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1. Introduction

This paper is concerned with the asymptotic behavior of solutions of the

second order nonlinear differential equation

(1) (Pit)y'ϊ+f(t,y,y') = θ,

for which the following conditions are assumed to hold:

(Ax) p: [0, oo)-»(0, oo) is continuous, and

(2) ^ Ή I T I T 0 0 as ^ ° ° ;

(A2) f' [0, oo)xR xR^>(0, oo) is continuous and nondecreasing in each

of the last two variables.

A prototype of equation (1) satisfying (Ax) and (A2) is

(3) y" + φ{t)ey = 0,

or more generally

(4) y" + φ(t)exp(\y\γ~ίy + \y'\δ~ίy') = 0,

where φ: [0, oo)-»(0, oo) is continuous and γ and δ are positive constants. It

seems to us that no systematic study of the qualitative behavior of solutions has

so far been attempted even for the simple equation (3) or (4), and this observation

motivated the present work.

We begin by noticing that all solutions of (1) can be continued to infinity.

In fact, let y(t) be a solution of (1) with given initial values at t = a (a^O) and

let [α, T) be its right maximal interval of existence. Suppose that T< oo. From

(1), (K0/(0) '= -f(t9 y(t\ / ( 0 ) < 0 on [α, T), so that p{i)y\i) is decreasing and

tends to — oo as ί-*T~. Hence there exist constants t0 e (α, T), k and / such that

)<^k and y'(t)£l on [ί0, T). Integrating (1) on [ί0, *L we have

/ ( 0 = Γ f(s9 y(s)9 y'(s))ds ^ Γ f(s, k, l)ds,
Jto Jto

which, in the limit as f-*Γ~, gives
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ΓT

= \ /(5> K 0^ 5 < °°
Jίo

0 0

This contradiction shows that Tmust be oo, that is, y(t) does exist throughout

[α, oo). On the basis of this remark we classify the set Sf of all solutions y(i)

of (1) existing on [α, oo) (a^Q) into the following four subsets according to the

values of l im^^ p(t)y'(t):

i m ^ „ p(t)y'(t) = - oo},

= {ye 6^: l i m ^ p(t)y'(t) = const<0},

= {y e &>: l i m ^ m p(t)y'(t) = const > 0} .

If y e s/ U a, then y(t) is eventually decreasing and satisfies l i m , ^ y(t)jP(t)= - oo

or lim^n y(t)/P(t) = const<0 according as yes/ or ye@; if ye&Ό &, then
y(t) is increasing on [α, oo) and satisfies l im^^ y(t)/P(t) = O or l im^^ y(t)/P(t) =

const > 0 according as y e <€ or y e Qι.

The objective of this paper is to establish criteria for the existence (or non-

existence) of members of the classes J ^ , ^ , ^ and Qι. The structure of the sets

s# U & and ^ U 2 are examined separately in Sections 2 and 3. It is shown in

particular that while &# U 88 (more precisely, exactly one of st and @) is always

nonempty, # U Q> may or may not be empty. Our main tool is the Schauder-

Tychonoff fixed point theorem applied to nonlinear integro-differential operators

acting on the Frechet space of continuously differentiable functions on \_a, oo).

Examples illustrating the main results are provided in Section 4.

For related results concerning equations of the form (1) but with different

nonlinearity the reader is referred to Belohorec [1], Kusano, Swanson and Usami

[2], Liang [3], and Usami [4].

2. Decreasing solutions

Let us first study the structure of the classes sf and @. We observe that

the set J3f U @ is always nonempty, since the solution y(t) of (1) with the initial

data y(a) = oί9 y'(ά) = β^0 is decreasing on [α, oo), and hence is a member of

s/ or ^ .

THEOREM 1. Suppose that (Ax) and (A2) hold. Then, s/^φ if and only if

(5) £ f(t, - kP(t), - -JLy) dt = oo for all k> 0.

THEOREM 2. Suppose that (Ax) and (A2) hold. Then, @±tφ if and only if
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(6) [K*9 ~fcpW' Jl ) dt < °° for some k>0-

PROOF OF THEOREM 2. Let y e @. An integration of (1) shows that

Since lim^^ piήyXή^im^^ y(t)IP(t) = const <0, there exist constants fc>0

and t0 > a such that

(8) y(t)*-kP(t) a n d y'(t) ^ -k/p(t) for t^t0.

Combining (8) with (7) yields (6).

Conversely, suppose that (6) holds. Let α e R be fixed. In view of (A2),
roo

\ f(t, oc — λP(t)9 —λjp{f))dt is a nonincreasing function of λ for λ>k, and so
Ja

one can choose an l>k large enough so that

Let C 1 ^ , oo) denote the Frechet space of all continuously differentiable functions

on [α, oo) with the usual metric topology, and let Y be the subset of C^a, oo)

defined by

Γ= lyeCιla, oo): α - 2lP(t) ^ y(t) g oc-lP(t),

Define the integro-differential operator J^: Y-^C^α, oo) by

(9) * X ί ) = α - 2/P(0

It is a matter of simple computation to show that & is a continuous operator

which maps Y into a compact subset of Y. Therefore, from the Schauder-

Tychonoff fixed point theorem it follows that IF has a fixed point y in Y. This

fixed point y — y(t) satisfies the integro-differential equation

y(t) = α - 2lP(t) + £ - ^ £/(r, y(r), /(r))dr<fe, ί ^ α,

from which one easily sees that y(t) is a solution of (1) such that lim^^ p(t)y'(f) =

— 2/, that is, y(t) is a member of the class β$.

PROOF OF THEOREM 1. Let yes/. Then, integrating (1) on [α, oo), we have



152 Takasi KUSANO, Manabu NAITO and Hiroyuki USAMI

(10) Γ/(ί, y{i), y\t))dt = oo.
J a

Since l im^^ p{t)y\t) ^im^^ y(ή/P(t) = -oo, for any k>0 there exists to>a

such that

(11) y(t)^-kP(t) a n d y'(t)^-k/p(t) for ί ^ t 0 .

The relation (5) follows from (10) and (11).

Suppose now that (5) holds. Then, Theorem 2 implies that & = φ, and so

s/^φ by the remark made at the beginning of this section. This completes the

proof.

REMARK 1. In view of Theorems 1 and 2 we see that s/^φ if and only if

31 = φ, that is, members of sύ and 3β cannot coexist.

3. Increasing solutions

We now turn to the study of the classes <g and @. In order to ensure the

existence of members of ^ U ̂  we need the following additional hypothesis:

(A3) lim^_ «,/(*, u, v) = 0 for any fixed (ί, v)e [0, oo) x R.

Clearly, (A3) is satisfied for (3) and (4). The structure of 3) is described in the

next theorem.

THEOREM 3. In addition to (AJ and (A2) suppose that (A3) is satisfied.

Then, S)φφ if and only if

(12) f °°/ (t, kP(t), -γ^Λ dt < oo for some k > 0.

PROOF. Let y e @. There exist constants k > 0 and t0 > a such that

(13) y(t)^kP(t) a n d y'(t)^klp(t) for t ^ t 0 .

Combining (13) with (7) which also holds for ye@, we see that (12) is satisfied.

Conversely, suppose that (12) holds. From (A2), (A3), (12) and the Lebesgue

dominated convergence theorem it follows that

I, α + /cP(ί), — π ) dt = 0,

and so there exists an α<0 such that
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Consider the set Y<=-Cι\a, oo) and the mapping iF: Y^Cι[a, oo) defined by

Y= {yeσia, oo): α + *- P(t) ί y(t) g α + kP(t),

and

(14) ^y(t) = α + A

Applying the Schauder-Tychonoff fixed point theorem, we conclude that there

exists a fixed point y e Y of ίF which gives a solution of (1) belonging to class @.

This completes the proof.

Next we examine the class <%. This class consists of bounded solutions and

unbounded solutions: # = ̂ VU ^M, where

<βh = {yeV: \imt^O0y(t) = const}, Vu = {yeV: l i m ^ y(t)= 00}.

THEOREM 4. (i) Suppose that (Ax) and (A2) hold. If <<£b*φ, then there
is a constant k such that

(15)

(ii) Suppose that (AJ, (A2) and (A3) ΛoW. T/iβn, ^ ^ φ if there are

constants k and />0 such that

(16) $>>/('• *'7ftr)Λ<00

PROOF, (i) Let y e &b. Integrating (1) from t to 00 yields

P(t)y'(t) = J"/(s, y(s), yf(s))ds, t ̂  a.

Dividing the above by p(t) and integrating on [0, ί], we have

y(t) = y(a) + \[j^ ]"/(?> ^(r)' y'Wrds, t ̂  a,

which implies that

C τ b Γ / ( r - ^w'y(r)) *•*=SΓCS1
that is,
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(17) \P(t)f(t, y(t),y'(t))dt<n.
J a

Noting that y'(t)>0 and y(t)^y(a) on [α, oo), we see from (17) that (15) holds
as desired.

(ii) Suppose that (16) holds for some k and Z>0. Choose α so that
fc, —1} and

Γmax {1, P(t)}f(t, α, -L)dt g /,

let Ύ denote the set

and define the mapping fF by

(18) ^ ( 0 = 2α

It is easy to show that & maps ^continuously into a compact subset of Y. Conse-

quently, IF has a fixed point y in Y, which is a solution of (1) satisfying lim^oo p(t)

y(ί) = 0 and lim^^ y(t) = const e[2oc, α]. This establishes the existence of a

member of &b. The proof is thus complete.

REMARK 2. In the case where the nonlinear term of (1) satisfying (A^

does not depend on / , that is, f(t, y, y')=f(t, y), a necessary and sufficient

condition for the existence of a member of <€b is that

/•oo

(19) \ P(t)f(t, k)dt < oo for some constant fc.
J a

REMARK 3. Consider the particular equation

(20) y" + φ(t)f(y)g(y') = 0,

where φ: [0, oo)->>(0, oo) is continuous, /, g: R^>(0, oo) are continuous and

nondecreasing, and limM_^oo/(w) = 0. As easily checked, conditions (15) and (16)

for this equation are equivalent and reduce to

(21) Γtφ(t)dt
J a

< OO.

It follows that (20) has a solution of class <€h (i.e., a bounded increasing solution
on [α, oo)) if and only if (21) holds.

It is very difficult to find sufficient conditions which ensure that

A simple necessary condition for (€u ̂  φ is given in the following theorem.
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THEOREM 5. Suppose that (A^ and (A2) hold. If <tfu*φfor (1), then

(22) Γ/(ί, k, O)dt < oo for all k> 0.
J

PROOF. If y e <£„, then clearly (7) holds. On the other hand, since

lim t_00X0/(0 = 0 and l im^^ y(t) = oo, for any fc>0 there is to>a such that

y(t) ^ k and y'{t) > 0 for ί ̂  ί0. Using these inequalities in (7) leads to (22).

COROLLARY 1. Suppose that (Ax), (A2) are satisfied. Then, & Ό 3> = φ if

Γ00

(23) \ /(ί, /c, O)dt = 00 /or βi ̂ rj; constant k.
Ja

PROOF. That (23) ensures &u = φ follows from Theorem 5. Since (23)

implies

Γ P(t)f(t, k, O)dt = 00 for all k,
) a

(i) of Theorem 4 shows that ^b — φ. Noting that (23) also implies

ί, kP(t)9 JLϊ.yt = n for all k > 0,

we see from Theorem 3 that Qi — φ. This completes the proof.

The condition (23) ensuring that <g [} @ = φ can be strengthened under

more restrictive conditions on the nonlinearity of equation (1).

THEOREM 6. Consider the equation

(24) (KO/)' + <P(t)f(y, y') = 0,

where p(t) is as before, and φ: [0, oo)->(0, 00) and f: RxR^>(0, 00) are con-

tinuous. Suppose thatf(u, v) is nondecreasing in u and υ, and

5 Γ τ x ί V < o 0 forevery δ

if

(26) Γ P(t)φ(t)dt = 00,
Ja

then & U Q> = φ for (24), that is, (24) has no increasing solution.

PROOF. Suppose that (24) has a solution y e & U 3>. Integrating (24) from

t to 00 and noting that y(ί) is increasing, we have
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whence it follows that

Letting ί->oo in the above, we obtain

)y(a) f(u, 0)

which concludes the proof.

COROLLARY 2. Consider the equation

(27) (p(t)y'y + φ(t)f(y) = 0,

where p(t) and φ(t) are as in Theorem 6, and f: R-+(0, oo) is a continuous non-

decreasing function such that limM__oo/(M) = 0 and

(28) Γj^L<oo for every δ.

Then, (27) has no increasing solution (& \J @ = φ) if and only if (26) holds.

COROLLARY 3. Consider equation (20) satisfying the conditions as

mentioned in Remark 3. Suppose moreover that (28) is satisfied. Then, (20)

has no increasing solution (& U @ = φ) if and only if

(29) Γ tφ(t)dt = oo.
J a

REMARK 4. From the proof of Theorem 6 we find that under the condition

(30) Γ P(t)φ(t)dt < oo,
J a

if α is large enough so that

then none of the solutions of (24) starting from the point {a, α) belongs to ^ U ̂ ,

that is, every solution y(t) of (24) with y(a) = oc is eventually decreasing regardless

of the values of y\a). This observation justifies the situation encountered in the
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proof of (ii) of Theorem 4, where in order to ensure the existence of a solution
in c€h of (1) its initial value at t = a had to be taken to be a sufficiently small
negative number.

4. Examples

We give two examples which illustrate the results developed in the preceding
sections.

EXAMPLE 1. Consider the equation

(4) y" + <K0exp(|j>Γ1}> + I / I ' " 1 / ) = 0,

where γ and δ are positive constants. Our results specialized to (4) yield the

following statements:

( i ) Equation (4) has a solution y(t) such that l im^^ y(t)/t = const >0

(i.e. & ^ φ) if and only if

(31) (°° exp {kV)φ{i)dt < oo for some k > 0.
Ja

( ii ) Equation (4) has a solution y(t) such that \imt^O0y(t) = const (i.e.

if and only if

/*αo

< OO.(32) Γtφ(t)dt
Ja

(iii) Equation (4) has a solution y(t) such that l i m , ^ y{t)jt = const <0 (i.e.

iΐ and only if

(33) [ exp ( - kP)φ(t)dt < oo for some k > 0.
Ja

( iv) Equation (4) has a solution y(t) such that l im^^ y(t)/t= — oo (i.e.

co/ ̂  φ) if and only if

(34) (°° exp ( - kV)φ(i)dt = oo for all k> 0.
Jα

( v ) If (31) holds (e.g. if φ(t) = exp ( - mtn) with m > 0 and n ̂  7), then each

of ^ , # and ^ has a member, and we have Sf = @ U # U ^ for (4).

( vi) If (32) holds but (31) does not (e.g. if φ(t) = mΓn with m > 0 and n > 2),

then both & and # have members, and we have ^ = ̂ 1 1 ^ .

(vii) If (33) holds but (32) does not (e.g. if φ(t) = exρ(mtn) with m>0,

n^y), then all solutions of (4) are memberss of ^ , that is, &* = &.

(viii) If (33) does not hold (e.g. if φ(t) = exp(mtn) with m > 0 and n>y),
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then all solutions of (4) are members of s/, that is, 6^ — s/,

EXAMPLE 2. Consider the elliptic equation

(35) Δu + eu = 0 in Ωa,

where A is the Laplace operator in RN, ΛΓ^2, and Ωa = {xeRN: \x\>a}, a>0.

It can be shown that equation (35) possesses infinitely many solutions defined

on Ωa for any α > 0 . Notice that a radially symmetric function u(x) = y(\x\) is a

solution of (35) on Ωa if and only if y(t) satisfies the ordinary differential equation

(36) ( ί " - y ) ' + ίN" V = 0, t>a.

Let N = 2. Then, (36) is a special case of (1) with p(t) = t and/(f, u, v) = teu.

The function P(t) defined by (2) can be taken to be P(ί) = log t. Since

if k>2,
J a

Theorem 2 applies to (36) and ensures the existence of a solution y(t) such that

l i m ^ ^ y(t)/\ogt = const <0. All solutions of (36) have the same logarithmic

order of decrease as t-+oo, since there is no increasing solution of (36) by

Corollary 1. It thus follows that equation (35) with JV = 2 possesses a solution

u(x) on Ωa with logarithmic decrease at infinity:

(37) 0 * 1 ^ 1 ^ = const <0,

and that all radially symmetric solutions of (35) have the same asymptotic behavior

(37).

Let JV ̂  3. We transform (36) into

(38) (t*-Nz')f + t exp (t2~Nz) = 0, t > a,

where z = tN~2y, which is a special case of (1) with p(t) = t3~N and f(t, u, v) =

t exp (t2~Nu). We can take P(t) = tN~2 and verify that (5) is satisfied for (38):

According to Theorem 1 and Corollary 1 all solutions z(t) of (38) have the

asymptotic behavior
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This shows that equation (36) with JV^3 has solutions on (a, oo), all of which tend

to —oo as ί->oo. Therefore, in the case N^.3 equation (35) has a solution

u(x) on Ωa such that

(39) lim,JC,^0OM(x)= - oo,

and all radially symmetric solutions of (35) eventually decrease to — oo as |x|->oo.

References

[ 1 ] S. Belohorec, Monotone and oscillatory solutions of a class of nonlinear differential
equations, Mat. Casopis Sloven. Akad. Vied 19 (1969), 169-187.

[ 2 ] T. Kusano, C. A. Swanson and H. Usami, Pairs of positive solutions of quasilinear
elliptic equations in exterior domains, Pacific J. Math. 120 (1985), 385-399.

[ 3 ] Zhongchau Liang, Asymptotic properties of solutions of a class of second order nonlinear
differential equations, Shuxue Jinzhan 9 (1966), 251-264. (Chinese)

[ 4 ] H. Usami, Global existence and asymptotic behavior of solutions of second order
nonlinear differential equations, J. Math. Anal. Appl. (to appear)

^Department of Mathematics,

Faculty of Science,

Hiroshima University

and

^Department of Mathematics,

Faculty of Education,

Tokushima University




