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Abstract: The higher-order delay differential equations are used in the describing of many natural
phenomena. This work investigates the asymptotic properties of the class of even-order differential
equations with several delays. Our main concern revolves around how to simplify and improve the
oscillation parameters of the studied equation. For this, we use an improved approach to obtain new
properties of the positive solutions of these equations.
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1. Introduction

This work investigates the asymptotic and oscillatory properties of solutions of delay
differential equation (DDE) of even-order

(
β(k)

(
s(m−1)(k)

)γ)′
+

L

∑
i=1

hi(k) f (s(λi(k))) = 0, k ≥ k0, (1)

Throughout this study, we assume γ ∈ Q+ is a ratio of odd numbers, m and L are positive
integers, m ≥ 4 is even, β, hi ∈ C1(I0), β(k) > 0, hi(k) ≥ 0, β′(k) ≥ 0, λi ∈ C(I0), λi(k) ≤ k,
λ′i(k) > 0, limk→∞ λi(k) = ∞, Iϑ := [kϑ, ∞), f ∈ C(R,R) and f (s) ≥ sγ for s 6= 0.

By a solution of (1) we denote to a function s in Cm−1([k∗, ∞)) for some k∗ ≥ k0,

which
(

β ·
(

s(m−1)
)γ)
∈ C1([k∗, ∞)) and s satisfies (1) on [k∗, ∞). Moreover, we suppose

sup{|s($)| : $ ≥ k1} > 0 for every k1 in [k∗, ∞), and

δ0(k0) :=
∫ ∞

k0

1
β1/γ(υ)

dυ < ∞. (2)

A solution s of (1) is said to be nonoscillatory if it is eventually positive or eventually
negative; otherwise, it is said to be oscillatory.

Delay differential equations as one of the branches of functional differential equations
appear when modeling several phenomena in different branches of science, see Hale [1],
Arino et al. [2], and Rihan [3]. In mathematical models of basic and applied sciences phe-
nomena, even-order differential equations are frequently encountered. Elasticity difficulties,
structural deformation, and soil settling are examples of applications; see [4].

The study of second-order DDEs and their properties has always been a subject of
continuous interest by researchers. For more information about the oscillation neutral
DDEs of second-order. In [5], Bohner et al. investigated the oscillatory properties of the
class of second-order DDE of neutral type. They improved and simplified the results of
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Agarwal et al. [6] and Han et al. [7]. The results in [8–12], recently, also contributed to the
development of the study of qualitative behavior of DDEs of second-order.

Although higher-order equations are important, higher-order DDEs have not received
as much attention as in the case of second-order DDEs. Since 2011, a research movement
focused on the study the asymptotic behavior of DDEs of even-order in the noncanonical
case (2). Zhang et al. [13–15] established criteria to ensure the oscillation of solutions of
a class of DDEs of even-order. Using a different approach, Baculikova et al. [16] studied
the asymptotic behavior of even-order DDEs in the canonical and noncanonical cases. For
more interesting, very recently, results about oscillation of higher-order DDEs, see [17–19].

In this paper, we obtain the oscillatory properties of the even-order DDE with several
delays (1). We extend Bohner’s results in [5] to higher order equations in order to improve
and simplify previous results in the literature.

Lemma 1. [20] (Lemma 1.1) Let v ∈ Cm(I0, (0, ∞)) and v(n) be eventually of one sign for all large
k. Then, there is an integer a ∈ [0, m], with m + a even for v(m) ≥ 0, or m + a odd for v(m) ≤ 0
such that

a > 0 yields v(ι)(k) > 0 for ι = 0, 1, ..., a− 1

and
a ≤ m− 1 yields (−1)a+ιv(ι)(k) > 0 for ι = a, a + 1, ..., m− 1,

eventually.

Lemma 2. [21] (Lemma 2.2.3) Assume that ν ∈ Cm(I0, (0, ∞)), ν(m) is of fixed sign and not
identically zero on a subray of I0, and that there is a k1 ∈ I0 with ν(m−1)(k)ν(m)(k) ≤ 0 for k ∈ I1.
If limk→∞ ν(k) 6= 0, then

ν ≥ α

(m− 1)!
km−1

∣∣∣ν(m−1)
∣∣∣,

for every α ∈ (0, 1) and k ∈ Iα, kα ≥ k1.

2. Preliminaries

Let us define
δl(k) :=

∫ ∞

k
δl−1(υ)dυ, for l = 1, 2, ..., m− 2

and
λ(k) := min{λi(k) : i = 1, 2, ..., m}.

Also, our results require the condition

δm(k) < ∞ for m = 0, 1, ..., m− 2. (3)

Lemma 3. Let s ∈ C(I0, (0, ∞)) be a solution of (1). Then
(

β(k)
(

s(m−1)(k)
)γ)′

≤ 0, and s
satisfies and its derivatives satisfy one of the following cases, eventually,

(1) s′(k) > 0, s(m−1)(k) > 0, s(m)(k) ≤ 0;

(2) s′(k) > 0, s(m−2)(k) > 0, s(m−1)(k) < 0;

(3) s′(k) < 0, s(m−2)(k) > 0, s(m−1)(k) < 0.

Proof. Let s ∈ C(I0, (0, ∞)) be a solution of (1). From (1), we have

(
β(k)

(
s(m−1)(k)

)γ)′
≤ −

L

∑
i=1

hi(k)sγ(λi(k)) ≤ 0.

From (1) and Lemma 1, we get the three possible cases (1), (2) and (3) for k ≥ k1, k1 large
enough. The proof is complete.
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Theorem 1. Let s ∈ C(I0, (0, ∞)) be a solution of (1). If

lim sup
k→∞

∫ k

k1

 1
β1/γ($)

(∫ $

k1

L

∑
i=1

hi(υ)δ
γ
m−2(λi(υ))dυ

)1/γ
d$ = ∞, (4)

then satisfies Case (2) of Lemma 3.

Proof. Let s ∈ C(I0, (0, ∞)) be a solution of (1). From Lemma 3, we have the cases (1)–(3).

First, we assume that Case (3) of Lemma 3 holds on I1. Since
(

β(k)
(

s(m−1)(k)
)γ)′

≤ 0,
we have

β(k)
(

s(m−1)(k)
)γ
≤ β(k1)

(
s(m−1)(k1)

)γ
:= −M < 0, (5)

which is
β1/γ(k)s(m−1)(k) ≤ (−M)1/γ = −M1/γ, (6)

since γ is a ratio of two odd integers. If we divide (6) by β1/γ and integrating from k to $,
we get

s(m−2)($) ≤ s(m−2)(k)−M1/γ
∫ $

k

1
β1/γ(υ)

dυ.

Letting $→ ∞, we get
0 ≤ s(m−2)(k)−M1/γδ0(k). (7)

Integrating (7) (m− 2) times from k to ∞, we obtain

s′(k) ≤ −M1/γδm−3(k), (8)

and
s(k) ≥ M1/γδm−2(k). (9)

From (1) and (9), we have

(β(k)(s(m−1)(k))γ)′ ≤ −
L

∑
i=1

hi(k)sγ(λi(k))

≤ −M
L

∑
i=1

hi(k)δ
γ
m−2(λi(k)). (10)

Integrating (10) from k1 to k, we obtain

β(k)(s(m−1)(k))γ ≤ β(k1)(s(m−1)(k1))
γ −M

∫ k

k1

L

∑
i=1

hi(υ)δ
γ
m−2(λi(υ))dυ

≤ −M
∫ k

k1

L

∑
i=1

hi(υ)δ
γ
m−2(λi(υ))dυ. (11)

Integrating (11) from k1 to k, we get

s(m−2)(k) ≤ s(m−2)(k1)−M1/γ
∫ k

k1

(
1

β($)

∫ $

k1

L

∑
i=1

hi(υ)δ
γ
m−2(λi(υ))dυ

)1/γ

d$.

At k→ ∞, we get a contradiction with (4).
Now, let Case (1) of Lemma 3 holds on I1. Also, we find from (4) and (2) that∫ k
k1

∑L
i=1 hi(υ)δ

γ
m−2(λi(υ))dυ must be unbounded. Moreover, since δ′m−2(k) < 0, it is easy to

see that ∫ k

k1

L

∑
i=1

hi(υ)dυ→ ∞ as k→ ∞. (12)
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Integrating (1) from k2 to k, we get

β(k)(s(m−1)(k))γ ≤ β(k2)(s(m−1)(k2))
γ −

∫ k

k2

L

∑
i=1

hi(υ)sγ(λi(υ))dυ

≤ β(k2)(s(m−1)(k2))
γ −

∫ k

k2

sγ(λ(υ))
L

∑
i=1

hi(υ)dυ

≤ β(k2)(s(m−1)(k2))
γ − sγ(λ(k2))

∫ k

k2

L

∑
i=1

hi(υ)dυ,

which in view of (12) contradicts to the positivity of s(m−1) as k → ∞. The proof is
complete.

Theorem 2. Let s ∈ C(I0, (0, ∞)) be a solution of (1). If

lim sup
k→∞

δ
γ
m−2(k)

∫ k

k1

L

∑
i=1

hi(υ)dυ > 1, (13)

then s satisfies Case (2) of Lemma 3.

Proof. Let s ∈ C(I0, (0, ∞)) be a solution of (1). We have from Lemma 3, the cases (1)–(3)
for s and its derivatives.

First, we suppose that Case (3) of Lemma 3 holds on I1. Then,

s(m−2)(k) ≥ −
∫ ∞

k
β−1/γ(υ)β1/γ(υ)s(m−1)(υ)dυ ≥ −β1/γ(k)s(m−1)(k)δ0(k). (14)

Integrating (14) (m− 4) times from k to ∞, we arrive at

s′(k) ≤ β1/γ(k)s(m−1)(k)δm−3(k). (15)

and
s(k) ≥ −β1/γ(k)s(m−1)(k)δm−2(k). (16)

Integrating (1) from k1 to k, we get

β(k)(s(m−1)(k))γ ≤ β(k1)(s(m−1)(k1))
γ −

∫ k

k1

L

∑
i=1

hi(υ)sγ(λi(υ))dυ,

since λ′(k) > 0, and υ ≤ k, we obtain

β(k)(s(m−1)(k))γ ≤ −sγ(λi(k))
∫ k

k1

L

∑
i=1

hi(υ)dυ. (17)

Since λ(k) ≤ k, we have

β(k)(s(m−1)(k))γ ≤ −sγ(k)
∫ k

k1

L

∑
i=1

hi(υ)dυ. (18)

From (16) and (18), we arrive at

β(k)(s(m−1)(k))γ ≤ β(k)
(

s(m−1)(k)
)γ

δ
γ
m−2(k)

∫ k

k1

L

∑
i=1

hi(υ)dυ. (19)
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Divide both sides of inequality (19) by β(k)(s(m−1)(k))γ and taking the lim sup, we get

lim sup
k→∞

δ
γ
m−2(k)

∫ k

k1

L

∑
i=1

hi(υ)dυ ≤ 1,

which contradicts with (13).
Next, let Case (1) of Lemma 3 holds on I1. Since δm−2(k) < ∞, we have, from (13),

that (12) holds. Then, we continue the proof as in Theorem 1. Therefore the proof is
complete.

3. Oscillation Criteria

Lemma 4. Suppose that s satisfies Case (2) of Lemma 3. If there is a α ∈ (0, 1) such that

∫ ∞

k0

(
1

β(v)

∫ v

k1

L

∑
i=1

hi(υ)

(
α

(m− 2)!
λm−2

i (υ)

)γ

dυ

)1/γ

dv = ∞, (20)

then limk→∞ s(m−2)(k) = 0.

Proof. Assume that s(k) is a positive solution of (1), and satisfies Case (2) of Lemma 3.
since s(m−2)(k) > 0 and s(m−1)(k) < 0, thus, we obtain that limk→∞ s(m−2)(k) = c ≥ 0. We
claim that limk→∞ s(m−2)(k) = 0. Suppose the contrary that c > 0. Thus, there exists a
k1 ≥ k0 such that

s(m−2)(λi(k)) ≥ c for k ≥ k1. (21)

From (1), we have (
β(k)

(
s(m−1)(k)

)γ)′
≤ −

L

∑
i=1

hi(k)sγ(λi(k)). (22)

Using Lemma 2 and the fact that s is a positive increasing function, we get

s(k) ≥ α

(m− 2)!
km−2s(m−2)(k), (23)

using (23), (22) becomes

(
β(k)

(
s(m−1)(k)

)γ)′
≤ −

L

∑
i=1

hi(k)

(
α

(m− 2)!
λm−2

i (k)

)γ(
s(m−2)(λi(k))

)γ
, (24)

from (21), we get

(
β(k)

(
s(m−1)(k)

)γ)′
≤ −cγ

L

∑
i=1

hi(k)

(
α

(m− 2)!
λm−2

i (k)

)γ

, (25)

for k ≥ k1. Integrating (25) twice from k1 to k, we obtain

s(m−1)(k) ≤ −c

(
1

β(k)

∫ k

k1

L

∑
i=1

hi(υ)

(
α

(m− 2)!
λm−2

i (υ)

)γ

dυ

)1/γ

and

s(m−2)(k) ≤ s(m−2)(k1)− c
∫ k

k1

(
1

β(v)

∫ v

k1

L

∑
i=1

hi(υ)

(
α

(m− 2)!
λm−2

i (υ)

)γ

dυ

)1/γ

dv.

Letting k→ ∞ and using (20), we obtain that limk→∞ s(m−2)(k) = −∞, which contradicts
s(m−2)(k) > 0. Thus, the proof is complete.
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Lemma 5. Suppose that (20) holds, s(k) ∈ C(I0, (0, ∞)) is a solution of (1). If s satisfies Case (2)
of Lemma 3, and there is a µ ≥ 0 with

δm−2(k)

β1/γ(k)δm−3(k)

(∫ k

k0

L

∑
i=1

Gi(υ)dυ

)1/γ

≥ µ, (26)

for some α ∈ (0, 1), then (
s(m−2)(k)

δ
µ
m−2(k)

)′
≤ 0, (27)

where

Gi(υ) = hi(υ)

(
αλm−2

i (υ)

(m− 2)!

)γ

.

Proof. Assume that (1) has a positive solution s(k) and satisfies Case (2) of Lemma 3. From
Lemma 4, we arrive at (24). Integrating (24) from k1 to k, we find

β(k)
(

s(m−1)(k)
)γ
− β(k1)

(
s(m−1)(k1)

)γ
≤ −

∫ k

k1

L

∑
i=1

Gi(υ)
(

s(m−2)(λi(υ))
)γ

dυ,

since λ′(k) > 0, and υ ≤ k, we obtain

β(k)
(

s(m−1)(k)
)γ
− β(k1)

(
s(m−1)(k1)

)γ
≤ −

(
s(m−2)(λi(k))

)γ
∫ k

k1

L

∑
i=1

Gi(υ)dυ,

and so

β(k)
(

s(m−1)(k)
)γ

≤ β(k1)
(

s(m−1)(k1)
)γ
−
(

s(m−2)(λi(k))
)γ
∫ k

k0

L

∑
i=1

Gi(υ)dυ

+
(

s(m−2)(λi(k))
)γ
∫ k1

k0

L

∑
i=1

Gi(υ)dυ. (28)

Using Lemma 4, we get that limk→∞ s(m−2)(k) = 0. Thus, there is a k2 ≥ k1 such that

β(k1)
(

s(m−1)(k1)
)γ

+
(

s(m−2)(λi(k))
)γ
∫ k1

k0

L

∑
i=1

Gi(υ)dυ < 0, for every k ≥ k2,

thus (28) becomes

β(k)
(

s(m−1)(k)
)γ

≤ −
(

s(m−2)(λi(k))
)γ
∫ k

k0

L

∑
i=1

Gi(υ)dυ

≤ −
(

s(m−2)(k)
)γ
∫ k

k0

L

∑
i=1

Gi(υ)dυ, (29)

and so

s(m−1)(k) ≤ − s(m−2)(k)

β1/γ(k)

(∫ k

k0

L

∑
i=1

Gi(υ)dυ

)1/γ

.

Next, we have that(
s(m−2)(k)

δ
µ
m−2(k)

)′
=

δ
µ
m−2(k)s

(m−1)(k) + µδ
µ−1
m−2(k)δm−3(k)s(m−2)(k)

δ
2µ
m−2(k)

. (30)
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This implies

δ
µ
m−2(k)s

(m−1)(k) + µδ
µ−1
m−2(k)δm−3(k)s(m−2)(k)

≤ −δ
µ
m−2(k)

s(m−2)(k)

β1/γ(k)

(∫ k

k0

L

∑
i=1

Gi(υ)dυ

)1/γ

+ µδ
µ−1
m−2(k)δm−3(k)s(m−2)(k)

≤

 −δm−2(k)

β1/γ(k)δm−3(k)

(∫ k

k0

L

∑
i=1

Gi(υ)dυ

)1/γ

+ µ

δ
µ−1
m−2(k)δm−3(k)s(m−2)(k).

It follows from (26) that δ
µ
m−2(k)s

(m−1)(k) + µδ
µ−1
m−2(k)δm−3(k)s(m−2)(k) ≤ 0, which, with

(30), implies the function s(m−2)(k)/δ
µ
m−2(k) is nonincreasing. This completes the proof.

Theorem 3. Assume that (20) and (26) hold, s(k) ∈ C(I0, (0, ∞)) is a solution of (1) and γ ≥ 1.
If there exists a positive function η(k) ∈ C1[k0, ∞) such that

lim sup
k→∞

∫ k

k0

(
W(υ)− β(υ)η(υ)

(γ + 1)(γ+1)

(
η′(υ)

η(υ)
+

1 + γ

β1/γ(υ)δ(υ)

)γ+1
)

dυ = ∞, (31)

where

W(k) := η(k)
L

∑
i=1

hi(k)

(
α

(m− 2)!
λm−2

i (k)

)γ δ
γµ
m−2(λi(k))

δ
γµ
m−2(k)

+ (1− γ)
η(k)

β1/γ(k)δγ+1(k)
,

for some α ∈ (0, 1), then Case 2 does not satisfied.

Proof. Assume the contrary that (1) has a positive solution s(k) and satisfies Case (2) of
Lemma 3. Noting that β(k)(s(m−1)(k))γ is non-increasing, we have

s(m−2)(ν)− s(m−2)(k) =
∫ ν

k

1
β1/γ(υ)

(
β(υ)

(
s(m−1)(υ)

)γ)1/γ
dυ

≤ β1/γ(k)s(m−1)(k)
∫ ν

k

1
β1/γ(υ)

dυ.

Letting ν→ ∞, we get

− s(m−2)(k) ≤ β1/γ(k)s(m−1)(k)δ(k). (32)

Define the function ω(k) by

ω(k) := η(k)

(
β(k)(s(m−1)(k))γ

(s(m−2)(k))γ
+

1
δγ(k)

)
. (33)

From (32), we have ω(k) > 0 for k ≥ k1. Differentiating (33), we obtain

ω′ =
η′

η
ω + η

(
(β(s(m−1))γ)′

(s(m−2))γ
− γβ(s(m−1))γ+1

(s(m−2))γ+1
− γδ′

δγ+1

)
,

which follows from (1) and (33) that

ω′ ≤ η′

η
ω− η ∑L

i=1 hisγ(λi)

(s(m−2)(k))γ
− γη(k)

β1/γ

(
ω

η
− 1

δγ

)(γ+1)/γ

+
γη

β1/γδγ+1 . (34)
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From (23) and (34), we have

ω′ ≤ η′

η
ω(k)− η

(s(m−2))γ

L

∑
i=1

hi(k)

(
α

(m− 2)!
λm−2

i

)γ(
s(m−2)(λi)

)γ

− γη

β1/γ

(
ω

η
− 1

δγ

)(γ+1)/γ

+
γη

β1/γδγ+1 ,

using (27), we get

ω′ ≤ η′

η
ω− η

(s(m−2))γ

L

∑
i=1

hi

(
α

(m− 2)!
λm−2

i

)γ (s(m−2))γδ
γµ
m−2(λi)

δ
γµ
m−2

− γη

β1/γ

(
ω

η
− 1

δγ

)(γ+1)/γ

+
γη

β1/γδγ+1 ,

that is

ω′ ≤ η′

η
ω− η

L

∑
i=1

hi

(
α

(m− 2)!
λm−2

i

)γ δ
γµ
m−2(λi)

δ
γµ
m−2

− γη

β1/γ

(
ω

η
− 1

δγ

)(γ+1)/γ

+
γη

β1/γδγ+1 . (35)

Using the inequality

υ
(γ+1)/γ
1 − (υ1 − υ2)

(γ+1)/γ ≤
υ

1/γ
2
γ

[(1 + γ)υ1 − υ2], υ1υ2 ≥ 0,

with υ1 = ω/η, υ2 = 1/δγ, we obtain

ω′ ≤ η′(k)

η(k)
ω(k)− η(k)

L

∑
i=1

hi(k)

(
α

(m− 2)!
λm−2

i (k)

)γ δ
γµ
m−2(λi(k))

δ
γµ
m−2(k)

+
γη(k)

β1/γ(k)δγ+1(k)

− γη(k)

β1/γ(k)

(
(

ω(k)

η(k)
)(γ+1)/γ − 1

γδ(k)

[
(1 + γ)

ω(k)

η(k)
− 1

δγ(k)

])
,

which is

ω′(k) ≤
(

η′(k)

η(k)
+

1 + γ

β1/γ(k)δ(k)

)
ω(k)− η(k)

L

∑
i=1

hi(k)

(
α

(m− 2)!
λm−2

i (k)

)γ δ
γµ
m−2(λi(k))

δ
γµ
m−2(k)

− γ

β1/γ(k)η1/γ(k)
ω(γ+1)/γ(k)− η(k)

β1/γ(k)δγ+1(k)
+

γη(k)

β1/γ(k)δγ+1(k)
.

By using the inequality

νψ−Vψ(γ+1)/γ ≤ γγ

(γ + 1)(γ+1)
νγ+1

Vγ
, V > 0,

with ν = η′/η + (1 + γ)/
(

β1/γδ
)

, V = γ/
(

β1/γη1/γ
)

and ψ = ω, we find

ω′(k) ≤ −η(k)
L

∑
i=1

hi(k)

(
α

(m− 2)!
λm−2

i (k)

)γ δ
γµ
m−2(λi(k))

δ
γµ
m−2(k)

+ (γ− 1)
η(k)

β1/γ(k)δγ+1(k)

+
β(k)η(k)

(γ + 1)(γ+1)

(
η′(k)

η(k)
+

1 + γ

β1/γ(k)δ(k)

)γ+1

.
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Integrating this inequality from k1 to k, we find

∫ k

k1

(
W(υ)− β(υ)η(υ)

(γ + 1)(γ+1)

(
η′(υ)

η(υ)
+

1 + γ

β1/γ(υ)δ(υ)

)γ+1
)

dυ ≤ ω(k1),

which contradicts (31). This completes the proof.

Theorem 4. Assume that γ ≥ 1, (20), (26) and (4) hold. If there is a positive η(k) ∈ C1[k0, ∞),
η(k) > 0, such that (31) holds, then every solution of (1) is oscillatory.

Proof. Suppose that s(k) is a nonoscillatory solution of (1). Then, we have that a k1 ∈ [k0, ∞)
such that s(k) > 0 and s(λi(k)) > 0 for k ≥ k1. Using Lemma 3, we have three cases (1), (2)
and (3). Using Theorem 1, we have that the condition (4) ensure that solution s(k) satisfies
Case (2) of Lemma 3. But, using Theorem 3, we find that condition (31) contrasts with Case
(2) of Lemma 3. Therefore, the proof is complete.

Theorem 5. Assume that γ ≥ 1, (20), (26) and (13) hold, If there is a positive η(k) ∈ C1[k0, ∞),
η(k) > 0, such that (31) holds, then every solution of (1) is oscillatory.

Proof. Suppose that s(k) is a nonoscillatory solution of (1). Then, we have that a k1 ∈ [k0, ∞)
such that s(k) > 0 and s(λi(k)) > 0 for k ≥ k1. Using Lemma 3, we have three cases (1), (2)
and (3). Using Theorem 1, we have that the condition (13) ensure that solution s(k) satisfies
Case (2) of Lemma 3. But, using Theorem 3, we find that condition (31) contrasts with Case
(2) of Lemma 3. Therefore, the proof is complete.

Example 1. Consider the DDE

(k6s′′′(k))′ + h1k
2s
(
k

2

)
+ h2k

2s
(
k

3

)
= 0, (36)

where h1 and h2 > 0. We note that γ = 1, β(k) = k6, λ1(k) = k/2, and λ2(k) = k/3. Hence, it
is easy to see that

δ0(k) =
1

5k5 , δ1(k) =
1

20k4 and δ2(k) =
1

60k3 .

If we choose
η(k) = 1/k5

and

µ = α

(
h1

120
+

h2

270

)
,

then (20), (26) and (4) are satisfied, and

W(k) =
1
k5

(
h1k

2
(

λ1k
2

8

)(
23
)α
(

h1
120+

h2
270

)
+ h2k

2
(

λ2k
2

18

)(
33
)α
(

h1
120+

h2
270

))
.

Now, the condition (31) is satisfied if

h1

(
λ1

8

)(
23
)α
(

h1
120+

h2
270

)
+ h2

(
λ2

18

)(
33
)α
(

h1
120+

h2
270

)
>

25
4

, (37)

for λi ∈ (0, 1). Thus, by using Theorem 4, we conclude that all solutions of Equation (36) are
oscillatory, if (37) satisfied.

Remark 1. If we consider the special case (k5s′′′(k))′ + h0ks(k/2) = 0, then every solution is
oscillatory if h0 > 20.518. While by using Corollary 2.1 in [14] and Corollary 2 in [16], we have
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that every solution is oscillatory if h0 > 32. Consequently, Our results ensure that the solutions of
the equation (k5s′′′(k))′ + 23ks(k/2) = 0 oscillate, while the other results fail.

4. Conclusions

The oscillatory behavior of the even-order DDE with multiple delays are obtained
in this study. In order to improve and simplify prior results in the literature, we expand
Bohner’s results in [5] to higher order equations. The new approach uses relation (27) to

get a better estimate of the ratio s(m−2)◦λi
s(m−2) , which distinguishes it from the previously used

approach. It is interesting to extend our results to neutral and advanced delay equations.
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