, Vo. The dependence on I' could be described
explicitly. Bounds for dy calculated in [13] in one dimension indicate a small
decay rate.

(3) Using properties of the generator of the semigroup A, it could also be shown
that the first energy Ej alone tends to zero uniformly; compare [19, p. 64]. The
cstimates here allow to estimate the constants; sece Remark 2.

As in one dimension [13]. it can be shown that the energy of the difference of the solution
(u™,07.¢™) to (1.1) (1.5) and the solution (@.6,q) to the corresponding system with
70 = 0 vanishes of order 7¢. provided the compatibility condition

q(0,-) = —kV6(0. ")

holds. If E[° denotes the first-order energy for the difference (™ — @, 6™ — 6.q7 —§) =
(v, 0. 2), then

d , ~
TEL (1) = =312l =m0y (V. 2).

implying

EP() < 2*’7 / [V6: (. )2 ds. (3.29)

which holds in general, i.c., without assuming (3.1), (3.2).
Under the assumptions (3.1), (3.2) we have from [4]

2C
/ V0 (s.)||% ds < oc.
JO

implying

3C >0 Vt>0:EP(t) <O
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4. Radial symmetry. Having proved Theorem 3.1 it follows now as in classical
thermoelasticity (7o = 0), see [4], the exponential stability for radially symmetric do-
mains  and radially symmetric data. We recall that in a ball 2 there are—nonradially
symmetric—data for which the energy E(t) does not decay at all; compare Sec. 1. We
summarize the considerations from [4] carried over to our case 7y # 0:

Let €2 be a smoothly bounded, radially symmetrical domain; i.e.,

reQ=VReO2) (ifn=2)resp. SO(3) (ifn=23): Rz e,

where (S)O denotes the (special) orthogonal group. A vector field v and a function ¥
from © to R™ and R, respectively, are called radially symmetric if

VRe O(2) (fn=2)or SOB) (ifn=3) Vre:v(Rz)= Rvu(zx)
and Y(Rz) = ¢(z),resp.

v and ¢ are radially symmetric if and only if there are x : [0,00) — R and ¢ : [0, 00) such
that for x € Q,
v(z) = ax(lz]), ¢(x) = ().

Any radially symmetric vector field v satisfies
rotv=0in§, v xv=0onadN. (4.1)

If the data wug,u1,800,q0 in (1.4) are radially symmetric, then the solution (u,#,q) to
(1.1)—(1.5) is radially symmetric for all times. This can be seen taking for R € O(2)
resp. SO(3) (R!: transposed matrix)

v(t,z) := R'u(t, Rx), o(t,z) := O(t, Rx), h(t,x) := R'q(t, Rx).

Then (v, p,h) also satisfies (1.1)-(1.5); hence (v,0,h) = (u,0,q), implying the radial
symmetry. In particular, u and ¢ satisfy (4.1); hence (3.1), (3.2) is satisfied, and we can
apply Theorem 3.1.

THEOREM 4.1. Let  be radially symmetric and let the initial data wg,u1,6p,q0 be
radially symmetric. Then the energy F(t) = FE1(t) + E2(¢) associated to the solution
(u,0,q) if (1.1)-(1.4) decays exponentially; i.e.,

3do,Co >0 Vt>0,  E(t) < Coe W E(0).

Acknowledgement. The author thanks the reviewer for his suggestions that led to
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