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Abstract

In this paper, we investigate some aspects of the qualitative theory for
multi-order fractional differential equation systems. First, we obtain a fun-
damental result on the existence and uniqueness for multi-order fractional
differential equation systems. Next, a representation of solutions of homo-
geneous linear multi-order fractional differential equation systems in series
form is provided. Finally, we give characteristics regarding the asymptotic
behavior of solutions to some classes of linear multi-order fractional differ-
ential equation systems.
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1. Introduction

In recent years, fractional calculus has received increasing attention due
to its applications in a variety of disciplines such as mechanics, physics,
chemistry, biology, electrical engineering, control theory, material science,
mathematical psychology. For more details, we refer the reader to the
monographs [2] [7, 15, [19] 20].
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A particularly interesting aspect in this connection that does not per-
tain to classical mathematical models using integer-order differential opera-
tors has recently been discussed in the context of a number of applications in
the life sciences [2], [8, @]: It appears that certain real world problems can be
described by a system of fractional differential equations where each equa-
tion may have an order that differs from the orders of the other equations
of the system. We shall call such systems multi-order fractional differential
systems.

Among the published papers, it seems that the authors mainly con-
centrated on approximating solutions of multi-order fractional differential
equations, see e.g. [1I, 10 11} 121 [14] [17) 18, 2], 22| 25, 26]. The investiga-
tion of the analytical properties of such systems is often restricted to the
case where the orders of the differential operators are rational [5, [6] 7, [16].
For the general case, rigorous mathematical studies of even the most fun-
damental questions in this context do not seem to be readily available.

Therefore, in this paper we consider d-dimensional linear multi-order
fractional differential equation systems

d
Dxi(t) = > ayzj(t) +gi(t), i=12,....,4d, (1.1)
j=1

with orders «; € (0,1], coefficients a;; € C, g;: [0,00) — C continuous,
1,7 =1,...,d, and the Caputo differential operator of order oo > 0

D2y(t) = J'*ImeDlely(1)

which is defined for C®! functions y: [0,T] — C%, T' > 0, with the classical
derivative D and the Riemann-Liouville operator

Bt = — [ — o)1
0= g5 | 6= wts)as
for 8 > 0 and JO(t) == y(t) (see e.g. [7]). Note that D%y can also be
defined for not necessarily differentiable functions, e.g. if @ € (0,1), for
continuous functions y for which lim; ot~ *(v(t) — v(0)) exists, is finite,
and

[ 700 - o) as| =0,

ot

lim sup
011 te(0,7)

cf. [23, Theorem 5.2].
For convenience, we use the notation
Dt Dxy(t)
Dialy--wad)x(t) — . x(t) = : . (12)
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Using the notation A = (a;;); j=1,..d € C g =(g1,...,94)" and z(t) =
(z1(t),...,24(t)) ", the system (LI) can then be rewritten as
D
x(t) = Az(t) + g(t). (1.3)
Dy

Of central importance are the two-parameter Mittag-Lefler functions E, g:
C—-C,a>0,>0, with

Eap(z) = ; e (a]: % (1.4)

and the one-parameter Mittag-Leffler functions FE,: C — C, o > 0, defined
by Eo = Eu (see e.g. [L3]).

The structure of the paper is as follows. In Section [2, we first intro-
duce a result on the existence and uniqueness of solutions to multi-order
fractional differential equations. Then, we give a representation of solu-
tions to homogeneous linear multi-order fractional differential equations in
series form. Section [Blis devoted to the study of the asymptotic behavior of
solutions of linear multi-order fractional differential equations. More pre-
cisely, we obtain some criterion on the asymptotic behavior of solutions to
these equations. Some auxiliary results concerning the Mittag-Lefler func-
tions and the asymptotic behavior of solutions of scalar linear fractional
differential equations are shown in Appendix [Al

2. Fundamental theory of multi-order fractional
differential equations

In this section we provide some fundamental results regarding multi-
order fractional differential equations. Specifically, we shall prove a Picard-
Lindelof type existence and uniqueness result in Subsection 2.1l and Sub-
section will be devoted to a description of the structure of the associated
solutions in the linear case.

2.1. Existence and uniqueness of solutions to a class of multi-
order fractional differential equations. Let 7" > 0. In this subsection
we consider the existence and uniqueness of solutions to the multi-order
fractional differential equation

D¢x(t) = f(t,z(t)), te(0,T], (2.1)
where o = (a1,...,aq) € (0,1] and f = (f1,...,fa)":[0,T] x C¢ — C4
is continuous. With similar arguments as in [7, Chapter 6] or [I5] §3.5],
one can show that for z¢g = (z9,... ,mg)T € C? and a continuous function
z : [0,7] — C? for which D%z is defined (cf. [23, Theorem 5.2]), the
following two statements are equivalent:
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(i) « satisfies the d-dimensional differential equation system (21I) to-
gether with the initial condition z(0) = o,
(ii) x satisfies the Volterra integral equation

x(t) = o+ J[f(-,x()](t) Vte[0,T], (2.2)

where JO[f (-, x()](t)i= (T [F1(m (D] @), T4 fal 2())] (1))

Following the usual convention, we define solutions of (21I) by considering
[22)) for continuous functions.

DEFINITION 2.1. A continuous function z : [0,7] — C¢ is called a
solution to the differential equation (2.I) with initial condition z(0) = zo
if it satisfies the integral equation (2.2l).

REMARK 2.2. Because we assume the function f to be continuous, we
can see that, for every solution x of (2.I]) in the sense of Definition 2.1 the
function f(-,z(+)) is continuous, too. Therefore, in view of the fact that the
solution x satisfies the integral equation (2.2)), it follows for i € {1,2,...,d}
that the i-th component of x can be written as the sum of a constant and
the Riemann-Liouville integral of order a; of a continuous function. Using
the arguments of 7, proof of Theorem 3.7], we can then conclude that x;
fulfils the conditions of [23] Theorem 5.2] and thus that D{z; exists and
is continuous. Therefore, under the continuity assumption on f, a solution
to (2.1)) in the sense of Definition [21]is automatically a strong solution to
the differential equation in the classical sense.

Our basic assumption on the given function f will be that all its compo-
nents f; : [0,7] x C* — C are continuous and satisfy a Lipschitz condition
with respect to the second variable, i.e.

[fity) = filt.2)| < Llly — 2|, Wt e[0,T], y,zeC?  (23)

with some constant L > 0, where || - || is the max norm on C?, i.e., ||y|| =
max{|y1,...,|ya|} for all y = (y1,...,yq)" € C%

We are now in a position to formulate a result on unique existence of
solutions of initial value problems.

THEOREM 2.3. Consider the equation (2.1]). Assume that the func-
tion f is continuous and satisfies the Lipschitz condition (23]). Then, for
any zo = (z9,... ,x?l)T € C%, the differential equation (1)) has a unique
solution in the set C([0,T]; C?) that satisfies the initial condition 2(0) = x(.
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Proof. Let A >0 be a constant such that

max LA™ < 1.
1<i<d

On the space C([0,T]; C%) we define a new norm || - ||, as
lellx = sup [[o(t)]| exp(—At).
0<t<T

Using standard arguments, it is easy to see that (C([0,T];C%),] - [|x) is a

Banach space. For any xy = (ZL‘?,...,I‘S)T € C%, we define an operator

Teo : C([0,T);C%) — C([0,T];C?) by
Too#(t) = ((Tag@) (1), ..., (Tae0)?(®) ',
where for 1 <i <d, t € [0,T] and ¢ Etc([O,T];Cd),

(Tl (0) = o+ s [ (4= 7)ol

We see that for every ¢, € C([0,T];C%), every t € [0,T] and all 1 <4 < d,

|(Ta00)' (1) — (Tao)' ()]
exp (At)

L ! a1 (1) — o(7)]]
< Fagepon J, €~ 7" ew O LT ar
L ! 1 @) —o(0)]]
< t—T1 @i ex )\T dT - Su —_—
= T(as) exp (M) /0 (t=7) p (A7) ocoor  exp (A0)
L b .
< iy e () duc e - s
L At
- W/o v exp (—v) dv - [l — @]
L * a;—1 PN
< W ; v¥ " exp (—v) dv - |l — @[[x
L )
= 3o e = 2l (2.4)

It is clear that the operator T, maps the space (C([0,7];C%),| - ||x) to
itself; moreover, from (2.4) we obtain the estimate

Tousp = Teulln < 5 llp = $la Vio, & € (0, T €)
which, by definition of A, shows that this operator is a contractive mapping
on this space. Due to the fact that (C([0,T];C%), | - ||») is a Banach space,
by Banach’s fixed point theorem, there exists a unique fixed point ¢ of
Tz, in this space. This fixed point is the unique solution of the Volterra
equation (2.2]) and hence, as stated above, also the unique solution to the
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initial value problem consisting of the differential equation (2 and the
initial condition x(0) = xg in C ([0, T]; C?). The proof is complete. O

In Section Bl we shall look at the behavior of solutions to multi-order
systems as the independent variable goes to infinity. For this purpose, it is
important to have an existence and uniqueness result that is not restricted
to functions defined on bounded intervals. Fortunately, the following result
immediately follows from Theorem 2.3l

COROLLARY 2.4. Let f :[0,00) x C* — C? be continuous and satisfy
a Lipschitz condition with respect to the second variable. Moreover, let
a € (0, l]d and oy € C%. Then, the initial value problem

DYz(t) = f(t,z(t)) (t>0), z(0) = zo,
has a unique solution in C([0, o00); C%).

2.2. A representation of solutions to homogeneous linear multi-
order fractional differential equations. In this subsection we concen-
trate on a particularly important and fundamental special case of the class
of differential equations discussed in Subsection 2.1l namely we shall look
at the solutions to homogeneous linear equations with constant coefficients,
i.e. to differential equations of the form

Do
a(t) = Ax(t), (2.5)
DY

which is the special case of (L3 where g(t) = 0 for all ¢.

Our basic result in this section, Theorem [2.6], provides some information
about the structure of the solutions to the system (2.5]) in the case of an
arbitrary matrix A € C%*¢ and an arbitrary vector (aq,...,aq) € (0,1]%.

In order to motivate our results, we start with the case d = 2. In this
case, the system (2.5]) has the form

Dfll‘l(t) = anajl(t) + a12:L‘2(t), (2.6&)
D?xo(t) = ag1w1(t) + azxa(t). (2.6b)

First of all, Corollary 2.4l asserts that, for any initial condition (z1(0), 2 (0))"
= (a:(l],xg)T € C2, this system has a unique continuous solution z =
(x1,29) " on [0,00). Moreover, for equations of this structure, the frac-
tional version of the variation-of-constants method [7, Theorem 7.2 and

Remark 7.1] provides the relations
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t
21(8) = 20 B, (et + ar /0 (t = ) By oy (a1t — 5)°) 2a(s) ds,
(2.7a)

t
xa(t) = xgEoQ(aggto‘?) + as / (t— s)o‘z_lEO%062 (age(t — 5)*?) z1(s) ds,
0

(2.7b)
for all ¢ > 0. This representation indicates that we should seek the solution
components in the class of generalized power series of the form

[ee) o0

) =ad + Z Z bygetForttoz, (2.8a)
k=1 =0
o0 o

t) = xg + Z Z bgkgtkal—MOQ. (2.8b)
k=0 ¢=1

Assuming a suitable convergence behavior of these series, we may differen-
tiate in a termwise manner and obtain

koq + lag + 1) B
Doq b t(k 1o +Lao
za(t ; % ke Dag + lag + 1)

B k+1)a1+€a2+1) ko +ean
_Zzblk—HZ Tk 7 : t ,
== a1+ oo + )

k:al + EOQ + 1) k 0—
Doz t) = b t a1+(l—1)az
wza(l) kzozg <M T (ko + (€= o +1)

_ ]{70[1 + (E + 1)0[2 + 1) ka1 +Las
_ZZ 2k b+ [(koy + log + 1) t '
k=0 (=0 1 2

Plugging these representations into the differential equation system (2.5]),
we find

o0 o0 o0 o0
a1zl + ayy Z E bugetttter La a9 + agy Z E bojptmo o
k=1 (=0 k=0 (=1

e}

Ziblk y ((k+Don + Lo +1) o tra
+ [(koy + bas + 1) ’

=0 ¢=0
o o o o
aglajg + a9 Z E blkgtkal—i_éw + aggajg + a9 Z E bgkgtkal—i_éw
k=1 /=0 k=0 /=1

B el [(kar + (0 + 1ag + 1) fhai+las
—ZZ 2,k 0+1 ’

0 =0 k‘Oél + lag + 1)
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A comparison of coefficients of t**1 7422 then yields the equations
1

0 0
_ 2.
bi10 T(ar + 1) (a117] + a127y), (2.9a)
b2o1 = L (a217f + az}) (2.9b)
T(ag +1) ! 20 '
F(kal + 1)
b = b k=1,2,... 2.9
1,k+1,0 T((k + as + 1)a11 1k0 ( 125000), (2.9¢)
I'(lag +1)
b = b {=1,2,... 2.9d
1,1,4 F(Oél +€a2+1)a12 204 ( ) )7 ( )
I'(koy + log + 1)
b = b b kt=1,2,...
Lk+1,0 Tk + oy T fog + 1)(0011 1ke + a12boge) (K, 02,000,
(2.9¢)
I'(lag +1)
b = b (=1,2,...), 2.9f
2,0,0+1 (0 + Das +1)a22 206 ( ) (2.9f)
I(kay +1)
b = b k=1,2,... 2.9
2,k,1 T(kar + s + 1)a21 1k0 ( 0 25000), (2.92)
[(koq + bag + 1)
b = b b kt{=1,2,...).
2k = Fha s (03 Do + 1)(a21 16e + agzbae) (K, 02,...)
(2.9h)
Formally introducing the quantities
b1or =10 for {=1,2,... and bgy =0 for k=1,2,...,
2.10a
bigo = and  bago = 29, ( )

we see that the system (23] can be simplified to

I'(koy + log + 1)
(k+ 1o +Llaz+1

bikt1,0 = i )(aublu + a12bakr) (k,£=0,1,2,...),
(2.10b)
[(koqy + bag + 1)

kag + (£+1as +1

boker1 = T )(a21blké + agabagr) (k,£=0,1,2,...).

(2.10c)

A brief inspection of these formulas reveals that, given the initial values :r?

and mg, they can indeed be used to compute all coefficients that appear in
the representation (2.8]) in a recursive manner. Specifically, the coefficients
bike and bogy for k + ¢ = p can be computed via egs. (2.10b) and (2.10d),
respectively, and this computation only requires the knowledge of by, and
bore with k + ¢ = o — 1. Thus one can first compute all bigp and bory with
k+ £ =1, then with k + ¢ = 2, etc.
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A closer look at the recurrence relations (Z.I0]) allows us to prove that
the series from (2.8]) converge for all ¢ > 0. To this end we first state a
preliminary result.

LEMMA 2.5. Let the values bygy and bogy be defined as in (2.10]) with
arbitrary 29,29 € C. Then, for j € {1,2} the series

sj(z) = Z Z |bjkel 2

_ k=0 (=0
is convergent for all z € C.

Actually, it is immediately clear that the desired convergence property
is a consequence of this lemma, since the series

00 00
DD el - fefrertro

k=0 £=0
is, on the one hand, a majorant for z;(¢) and is, on the other hand, con-
vergent for all ¢ > 0 according to

oo o0
D0 D bl el

k=0 /=0
o0 o0
SO Il - [t (O mastenea) - g gy for ¢ > 1,
k=0 ¢=0

S o o
SO Il - [ (FO iRz} = g gmin{ereny for ¢ <1,
k=0 /=0

Proof of Lemma Since the series in question does not
have any negative summands, we may rearrange the terms according to
powers of z; this yields

o~ k
k
OED DD P SEL
k=0 u=0
It is therefore evident that, in order to investigate the convergence radius

of this series, we need to estimate expressions of the form

k
Bik = > [bjpk—nl-
=0

In fact, we shall demonstrate that for sufficiently large k
k
c1c

0< P+ P < 2

(ka* +1)’
where ¢; and ¢y are certain positive constants and

(2.11)

o == min{ay, as}.
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Equation (2.I7) tells us that the classical power series for the Mittag-Leffler
function E,» — that is well known to be convergent on the entire complex
plane — evaluated at c3|z| is a majorant for the series s; and so that we
are interested in, and hence the series expansions for si(z) and sq(z) also
converge for all z as required.

Thus, it only remains to prove (2.11]). The left inequality is clear by
definition. To prove the right inequality, we employ the relations (2.10al),
(2.10D) and ([2.I0c) and see, using the notation a := max; je(y,2) |aij|, that
we have for k > 2 the following chain of inequalities:

k
Z (|bl,u,k—u| + |b27u7k—u|)
n=0
k k—1
< Z b1, k—p] + Z b2, 1,5 — |
u=1 pn=0

k
_ I((w—1)oq + (k= p)ag + 1)
<
S D e o ey bl ( WASESM R PR
az P(pon + (b —p—1ag + 1)
D(poa + (b — p)az +1)

(101, k—p—1] + b2, —p—1])

k
_ 'llp— Vo + (K —p)ag+ 1
= az ((/.l ) 1 ( /.L) 2 )(|bl7u_l7k_u| + |b27u_1’k_u|)

I(por + (k= plaz + 1)

+dirf((u—1)al+(k—u)a2+1)

(('u — 1)0&1 + (k‘ —u+ 1)0&2 + 1) (|b17u—17k’—u| + |b27u—17k’—u|)

with

D((p=Dog+(k—p)az+1)  T((p—1ar+(k—p)az+1)
T(par+(k—p)ag+1) L((p—1)a1+(k—p+1)ag+1)

Both fractions on the right-hand side have the same numerator but their

denominators differ by ais — a1 ; the well known monotonicity of the Gamma
function thus allows us to conclude that, for sufficiently large &k, we have

D((p = Doq + (k= pag + 1)
I'((p—Dag + (k—p)ag +a* +1)
F(u + /L(Otl — 042))
I(u+ plar —az) + a*)

w01, ag) =

Wi, (o1, ) <2

=2 (2.12)
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with v := —a;+kas+1. For v > 0 and z — oo, Stirling’s formula yields the
asymptotic relation I'(z) /I'(z +7v) = 277 (1 + o(1)) which is monotonically
decreasing in z. Hence, for sufficiently large k, the quotient on the right-
hand side of (2.12]) is monotonically decreasing with respect to p for a1 > s
and monotonically increasing with respect to p if @1 < ag. Therefore, the
maximum of this expression over all admissible values of p is attained at
uw=1if a1 > g and at u = k if a1 < «as. These observations may be
summarized in the form

( Loy + ag — oy — as|) +1) L((k—1)a* +1)
wk,u(alaa2) S 2 T * )
T(5 (s +az — a1 —azl) +a*+1) ~ T(ka*+1)
and this implies
T((k—1)a*+1)

Bik + Par < 2a

ka —|— 1 Z |b1,,u—1,k—“‘ + |b2,/.1,—17k—“‘)
=1

|_|

L((k —1)a* 4+ 1)
I'(ka* +1) Z (161 k=1l + b2, k—1-p])

©=0
I'((k—-1 1
((I‘(ka*)(j_ 1—1)_ ) (ﬂl,k—l + 62,]6—1)7

if k is large enough. Thus, for a sufficiently large and fixed constant N and

arbitrary k, by induction, we deduce the estimate

(2a)*T'(Na* + 1)
+ )

F((N+k)()é +1) (ﬁl,N ﬁ2,N)

which shows (2.11]) and completes the proof of Lemma O

=2a

=2a

Bi,N+k + BNtk <

The same ideas and methods can be applied if the dimension of the
fractional differential equation system is greater than 2. This leads to the
following result:

THEOREM 2.6. Let a = (ai,...,aq) € (0,1]¢ and A € C¥9. Then,
for each x¢ € C%, the initial value problem

Dgx(t) = Ax(t), x(0) = xo, (2.13)

has a uniquely determined solution in C([0,00);C%). The components of
this solution can be expressed in the form
o0 o0 d
_ koj+> 0 _ e
xj(t) - Z Z bk’,fhéz,---,fjfl74j+17---,fdt 7T =t b ",
k=0 £1,l2,...0;_1,0j11,...Lq=1

(2.14)
and the series in eq. (2.14]) converges for all t > 0.
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3. Asymptotic behavior of solutions of multi-order fractional
differential equations

Having established these foundations, we can now come to the core of
this paper, namely the discussion of the asymptotic behavior of solutions
of linear multi-order fractional differential systems.

3.1. Systems with (block) triangular coefficient matrices. Assume
that ax € (0,1] for 1 < k < d. In the case that the coefficient matrix A of
the system (1)) has a triangular structure, we provide a detailed investiga-
tion of the asymptotic behaviour of the system’s solutions. More precisely,
we obtain a necessary and sufficient condition such that all solutions of
the homogeneous system associated to (I.I]) tend to zero at infinity, and
we derive sufficient conditions for all solutions of the full inhomogeneous
system (LI to have this property. In this context we stress that the ay
may be completely arbitrary numbers from the interval (0, 1]; in particular
it is allowed that oy = oy for some k # k.
Thus, let us now first consider the system

d
DYizi(t) = Y ayx;(t), 1<i<d, (3.1a)
Jj=t

i.e. the case of a homogeneous system with an upper triangular matrix A,
together with the initial condition

z;(0) = a9, 1<i<d. (3.1b)

In order to exclude the pathological and practically irrelevant case where
the right-hand sides of certain equations from the system (B.Ial) do not
depend on their respective unknown functions, we shall explicitly assume
throughout this subsection that a;; # 0 for all ¢ = 1,2,...,d. In other
words, we assume the matrix A to be not only upper triangular but also
nonsingular.

The case where A is of lower triangular form can be handled in a com-
pletely analog manner; we shall not treat this case explicitly. The associated
inhomogeneous system will be discussed later; cf. Corollary B.3l

In the simplest nontrivial case d = 2, the system (3.1a)) has the form
Dt xy(t) = anx1(t) + apaza(t),
Dxq(t) = agwa(t),
and it is a relatively simple matter to explicitly compute its solution. Specif-
ically, in view of the triangular structure of the coefficient matrix, one can

solve the second equation of the system directly and obtain the well known
result [7, Theorem 4.3]
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To(t) = 29 Eq, (a221°?). (3.2a)
This result can be plugged into the system’s first equation which then takes
the form
Dfl T (t) = a1111 (t) + a121‘(2)Ea2 (a22ta2).

For equations of this structure, the fractional version of the variation-of-
constants method [7, Theorem 7.2 and Remark 7.1] provides the solution

xl(t) = x(l]Eal (allto‘l)
t
+ algmg/ (t — ) By 0y (a11(t — 8)™) Eyy(ag25™?) ds. (3.2b)
0

From the representation (3.2)) it is evident that the solution vector (z1,22) "
is an element of the function space C[0,00). Moreover, the power series
representations of the Mittag-Leffler functions imply that the component
x9(t) can be written as a power series in t“2, and therefore its asymptotic
behavior as ¢t — 0+ is of the form

CoQ
a(t) = 23 + 2192 4 O(t22),

Iag+1)

whereas the behavior of z1(¢) in this respect can be described by
c1ai

F(Oq + 1)

with some constant ¢; € C. The arguments employed in Subsection [2.2] can

be used to derive more details.

z1(t) = 29 + t + o(tY)

These considerations can directly be generalized to homogeneous upper
triangular systems of arbitrary dimension d. In this case we obtain the set
of equations

d t
zi(t) = 2 Ey, (ayt®) + Z aij / (t — 8)* By, 0 (aii(t — 8)*) 2(s) ds
j=i+1 0
(3.3)
fori=d,d—1,...,1 which can be recursively evaluated to explicitly com-
pute the solutions.

Some known results about the asymptotic behavior of the Mittag-Leffler
functions admit to draw the conclusions required in the asymptotic behavior
analysis. The main result in this context is the following theorem. The
proof of its statements requires a number of auxiliary results that can be
considered as minor extensions of already known theorems and lemmas.
Since these extensions may be of a certain degree of independent interest,
we have explicitly formulated and collected them, together with complete
proofs, in Appendix [Al
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THEOREM 3.1. (i) Every solution of the system (3.1al) converges
to zero at infinity if and only if
| arg (ags)| > % Vk e {1,...,d}. (3.4)

(ii) If there exists k € {1,...,d} such that |arg (agx)| < apm/2 then
there exists some xy such that the solution to the system (3.1al)
that satisfies the initial condition x(0) = xo is unbounded.

P r o o f. For the proof of part (i), we will first show that the condition
(B4) is sufficient to assert that every solution of (BIal) converges to zero at
infinity. Indeed, for any initial value zo = (29, ...,29)T € C%, we denote the
solution of (B.1a) starting from zg by ¢(-,z0) = (©1(-,20), ..., wa(-x0)) "
Our proof will use mathematical induction over the index j of the compo-
nents of the solution vector in a backward direction. Thus, for our induction
basis we consider j = d. Since the d-th equation of the system (B.1al) reads

DSdIL’d (t) = Addrq (t) s

it follows from Lemma [A.4[i) that the condition | argaqq| > agmr/2 is suf-
ficient to assert that ¢q4(t,z9) — 0 as t — oo for all xy. For the induction
step, we assume that we have already shown that the components d, d — 1,

.., j+ 1 of the solution tend to 0 as ¢t — oo for any choice of the initial
values. Then we need to prove that this is also true for the j-th component.
To this end we recall that the j-th component of the differential equation

system (B.1al) reads d
D xy(t) = aggri(t) + Y ajepk(t, wo).

k=j+1
All the terms in the sum are already known and, because of the induction
hypothesis, they are continuous and tend to zero as t — co. Thus we may
apply Lemma [A.4(i) and immediately deduce that z; has this property as
well.

To conclude the proof of part (i) we now have to demonstrate that
(B4) is also necessary for all solutions of (B.Ia)) tend to zero as ¢t — oco. To
this end we assume that (3:4]) does not hold. Then there exists an index
ko € {1,2,...,d} which satisfies

|arg (ais)| > O%W forko+1<i<d and [arg(ak)| < ak20777
i.e. ko is the largest index for which (8.4]) is violated. Consider the equation

d
D™k () = aporery () + f(£)  with  f(£) == > apuzi(t). (3.5)
i=ko+1
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Since ([B.4) is true for all i > ko, the arguments used above imply that f
is continuous and tends to zero at infinity. As in the considerations above,
we may use the fractional variation-of-constants method [7, Theorem 7.2
and Remark 7.1] to see that the set of all solutions to (B.5]) consists of the
functions

. Ok (t, x0) = mgoEakO (g kot¥%0) + h(2), (3.6)

where 27 runs through the entire complex plane and where
t

) = [ (= 0 By Ot = 7)) 7).
The well known a%ymptotic behavior of the Mittag-Leffler functions [13]
Proposition 3.6 and Theorem 4.3] then implies that Eako(akmkoto‘ko) does
not converge to 0 as t — oo because of our assumption on the relation of
ak, and | arg ag, k,|. Now assume that there exists some xgo € C such that
ko (t,29) — 0 as t — oo. Then, it follows that for every Zo € C with
mg = ig fork=ky+1,...,d and azgo ;éizgo, we have

Pro (o) = igoEakO (g kot ™ ) + h(t)
= (jgo - m20)E@lko (ako,kotako) + Pk (ta xO)’

For t — oo, the last summand on the right-hand side of this equality
tends to zero but the other summand does not, and hence we conclude
that ¢(t,Zo) does not tend to zero as t — oo which yields our required
contradiction.

For the proof of part (ii), we — much as above — know that there
exists an index kg € {1,2,...,d} which satisfies
Qo T

2

We may then proceed in the same way as in the second part of the proof
of (i). However, now we know that |Ea, (akek,t**)| — 0o as t — oo, and

|arg (a;;)| > OZL; for ko +1<i<d and |arg(agu,)l <

therefore we may even conclude that there exists some acgo € C such that
VK, (t,x0) is unbounded. O

REMARK 3.2. The same arguments can be used if the coefficient matrix
A of the system has a block-upper triangular structure and the differenti-
ation matrix on the left-hand side of the differential equation has a block
structure with identical block sizes where each block consists of differential

operators of the same order, i.e. if the differential equation has the form
D, Ay A o0 A
Ag Aop
. . z(t) (3.7)

ATLTL
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where, using the notation I, for the p-dimensional unit matrix,
D] = kax] Id]-7
Aji, € C4*d% and x = (21,...,24) with d = > j—1d;: In this case,

e all solutions of the system (B7)) converge to zero as ¢t — oo if and
only if, for all j = 1,2,...,n, all eigenvalues \ji, k = 1,2,...,d;,
of the matrix Aj; satisfy |arg Aji| > a;m/2, and

e whenever there exist some j € {1,2,...,n} and k € {1,2,...,d;}
with |arg \jix| < a;m/2, there exists an initial value whose corre-
sponding solution is unbounded.

A close inspection of the proof of Theorem B Ilreveals that the statement
of its part (i) can easily be extended to cover a class of inhomogeneous
problems:

COROLLARY 3.3. Consider the differential equation system

d
DYizi(t) =Y ayz;(t) +gi(t), 1<i<d, (3.8)
j=i
where, for all i = 1,2,...,d, the functions g; : [0,00) — C are continuous

and satisfy
li (t) =0.
Jirg, 9i(t) =0
Every solution of the inhomogeneous system (B.8]) converges to zero at

infinity if and only if all solutions of the associated homogeneous system
(BIal) tend to zero ast — oo, i.e. if and only if condition (3.4)) is satisfied.

P r o o f. Assume first that every solution of (B.8]) tends to zero as t —
0o. In order to prove that every solution of the corresponding homogeneous
system (B.1a)) converges to zero, we choose an arbitrary zo € C?. It is then
sufficient to show that the solution of (B.Ial) that starts at xy converges to
zero as t — 0o. To this end, we take the solutions ¢(-, zg) and ¢(+, 0) of (3.8)
that start at xg and at 0, respectively. By assumption, both these functions
tend to 0 as t — oco. Thus, p(t,z9) — ¢(t,0) tends to 0 as ¢ — oo as well.
But clearly, this difference is identical to the solution of the homogeneous
system (B.1al) that starts at zg.

Regarding the proof of the other direction of the equivalence, we assume
that the condition (3.4]) is satisfied. Under this hypothesis, we may proceed
as in the first part of the proof of Theorem [B.1](i). Using the argumentation
via Lemma[A.4{(i) employed in the induction step there, we can derive that
wa(t,z9) — 0 as t — oo for any xg € C%. Then we can proceed inductively
as in the first part of the proof of Theorem [B.Il(i) and demonstrate that
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the other components of ¢(-, z¢) vanish near infinity as well. The proof is
complete. O

REMARK 3.4. Clearly, the same arguments can be used to extend
the statement of Remark regarding block triangular systems to the
inhomogeneous case as well.

3.2. Systems with general coefficient matrices. With respect to the
stability theory for such systems of equations with general (not necessarily
triangular or block triangular) coefficient matrices, we are not yet in a
position to provide a comprehensive theory. We can, however, develop
an approach that works under certain restrictions on the orders of the
differential operators involved. Specifically we shall assume that a; € (0, 1]
for all j and that there exists some o* € (0,1] and some p; € Q such that
aj = pjo’.

In this case, there exist positive integers p; and ¢; (j = 1,2,...,d)
such that, for all j, ged(pj,q;) = 1 and p; = p;/qj. Then we define ¢ to
be the least common multiple of the g;. This allows us to deduce that
for every j there exists some positive integer r; such that o; = a*r;/q
(clearly, r; = p;jq/q;j). According to [7, Theorem 8.1], we can then rewrite
the j-th equation of the original system (I.I)) as an equivalent system of r;
differential equations of order a*/q. Thus, the entire system (LI]) can be

expressed as a system of d* = Zd rj equations of order a*/q. This new

j=1
system has the form
D Ag* (1) = A*2*(t) + ¢* (1) (3.92)
where the matrix A* has the block structure
A A - Ay
Aoy Ay -+ Ay
A* = . ] . (3.9b)
A Ap - Ag
with matrices Aj;, € C"7*"* given by
o 1 0 -0
0 0 1
Ajj = 0 for ] = 1, 2, ce ,d, (390)
0 0 0 1
ajj 0 0 O

and
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0 0 0
A=+ 0 for j,k=1,2,...,d and j#k, (3.9d)
0 0 0
ajk 0 0

and with the vector g* being defined by

g ) =(0,...,0 ,91(t), 0,...,0 ,g2(t),... 0,...,0,g4(t)".  (3.9¢)
N—_—— N—_—— N—_——

r1—1 times ro—1 times rq—1 times

While the dimension d* of this new system is potentially very much larger
than the dimension d of the original system, thus substantially increasing
the complexity, we obtain a significant advantage because all equations
of the system now have the same order, so that we may invoke the well
known classical theory to investigate the asymptotic behavior of solutions
of the system. Specifically, in view of this construction, we can immediately
deduce from [7, Theorem 8.1]:

THEOREM 3.5. Let the function g : [0,00) — C¢ be continuous and
satisfy g(t) — 0 for t — oco. Moreover, assume that o € (0,1] for all j
and that there exist some a* € (0,1] and some p; € Q such that a; = pja*
for all j. Then, all solutions of the original differential equation system
(LI) converge to zero at infinity if the eigenvalues A} of the associated sys-
tem'’s coefficient matrix A* defined in egs. (3.9b)), (39d) and (B.9d)) satisfy
|arg 7| > ma*/(2q) for all j, where q is the least common multiple of the
denominators of the p;.

P roof. From [7, Theorem 8.1], we see that the systems (I.I]) and
(B9al) are equivalent. Hence, we only concentrate on the system (3.9al).
By changing variable z* = Ty, where T is the non-singular matrix which
transforms A* into a Jordan normal form B, the system (3.9al) becomes

DI Ty(t) = By(t) + §(¢), (3.10)
where B = T~ 'AT = diag(By,...,Bj,...,B;) where B; is the Jordan
block corresponding the eigenvalue A of the matrix A* and § = T~ '¢*.
Note that lim; o g(t) = 0. Now, using the same arguments as in the
proof of Theorem Bl and Corollary 3.3 we see that every solution of the
system (B.9al) tends to zero if and only if the eigenvalues A} of the associated
system’s coefficient matrix A* satisfy |arg A}| > ma*/(2q) for all j. The
proof is complete. O
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Unfortunately, this criterion is based on the new system’s coefficient
matrix A*, and thus it only indirectly makes use of the coefficients of the
original matrix A. It would be useful to have a formulation that allows to
directly draw such a conclusion from the original matrix without having to
explicitly form the much larger new matrix and to compute its eigenvalues.
However, the following example indicates that we can probably not expect
to find a simple criterion that permits to immediately decide the question
for the solution asymptotics for a given differential equation system.

ExaMPLE 3.6. Consider the system

DY?z(t) a1 ar 0.00001 1
( DYzaty) Aw(t),  where A= )=\ —00022 01)"
(3.11)
Following the development above, we may choose o = 1 and ¢ = 4 in

this example, and thus this two-dimensional system can be rewritten as a
three-dimensional system of order a*/q = 1/4 in the form

0 1 0
DY42*(t) = A*a*(t)  with A*= | 000001 0 1 |. (3.12)
—0.0022 0 0.1

The components z7 and z3 of the solution to this new system are then
identical to the two components x; and x9, respectively, of the original
system’s solution. The eigenvalues of A* are A\] = —0.103917 and A} /3=
0.101958 £ 0.103851 so that arg A} = 7 and |arg A\5| = |arg A\5| = 0.79459 >
/8 = ma*/(2q). Therefore, Theorem asserts that all solutions of the
system given in eq. (8.I1]) tend to zero at infinity.

However, this observation does not appear to be immediately deducible
from the original matrix A. By a simple calculation, we see that the eigen-
values of this matrix are \; = 0.0673111 and Ay = 0.0326989 and thus
arg \] = arg Ay = 0 — a property that one would normally associate with
a system for which, in particular, unbounded solutions must be expected.

Similarly, the diagonal entries of A are real and positive as well, so their
arguments are zero too. Thus, an argumentation based on the diagonal
entries and not the eigenvalues like the one that we had shown to be valid
for triangular systems in Subsection Bl is not directly applicable to the
case of a general (non-triangular) coefficient matrix either.

This seemingly negative observation is not the final word though. Us-
ing different techniques we may actually derive a strategy that allows to
investigate the stability question in a satisfactory manner at least for the
case of a homogeneous system. Specifically, from the proof of Theorem
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we see that all solutions of the homogeneous multi-order system (2.5l
are exponentially bounded. (This essentially follows from the generalized
power series representation of the solution components and the estimate
(2.11)) for the coefficients of these series.) Hence, we may take the Laplace
transform on both sides of this system. This leads to

d
s Xi(s) — s i(0) = > ai;X;(s), i=1,....d, (3.13)
j=1

where X;(s) is the Laplace transform of the i-th component x;(t) of the
solution x(t). The system (B.I3]) can be rewritten in the form

Xi(s) bi(s)
X2 S bg S
A(s) - .( . ( ) (3.14a)
Xa(s) ba(s)
where
bi(s) = 5% 1a;(0), i=1,....d,
and
s —ayg —ai2 e —a1d
Als) = —as1 59 — ago —asq
—adq EE —Qdd—1 $% — add
= diag(s*,...,s%) — A. (3.14b)

Using a standard result from the Laplace transform based stability the-
ory [4, Theorem 1], we immediately obtain the following criterion on the
asymptotic behavior of the system (2.5):

THEOREM 3.7. Consider the homogeneous multi-order system (2.5))
and let the function A be defined as in (3.14D). If all the roots of the char-
acteristic equation det A(s) = 0 have negative real parts, then all solutions
of the system (2.5]) converge to zero at infinity.

REMARK 3.8. In the triangular case considered in Subsection 3.1 we
were able to extend our results derived for homogeneous equations also to
the inhomgeneous case, cf. Corollary 3.3l This was possible mainly because
the triangular structure allowed us to handle the individual equations of
the given system in a step-by-step manner one at a time which made it
possible to employ the variation-of-constants formula that is available for
scalar equations or single-order systems. In the general case considered
here, a suitable generalization of the variation-of-constants formula to the
setting of multi-order systems is not readily available and does not appear
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to be straightforward to derive. The authors plan to address this question
in a future work.

Appendix A. Auxiliary results

In this appendix we collect some auxiliary results that we used in the
proofs of our theorems above. For the formulation of these auxiliary results
we shall use the notation

am
AS = {)\ eC\ {0} : |arg (V)| > 7}
and

Al = {)\E(C\{O}:|arg()\)|<a—27r},

where the superscripts “s” and “u” can be interpreted as “stable region”
and “unstable region”, respectively. We note that the lemmas below can be
interpreted as generalizations of some results provided in [3] where similar
statements have been derived under more restrictive assumptions on the
parameter \.

LeMMA A.l. Let A be an arbitrary complex number and o € (0,1].
There exists a positive real number m(c, \) such that for every t > 0 the
following estimates hold:

(i) If A € A}, then

1
E,(A\t%) — — exp AV < m(o, \) min{t~®, 1},

1
t* By (M) — akl/o‘_l exp (AY94)| < m(a, \) min{t 17, ¢

(ii)) If A € A3, then

|t°‘_1Ea,a()\t°‘) | < m(a, A) min{t~ 17 1T

P r o of. In the case a = 1 the results are trivially true because then
Eo(z) = Eq,a(2) = exp(z). We therefore only have to deal with the case
0 < a < 1 explicitly.

Let us start with the case 0 < ¢t < 1. In this case, the minimum in the
first claim of (i) has the value 1. Thus, this claim is an immediate conse-
quence of the fact that the expression on its left-hand side is a continuous
function of ¢ € [0,1]. Similarly, we can see — in view of the continuity
of the Mittag-Leffler functions and the exponentials on [0,1] — that the
expressions on the left-hand sides of the two other claims can be bounded
by O(t~11®) = O(min{t— 1~ ¢t~1Ta}),
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The statements for ¢ > 1 (where the minima are always attained by the
first expression in the braces) immediately follow from well-known results
about the asymptotic behavior of Mittag-Leffler functions; specifically, we
have (cf., e.g., [13, Proposition 3.6 and Theorem 4.3] or [20, Theorems 1.3
and 1.4]) that

1 ,4_ b 27k o u
Eop5(2) = az(l B)/aexp(zl/a)—2m+0(|z| P for z e AR
k=1
Al
and (A-1)
p Z_k )
-y _- —p— s
Eq5(2) ; NCED +0(|2[7P7Y  for z e A3, (A.2)

hold for arbitrary p € N and |z| — oo. Upon choosing ¢ > 0 and z = A\t®,
we then observe that the relation z € AJ, holds if and only if A € AS,
and an analog equivalence exists for AL. Using this approach, the first
statement of (i) follows from eq. (A.Il) with p = 1. Similarly, the second
statement of (i) and the statement of (ii) follow from eqs. (A1) and (A.2),
respectively, upon setting p = 2 and noticing that the summands for £ = 1
vanish because they contain a factor 1/T'(a — ) = 1/T'(0) = 0. O

LEMMA A.2. Let A € C\ {0} and « € (0,1]. There exists a positive
constant K («, \) such that for all t > 1 the following estimates hold:

(i) If A € A, then

/0 ((t — 1) By 0 At —T)%)
(ii)) If A € A, then

/0 [(t = 7)* ' Eau (At = 7)%)| dr < K(a, ).

/ ‘Al/o‘_lEa()\to‘) exp(—)\l/o‘r)‘ dr < K(a, \),
t

dr < K(a, \).

B Al/a_lEa()\ta)
exp(A\V/eT)

P r o o f. Once again the statements are trivially true for « = 1. The
proof of the remaining cases is very similar to the proof of [3, Lemma 5].

For the first claim of part (i), the first statement of Lemmal[A.[(i) allows
us to proceed as follows:

/ ‘Al/a_lEa()\ta)exp(—)\l/aT)‘dT
t

1 /1 o m(a, A
< et [ (| esmairen) + 02

+

> (exp(—Al/%) dr
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_ et [é/to" ‘exp()\l/a(t — )| dr + %ﬂ’)‘)/f ‘exp(—)@/%)‘ dT].

For the evaluation of these integrals we recall that A € Af, and hence
|arg \/®| < 7/2 which implies that RA\Y® > 0. Making use of this in-
equality in combination with the identity |exp(A\/®z)| = exp(RA/*2) for
z € R, we conclude

00 0
/t ‘exp()\l/o‘(t - T))‘ dr = /_OO exp(RAY ) du = ﬁ

and

[e.e] [e.e] [e.e] 1
/ ‘exp(—)\l/o‘T)‘ dT:/ exp(—RAVr)dr </ exp(—=RAV O r)dr = ——.
t t 0 RAL/«

These estimates conclude this part of the proof.
The proof of the second claim of part (i) uses the second statement of
Lemma [AT]i). Specifically, that result allows us to write

/ t (= )2 Baa(A(E = 7)) = AV By () exp(-AVe7)| dr
0

),

+mla, A) /0 min{(t — 7)1, (t — 7)1} g, (A3)

1
akl/a_l exp()\l/a(t —-7)) — )\l/o‘_lEa(Ato‘) exp(—)\l/o‘T) dr

Since we have assumed that ¢ > 1, we may bound the last integral as
follows:

t t
/ min{(t — 7)1, (t — 7)1} dr = / min{7 7% 71T dr
0 0

1 t
1 1
= [ s [ ar= e (e
0 1 @ o
2 1 2
= — — —t_a < .
o)) o)) «

Moreover, for the first integral on the right-hand side of eq. (A3]) we may
invoke the first statement of Lemma [A.1{i) and conclude that

[

— |)\|1/a—1

Lo oxp (A2 (¢ — 7)) — AVa~1 B, (M) exp(— A7) dr
o

t
L expOOed) — By () / |exp(—AYor)| dr
o 0

t
< |)\|1/a_1m(a,)\)t_a/0 |exp(=AY7)| dr
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t
= |)\|1/°‘_1m(a,)\)t_°‘/ exp(—RAY7) dr
0

— AV U (a, At (1 - exp(—ml/at)) :

1
%)\l/a
As above, our assumption that A € A implies that RAV® > 0, and hence
this last expression is uniformly bounded for all ¢ > 1. This completes the
proof of the second statement of part (i).

Finally, for part (ii), Lemma [A.J[ii) and the fact that ¢ > 1 allow us to
estimate as follows:

[l = 0 EaaMe = 1) dr = [ [ a3 dr
0 0

t
2
< m(a, )\)/ min{7 7% 771} dr < m(a,\)=,
0 «
where the last estimate uses the result (A.4). Thus the desired result fol-
lows. O

LeMMA A.3. For any continuous and bounded function f : [0,00) — C,
a € (0,1] and A € A%, we have
t Eq oAt —T1)%)

l‘ t_ a—1
dm (=) Eq (M)

= A/l /0 h exp(—=AYr) f(r) dr. (A.5)

f(r)dr

P r oo f. Again, the case a =1 is trivial.

For 0 < a < 1, we first remark that the expression on the left-hand side
of eq. (A5 is well defined: The denominator is non-zero because, as shown
by Wiman [24), pp. 225-226], the Mittag-Leffler function E, does not have
any zeros in A}. Thus, since A € A} implies that tA\ € A} for all ¢ > 0, we
conclude that E,(At%) # 0 for all £ > 0.

Next we note that the integral on the right-hand side of eq. (A.5) exists
because f is assumed to be continuous (which asserts the existence of the
integral over any compact subinterval [0,7] with arbitrary 7' > 0) and
bounded which admits us to bound the absolute value of the integrand by

|exp(—AY7) f(7)] < exp(—RAY7) - sup | £(t)).
>0

As we already noted in earlier proofs, RAYe > 0, and hence this bound
provides a convergent majorant for the integral over [0,00), thus asserting
the existence and finiteness of the improper integral on the right-hand side

of eq. (A.).
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Then, the first statement of Lemma [AJ|(i) implies that |E,(At®)| ex-
hibits an unbounded growth as ¢t — co and hence that
e/
thee Ea(MY)
It thus follows that

) ¢ a1 Eaa(At —1)%)
o =) ey SO

! Eaa(A(t —T1)*

~ lim a/ (t —pyet BoaMEZ D) 0y
t—o00 0 exp(Al/at)

if one of the limits exists (which immediately implies the existence of the

other one).
For ¢t > 1 we see that

¢ /t_l(t — 1) Baa (At = 7)) f(7) dr

1
< sup ()] sup [Eaa(u®)]-a [ uttdu
0

u>0 0<u<l1
= sup |f(u)| © Sup |Ea,a()‘ua)|-
u>0 0<u<1

Evidently, the upper bound depends on f, o and A but not on ¢. It therefore
follows, once again using the unbounded growth of | exp(AY/?t)| for t — oo,

that
t Eqo(A\t —1)%)
: a1 oo _
tl_n)%loa /t_l(t T) exp(ATat) f(r)dr =0.

In order to complete the proof of Lemma [A.3] it therefore suffices to

show that
o Eoa(At—7)%)
. _ a—11a,a
tlg](r)loa/o (t=7) exp(Al/et) flr)dr
= \l/a—l / exp(—=AYr) f(r) dr. (A.6)
0

To this end, we recall that the second statement of Lemma [Al(i) implies

Lt — 1) Baa(Mt— 1)) = AVl exp(A/2 (t - 7))

/(; eXp()\l/at) f(T) dr
t—1 am(a, \)(t — 7)1

< ig% |f(u)| . /0 eXp()\l/at) dr

< sup|f(u) am(a, A) 717 dr < sup|f(u)| )

u>0 |exp Al/at ‘ T u>0 |exp()\1/°‘t)|
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for ¢t > 1; in particular we once again see that the upper bound converges
to zero as t — 0o, and therefore (AL6) follows as desired. O

Using Lemma [A.1] Lemma[A.2] and Lemma[A.3] we obtain the asymp-
totic behavior of solutions to scalar linear fractional differential equations
as described in the following result.

LeMMA A4, Let a € (0,1], and let f : [0,00) — C be a continuous
function with the property lim; ,o |f(t)] = 0. Consider the differential
equation

Dgx(t) = Ax(t) + f(t), t > 0. (A.7)
The following statements hold:
(i) If |arg (\)| > am/2 then all solutions of (A7) tend to zero as
t — oo.
(ii) If |arg (\)| < am/2 then eq. (A7) has a unique bounded solution.
Moreover, this solution tends to zero as t — oo.

P r o o f. In either case, we start from the variation of constants for-
mula [7, Theorem 7.2 and Remark 7.1] which tells us that the solution
(-, o) of (A7) that satisfies the condition ¢(0,z¢) = ¢ is given by

o(t, o) = xoEo(AtY) + /0 (t— T)O‘_lEma()\(t — 7)) f(r)dr. (A.8)

In order to prove part (i), let £ > 0 be arbitrarily small. We can find a
constant 7' > 0 such that |f(t)| < eforallt > T. Fort > T+1 and xy € C,
we split up the integral on the right-hand side of eq. (A8]) according to

T
o(t, o) = xoEo(At*) + /0 (t— T)a_lEaﬂ()\(t — 7)) f(r)dr

t—1
" / (t = 7)* Eaa(A(t — 7)) f(r) dr

T
t
[ = B = D)) dr
t—1
By virtue of Lemma [A.T)ii), we have
tli)m zoEq(AtY) = 0. (A.9)
On the other hand, by a simple computation, we obtain

t—1
/ (t— 1) B a(A(E — 7)) () dr

t—T
< E/ ‘Ta_lEOC,a()\Ta” dr
T 1

< EM&A) mS" A , (A.10)

due to Lemma [AT]ii), and
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1
< E/ ‘Ta_lEOC,a()\Ta”dT
0

< eEq () (A.11)

/t (t— 1) B a(A( — 7)) () dr

-1

(see [20, eq. (1.99)]). Furthermore,

t
< sup |f(2)] / 1721 B (A7) dr
t>0 t—T

m(a, A) sup;>o |f(2)]
- alt —T)> ’
due to Lemma [AT]ii). Since € is arbitrarily small, from eqs. (A.9]), (A.10),
(A.11)) and (A.12), we get

T
/O (t = 7)% " Baa(A(t — 7)) f(r)dr

(A.12)

Jim lo(t, z0)| = 0,

and the proof of part (i) is complete.
For the proof of (ii), we note that Lemma [A3] admits us to precisely
describe the asymptotic behavior of the integral on the right-hand side of

eq. (A.8)), namely

/Ot(t — 1) By o\t — 7)) f()dr

= B, (At Aol /OOO exp(=AYer) f(r) dr - (14 o(1)).
Thus, by (A.8]), any solution to the differential equation behaves as

o(t, o) = Eq(AtY) {azo 4+ \Mat /oo eXp(—)\l/aT)f(T) dr - (1 + 0(1))}

0
(A.13)
for t — co. Since |arg A\| < an/2, we know that E,(At%) is unbounded as
t — oo. Thus, a necessary condition for the entire expression on the right-
hand side of (A13) to be bounded is that the term in brackets converges
to zero as t — oco. Clearly, this is the case if and only if

xTo =T = —)\1/0‘_1/ exp(—=A\Yor) f(7) dr.
0

Thus, the differential equation (A.7)) has at most one bounded solution,
and it remains to prove that this solution has the property ¢(¢,7g) — 0
as t — oo (which, in particular, implies that the solution is bounded and
hence that a bounded solution exists).

To this end, let € > 0 be an arbitrary positive real number. Then there
exists a positive constant T' > 0 such that

lf(t) <e forall t>T. (A.14)
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For any t > T + 1, we put

Hy ()= Ea QAo [ exp (<o) f(r)a,
. t
Ha(t)= [ [(0=7)" B M(t=r)") =N exp (<A ) B () £ (),

Hs(t)= /T [(E=7)° 7 Baa (At =7)%) =AY exp (= AYr) Ea (M) | £ (7).

It is then clear from eq. (A.8)) and the definition of Ty that
@(t,To) = Hi(t) + Ha(t) + Hs(t).
By virtue of (A.14]) and the first statement of Lemma [A.2](i), we have
|H1(t)] < eK(a, A). (A.15)
Using both statements of Lemma [AT(i), we obtain, since t — T > 1,
|Ha(t)| < sup |f(t)]
>0

T
« / |)\|1/a—1
0

< sup [£(0) @AW&—I / " exp(=A/7)). '1 exp(N/2t) — B, (M)
>0 0 o
T dr
enten) [ =]

< m(a, \)sup|f(t)]
>0

exp(\/o(t = 7))  Ea(M?)
a ~ exp(A\l/oT)

(t _ 7—)1+a

m(a, \) ] ir

dr

T _ 7)o _ @
v [|A|1/a—1t—a/ lexp(—AVor) gr 4 EZD 2 =1 ] . (A.16)
0
Since A € A}, we conclude once again that
T T
/ |exp(—>\l/°‘7')| dr = / exp(—?R)\l/aT) dr
0 0
= |1- — o < -
TNi/a [1 exp(—RA T)} < e
and thus we see from eq. (A6]) that
Hy(t) -0 as t— oo. (A.17)

Furthermore, by (A.I4) and the second statement of Lemma [A.2)(i), we
have
|H3(t)| < eK(a,\). (A.18)
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From (A15), (AI17), (AI8) and the fact that £ > 0 can be made arbitrarily
small, we conclude

lim o(t,To) = 0.

t—o0

The proof is complete. o
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