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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF

LINEAR STOCHASTIC DIFFERENTIAL SYSTEMSt1)
BY

AVNER FRIEDMAN AND MARK A. PINSKY

ABSTRACT.   Following Kasminski, we investigate asymptotic behavior of

solutions   of linear time-independent Ito equations.   We first give a sufficient con-

dition for asymptotic stability of the zero solution.   Then in dimension 2 we de-

termine conditions for spiraling at a linear rate.   Finally we give applications to

the Cauchy problem for the associated parabolic equation by the use of a

tauberian theorem.

Introduction.  Consider a system of linear, constant coefficients differential

equations

dx.        I
(0.1) ~-   Y   b'.x.       (Ki< I).dt       fa     *   l
It is well known that the solutions of (0.1) are asymptotically stable if and only

if the eigenvalues of ib1.) have negative real part.  In case   1 = 2  the angular be-

havior can be determined, leading to the familiar cases of focal points, nodal

points and saddle points.

The corresponding problem for a system of Itô stochastic differential equa-

tions

In I
(0.2) dx.=   £   £   a\x.dwr+  £   blx.dt       (\<i<l)

; = 1    r=l      "   ' j~\

was first studied by Kasminski [5]. He decomposed the stochastic process into

its radial part r(t) = \x(t)\ and its "angular" part \(t) = x(t)/\x{t)\. Assuming a

strong ergodicity condition for |A(z), t > OÍ, he gave a necessary and sufficient

condition that r(t) —► 0 a.s. when / —> t». He did not examine, however, the be-

havior of \X(t),   t > 0|.  The first study of the angular behavior in the case   / = 2
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2 AVNER FRIEDMAN AND M. A. PINSKY

was carried out by Kozin and Prodromou [6] who proved the existence of spirals

for certain examples.

The main contribution of the present paper is to the study of the angular be-

havior of  \x{t), t > 0|  in the general case   1=2.  The homogeneous form of (0.2)

implies (see Ç2) that  \X(t) = (cos <j>(t), sin <f>{t)),  t > 0\ is a diffusion process

which can be determined by a single Itô equation on  (-°°, °°):

(0.3) d<f> = ct(0) dw + 1(cß) dt.

In case   a{(f>) is never zero, the asymptotic behavior depends upon

(0.4) A=f277Í^^.
J°      a2(0)   *

We prove (Theorem 3.1) that if A > 0 (A < 0)  then a.s.

(0.5) lim   - exists and is a positive (negative) constant.
t —*oo     I

In case a((f>) = 0 for some points  <f>, we need to examine the sign of  b{<f>) at

these points.  If, for instance,   b(<f>) > 0 (b (0) < 0)  at all the points where

a{(ß) = 0.   then (Theorem 3.3) the assertion (0.5) again holds.   Although this re-

sult may be derived by employing the general classification of one-dimensional

diffusion, we give a new method of proof based on constructing certain "com-

parison functions" for the differential generator of the angular process.

Finally, we compare the behavior of the solutions of (0.2) (/= 2)  with the be-

havior in the deterministic case, achieving the surprising result (Theorem 5.2)

that   if a{cß)  does vanish at some points then, whenever the solutions of (0.1)

spiral, the same is true of the solutions of (0.2).

In the final section we apply our results to the Cauchy problem

du/dt = Lu    (t > 0, x e R!),       u(0, x) = /(*)    (x e Rl),

where   L  is the differential generator of the diffusion process of (0.2) and   1=2.

We prove that whenever the solutions of (0.2) spiral,   lim u{t, x) exists

provided fix) = g((p)  (x = (r cos 0,  r sin (f>)). We also obtain results on the do-

main of dependence of the solution upon the initial data.

The asymptotic behavior of solutions of nonlinear stochastic differential

equations was studied in Freidlin [l] and in Friedman [3].  The limit theorems

obtained in these papers are of entirely different nature than those obtained in

the present work.

1. Properties of the radial motion.  Consider a system of linear stochastic

differential equations
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(1.1)

LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS

dx . = a{ x .dwr + b}'x -dt       (1 < /' < /),
i tr   1 z   / —     —

,.(0) .0

where {w (r), • . • , wn{i)) are independent Brownian motions and a1. , bl are con-

stants, 1 < i, j < I, 1< r < n; we use the summation convention throughout. It is

always tacitly assumed that  x(0) ¿ 0.

Kasminski [5] has observed that the solution of (1.1) can be written as

xXt) = Kí)A.(í) where  (A.(i), • ■ • , A,(¡0) is a Markov process on the sphere   |A| = 1

and  At) = |x(r)|   is an explicit functional of  {A(i),   t > Oj.  In the case where the

A-process is ergodic, Kasminski presented a necessary and sufficient condition

that r( i) —» 0 when  t —> oo.  That condition, however, is of very limited use since

it requires an explicit knowledge of the invariant measure of the A-process.  We

shall derive in this section a cruder but more easily verified stability condition

which does not depend on the ergodicity of the A-process.

The differential generator of the  x{t)  process is
7 ^2

(1.2) Lk = (Bx,grad u) +-    ¿    a..(x)^—^-,
¿,7 = 1 i      j

where
/        n

(1.3) «..(*)=     Y     y   akasx  x  ,       B=\\b'.\\.i] ¿—i      *-^       ir   jr   k   s n    j»
fe,S=l    r = l

If u = <f>(r) where   r= \x\, then

(1.4) L<ß(r) = r<f>'(r)Q(\) + Y2 [r2c/>"(r) + r<f>'(r)] (a(A)A,A) ,

where   A. = x./\x\  and

Q(A) = (BA,A) + lA tr a{\) - (a(A)A,A).

Let us show as a preliminary step that, in general, the   x{t) process does

not hit the origin.

Theorem 1.1.   P\lt > 0 for which x{t) = 0\ = 0.

Proof.   Let  cfAr) = r~e where 6 is a fixed number in the interval  (0,1).  Using

(1.4) we get

L</> = ef>[-Q{\) + (e/2)(fl(A)A,A>] < tf

¡i>   sup   \\Q(\)\ + y2(4A)A,A)!
|x|=i

By Itô's formula, if  f(x) is in  C2(Rn) then
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4 AVNER FRIEDMAN AND M. A. PINSKY

e-^f(x(ñ)
(1.5)

/(*0)+Z   ¡^ e'^fx{x{s))o\rx{s)dwr(s) +   V   {Lf-fif)e-^ds
i,j,r l

where  z* is any bounded Markov time.

Now let  \r  \ be a decreasing sequence of radii tending to zero, and let / (x)

be a  C  (/?')  function satisfying / GO = r~e for r > r .  Set x„ = x(0).  If   IxJ > r

and Tn = infj/; |x(i)| = rj then, by (1.5) with f = fn and r*= t A 7^,

¿AT„
0E\e-^TnAt)fjx{t A rj)S = /(Xq) + E  j^T« (Lf_flf)e-^ds < fkj.

Let ß  be the event \a>; inf    Q |x(i)| = Oj.  Letting t —> °° in the last inequality

and noting that f(x{t A T )) = r~e if t > T  ,  it follows, by the monotone conver-ti ; n n n' '    '
gence theorem, that

E\e~^nXB\/ren<l/\x0\e.

Taking n —» °°, we obtain

Ele-^rxßS = 0    where   T=   lim   T.
n — oo

Hence  T = °° a.s. on the set S.  Thus, for almost all a> € B, x(t) does not inter-

sect  0  at a finite time.  Since for any  cú ¡t B, x(t) £ 0 for all t > 0,  the proof of

the theorem is complete.

The next theorem establishes a simple sufficient condition for stability.

Theorem 1.2.  // sup,   ,   , 0(A) = - a < 0 then, for some constant  C,

(1.6) Ejlog r{t)\< C-at,

(1.7) p{Dm  !^<-a|-l.

Similarly, if inf,   ,   , Q(A) = ß > 0 then, for some constant  C,

(1.8) Eilog r{t)\>-C + ßt,

(1.9) pílim^^Ul.

Proof.   By Theorem 1.1,  log At) is a well-defined random variable for any

t > 0.   From Itô's formula and (1.4)

(1.10) log r{t) = log KO) +  j'  -Lo->.TX.dwr(s) + f* Q(\{s))ds.
r

Since the Itô integral has mean zero, whereas the Lebesgue integral is  < -at,

the inequality (1.6) follows.   To prove (1.7), we use the following lemma.
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LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS 5

Lemma 1.3.   Let  cAt) be a nonanticipative functional of \w{t), t > 0Î,

\oit)\ < K.  Then, a.s.,

1    f t(1.11) —   I    ois)dw{s) —> 0    when  t —> ■».

From this lemma it follows that a.s.

r Jo'-tM^^^0 if z^~-
Since also /' <2(AU))ß?s < -a/,  the assertion (1.7) follows.   The proof of (1.8),

(1.9) is similar.
Proof of Lemma 1.3.   Let M > K and define

T, =   C (^ + M)2 <&>       «0) =   f        (°<s) + M)<Ms).1       JO J 0

(Since  CT+ M > 0,  a(í) is well defined.) By [4, p. 32] or [7, p. 29],   {«(i),  Í > 0\
is a Brownian motion.  Consequently,  a\t)/t —> 0,  or a(T )/T   —> 0,  when t —> t».

Noting that  T   < (K + M) t,  it follows that

1     fr Í   —» co.-   P UU) + MV^U) ->0    ift   Jo

Since w\t)/t —> 0 when  t —► <»,  (1.11) follows.

2.  The case 1 = 2;   reduction to one equation.   We now restrict ourselves to

systems in the plane, i.e.,  1 = 2.  We introduce polar coordinates  (r, </J>) by x =

r cos <f>, y = r sin c/j.   From (1.1) we may formally compute the stochastic differ-

ential of c/j:

dqj = (f>xdx + <j)ydy + Vi(f>xxaudt + cf>xyal2dt + V2(f>yya22dt.

Noting that

(f>x = -(sin c/j)/r,    c/j    = (cos <f>)/r,    <f>xx = (2 sin c/j cos <f>)/r ,y

■    ïj. 2J.^/  2

we find that
<f>      = (sin c/j> - cos  <f>)/r  ,       <f>      = -(2 sin c/j cos (f>)/r ,

(2.1) d<f> = (a\, Xx)dwr - \ (a(A)A,A-L) - (BA,AX)}¿/

where  a  = ||o"z.||,  A= (cos c/j, sin c/j),  A    = (—sin c/j, cos c/j).

The above has the following  meaning: equation (2.1), with initial condition

c/j(0) = c/j.,  defines a diffusion process in the interval -■» < c/j < oo.  In terms of

this process and the Brownian motions  (w  (t), • • • , t^"0)),  we define a process

r(i) by the equation

(2.2) At) = r0 exp Í Jo' (a AU), AU)) ¿u/U)) exp f J"q' O(AU)Ws)
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6 AVNER FRIEDMAN AND M. A. PINSKY

where  A(s) = (cos c/>(s), sin <f>{s)); this is motivated by (1.10).  The pair yU) =

(r(t), (f>(t)) is a diffusion process on  (0, «j) x (-°°, <*>).  We now define x{t) =

Ux(f), x 2(r))  where x,(r) = r(r) cos ci(r), x 2(i) = r{t) sin ci(r).  We claim

Theorem 2.1.   \x(t), t > 0i ¿s a diffusion process which can be obtained as a

solution of (1.1).

Proof.  We  have  to  verify  the  stochastic  equations  (1.1) for x\t). We re-

sort to the general reasoning:

Write x .(i) = g1iy) where y = \y, , y A) and g  is a global differentiable trans-

formation \r, ci) —> (r cos ci, r sin ci).  The stochastic differential of x   can be

computed by Itô's formula (subscripts following commas denote partial derivatives)

(2.3) dxi = Kkdyk + v^ikidykdyv

On the other hand, by definitions (2.1), (2.2), the stochastic differentials of.

(y,,y.) = (r, cf>) were obtained in terms of the local inverse of g: x —» f\x) =

((x j + x2)   , tan- ' (x2/xj));  thus

dy, = fkdx.+ l/2fk.dx.dx.
(2.4) *      "     ' '"     '    '

= /Jg(y))i^v(g(y))^r + b.(g(y))dt\ + lÁÍ%{g{y))oir(g{y))a.T{g{y))dt.

{a . (z) = al z ., b .(z) = biz.) is the stochastic system defining the y-process.  IfIt XT  1       1 l   j J & J   r

we now substitute (2.4) into (2.3), we get (omitting the arguments of g, f, a, b)

dxi = ¿jtfPt,** + «tf/w, * r>P*] + y^\klt%j\q%)dt-
Since / and g  ate inverse functions (locally), it follows (by differentiating once

the relation figiy)) = y) that / igl, = 8,. and (by differentiating once the relation

fk,lg]k = 5zP that S'jjm + fk,lS\kptP,m = °"  Usin« these relations in the last ex"
pression for dx .,  we arrive at dx . = a. dwT + b dt.  This proves the theorem, and

thus completes the identification of the solution of (2.1) with the algebraic angle

of the original diffusion process x(t).

As a final reduction we show that with a single Brownian motion we can ob-

tain a process equivalent, in the sense of joint distributions, to (2.1).   Let

(2.5) W-iZty**)2)*'

(2.6) b(<f>) = (B\, Ax) - (fl(A)A, A"1)

where a  and B   are as in (2.1).   The functions  a, b   are Lipschitz continuous

periodic functions with period 277.  Let  <f> At) be the solution of

(2.7) cf>(t) = 4>0+ J"o' 7f(<f>(s))dw(s) + £ b{(t>{s))ds
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LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS

where  \w(l), t > 0!  is a Brownian motion.  An immediate calculation using Itô's

formula shows that  c/j(r)  and  c/j At)  have the same generator

L = V2Ço{cf>))2 d2/d(f>2 +lb(<ß)d/dcf>.
From the uniqueness of bounded solutions of the Cauchy problem for parabolic

equations [2] it follows that E/(c/j  u)) = Efk<f>\t)) for any f 6 C   , f bounded; here
c/j.(o) = c/j(0).  The Markov property now implies that the joint distribution of the

processes  c/j At) and c/j(i)  agree.

In the following two sections, we shall study equations of the form (2.7).

3. One stochastic equation.   We shall consider in this section one stochastic

equation

(3.1) dqj = b(cf>)dt + oi<ß)dw,       c/j(0) = c/j0

with uniformly Lipschitz continuous coefficients  b\<p), ct(c/j),  and with  a(c/j) > 0.

Theorem 3.1.  Assume that a{z) > 0 for all real z and that  b\z), cAz) are

periodic of period 2n.  Let

.       cm b(z)

(3.2) A=J„     Pc;*-
// A > 0 then  T. = inf \t; cf>{t) - c/j    = 2771 is integrable with  ET    > 0,  and

// A < 0 then  T_    = infU; <ß{t) - c/j    = -277! is integrable with  ET_.. > 0,  and

Finally, if A = 0 then

(3.5) P¿   iïîrn   0(í) = oo| = 1,

(3.6) P¿ [lim  ^(í)=-ooJ= 1.

■et

;xp|-   fZ  -— ¿"!>        'i =   f      $U)¿z,        /, =   f°° $>(z)dz.

Proof.  Set

»/  n {      rz  2b(u)
<P(z) = ex

2{u)

For z  positive,

fz  23È du = 2AU/2ir] + 9       (101 < C,  C'   constant)

where  [a] denotes the largest integer < a.  Therefore
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8 AVNER FRIEDMAN AND M. A. PINSKY

(3.7) <Kz) = exp|-Az/77+ 0(1 H.

The same relation holds for z  negative.  It follows that when  A > 0,  /. = °° and

¡2 < <*>.  By Theorem 1 of [4, p. 119] we conclude that  lim     ^ciíz) = °o  a.s.  To

prove the sharper result (3.3), we may take  c/>Q = 0 and write  P „ = P,  E. = E.

Define successive Markov times

Tn = iaiU > 0; c6(t) = 2nn\.
We claim that

(3.8) £(r1)>».

To prove it, denote by  t    {a < 0) the exit time of ci(z) from the interval  (a, 2n).

Then (see [4, p. 109])

"0 „»/  x   ry       dzE(t ) = -f°20(y)   P
" Ja Ja

(3.9)

+ íí2-2^y)fy-^—\(f0^z)dz/f27T^z)dZ):iJa Ja   o2{zWz))\Ja / Ja I

Using (3.7) one easily finds that  E(t ) < C  where  C is a constant independent of a.

Since  ra/T.   as  a \ -»,  E(T  ) < C.
Using the strong Markov property and the periodicity of biz), aiz),  it follows

T
that the random variables  /T^_j biq>is))ds   in = 1, 2,-- •)  are independent and

identically distributed.  Since, by (3.8), also   E\J    bicf>is))ds\ < oo,  we can apply

the strong law of large numbers to deduce that

NU)     r T
r bi<f>is))ds =   £     f   "    é(0U))¿s+   f    «0(s))«fc

JO i^i •'I,,,1 n—1

~/V(z)E  /   ' b{cf>(s))ds

1 n-1 NW

'0

where ,Vu)  is the largest n  such that  T    < t.   The strong law of large numbers

applies also to  \T   - T      A     ,  _      .It shows that iV(i ) ~ c ,t   as  t —» <» (c

constant).   Thus we have

1     f '—    I     bi(f>is))ds —> c     if  Z —> oo     (c constant).

But by Lemma 1.3,

—   f ' o<ci(s))iMs) — 0     if í — oo.

Consequently,   <f>it)/t —> c  if t —> oo,  a.s.   In order to evaluate c,  we sample the

process at t = T , T , • • • . Thus,   2nn = óiT ) ~ cT    ~ cnEiT .) where in the

last relation we have used the strong law of large numbers.  It follows that   2rr =

cE(T.), and (3.3) is proved.  Note that since  c  is a real number,  EÍT^) ¿ 0.
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LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS 9

The proof of (3.4) is similar.   Finally, if A = 0 then /. =/_ = °o  and (3-5),
(3.6) follow from Theorem 1 of [4, p.  119].

Remark.   E\T,) can be computed from the relations  E(T,) = lim Et1 r 1 a—♦ — oo       a

and (3.9).
Consider next the case where  cAz) vanishes on a sequence of points. Suppose

ß0<ßl<ß2<...<ßk<ßk + 1,

(3.10) o{ßl) = oiß2)=... = o(ßk)=0,

a{z) > 0 in the intervals   (ß., ßj + 1),    0 < ;' < k.

Consider first the case where

(3.11) M/3,) > 0,  b(ß2) > 0,  • . - ,  b(ßk) > 0.

Denote by  T {a, b) the exit time of  c/Ju)  from  {a, b), where  c/j(0) = x.  We shall

prove

Theorem 3.2.   Let (3.10), (3.11) hold.   Then, for any   ae {ßQ, ß A and for

any  y e (ßk, /3fe+J),

(3.12) E\r(a,y)\<oo    ifxe(a,y).

Furthermore,

(3.13) P\<f>(rx(ßl,y)) = y\ = 1     ifxeiß^ßj.

Note, by Theorem 2 of [4, p.  150], that if x = ßl  then c/>(z) > ß{   a.s. for any
t > 0.

Proof.   For any e > 0 sufficiently small

¿>U) > è. > 0    in the intervals  {ß . - e, ß. + e),     1 < z < k,
(3.14) -    ° ' ' -    -

oix) > O"0 > 0    in the intervals  {ß. + e, ßi + l - (),     0<i<k+l,

where bQ  is independent of  e and  aQ  depends on  (.  We shall construct a piece-

wise  C    function fix)  such that

(3.15) Lf(x)<-u<0    in (a, y),

where  Lu = Y2a u" + bu' ; f and  i^ will depend only on bQ, er0, í and on an upper

bound on  b.
We take  e such that  /3Q + e < a, y + e < ß     1  and, for definiteness, suppose

that  a. < ß   - e.  We begin by taking

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 AVNER FRIEDMAN AND M. A. PINSKY

{l/k)\X-eUx-ß^ty] \n(a,ßx-t\

f(x) = ( - U - ßy + e) in (j8j - €, ßl + e),

■ 2€+ (1/A)[1 - e*(*-fr-<>]    in (j81 + e, ß2 - f).

Then  L/U) < -¿>Q < 0 in  (ß^ - e, ß. + e) and, for some positive number v,

Lf(x) = -beklx-ßl+e) -V2ka2ek{x-ßl+e) <-v

in (a, ß   - e) provided k  is sufficiently large.   Similarly  Lf(x) <—v in  (ß. + t,

ß2 - t)  if A is sufficiently large.  Notice that  / Gc) is continuous at x = /3.  ±i

but  / U)  is discontinuous at these points.

Set f2=f{ß2-e),f2=eXiß2-ßl-2i) and define

Í-f2(x - ß2 + e) + f2 in  (/32 - c, ß2 + (),

-2(f2 +f2 + (/V/i)[l - eß(x-ß2~e)]    in  (ß2 + e, ßi - e).

Then / (x) is continuous at x = ß2 tí, but / (x) is discontinuous at these

points.  It is easily seen that Lf{x) < -v < 0  in  {ß2 - e, ß2 + e) and, if y. is

sufficiently large, also in \ß2 + (, ß, — e).  We can proceed in this manner step

by step to construct / in the whole interval  (a, y).

We proceed to prove that

(3.16) Et (a, y) < oo    for any x € (a, y).

Let a , b     be  C2 functions,  a (x) > 0  for all x,  a ix) = 1, b  ix) = 0 if x < a - 1n      n '      n '      n n
or if x > y + 1,   and as  n —» <*>,  <7 (x) —> cr(x),  ¿>   (x) —> b(x)  uniformly in  [a, y].

We shall first show that

(3.17) Er^a, y) < C < oc

where  C  is a constant independent of n,  and  r" = r"(a, y) is the exit time from

(a, y) of the stochastic process  c/j (/) (with  c/S (0) = x)  corresponding to a  , b   .

The function fix) constructed above for  a, b  is good also for  a , b     if n   is

sufficiently large, that is,

(3.18) LJ={l/2)a2j" + bj'<~v    in(a,y),

except at a finite number of points  y.,■•■, y. where f (x) has a jump;  v is a

positive constant independent of n.
Let  !g   (x)i be a sequence of continuous functions which approximate / (x)

in the following manner:  g   (x) = f (x)  if   \x - y ] > (l/m) for all   1 <j < I,  and

g   (x) connects / (y. - l/w) to / (y. + 1/to)  linearly.  It is clear that the functions

/   (x) = f(a) + f'{a)x +   \      [y g   (z)dz,'m ' ' Ja   Ja  °m
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LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS 11

satisfy /   (x) —> fix), f   ix) —> f ix) uniformly in  (a, y),  as m —» oo,  and

/' (x) = p   (x).'m °m
Since /     is in  C  ,  we can apply Itô's formula and get

(3.19) E\fJonir» A T))\-fmix) = E{foxAT LJJfij,))*)

for any  T > 0.   Let

E>   = \is, cu); 0 < s < t    A T, Ici  is) - y.\ < l/m\.

Let dp. be dt x dP.   Then

=    1      dt   I, i      ,     p  it, x, y)dy —> 0     if  m —> oo,
JO J\y-7 .\<l/m     n

where p  it, x, y) is the transition density for the diffusion processes correspond-

ing to o  , b   ;  it exists by our assumptions on  a , b .° n       n' ' r n      n
Since  L   f id> is)) is a bounded function of is, a>) and since  L   f   ich is)) =

L fid> is)) for all  is, (A) not in   \J   E1 ,  we can apply the Lebesgue bounded

convergence theorem in passing to the limit  im —► oo)  on the right-hand side of

(3.19).  Since the left-hand side is bounded by a constant C    independent of m,

n, we get
rr"AT

-C'< E   \   X       L f(ff> is))ds;—        Jq n'    r n

the set of points  is, a>) at which /(ci  is)) = y. is of measure zero.   Using (3.18)

we conclude that  vEirn A T) < C ,  i.e., (3.17) holds.   The same proof gives

(3.20) E\r"xia-r¡, y + r¡)\ < C

if r¡ is sufficiently small.
Now, for each  T > 0,  supQ       „ E|ci is) - é>is)\    —» 0. Using this and the martin-

gale inequality, we get for any  p > 0,

P Í   sup    |ci  (í) - c¿it)\ > 2p] < P ! fT \b (c/.  is)) - b(<f>(s))\ ds> p]
VOsísT        " ) ~       vJ0 n     n j

+ P Í  sup     I f ' ta (0  is))-(ßichis))]dw\ > p\
'    l0<t<T   \J°       "     n \ )

—' 0     if  n  —> oo.

Consequently,

ria, y) A T <   lim   Tni<x- r¡, y + r¡) AT.
B-.O0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 AVNER FRIEDMAN AND M. A. PINSKY

Employing Fatou's lemma and (3.20), we find that  E\t (a, y) A T\ < C.   Taking
T / oo  the assertion (3.12) follows.

To prove (3.13), approximate  cAx) uniformly in  ißQr ß,    ,)  by Lipschitz con-

tinuous functions a (x) such that  a iß.) = 0,  a (x) > 0  if ß, < x < y + r¡, forn s *   1 '     n '1 '        '
some  0 < r¡ < ß.      — y.   From the first part of the lemma we have E\rn(ß , y + 77)! < 00

where  r" is the exit time corresponding to  a , b.  Hence by Theorem 2 of

[4, p. 150],

PÍ^^Oj, y+»,)) = y+7,1 = 1

for any n.  Since  t iß  , y)  is finite a.s., and since for any  T > 0

P j    sup     |</i  (f)-c/j(f)| > V2r¡\  — 0    if nI 0<t<T        n )

(3.13) follows.

Theorem 3.3.  Assume that  o\z), b(z) are periodic of period 2n, and that there

is only a finite number of points  ß    < ß    < . . . < ß    in [O, 277) where a(z) vanishes.

Assume also that either (i) biß.) > 0 for  1 < ;' < k,  or (ii) biß) < 0 for  1 < / < k.
Let

Tn = inf {/; 0(f) - c/JQ = 2nn\       in = ±1, ±2, • • • ).

If (i) holds then  0 < EiT ^) < 00,

„    Í ,.      crj(r) 277   )      ,

«•2D u^^^r1
«72 if"

(3.22) 27277 < <Mf) < 2U + 1)77    when  T   < t < T _,_,.7 r n 77 + 1

// (ii) ÄoWs iÄe«  0 < EiT_ j) < oo,

í <¿(í) 277      )
(3.23) Prf, { Um   Ï—- =-J= 1*0(¡-.»    ( E(T_,)j
072¿

(3.24) -2U + 1)77 < é>it)<-2nn    when  T     <t<T

Proof.   The assertions  EiT.) < 00  and (3.22) (in case (i) holds) follow from

Theorem 3.2.   As in the proof of Theorem 3.1, the strong law of large numbers

can be employed to deduce that  T /n —> EiT.)  a.s.   if 72 —> 00.  Combining this

with (3.22), the assertion (3-21) follows.  The proof of (3.23), (3.24), in case (ii)
holds, is similar.

4.  One stochastic equation (continued).   Consider the case where

(4.1) aia) = oiß) = 0,       o<x)>0    ifa<x</3,
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LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS 13

(4.2) biß) > 0,       biß) < 0.

Let   Ct. < À < ¡i < ß and take  <f>   e (A, p).  Denote by  r    the first time  ci(z) exits

(A, p) at  p, and by  r    the first time  > r    that  ci(z) hits  A.  In general, denote by

T2n + 1  the first time  >r2"  that  (hit) hits  ft,  and by  r2n+2  the first time >r2n + l

that  ci(z) hits  A.   By Theorem 3.2 and its analog in case  biß) < 0  for   1 < i < fe,

ci(z) remains in the interval  (a, /3)  for all Z > 0,  and the times   rm  have finite

expectation.   By the strong Markov property, the random variables  p, = A - t  ,

p? = t   - t  , ■ • •  are independent and identically distributed.  Hence, by the strong

law of large numbers,

(4-3) (p3 ^P5 + --- + P2n + i)/«-F(p3)-
Similarly,

(4.4) (p2 + p4 + • - - + p2n)/n -* E(p2).

We sum up:

Theorem 4.1.  Let (4.1), (4.2) hold.   Then for any   a < A < p < ß, if chQe (A, p)
then a.s.   chit) remains in (a, ß) for all Z > 0 and it oscillates from  A to  p; the

number Nit) of oscillations in (0, t) tends to °° as t —> oo,   in accordance with (4.3),

(4.4).

Consider next the case where (4.1) holds and

(4.5) bio) < 0,     biß) > 0.

We shall prove that for any x e (a, ß) and for any small  e > 0,

(4.6) E\rxia- «r, ß+ e)\ < oo.

The proof is similar to the proof of (3.12), once we construct a function fix)

with continuous  /    and piecewise continuous /     such that

(4.7) Lfix) <-v    in  (a - e, ß + e)

where  v is some positive number.   Take

Ix-a ifa-£<x<a+e,
x - a - A(x - a- () p    if a + e < x < ß - c,

ß-a-t-k(ß-a- 2í)p[l - 2hp{ß - a - 2e)2p-l\x - ß + e).

One easily verifies that if p  and A are sufficiently large then (4.7) is satisfied.

Suppose
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14 AVNER FRIEDMAN AND M. A. PINSKY

al + l <al<...<al<a0<ß0<ßl<...<ßk< ßk+p

(4.8) oía.) = O    (0<í'</+l),       (Aß)=0    iO<j<k+l),

oix) > O    if x e (a/ + 1, ßk + l) and x ¿ a., x 4 ß..

Suppose also that

(4.9) bip.) < 0    (0 < i < l),       biß.) > 0    (0 < y < k).

Then, for any   a £ (a      , a;),  ß e (/3fe, ßk   ^) we can construct in  (a, ß) a func-

tion fix) which is piecewise  C     and satisfies  Lf < — v < 0.   This leads to the

following result.

Theorem 4.2.   // (4.8), (4.9) hold then for any   a e (a/     , a;),  ß e (/3fe, ßk + l),
x e(a, /3), E{rx(a, /3)S < ~.

Notice (by Theorem 3.2) that after c/j(f) exits  (an> /3n)i  it does not re-enter

this interval in any future time.

Let the assumptions of Theorem 4.2 hold, and let  a e (a^ a ],  ß e [/30, ß^).

We shall compute the probability that  c/>(f)  exists  (S, ß ) at /3.   Let  ye (a   , /3Q),

(4.10) $U) = expj- fX --¿J-
I    Jy   a2(z7)      i

It is easily seen that  OU)  is a smooth function in  [ä, ß ]  and

(4.11) 77(x)=   C* (¡>iz)dz

is a solution of L\¡j = 0.  Hence, by Theorem 4.2 and ItS's formula (cf. [4, p. 115])

(4.12) P\4>irxiä, ß)) = ß\ = U(x) - nCl))/(n(ß) - nia)).

So far we have considered only the cases where at the points  A where

<?(A) = 0 the drift biX) ^ 0.  We shall now consider the case where both  a, b

vanish at some points.  The proof of Theorem 1.1 (with r~    replaced by  ix ± A)-6)

shows that when  ct(A) = MA) = 0,   c/j(f)  cannot intersect  c/j = A for any  r > 0.

Suppose (4.1) hold and let  a < y < ß.  Introduce  OU),  77U)  as in (4.10),
(4.11).  The process  77(f) = ni(f>it))  satisfies

(4.13) dr¡ = 5i-n)dw

where  cXy) = OU- (y))cr(77_   iy)),  tt~     being the inverse function of  n.  Denote by

/* the exit time of 77(f) from the interval U(a), niß)).  Then the solution  c/j(¿)  of

(3.1) satisfies

(4.14) 77(r/j(f))= 77(f)     if  f < f*.

In particular,  r  id, ß) = t*    (if  c/j(0) = x).
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Theorem 4.3.   Let  0(0) = x,  a < x < ß.  (i) // 77(a) = -00,  niß) = 00 then

a < chit) < ß for all t > 0 and

lim chit) = inf  chit) = a    a.s., lim    00) = sup chit) = /3    fl.s.
t—00 t >0 /— 00 í >0

(ii) // 77(a) > -00,  niß) = 00 ar2í/ Ma) = 0,  Z¿ctz   a < chit) < ß for all t > 0 arca'

lim   00) = inf   chit) = a    a.s.,       sup chit) < ß    a.s.
f — 00 ( >o í >0

(iii) // 77(a) = -00,  ?r(j8) < 00 and biß) = 0,   zèe?2   a < 00) < j8 for all t > 0 and

lim  00) = sup chit) = ß    a.s.,       inf chit) > a    a.s.
(—00 (>o <>0

(iv) // 7Ka) > - 00, niß) < 00, ¿(a) = 0, and biß) = 0, then a < ß for all t > 0 arau?

77Q3) - 77(x)

iß) - 77(a)
pílim   0(z) = a) = píinf chit) = a) =-

I/-00 J (/>0 ) 77'

Pílim   0(z)=isj = pisup   sKri-gl«."00-"^,
lr-00 ) (i>o )     niß) - nia)

Proof,  (i) Lemma 1 of [4, p. 115]  applied to (4.13) gives

Pjsup 77O) = 00 J = PI Hm   r/0) = 00 } = 1.
(( >0 ' (i -00 )

Since, by (4.14),  sup 7/0) = 00  if and only if  sup ciO) = ß, the second part of (i)
follows.   The proof of the first part is similar.

(ii) Since  bia) = 0,  ci(z)  cannot cross  ch = a for any Z > 0.   It also cannot

cross  0 = ß (since  7/0) < 00 for all  t).  Thus   a < chit) < ß for all t > 0.  Since

r/0) > 77(a) for all t,  the proof of Lemma 2 in [4, p. 116] can be modified, re-
placing x = -00 by x = 77(a).  This yields the assertions of (ii).

The proof of (iii) is similar to the proof of (ii), and the proof of (iv) is ob-

tained by modifying the proof of Lemma 3 in [4, p. 117], replacing  +00,-00 by

niß) and  77(a) respectively.  Here the assumption bia) = biß) = 0  ensures that

7/0)  remains in (77(a), 77(/8))  for all  Z.

Note that if biß) < 0  then  niß) = 00,  and if bia) > 0  then  77(a) = -00.

Hence, the only cases that have not been covered so far (by Theorems 3.3, 4.1 —

4.3) are

(4.15) Ma)=0,       Mj8)>0,

and

(4.16) Ma)<0,       biß)=0.

If (4.15) holds,  00) > a for all  t,  but  00) may cross  0 = ß (as is evident
from Theorem 3.3).
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16 AVNER FRIEDMAN AND M. A. PINSKY

Theorem 4.4.   Let (4.1), (4.15) bold and let x e (a, ß). If 77(a) = -00 then
t (a, ß) < 00 a.s. and

(4.17) H<ß(rx(a, ß)) = ß\ = l.

If 77(a) > -00 then  c/j(r) > a a.s. for all t > 0 and

(4.18) Pic/j(rx(a, ß)) = ß\ = inix) - 77(a))/U(/3) - 77(a)),

(4.19) PÍlim   0(f) = a) = p{inf cf>it) = a) = n(ß) ~ ^..
(f-°c ) (i>0 )        7r(/3) -   77(a)

A similar result holds in case (4.15) is replaced by (4.16).

Proof.   By Theorem 3.2,  Er (a + e, ß) < <*=  for any  t > 0.  We therefore have

the formulas

(4.20) P\4>irxia + e, ß)) = ß\ = (77U) - 77(a + e))/U(/3) - 7f(a + ()),

(4.21) P|c/j(7-x(a+ e, /3)) = a+ f}= UU) - 7r(a + f))/U(/3) - 7f(a + <r)).

Since  c/j(t) does not intersect  c/j = a at any time, one can easily show that

(c/j(r  (a, /3)) = /3j =  U  i^(r > + *> ß)) = /3|.
e  0 x

Using this in (4.20) with  e —» 0,  the assertions (4.17), (4.18) follow.   The asser-
tion (4.19) follows from (4.21).

5. Behavior of the angular motion.   Theorems 3.1, 3.3, 4.1—4.4 can be

immediately applied to the equation (2.7) with  a, b   given by (2.5), (2.6).  Notice

that  U(c/j))    is a homogeneous polynomial of degree 4 in (cos c/j, sin c/j).  Con-

sequently,  oicp) is periodic of period  77,  and it can have at most two zeros in the

interval  [O, 77).   The function  b (c/j)  is also periodic of period  77.

The following possibilities may take place:

(i) cKc/j) has two distinct zeros  c/j  , c/j    in the interval [0, 77).

(ii) <7 (c/j) has one zero in the interval  [O, 77).

(iii) ff(c/j) does not vanish in the interval  [0, 77).

If (iii) holds then Theorem 3.1 can be applied.  If (i) or (ii) holds then
Theorems  3.3, 4.1—4.4 can be applied; the asymptotic behavior of c/j(f)  will de-

pend only on the sign of b (c/j)  at the points  c/j. where  a (c/j.) = 0.   The following

simple lemma is therefore of crucial importance.

Lemma 5.1.   If for some   c/j,  ff(c/j) = 0,  then  b (c/j)  =(BA, \L).

Proof.   By formula (2.5),

(^(0))2 = t  (    Z     °fr VíV = t  (Slr Sin * - S2r COS &2
r = l  V ¿,& = 1     ' / r = l
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where S .   = a.   cos 0 + o.   sin 0  ii = 1, 2).  Next, by (2.6),

Vio)- (SA, Ax) =- (a(A)A,AL)   =-Y       V       /X (7SA ÀA1
¿^ ¿-- IT    k   ]T     S     l    ]
7 = 1     i|Jl*|S = 1

= — /,  iS,   cos 0 + 52j. sin 0)(-5j    sin ch + S2   cos 0).
7 = 1

Since the right-hand side vanishes whenever cr(0) = 0,  the assertion of the

lemma follows.

By Lemma 5.1, the sign of bich),  at the points where  ff(0) = 0,  depends

only on the deterministic system (0.1).   This enables us to compare the behavior

of the solutions of the stochastic system with the behavior of the solutions of

the deterministic system.  We shall give one consequence of this observation.

Theorem 5.2.   Let (i) or (ii) hold.   If for the deterministic system (0.1)

(/ = 2)  00) —> oo as  t —» oo,  then the same is true ¡or the stochastic system

(0.2), i.e., if xit) = 00) cos 00), r0) sin eiO)), then a.s.   chit) —> oo as   t — °°;

m fact  [chit)/t] -^ 2n/EiT ^ (0 < EiT ^ < oo).  Similarly, if chit) —* -oo  as  t —> -oo

for the deterministic system, then a.s.   [chit)/t] —> -2n/EiT_.) as  t —> oo

(0<E(T_1)<oo).

Proof.   In the deterministic case,   |0O)| —• °°  as   t —> °o  if and only if the

origin is a focal point (spiral or vortex).  This is the case if and only if the

eigenvalues of  B are nonreal, i.e., if and only if (BA, A ) ^ 0  for all A =

(cos 0, sin 0).  Now use Lemma 5.1 and Theorem 3.3.

If the eigenvalues of  B  are real (of the same sign for nodal points, and of

different sign for saddle points) then  (SA, A  ) does not have a fixed (positive or

negative) sign.  Nevertheless, the stochastic solutions may still spiral in accord-

anee with Theorems 3.1, 3.3 if either (iii) holds and A (defined in (0.4)) is ^ 0,
or if (ii) holds and (BA , A ) ¡¿0,  or if (i) holds and (BA., A. ) is positive for
7=1,2  or negative for  i = 1, 2;  here  A. = (cos 0., sin 0.).   In all other cases,

the stochastic solution does not spiral, but Theorems 4.1—4.4, in conjunction

with Lemma 5.1, can immediately be applied.

6.   Application to the Cauchy problem.   Consider the Cauchy problem

du/dt = Lu for  t > 0,
(6.1)

77.(0, x) = fix)     in  Rl (/= 2)

where   Lu is defined by (1.2), (1.3) with   /= 2.  Note that   L  is a degenerate

elliptic operator with unbounded coefficients.  Suppose the second derivatives

of fix)  are continuous and
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18 AVNER FRIEDMAN AND M. A. PINSKY

(6.2) \D'jix)\< Cil + \x\h)    iO<j<2;h>0)

where   C,   h aie constants.   Then there exists a unique solution of (6.1) satisfying

in each strip 0 < t < T,

(6.3) \uit, x)\ < Mil + \x\h)

where  M is a constant depending on   T.   Indeed, if  £ it)  denotes the solution of

(1.1) with   £ (0) = x then, by standard arguments [4], the function

(6.4) uit, x) = E\f(£x(t))}

is a solution of (6.1).   The uniqueness, even within the larger class of functions

uit, x)  satisfying a polynomial growth   \uit, x)| < C(l + |x|   )  in each strip

0 < t < T,  where   C, K ate some positive constants depending on   u and   T,   is

proved in Problem 2 of [2, p. 56].  In the sequel, by a solution of the Cauchy prob-

lem (6.1) we shall mean the function given by (6„4) (even when / is not continuous).

With a,  b  defined in (2.5), (2.6), we make the following assumptions:

(A) If cfich) ¿ 0 for all 0 then A (in (0.4)) is ¿ 0; if a(0) vanishes in
[0, 77) and its zeros are eh., 0 (they may coincide) then either (BA., A.) is

positive for  7 = 1, 2 or (BA., A.)  is negative for  i = 1, 2.

(B) fix)  is independent of the radial variable, that is, there is a function

g(0) periodic of period  277 such that  fix) = g(0) if x = (r cos 0, r sin 0).

Notice that if (A) holds then the stochastic solution  chit)  spirals and either

EiTx) < 00  (if chit) -* 00)  or  EiT_ {) < 00  (if ch\t) -. -00). We shall need the fol-

lowing lemma:

Lemma 6.1.   //(A) holds with  EiT ) < 00   then   T     is not concentrated on any

lattice of the form {na;   n = 1, 2, • • • j,   a real.

Proof.   The assertion of the lemma is equivalent to the assertion that the
T

equation   1 = E\e \ (y teal) has a unique solution  y = 0.  In proving the lemma

we shall use the fact that ô^ich)  does not vanish identically, i.e., there is a point
0O £ (0, 277)  and a S > 0 such that a(0) > 0 if |0 - 0Q| < ¿5.   We can take 8 such

that  0 <0O - 8,  0O + 8 < 2n.  Let   f, = [0, 0Q - 8),   /., = [0Q - 8, 0Q + 5),   l^ =
[0O + 8, 277), and let   T¡ = U, + U2 + U^ where   l/j = inf{r > 0; 0(z) = 0Q - 8\ ,
U2 = inf ¡Z > 0; 00) = 0O + 8\,   (73 = inf \t > 0; chit) = 2n\.  By the strong Markov
property,

z'vT iyU, ¡yf, iyt/,
Ey   0 = E0(eyl)Ev8(e       ^+,(.       3).

Since   |e       7| < 1,  each expectation on the right-hand side is < 1.   Thus, in order

to complete the proof of the lemma it suffices to show that  |E ,   _g(e        )| < 1

if y 4 0.  This is equivalent to showing that, when  0(0) = 0    - S,   (/,  is not con-

centrated on a lattice of the form  la + nß;   n = 1, 2, • • • };   a, /3 real.   For this it
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suffices to show that  P ,   _ All2 < t) > 0 for any  f > 0.   But the function wit, x)

= P ÍU2 < t) for f > 0,  -S - e < x - c/j    < o  (í > 0 and sufficiently small) satisfies

dw/dt = VAoix))2 d2w/dx2 +1ix)dw/dx,

and wiO, x) = 0 if -c5-t<x-c/J0<<5, wit, <f}Q + 8) = 1   if t > 0.  Since  aix) > 0
if -S — e < x — c/j„ < 8 and  e is sufficiently small, the strong maximum principle

[2] can be applied to conclude that wit, x) > 0  if r > 0,  -S - e < x - c/j. < 8.

Hen«  P4>Q_AU2<t)>0.

Theorem 6.2.  Let (A), (B) hold.   Then the solution uit, x) of the Cauchy
problem (6.1) satisfies   lim ff(f, x) exists for any x e R   , x ¿ 0.

Proof. It suffices to prove the theorem in case c/Ju) —» o° as r —> °°. In this

case EiT.) < 00. Consider the function uit) = E\gi(ßit))\ where c/j(t) is the solu-

tion of (2.7) with  c/in= x.  What we have to prove is that

/¿ c\ lim   uit) exists.
^  '   } t --00

Note that uit) is a bounded function.

We introduce the Laplace transform Vis) = J"^° e~stuit)dt, s - A + ip, A > 0.

Then

VU)=E{jo°°c-^g(^))¿í} = E{¿   //    e-s'g{<f>{t))dt}

00      ( -sT       rTi°^T \= L EV    n~l V   ""'f'sWoöT   W
„ = 1        V u 72-1        J

where  Bj is the translation operator.  Using the strong Markov property and the

representation T      . =T,+(T,-T.)+••• +(T      . — T      ,)  of T      .as a sumr 72—1 1 2 1 72—1 72—¿ 72—1

of independent and identically distributed random variables, we get

VU)= £   ^e        I)]"EI Jo     e-sW(t))¿/|
72=0 ^ '

(6.6)

= £  Jo ! e-stg{<f>{t))dt/{l - FU~STl)).

If A> 0, s/0,  then

Re il - Eie~STl)\= J""" (1 - e-Ai cos f^P^  e*)>0

by Lemma 6.1.  Hence

(6.7) 1 - Eie~S   l) i 0    if A > 0, s ¿ 0.

We can write
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(6.8) E {|oTl e-s'gichit))dt} = /o°° e-stE\gichit))X(l£T?\dt = /" e~stkit)dt

where

(6.9) Mr) = E\gichit))xu&T)\ belongs to L^O, oo)

since  EiT.) < °°.
Consider the function

(6.10) 00) = (1 - Eie~STl))/s = Jo°°((l - e~st)/s)P(T{e dt) = Jo°° e-s'P(7, > t)dt.

Since  EÍT.) < oo the integrand

(6.11) hit)=PiTl >t) belongs to  L!(0, oo).

We now introduce the constant A = E\jQ    gicf>it)) dt\ and consider the func-

tions  uit) = uit) -A, g"(z) = git) - A. Then  uit) = E\%itf>it))\ and, by Í6.6), (6.8),
(6.10),

(6.12) vO) E f .-«%>* . L A_._(t¿1>     . L Ü«
J° S J7 e-^PiTx>t)dt S  D^

where Nis) stands for the numerator and Dis) stands for the denominator. We

would like to apply the tauberian theorem of Landau-Ikehara [8, p. 130] which

states:

// uit)  is bounded below, if uit)e~Xl e Ll(0, oo) for any A > 0, if Viip) s
lim.    n V(A + ip)  exists for almost all p and is locally integrable, and if

(6.13) lim \Vi\+ ip) - Viip)\ dp-* 0
X—0  J~M

for any M > 0,  then, for any 8 > 0,

(6.14) fx*s "uit)dt —»0    if x —» oo.

In our case, îtit) is uniformly bounded and from (6.6)—(6.11) it is clear that

Viip) = Viip + 0) exists and is bounded for p in any closed bounded interval I

that does not intersect the origin, and

(6.15) / \Vi\ + ip) - Viip)\ dp->0    if ¡i -» 0.

To study the behavior of Vis) neat s = 0, write

Nis)      roo e-^-*>'_i
— - Jo       A + IU      "Wbusry
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The fraction in the integrand is bounded by  C  t,  where  C    is a constant, and

/0°° t\E\g{<f>{t))XusTi)\\dt < C Jo°° tE\Xlt¡íTj¡dt <C E\T\\ <■*>.

(In fact, since  E  iT.) < c < °° for all x,  where  c  is a constant, the strong"y T i
Markov property implies that  E\e j < co  for some  y > 0.)  It follows that

^T"~* " Jo°° «sfcWkíí*^)1*   lí s -* °«
and the integral is finite.  Recalling (6.12) we easily conclude that (6.15) holds

also for bounded intervals   / which contain the origin.  Thus the assumption

(6.13) in the above cited tauberian theorem is satisfied. The assertion (6.14) is

therefore valid.
Now, as easily seen, for any  t, t   in [0, co),

E|c/j(f)-c/j(f')|2 < C\t- t'\     (C constant).

Since  g(c/j)  is Lipschitz continuous, we get

\uiu- iAt')} <c\t-t'|«
with another constant  C.  Hence,

2S2U)-  f'+Sit')dt'
J t-o

< 2C83/2

Using (6.14) we conclude that  lim        |a(f)| < 2C<5'/2,  i.e., uit) ~* 0 if t -* «.
This completes the proof of (6.5).

As a by-product of the proof we obtain

(6.16) lim   uit, x)= E { J    l gi<t>it))dt\,    where x = (cos c/j(0), sin c/j(0)).

Consider now the case of a general initial function fix) and suppose that

(6.17) fir cos c/j, r sin c/j) —> g(c/j)    uniformly as  r —> oo.

Suppose also that

(6.18) Q(A) > 0    for all A = (cos c/j, sin c/j)

where  Q(A)  is as in (1.4).  Then we can state

Corollary 6.3. // (A), (6.17) and (6.18) hold, then the assertion of Theorem
6.2 is valid.

Indeed, by Theorem 1.2, At) —• oo.  This and (6.17) imply that

uit,x)- E\gi4>it))\ -»0    if  f -, oo.

Now use Theorem 6.2.
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We shall give another application to the Cauchy problem.  Let

(6.19) 3,(01)=a(02)= 0    where  O<0, < 02 < 77

and suppose that

(6.20) (BA1?A^)>0,        (BA2,A2)<0

where A . = (cos 0 ., sin 0 .), A . = (-sin 0 ., cos 0 .)• Denote by S the set

\ir, 0); t > 0, 0j < 0 < 02   or 0j + 77 < 0 < 02 + 77Í.  S  consists of two sectors.
From Theorem 4.1 we deduce that if x e S then  f it) € S fot all  t > 0. Using

i6.4) we conclude

Theorem 6.4.   // (6.19), (6.20) hold then for any x e S  the solution u of (6.1)
at the points it, x),  Z > 0,  depends only on the initial data f restricted to S.

Thus the domain of dependence of the set  lit, x) e [0, t»)xS| is  S.

Further results of the same nature can be obtained by employing Theorems 4.2—4.4.
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