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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
COAGULATION-FRAGMENTATION MODELS

AVNER FRIEDMAN* AND FERNANDO REITICH!

Abstract. In this paper we study the evolution of the number density n(z, ¢, ) of droplets of volume z with
chemical concentration ¢ subject to both coalescence (coagulation) and rupture (fragmentation, breakage). It
is proved that as t — oo the concentration tends to a limit value ¢, and the measure zn(z, ¢,t)dzdc converges
to 6(c — ceo )dL(z) where §(y) is the Dirac measure and dL is a measure satisfying the appropriate equilibrium
equation.

1. The model. Consider a mixture of a large number of incompressible spherical droplets
of varying volume size z in a solution (e.g., water or air). When the mixture is well stirred the
distribution of droplet size can be taken to be homogeneous in space. We may then introduce
the notion of density number n(z):

n(z)dx = number of droplets in unit volume
whose volume size lies between z and z + dz;

n(z) is independent of the location of the volume element.

Since the droplets are in continuous motion, they may collide and, as a result, coalesce. The
motion may also cause rupture. We assume that if two droplets of volumes  and ¢ coalesce,
they will form a droplet of volume z + ¢. The rate of coalescence is given by a function K(z,¢),
which is called the coalescence or coagulation kernel.

We also introduce the fragmentation or breakage kernel B{z,£) which is the rate that a
droplet of volume x breaks into two droplets of volumes ¢ and = — £.

Throughout this paper we assume that

z, ) is continuous and > 0 for z,£ > 0,

(1.1) B

Remark 1.1. Note that if volume is preserved under rupture, then

[ Ba.opede ~z.
0
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so that the last condition in (1.1) is very natural.

Due to coagulation and fragmentation the number density will actually vary with time,
and we introduce

n(z,t) = number density at time ¢.

The following conservation law holds:

En(x t)dz = number gained through coalescence
a

+ number gained through rupture
— number lost through coalescence

— number lost through rupture.

This can be expressed by the evolution equation:

d 7 i
ota) =3 [ to e cmie e+ ] e e

- B xé
0/ n(€, 1) dé a:tO/x £)de.

Here the underlying assumption is that, although n(z,t) varies with ¢, the mixture is maintained
homogeneous in space at any moment (due to continuous fast stirring).
Together with (1.2) we prescribe an initial condition

(1.2)

(1.3) n(x,0) =no(z), nol(z)>0.

There is substantial literature on coagulation and coagulation-fragmentation models. Melzak
[10] proved a general existence, uniqueness and positivity of a solution for all ¢ > 0. For other
results we refer to [2], [4], [9] and the references therein.

We shall actually be interested in a situation where each droplet carries a chemical species
which is uniformly distributed within it; the concentration ¢ of the chemical species is a variable
quantity. We then introduce

n(z, ¢, t)dzde = number of droplets at time ¢
with volume size in the interval (z,2 4 dz)
and concentration (of the chemical

species) in the interval (¢, ¢ + dc).



Analogously to (1.2), the number density n(z,c,t) evolves as follows:

T

%n(m,c,t) = %//K(:v —&,6)n <r — £, w;:gﬁt) n({,’y,t)xxjd'ydﬁ

(1.4)

where we define
n(z,d,t)=0 1if ¢ <O0.

Here we used the fact that rupture does not change the concentration. On the other hand, if
particles (£,v) and (5, 8) coalesce to produce (z,¢), then

z=¢(+n, zc=&y+np

so that
n=z-¢( B= %__—%7
and dyd{dndp = dyd{ Zzdzdc, since the Jacobian determinant
on o
g; g[cg is equal to - i 5;
dz Oc

this explains the appearance of x/(z — £) in the first integral on the right hand side of (1.4).

Remark 1.2. The last integral on the right-hand side of (1.2), or (1.4), can also be written
in the form

(NN

[ By

since

(SR

[ Bl.6rde = - [[€B(.6) + (x — Bz, £)) de

T

[ eBe,60de + (- Bl - ﬁ)dé“]

0

11

2

4

T

- - /éB(m,{)df.

0
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Together with (1.4) we prescribe an initial condition
(1.5) n(x,c,0) = ne(x,c), no(z,c) > 0.

The model (1.4) arises in the process of making a photographic film. The film is made of
several emersion layers. One of them consists of oil droplets in aqueous solution. The mixture,
prior to being coated on the film substrate, is subjected to coalescence and rupture by means of
stirring. A key problem is to determine the rate of coalescence (which depends on parameters,
such as the amount of surfactant added at the initial time). One of the methods to determine
coalescence is based on adding chemilumenescent species to the mixture:

The optical signal, which is the number of photons emitted per unit time from a droplet,
is a function, f(z,c¢), of the species concentration ¢ in the droplet and the droplet volume z.
One can measure the total signal

(1.6)

/f (z,c)dzde,
0

and this is used to to evaluate the rate of coalescence [8, Chap. 6].
Note that if two drops with parameters (21, ¢;) and (z3, ¢z) coalesce to form a drop with
parameters (&, ¢) then

1€ + 262

T=x14+29, C=
T+ 29

Typically f(x,c) = zc?, and then
f(ivé) < f(:vlvcl) + f($2ac2)a

so that the total signal should decrease.

The model (1.4) was developed by David Ross; see [8, Chap. 6]. He conjectured that as
t — oo the concentrations ¢ will all tend to a constant, say c.,. With this in mind, one defines
the degree of coalescence

(1.7) D(t) = ¢ — coo)lan(z, ¢, t)dzde
[l

and one would like to prove rigorously that
(1.8) D(t) -0 if t — oo.
Consider next the measures dy, defined by
(1.9) dpe(z,c) = an(z, ¢, t)dzdce
[f (1.8) is true then we may go one step further and try to prove that as t — oo
(1.10) di(z, ) = 8(c — coo)dL(z)
in the sense of weak convergence of measures, where 6(y) is the Dirac measure and

(1.11) dL is a solution of the equilibrium equation (1.2).
4



In this paper we shall prove, under mild additional conditions on K and B that (1.8) holds.
We shall also establish (1.10), (1.11) under the additional condition that

K(z,6) <nlz+¢), o =inf —/fB £)dé > 0, where

z>0

2n

o0
/rno x,c)dxde < ¥o.
0

The structure of the paper is as follows:

In §2 we establish existence, uniqueness and positivity of the solution of (1.4), (1.5) for all
t > 0. Assuming that

(1.13) no(z) = /no(:c,c)dc
0
we also prove that the function
(1.14) n(z,t) = /n(r,c,t)dc
0
is the unique solution of (1.2), (1.3). In §3 we prove conservation of mass
/:cn(:c,t)d:z: = const.
0

We also show that if no(z,c) = 0 whenever ¢ > ¢, (¢, constant) then n(z,c,t) = 0 for ¢ > c..
Using these results we derive in §4 a formula for dS/dt (see (4.2)) when S is defined in (1.6)
and f(z,¢) is any function satisfying |f(z,c)| < C(1+ z). This formula is the key to the proofs
of both (1.8) (in §5) and (1.10), (1.11) (in §6).

We finally remark that a coalescence problem for n(z,¢c,t) was studied in [1], with ¢ being
the concentration of surfactant which inhibits coalescence. The limit behavior of the solution
and the mathematical method for deriving it are entirely different from the limit behavior and
the methods of the present paper.

2. Existence and uniqueness. We shall need the following assumptions:

no(z) is continuous for = > 0,

(2.1) i
0 < np(a) < Ay, /no(at)d:r < Ay,
0

no(z, ¢) is continuous for x > 0, ¢ > 0,

0 < no(z,c) < Ay, //ng(w,c)d:cdc < A

where Ag, A; are positive constants.



THEOREM 2.1. [f (1.1), (2.1) hold then there exists a unique solution of (1.2), (1.3) with
n(z,t), dn(z,t)/0t continuous for x > 0, t > 0, such that, for each T > 0,

(2.3) sup |n(z,t)| + / [n(@,t)|de < C(T) <0 if 0 <t <T.
>0
= 0

The solution has the following additional properties:

(2.4) n(x,t) is analytic in t, t >0,
(2.5) n(z,t) > 0.

This theorem is due to Melzak [10]. We note that if K and B have compact support and
no(z) > 0 for all z > 0, then the proof of (2.5) is much simpler than the proof given in [10] (or
[3]). Indeed, if z is large then from (1.2) we see that dn(xz,t)/dt = 0 so that n(z,t) = no(z) > 0.
Hence if (2.5) is not true, with strict inequality, then there is a smallest ¢ = ¢ > 0 such that
n(z,t) > 0if t < to for all 2 > 0 and n(xg,to) = 0 for a finite point zo. From (1.2) we then
deduce that

dn(l'o, to)
dt

which is a contradiction. Finally, the solution n(z,t) for general K, B, ng, can be obtained as
a pointwise limit of solutions with compact K, B and strictly positive no(z) (cf. [3] or [4]), so
that (2.5) is true in general.

THEOREM 2.2. If (1.1), (2.2) hold then there exists a unique solution of (1.4), (1.5} with
n(z,c,t), On(z,c,t)/0t continuous for x > 0, ¢ >0, t > 0, such that, for each T > 0,

>0,

r>0,c2>0

(2.6) sup |n(z,c t)] + // In(z,c,t)|dede < C(T)< o0 if 0 <t <T.
00

The solution has the following additional properties:

(2.7) n(x,c,t) is analytic in t, t > 0,
n(z,c,t) > 0.

Proof. The proof is similar to the proof of Theorem 2.1 provided we can treat the first term
on the right-hand side of (1.4) analogously to the first term on the right-hand side of (1.2); this
means that we have to control the factor /(2 — ¢) in the integrand.

Introduce the operator

1 FT - ;
Jmn) =5 [ [ K@ =€ wm ( -6= _5”) — £l67)drde
00



In the second integral substitute

7_>7/: .’L‘C}—ﬁ’)ﬁ or v = .736—(.73—6)’)’,’ d’)’: —x_éd’)’/
r—¢ £
We then obtain
1 o2 . xe — €y x
J(Tnvn) = § / 0/] (I_éaf)m _év é o 77’(6171t)'r___§d7d€
0
[ [K@-gem (5, - (‘2‘ 1 ,t) mlz — 6,3y de.
z/2 0

Since the factors xng and ’Eﬁ in J; and J; respectively are uniformly bounded, we can easily
establish, as in [10], the bound

(2.9) m,n)lz < Clnlem [ [ iml + Clmlzs [ [ In]

[fleee = sup [f(z,c t)],

/i

_707|f($,c,t)|dcd:c,
00

Next we estimate

// |J(m,n)|decdx

by substituting

we obtain

(2.10) [ [z [ [l [ [

With (2.9), (2.10) at hand, we can now proceed as in [10], with just minor changes, to
establish Theorem 2.2. The positivity of n(z, c,t) can be proved, more simply, by the argument
following Theorem 2.1.

THEOREM 2.3. If (1.1), (2.1), (2.2) hold and, in addition,

(2.11) no(z) = /no(;t,c)dc,



(2.12) n(z,c,t)dec = n(z,t).
[

where n(x,c,t) and n(z,t) are the solutions of (1.4), (1.5) and (1.2), (1.3), respectively.
Proof. We first proceed formally to integrate (1.4) with respect to ¢. In the first integral
on the right-hand side we substitute

(2.13) cec’zxi:gy, dc':xiédc
to get
17
(2.14) 5 / Kz — & 6nlz — &, t)n(€, 1)dE.
0

where n(x,t) is the function defined by the left-hand side of (2.12). All the other integrals yield

immediately the corresponding integrals of (1.2). Hence, by uniqueness, the left-hand side of
(2.12) is the solution of (1.2), (1.3).
To prove the theorem rigorously we rewrite (1.4) in integrated form:

(2.15) n(z,c,t) —no(z,c) = /dt{%]}o]\—l—}

Since

//nrctdcch:<C( y<ooif 0<t<T,
00

the integral

oo

/n(x,c,t)dc

0

is finite a.e. in z, for each ¢, and we may integrate (2.15) with respect to ¢, 0 < ¢ < co. Each
of the four multiple integrals thus obtained is well defined and is finite. We now proceed with
the substitution (2.13) to obtain the term (2.14, and the proof of the theorem then follows as
before.

3. Conservation and invariant laws.

THEOREM 3.1. (Conservation law). If (1.1), (2.1) hold and

(3.1) /xno(a;)d:c < o0,
0



(3.2) 7$7z($,t)da: = 7&:n0($)dz

for allt > 0.
Proof. The assertion (3.2) means that

| =

(3.3)

I

t/:vn(a:,t)dx = 0.
0

This relation follows formally as a special case of Theorem 4.1 with f(z,c) = z. However, in
order to apply the proof rigorously we need to know a priori that, for any 7' > 0,

(3.4) /:rn(:mt)d:c <C(T)y<oo if 0<t<T.

0

If K, B and no have compact support then (3.4) is true and then so is (3.2). We now ap-
proximate general K, B, ng by K, B;, ng; with compact support and denote the corresponding
solutions by n;(z,t). Then, on one hand we have

/xnj(x,t)dzzr = /xnoyj(:v)d:c <C
0 0

for all j, and on the other hand n;(z,t) — n(z,t) pointwise (cf. [4]). It follows that n(z,t)
satisfies (3.4) and consequently (3.3), or (3.2), holds.
THEOREM 3.2. If (1.1), (2.2) hold and

(3.5) no(z,¢) =0 forz >0, c> ¢ (e >0),
then
(3.6) n(z,c,t) =0 forz>0,¢>cct>0.

Proof. If ¢ > c. then in the first integral on the right-hand side of (1.4)

xc— &y
r—¢§

Assuming that K has compact support and using (2.3), we conclude that the integral is bounded

by C'N(t), where

either v > ¢, or else > Cu.

N(t) = sup n(a,c,t).

20,c>cx

If B has compact support then the second integral on the right-hand side of (1.4) is bounded
by

Csupn(é,c,t), orby CN(1).

>



From (1.4) it then follows that

If 2 >0, ¢ > c., so that

N(t) < N(0) + C / N(¢)dt'.
0
Since N(0) = 0, the assertion (3.6) follows.
Having proved (3.6) in the case where K and B have compact support, we can now establish

the same result for general K, B by approximation (cf. the proof of Theorem 3.1).
For convenience we collect all the assumptions made so far on ne(z, ¢) and ne(z):

[ no(x) and ng(z, ¢) are continuous functions for z >0, ¢ > 0,

o

0 < ng(x) < Ao, /(l + z)ng(z)dz < oo,

0

0 < ng(z,c) < Ay, /no(:c,c)dc = no(z),
0

| no(z,¢) =0 if ¢>c, (e >0).
COROLLARY 3.3. If (1.1) and (3.7) are satisfied then (3.2) and (3.6) hold.
4. A formula for dS/dt. Let f(z,c) be any function satisfying

(4.1) |f(z,0)] <C(1+z) if >0, ¢c<ec.

and arbitrary otherwise. By (2.6) and Corollary 3.3 it follows that the integral

(4.2) S(t) = 77f(x c)n(z, ¢, t)dzde
00

exists for all t > 0.
THEOREM 4.1. If (1.1), (3.7) hold and f satisfies (4.1), then

7(13: 7Od§ 7dc7dfylx n(z, e, t)n(€,v,1t)

[\DI>—‘

di

rc+£’r

?

(4.3) x [ fle

+
-}-7(1557(10/003 E,z)n(é,c,t) [ —f(&, )] d€.
o o

Note that, by (2.6) and Corollary 3.3, all the integrals on the right-hand side of (4.3) are
absolutely convergent.

) f(ze) - (e, w}

10



Proof. Formally

(4.4) d5(t) ://f(x,c)i%’t—c’t—)dxdc.

dt

By substituting dn/dt from (1.4) and using (2.6), (3.2), (4.1), we find that each of the
resulting four integrals is absolutely convergent.

A standard argument then shows that S(¢) is differentiable and dS/dt is given by (4.4).
We can next write

where

L = 7(10[
0

I, = %?dr}ofxcdc//[(x—ff ( { ?I ) (ffy,) éd'ydﬁ

O/dco/d:v

= -1

\8

n(z, e, t)K (z,€)n(€,7,1)f (2, c)dvde

To evaluate I; we change the notation of the variables z — ¢ and £ — z in the second
integral in [- -] to get

[e0]

Joe 1o

This, in turn, is equal, by changing the order of integration, to

,e)n(é, e, t)dx

ml&

[e ¢} OO

/ da é B(&,2) f(€, c)n(€, c, t)dE.

(4.6) /dc/dx/B (¢, 2) l (z,¢) — Ef(ﬁ, )} n(&, ¢, t)dé

Next we turn to I; and change variables © — 2" where @ — £ = 2’ (for each fixed ¢) and
¢ — c by ’

_ydAsy w8y

o+ E x—¢
11



We get

[ee]

I = %O/dxlo/déb/dc/b/d’)’]‘y(xlag)n(xlvc’t)n(g’ﬂy’t)f (€ te %) .

We shall use the relations

!

/dc'/dyq) = /dc’/dv@ + /dc'
0 0 0 0 0

0 ¢!

/dc'/d7® +
0

0

dvy®

0\\8

(4.7)

Il

N
d’y/dc'(l),
0

which is valid with any integrand ®. Since after integration, in I3;, with respect to 2’ and £ we
get an expression W(y, ') which is symmetric in v, ¢/, we can write

o ¥ 00 c!
/d”y/dc'\ll('y,c') - /dc'/dw(y,c').
0 0 0 0

Hence for the purpose of calculating /5, we may replace the right-hand side of (4.7) by

CI

2/dc’/dfy<1>.
0

0

Consequently

(4.8) Iy = /d:z:'/df/dc’/dfy]x’(:x',f)n(:c’,c’,t)n({,y,t)f (x'+§,w_c,+_5’7,t>.
0 o 0 0 T+ ¢

Next we can write

In Ly we write

[e 0] [e.0] o0 vy
/dc dy = /d’y/dc
0 c 0 0

to get

Ly = 7dx7d§ 7d7]dc[((z,f)n(:c,c,t)n({,*y,t)f(:z:,c).

12



Changing the notation of variables v < ¢ and x < ¢ we find, using the symmetry of K(z,¢),
that

Ly = 7(1.57(1;1: 7(10/0dv]&'(m,ﬁ)n({,7,t)n(3:,c,t)f(§,c).

We substitute this expression into (4.9) and, upon renaming @', ¢ in (4.8) by z, ¢, obtain

[ee]

]2 - ]21 - ]22 - /d@/d{/dc/d'y]((:r,{)n(r,c,t)n(f,fy,t)
0 0 0

) -~ fae) - f(m)} -

Next we write in I,

~~/dc/d'y as ---/dy/dc
o 0 oA

and change notation ¢ & v, < £. We find that /5 1s equal to a similar integral in which

/dc/d’y is replaced by /dc/d'y
0 0 0 c

(here we again use the symmetry of K(z,£)). Tt follows that I, is equal to 1 times the first
integral on the right-hand side of (4.3). Recalling also (4.6), (4.5), the assertion (4.3) follows.

Formula (4.3) will play a key role in the subsequent sections. Note that the choice f = x
gives the conservation law (3.2) which was already proved. On the other hand the choice f = zc¢
gives a new conservation law:

(4.10) //:ECR (z,¢,t)dzede // zeng(z, ¢)dzde for all t > 0.
0 0 00

COROLLARY 4.2. If g(c) is a convex function then

d oo OO
al gle)zn(z,c,t)dzde < 0.

Indeed, the second integral on the right-hand side of (4.3) is zero whereas the first integral
1s <0

COROLLARY 4.3. Ifng(z,c) =0 for 0 <c¢ < ¢, & >0 then n(z,c,t) =0 for 0 < ¢ < ¢,
x>0,t>0.

Indeed, taking ¢(c) to be the convex function (¢ — ¢)* we conclude that

//c—c zn(a ct)d:de<//c—c zno(z, c)dzde = 0
0

13



and the assertion follows.
The proof of Theorem 4.1 can also be applied (or, rather, specialized) to functions of the
form

(4.11) (1) :/f(a:)n(l t)de

We then get:
THEOREM 4.4. If (1.1), (3.7) hold and f(z) satisfies

(4.12) flz)] < C +2),
then

S %//1 ya(€,1) [f(x + &) — f(x) — £(€)] dudg
(4.13) 00

+ZO :c/ (&, z)n(€, t){ flz )*Zf(g)] dé.

r

5. D(t) — 0 if t — oco. In this section we impose additional mild assumptions on K, B
and ng:

(5.1) 7$2n0( Ydz < o0

and
(a) K(z,&) < C(z +€)
(b)  0K(z6)> -

(c) 3 a positive constant 7; such that, for any N > 1,

(5.2) K(2,6) > (e +8)10<2,E< N,

¢
(d) /B(f,x):z:(ﬁ — z)dz > 7,€* V€ >0, for some v, > 0.

Remark 1.1 indicates that condition (5.2)(d) is quite natural. Note also that (5.2)(c) is
satisfied if

K(z.€) > { oz+¢) forx+é<1
) forz+4+£€>1

where 6 is a small positive constant.

Set
(5.3) My, = //1: (z,c)dxde, M, :// zeno(x, ¢)dzde,
0 0 )
(5.4) o = M

My
14



In this section we prove:

THEOREM 5.1. If (1.1), (8.7) and (5.1), (5.2) hold. then the function

[eeles]
//:z: ¢ — Coo)’n(z,c, t)dzde
00

I||

(5.5)

converges to zero as t — 00.
We need several lemmas.
LEMMA 5.2. There exists a constant C independent of t such that

(5.6) /:p2n(x,t)d:v <C Vvt>0.
0

Proof. Consider first the case where
(5.7) K, B and ng have compact support.

Then, for any T > 0,
S(t) = /x%(:r,t)da: <CT)<oo if 0<tLT,
0

and we may apply (4.13) with f(z) = z* (The proof is the same as that of Theorem 4.4.). We
get

dS i
<C n(x,t)n(€, t)rédrdé
0/0/

oo

—+—/n(§,t)d§/3(f,x)(:r2 — x€)dz,

o

since K(z,€) < C. Using Theorem 3.1 and (5.2) (d) we obtain

dS
= <c- %/5ngu@ C ().

Consequently

; : C
(5.8) S(t) < S(0)e ™ + —.
72
and (5.6) follows with a constant which is independent of the assumptions in (5.7). Approximat-
ing general K, B, ng by functions with compact support and applying (5.8) to the corresponding

solutions, we obtain, in the limit, the assertion (5.6).
Introduce the function

(5.9) //'tc n(z, e, t)dzde.
0 0
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Then

LEMMA 5.3. The function Sy(t) satisfies:
_ dSs(t)
AV
(5.11) <,
CZ2SQ(t)
<
(5.12) 7 < C
for allt > 0, and
dS,(1)

(5.13)

— 0 if t— oo.

dt

Proof. Using (4.3) with f(z,c) = zc® and noting that

(514) f< 63 xc+€€7) —f(CC,C)—f(é,’)’) = ‘ﬁ(c_ﬂ?a
we get
d oo oo ) o0 %
(5.15) 52 = %O/d:to/dﬁo/dco/d'y \T(j- g) E(c—v)Vn(z,c,t)n(€,,1),

so that dS,/dt <O0.
To prove (5.12) we want to apply Theorem 4.1 with

Kz
(5.16) flz,e) = Lé—) z(c— )% &,v are parameters.
z+¢

for simplicity we first take B = 0. Then

o0

d;;sf _ _%dejd{ ch Zd’y{n(f,’y, /d(7d01& (z,c,t)n(, 0,t)

o

0

K 2
« (ii‘ig)($+g)(xc:§a_7) “];(i’g)x(c_ﬂ?
Ix (5
C+€ ]
Using
vetlo ey +Clo—1)
¢ x4+

and a calculation similar to (5.14), we find that the expression in brackets is equal to

Kot 0O (cxe—of) | (KesGO KG0) .
Tt 21 ttC+E  w+é 7
K(z+¢, &)  K((¢§) 2

+(x+C+f <+§)Cw 7
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By (5.2)(a), K(z,¢) times the first term is bounded by cxz(, and, by (5.2)(a) and (5.2)(b),
K(z,() times each of the remaining two terms is bounded from below by —Cz(.
It follows that d?S,/dt? is bounded from above by

oo OO 3
C (//:cn(:z:,c,t)d:z:dt) < const.
00

If B # 0 then we have to estimate the corresponding positive contribution to d*S,/dt*:

O/dxofdg

where f(z,c) is defined as in (5.16). Since K(z,€) < C(x + ¢), we have f(z) < Cz. Recalling
also the last condition in (1.1) we find that the expression in (5.17) is bounded by

oo OC 2
C (//xn(x,c,t)dwdc) < const.
0 0

This completes the proof of (5.12).

It remains to prove (5.13). If the assertion is not true then there is a sequence t, — oo
such that

Cp

(5.17) de | dyén(€,v,t) f(z,c)n(z, ¢ t) | =
[ [

Do —
0\8
H

0> S5(ty) = —a < 0if n — oo.
Using (5.12) we get

(673

2
Salta +€) = Salt) = eS4(ta) + T 5(n) < =

if € is positive and small enough. It follows that we have f(z,¢) < Cx.
Sg(tn -+ 6) S Sz(tl) — ? <0
if n is sufficiently large, a contradiction.
For any N > 1 introduces the quantities

17\/[0‘]\[ =

A/[LN(.T) =

and



By Lemma 5.2,
C

|So(t) — San(t)] < — forall £ >0,

(5.18) N

LEMMA 5.4. There holds:

Q [ee] (e}

C
|Mon — Mol + | My n — M| < N

A

(5.19) /d:c/dc/d /dmc— n(w, e, t)n(€,y,1) = 2 (S(t) My — M?)

and, in particular,

(5.20) S(t)My > M2

The proof is obvious.
Proof of Theorem 5.1. by (5.15)

dSQt = //// d:vdcdédfy ? v€(c

z<N,E<N

where, since K(z,¢) < C,

=)’ n(z,c,t)n(€,v,1) + Jy

|In| < C////d:vdcd{dyxn z,c, t)n(€,y,t) < NQ

E>N

the last inequality follows by Lemma 5.2. Using (5.2)(c) we conclude that

d(ZQ___ //// dadedédyzt(c — ) (:E,Qﬂn(f,*y,t)-{-%,

z<N,E<N
Evaluating the last integral as in (5.19), we get

(152 ,_.’)/1
dt

so that

N
B!

Using (5.18) we deduce that

Sa(t) My — M2 < _2_5'( )+

T
Taking ¢ — oo and using (5.13) we find that

Tm (S(t)Mo — M?) <
18

-~ (S’Qn( YMon — Mf,N) + o

N2

C

=

Z_I o

<&
N



Taking N — oo and recalling (5.20), we find that
S(tyMo— M} — 0 if t — oo.

Consequently, as t — o0,

2
D(t) — % —2Co My + C2 My =0, by (5.10) and (5.4),

0

and the proof of Theorem 5.1 is complete

Remark 5.5. Dubovskii and Stewart [4] proved existence and uniqueness for (1.2), (1.3)
also in case K(z,¢) is unbounded, provided

K(z,¢) < C(z+¢),
no(z) < Ce™™ (A>0);

The solution is exponentially decreasing, and uniqueness is in the class of exponentially de-
creasing functions. Their result can be extended to (1.4), (1.5). Suppose now that K also
satisfies:

K(z,6) > y(z+¢€), v >0.

Then the proof of Theorem 5.1 remains valid without actually splitting integrals by 22N or
£ZN. Thus we get, in this case,

dS, 5
H S —Y3 (Sg(t)MO — A/.[1> .
The non-negative function
M2
T(t) = So(t) — =—-
(6)=Si(t) - 37
then satisfies
AT
il + 2737 <0
dt

so that
0 <T(t) <T(0)e 2,
We conclude that, as t — oo,

D(t) — 0 exponentially fast.

Note that in this case we do not require the assumption (5.2)(d).
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6. Asymptotic behavior of zn(z,c,t)dzdc. In this section we add one more assump-
tion on K, B, ng:

(6.1) K(z,&) < n(z + &) where 2Myn < 72, 72 as in (5.2)(d).

THEOREM 6.1. Let (1.1), (3.7), (5.1), (5.2) and (6.1) hold. Then there exists a non-
negative measure dL{x) such that
(6.2) tlim/ g(z,c)zn(z, ¢, t)drde = /g (z,c00)dL(2)

00

for any bounded continuous function g(z).

Introducing the measures

du(x,¢c) = zn(z, ¢, t)dzde

we can restate (6.2) in the form:
(6.3) dp(z,c) — 8(c — coo)dL(z) as t — o0, in the sense of weak convergence,

where 6(y) is the Dirac measure.
The proof requires several lemmas.
LEMMA 6.2. Under the assumptions of Theorem 6.1.

o0

(6.4) lim /g(x):cn(a:,t)d:c exists

t—o00

ot

for any bounded continuous function g(z).

Proof. Consider first the function

So(t) = 7I2n(:c,t)da:

By (4.13)
dTS;O = 07071 z, E)n(z, t)n(é, t)abdrde
+ Feo Tt s - s
0
< 7777(I+£ v, On(€, t)atdude
+ .7n(§,t)d§ 713(6,:6)(12 — zf)dz
< 27;So(t)1V100—7250(t)0

20



dSo
— t
2 < —a5(1),

6=, — 2nMy > 0.

Suppose now that ¢g(z) is a uniformly Lipschitz continuous function and write

/g Jen(z,t)de = /(g(r):r + Nz¥n(z,t)dz
(6.6) ° .
—N/J:Qn(:c,t)d:c = 5,(t) — NSo(1).

By (6.5), So(t) is monotone decreasing, and hence

(6.7) lim Sp(t) exists.

t—o00

Next, by Theorem 4.4 with f(z) = zg¢(z),

o0

%/g(m)xn(x,t)da’

o

[9(1‘+€)—g(¢)+g(x+€)—g(€)
13 x
4 / da / (€. 2)n(€, elg(e) — g(€)]de

The first integral on the right-hand side is bounded by

¢ [eniz0a 75 (6. t)dg

and the second integral is bounded b

o & 00
/n(ﬁ,t)d{/B(f,:r):cC’h —¢ldz < C/§27z(§,t)(lf.
0 0 0

Recalling (6.5), it follows that

1
%S 6N50( )+C()So(i)<0 1fN>%

and consequently

lim Sy(1) exists.

t—00

21



Combining this with (6.7) we deduce from (6.6) that (6.4) holds for any uniformly Lipschitz

continuous function g(z). .
Consider next the case where g(z) is any bounded continuous function and let g. be a

mollifier of ¢:

o) — g()] < e and (@) < © forall @ 20,
Write
79 yen(z, t)de = 7g6(1)xn(:v t)d
: :
+ [ (9le) = gula)) an(a, Hyde = T1(1) + Tul?)
;
Clearly

|T2(t)| < €.
By what was already proved above
A= tlim T1(t) exists.

Hence

[o.e]

/g(ax)xn(x,t)da: — A

0

lim
t—o00

<e.

Since the A, are uniformly bounded, we can take a sequence ¢ = ¢,, — 0 such that A., — A,
and obtain

tli—m /g(x):vn(:c,t)da: — Al =0.
This completes the proof of Lemma 6.2.
LEMMA 6.3. Under the assumptions of Theorem 6.1,
(6.8) tlim //g(x,c)mn(m,c,t)dxdc exists
0

for any bounded continuous function g(z,c).
The proof is similar to the proof of Lemma 6.2 and will be omitted. Note that here we

work (cf.(6.6)) with
(g9(x,c) + Nz*) and — Nz2

The limit in (6.8) is a bounded linear functional ® on the space of bounded continuous
functions ¢ equipped with the L* norm. By [6, pp. 261-262] we can write

tll’ll//g x,c)zn(x,c, t)dzde
(6.9) 00

= //g(a",c)dN(:L‘,C) = ®(g)
22



where dN is a bounded finitely additive regular set function. It will be also useful to view the
right-hand side of (6.9) as a distribution, and use the properties

1®(g)] < Clglre,
(6.10) .
B(g) >0 if g>0.

From Theorem 5.1 it follows that

//(c — Co)?dN(z,¢) = 0
and therefore also

(6.11) //g(x,c)(c— coo)?dN(z,¢) = 0

for any bounded continuous function g(z,¢).
If g(,c) vanishes in a neighborhood of the line {¢ = ¢} then we can apply (6.11) to the
function
g(z,c)
i(z,c) = (c—cx)?

0 elsewhere

on suppg

and conclude that

= //g(fc,c)(c — Coo)?dN(z,c) = 0.

It follows that the support of the distribution @ lies in the set {¢ = ¢, }. By a standard result
in the theory of distributions (e.g. [7, p. 69, Theorem 31}, ® must then have the form

2g)= ¥ D [ gl c)dh(a)

v Z _7
o<iy< 90T

where the derivatives 977 /9c'da’ are taken in the sense of distributions, and dk;; are measures.
In view of (6.10) we must have [ = 0 and, furthermore, dkyo is a non-negative measure. This
completes the proof of Theorem 6.1.

The equilibrium equation (1.1) is

K(z = € €)oo (2 — € (€)dg + / B(E, 2)neo (€)d

(NN
0\8

(6.12)

—Neo(T)

H

K(2,)nes (€)dE — noo(z /é £)de = 0.
0

If noo(z) is a bounded, non-negative, L*(0, 0o)-solution of (6.12), then the measure dL(z) =
INeo(x)dz satisfies:

[e¢]

/ / K(z.¢) [g(r + 52 —g(x) N gz + é; —g(¢)

DO |

(6.13) _ .
n / dL(¢) / B(& ) ;(o(x) ~ g(€))dw =0
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for any Lipschitz function g. Indeed, this follows from Theorem 4.4 applied to f(x) = zg(x).

DEFINITION. A bounded non-negative measure dL(z) is called a weak solution of (6.12) if
(6.13) holds for any continuously differentiable function g(z) with uniformly bounded derivative.

THEOREM 6.4. Under the assumptions of Theorem 6.1 the measure dL(x) is a weak
solution of (6.12).

Proof. We first establish (6.13) in case
(6.14) lg' ()| +1¢"(z)| < C, g(x) monotone increasing.

The starting point is the assertion that

d [ .
(6.15) pr /a:g(a:)n(;v,t) —0if t — oo.
To prove it we set

Sy(t) = /:rg(m)n(x,t)d;t

and proceed as in the proof of Lemma 5.3. By Lemma 6.2
(6.16) Jim S,(t) exists.

We next claim that

d?5,(1)
di?

(6.17) <cC.

To prove it we use Theorem 4.4 with f(z) = zg(a) to get:

dSz %7 /dgfs §)akn(z, t)n(€,1)

(6.18) x [9(”52—9(@ MUCESINTIE)

+ / da / B(&, 2)n(€,1)2(g(z) — g(£))dE = Jy(t) + To(t),

and continue to differentiate once more in ¢t Consider first the case B = 0. Then we can proceed
similarly to the proof of (5.13) with f(z,¢)/x in (5.16) replaced by

J(2) = K(z.6) lg(fc + 52 —9(e)  glet 62 —9(¢)

where ¢ is viewed as a parameter. Using (5.2)(b) and the assumptions on ¢ in (6.14) we easily
deduce that




If B(z,£) # 0 then the additional terms in d2Sy/dt? are also bounded, as can easily be shown.
Having proved (6.16), (6.17), we can now quickly prove (6.15). Indeed, if (6.15) is not true
then there is a sequence ¢,, — oo such that

(15’2 (tn)

B = dt

—B#0 if n— oo
It follows that

Salta — ac) ~ Saltn) =~ Bl + ST
< —1[325

K)

r4

< B+ Cé

if € is positive and small and n is large; this is a contradiction to (6.16).
So far we have proved that the left-hand side of (6.18) converges to zero as t — oco. Next
we evaluate the right-hand side of (6.18) as t — co. By Theorem 6.1

£
1
/5”“df gO/B r) — g(€))dz
(6.19) 5
*O/d <f>O/B<€7 >£( g(x) — g(€))da.

To evaluate J;(t) introduce the functions

k)

F(z,t) = /dflx’(x,ﬁ)gn(&t)g(x +f§ —g(2)

Fule) = [dLe) (e, M=,

The family of functions {F(z,t),t > 0} is uniformly bounded and equicontinuous, and, by
Theorem 6.1,

F(z,t) > Fo(z) if t — oo.

It follows that the convergence is uniform in any boundary interval 0 < 2 < R. Using also
Lemma 5.2, we easily deduce that

/:cn(;v,t) [F(2,t) = Fo(z)]dz — 0 if n — oo.
0

Since, by Theorem 6.1,

o0 o0

/d:vn(:v,t)Foo(:v) — / dL(z)Fo(2)

0 0
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we conclude that
/xn(m,t)F(x,t)d:c - /dL(:v)Foo(:c)
0 0

if t > oo. Combining this result with (6.19), we deduce that the right-hand side of (6.18)
converges to the left-hand side of (6.13), and since the left-hand side of (6.18) converges to
zero, the equality (6.13) follows.

So far we have assumed that g satisfies (6.14). However by approximation we can establish
(6.13) for any monotone increasing ¢ with first bounded and continuous derivative. Finally, if
¢ is not monotone increasing, we can decompose it into a difference of two monotone functions,
and this completes the proof of Theorem 6.4.

Remark 6.1. If no(z) is a stationary solution then n(z,t) = ng(z) and so

/n(x,c,t)dc = no(z).
0
It follows that

//g zn(z,c,t) drdc—/g Yano(z)dx
00

and

xn(z, ¢, t)dzde — 6(c — oo )(ano(z)dz).

Remark 6.2. It was observed by Carr [2] that if K and B are related by

K(z,y)Q(z)Q(y) = Bz + y,y)Q(z + y)

where () is a positive function, then

noo(2) = €°Q(x)

is an equilibrium solution. Dubovskii and Stewart [5] proved that if K(z,y) and B(z,y) are
linear functions then n(x,t) converges to an equilibrium solution n.(x); their methods are
entirely different from the methods of the present paper.
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