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1. Introduction. The main purpose of this paper is to investigate
the asymptotic behavior of solutions of the nonlinear differential equation
on [0, ). x @,

(L) &= ft, 2),

where @ is an open subset of R" and f(¢, ) is continuous on [0, ) X Q.
Consider the following assumptions with respect to the equation (1):
There exist nonnegative continuous functions V{(¢, ) and W(x) such that
V(t, z) is locally Lipschitzian with respect to 2 and V¢, z) < — W()
fort = 0, x€ Q. Then it is well known that each bounded solution of (1)
approaches the set F = {xr ¢ Q: W(x) = 0} as t — o under the assumption
that f(t, ) is bounded when z is bounded [7], [8], [9], [11]. Recently,
LaSalle [4] obtained the same result under the weaker assumption that
f(t, ) satisfies Condition (B) (see Remark 1 below). In this paper, we
analyze the problem posed above under a further relaxed assumption,
Condition (C) below.

As an application, we shall investigate the asymptotic behavior of
solutions of the second order scalar nonlinear differential equation

&+ ht, x, D)[2]"T + fl2) + 9(¢, 2, ) + p¢, 2, 2) =0,

where @ = 0. In the case a = 0, Onuchic [7], [8], [9] obtained sufficient
conditions under which every solution, together with its derivative,
tends to zero as ¢ — «. Since he applied the invariance principle, one
of his most essential assumptions is the following: h(t, z, ¥) is bounded
when z* + y* is bounded. Many authors discussed the problem of relaxing
the boundedness condition on h. One of these conditions is the growth
condition on k. Thurston and Wong [10], Artstein and Infante [1] and
others discussed this problem under the growth condition.

The author wishes to thank the referees for many useful suggestions
and carefully reading the manuseript.

2. Notation, definition and preparatory lemmas. We denote by
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R* the n-dimensional real Euclidean space and by |z| the Euclidean norm
of xe R*, 1If a point xisin R” and ¥ is a subset of R*, then we denote
dist (x, B) = inf{|jz — y|: yc E}. We say that the function V{(¢, x) is
locally Lipschitzian with respect to x if for each (%, x,) in [0, ) X @,
there exist a neighborhood U of (¢, x,) and a constant L(U) > 0 such
that for (¢, x), ¢, v)eU we have |V(¢, x) — Vi, )| S LIU) [z — yl.
Furthermore, we define the derivative of V{(t, #) along the solution of
the equation (1) as follows:

Violt, ) = lim sup (V(t + b, @ + hf(t, ) = V&, D)/ .

Let z(t) be a solution of (1) on [¢, ). We say x(¢) is bounded in
the future when z(¢)e K on [¢, ) for some compact set K in Q. In
the case Q = R", it is well known that every solution of (1) is bounded
in the future if

Vot @) <0 and a(z) < Vi, 2),

where a(r) is a nonnegative continuous function on [0, «) such that
a(r) — oo as r — oo,

Let y(t) be a continuous function on an interval [T, «) with values
in R*, A point pe R" is said to be a positive limit point of y(¢) if there
exists a sequence {t,}, t, —  as m — <o, such that y(t,)— p as m — oo,
The set of all positive limit points of y(¢) is denoted by 2 and is
called the positive limit set of y(¢). It is well known that when y(¢) is
bounded and continuous on [T, ), the positive limit set 2 of y(f) is a
nonempty, compact and connected set and y(f) » £ as ¢t— «, that is,
dist (y(¢), 2) > 0 as t — oo,

LEMMA 1. Let f(t) be a C'-function on [t, ) satisfying
(2) f& S h@ for t=t,,

where i k(s)ds is uniformly continuous on [t, «), and suppose that

there emsts a sequence {t,}, t, — o as n — oo, such that f(t,) > b as n — o,
Then for any number ¢ (¢ < b), there exist d > 0 and a positive number
n, such that f(t) > ¢ for all te[t, — d, t.], » = n,.

Proor. Since H(%) —S h(s)ds is uniformly econtinuous on [¢, o),

there exists a positive number d such that [H(t) — Hit")| < (b — ¢)/2 for
all¢, t' e[t, =), [t —t'| < d. Moreover, let n, be a positive integer such
that ¢, = ¢, +d and |f(t,) — b| < (b — ¢)/2 for » = n,. Integrating both
sides of (2) over [¢,¢,], t,—d <t<t, we have f(t,) — f(t) < H(t,) —
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H(t) < (b —¢)/2 for n = n,. Thus f(t) > f(t,) — (b—e)/2>(b—(b—c)/2) —
b—¢)j2=c¢ for telt, —d, t,], n = n,. g.e.d.

3. Condition (C) and the main theorem. We consider the following
Codition (C) with respect to the function f(¢, ) = (£i(t, 2), - -+, £.(t, 2)).

Condition (C). The set of the indices {1, ---, n} is decomposed into a
disjoint union IUJ with the following properties: (i) For any i€ I, any
continuous u: [0, ) — @ with a compact range and any 7 > 0, there exist
T, = T(v',a'ict, 1) >0 and B, = 8(7, u, 1) > 0 such that for any o > T, and
t>0, IS fi(s, u(s))ds‘ > v implies ¢ > G;, and (ii) for any jeJ, any
compact ‘set K in @ and any continuous wu:[0, «)-> K, we have
Ji(t, u(®)u;(t) < hy(t), where Sthj(s)ds is uniformly continuous on [0, «)
and u;(t) represents the j-th t:omponent of u(t).

We say that the equation (1) satisfies Condition (C) whenever f(t, x)
satisfies Condition (C).

REMARK 1. LaSalle [4] imposed the following Condition (B) on
f(&, ).

Condition (B). Given any compact set K in @, any continuous
u: {0, o) — K, and any v > 0, there exist T = T(7 K,u) >0 and 8=
8¢, K, w) > 0 such that for @ > T and ¢ > 0, ’S f(s, u(s))ds| > v implies
t> B

Clearly, Condition (B) implies Condition (C) with J = . TFor ex-
ample, the equation

& =, z, = "h(t; *, )2, — fla,) ,

where A(t, x, x,) is nonnegative on [0, «) x R? satisfies Condition (C).
In this case, we may set I = {1}, J = {2}

Next, suppose V({,x) is a nonnegative continuous function on
[0, =) X @ and locally Lipschitzian with respect to « and that

Volt, 2) < —W@ xeQ, t=0,

for some nonnegative continuous function W(x). In this case, we call
V(t, x) a Liapunov function of (1) on [0, ) x @ with W(x). For the
function W(z), we define the set F = {xc@Q: W(z) = 0}. Furthermore,
when f(¢, x) satisfies Condition (C), we denote by S(Z) the set of all
points 2z = (2, ---, #,) such that 2z, =, if 7el and 052, < 2; or o; =
2; =0 if jeJ, for some z = (x, -+, 2,) in E.

THEOREM 1. Suppose that f(t,x) satisfies Condition (C) and that
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V(t, x) i3 a Liapunov function of (1) on [0, o) X Q with W(x). Then
each solution of (1) which is bounded in the future approaches S(E) as

t— oo,

Proor. Let a(t) be any solution of (1) satisfying z(t)e A, t = ¢,
for some compact set A in Q. Clearly,

VI, #(8) — Vit a(t) < — | Wiate)ds
for all ¢ = t,, and hence we have
(3) S:oW(x(s))ds < oo

Fix a=(ay, -+, a,)eS(ENA)NA=:5 and define the sets J, = {jeJ:
a; =0}, J,={jeJ:a; >0} and J, = {jeJ: a; < 0}. First of all, we shall
prove that there exists a positive number ¢ such that

(4) {e=(@, -, 2): |o,—al<e (tel), z;>a;—¢ (Jed)
and z,<a,+e FeJNNUS,¢) =0,

where U(S, ¢) is an e-neighborhood of S. Suppose this is not the case.
Then there exist a sequence of positive numbers {¢,}, ¢, — 0 as n — oo,
and two sequences {x,}, {#,} in R" such that

(*) lxn,i—a’i|<€n (T:GI), xn,i=ai_8n (jeJl)!
L,k é ay + &, (keJZ) and Ixn - znl < €y znes for au ",

where zx,, represents the i-th component of %,. Since ¢, —0 as n — oo,
we may assume z,; >0 (jed), ,,<0 (kedy), 2,;>0(jed,) and
2ok < 0 (ke J,) for a sufficient large number #. On the other hand, by
the definition of S, we obtain another sequence {Z,} in EN A such that

(**) E'n,i = zn,i (,‘:e I) ’ En,j g n,J > 0 (je Jl)
and %,,=2,,<0 (ked,).

Since the sequences {z,}, {z2,} and {Z,} are bounded, we may suppose
that =z, >, 2,—2 and Z,— 7%, as n — o, taking a subsequence if
necessary. Letting #-— o in (*) and (xx), we have x, = 2, 2, = 0,
(ieI)f Lo, = a; (.76 Jl)’ o,k = ak (ker), Eo,i = 2o, (’LGI), Eo,j 2 2, = 0
(jed) and z,, £ 2, <0 (ked,). Consequently, a, =7%,;(icl), 0 a; =
Zo; OF Z; = a; =0 (eJ). Since zZ,€ EN A, this means ac S(EN A).
This contradicts a¢S. Therefore we can choose a positive number &
which satisfies (4).

Now, we shall prove that 2cS, where 2 is the positive limit set of
x(t). Suppose that this is not the case. Then there exist a point a =
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(a, +-+, a,) and a sequence {t,}, t,— c as n — o, such that a¢S and
2(t,) —a a8 n— oc. For this point a, choose a positive number ¢ so
that (4) holds, where we may assume that ¢ is sufficiently small. More-
over choose two numbers T and @ such that 7> T,, 8 < B; foralliel
and 0 < 8 <1, where T, and B, are the numbers corresponding to x(t),
Y = ¢/2 and f; in the definition of Condition (C). Furthermore, choose a
positive integer n, so that if n = n, then |z,(t,) — a;] < &/2 for all el
and {, > T + 1. Then we have

ot — at)] = || Ats, ateds| < o2

for te[t, — B, t, + B8l, n = n, and therefore

(5) let) —a,] <e  for te[t,— B t.+B, n=mn.

On the other hand, for jeJ, there exists a function h;(t) such that
t

S his)ds is uniformly continuous on [0, ) and (d/dt)x;(t) =
0
21, x(@))x;(t) < hy(t). Since x;(t,) — a; as » — o, Lemma 1 implies that
there exist positive numbers d and =, such that

(6) z;(t) >a; —e (jed) and x(t) <a,+¢e (keld,)

for te[tn —d!tn] =
Put §, = min (B, d) and n, = max (n, n,). Taking a subsequence of

{t.} if necessary, we may assume that the intervals [¢, — 0, t.], n = 7,
are mutually disjoint. From (4), (5) and (6), it follows that z(¢) ¢ U(S, ¢)
and hence dist (x(t), E) = ¢ for all te[t, — o, t.], n =n, Therefore

there exists a ¢ >0 such that W(x(t)) > ¢ for te[t, — o, t,], » = n,.
Consequently,

SjW(x(s))ds =55 S_ W(n(s))ds = oo .

This contradicts (8). Thus we have 2 ScS(E). Since 2(tf) — 2 as
t — oo, we conclude that x(f) — S(F) as £ — oo, g.e.d.

The following corollary is immediate. This is a result given in [4].

COROLLARY 1. Suppose f(t, x) satisfies Condition (B), that is, J = &
in Condition (C). Moreover suppose V(t,x) is a Liapumov function of
(1) on [0, ) xQ with W(x). Then each solution of (1) which is bounded
in the future approaches the set E as t— oo.

COROLLARY 2. Suppose f(t, «) satisfies Condition (C) and f(t,0) =0
for t=0. Moreover suppose that there exists a continuous function
V(t, x) on [0, ) X @ such that
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(a) V¢, =) is locally Lipschitzian with respect to x, and V(¢, 0) =0,
t=0,

() a(z)) € Vi, 2) for t =0, x€Q, where a(r) is a continuous and
positive definite function, and

(©) Vi, 2)< —c(z)), t=0, xcQ, where ¢(r) is continuous and
positive definite.
Then the zero solution of (1) is asymptotically stable.

PrOOF. Define W(x) = ¢(jxz]). Then V{(t, «) is a Liapunov function
of (1) with W(z) and S(E) = E = {the origin}. Thus we have Corollary
2 by the standard argument and Theorem 1. g.e.d.

REMARK 2. Corollary 2 is a generalization of a theorem given by
Marachkov [11, Theorem 7.10], where it was assumed that f(¢, ) is
bounded when 2 is bounded.

4. Applications. Consider the following second order scalar dif-
ferential equation

(7) &+ h(t, @, &)|&1°C + f@) + 9(¢, «, &) + p(t, @, &) =0,
where a = 0, and the system equivalent to (7),

&=y

¥ = —h@t, 2, P0yly — f@) — 9@, 2, 9) — pE 2, 9) .

An equation of this type was discussed also by Ballieu and Peiffer [3].
Throughout this section, we suppose that the following hypotheses are
satisfied:

(H1) h(t, =z, v), 9(t, x, y) and p(t, z, ¥) are continuous on [0, o) X R?
and h(t, z, y) Z k(, ) 20, y-9(¢ 2, ¥) 20 and [p(, 2, y)| < BE) for
z,ye R, t = 0, where k(x, y) and B(t) are continuous and S B(8)ds < oo,

0

(8)

(H2) f(x) is continuous on R and there exists a ¢ > 0 such that
z-flx) >0 for 0 < || < p and

F@) = | radu—c as |o| e
Define
(9) Vit %, 9) = (0 + 2F (@) + M) + | 8e)ds

where M is chosen so that 2F(x) + M > 0. An easy computation shows
that
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(10) Val, z, ¥) < —h(t, 2, v)|y|“*@* + 2F(z) + M)~
é - W(m’ y) é 0 ’

where Wz, y) = k(z, v) |y |*"*(¥* + 2F(2) + M)~

From (H2) and (9), V(¢, «, y) — o as |z| + |y| — o uniformly for t.
Therefore, it follows from (10) that every solution of (8) is bounded in
the future. Furthermore, from (H1), it is obvious that the system (8)
satisfies Condition (C) with I = {1}. For the above W(x, y), we obtain
E={x9):y-kx,y) =0} and S(E) ={x,2):0<z2z=<y or y<z=0 for
some (z, ) € E}. Then by Theorem 1, we have:

THEOREM 2. FEwvery solution of (8) is bounded im the future and
approaches S(E) as t — oo,

Furthermore, by Corollary 1, we have:

COROLLARY 3. Suppose that h(t, x, y) satisfies Condition (B) and
that

(H3) S‘“ g(u, 2(u), Y(w))du — 0 as s — oo uniformly on [0, 1] for any
bounded continuous function (x(t), y()).
Then every solution of (8) approaches E as t — co.

Now we give sufficient conditions under which every solution of (8)
approaches the z-axis, i.e., B, = {(z, 0): —co < 2 < co}.

COROLLARY 4. In addition to all the assumptions of Corollary 3,
suppose that

(H4) RS ={(zx,0):z > 0} and RB; = {(x, 0): x < 0} are connected com-
ponents of E — {(0, ®)}.

Then every solution of (8) approaches R, as t — co.

Proor. Let (z(¢), y(t)) be any solution of (8). Then Corollary 3
implies 2 < E, where 2 is the positive limit set of (x(¢), y(¢)). In order
to prove y(t) — 0 as t— o, we shall employ the argument used in [7].
We must have QN R, # @. Indeed, if this is not the case, it would
follow that |x(f)| — « as ¢t — . This contradicts Theorem 2.

Consider the two possibilities:

(a) (0,0)¢ 2 and hence 2 C E — {(0, 0)}, and

(b) (0,0)e0.

Case (a) implies 2CR,, since we have (H4) and 2N R,+ @, and hence
y(t)—0as t — o, Consider the case (b). Since (0, 0)c 2, there exists a
sequence {t,}, t, — o as n — oo, such that (x(t,), y(t,)) — (0,0) as n — co.
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Consider the function
U, % 9) = (& + 2F@)” + | po)ds
t

defined for ¢ =z 0 and |2 + |y| < p. Then by an easy computation, we
have Ug(t, z, ¥) < 0 and U, = U(¢,, 2(t,), y(t,)) —0 as n — co. Therefore
as long as |2(¢)| + [y(®)| = o, t = ¢,, Wwe have

an YO S W + 2O + | fe)ds < U,

Since U, — 0 as n — o, if we choose a sufficient large number n, then
we conclude that (11) holds for all ¢t = ¢,, » = n,. Hence y(t)—0 as
t— co, q.e.d.

COROLLARY 5. Suppose that
(H5) h(t, =, ¥) = k(zx, y) > 0 (y = 0).
Then every solution of (8) approaches R, as t — oo,

PrOOF. Since E = R,, it follows that S(¥) = R,. Therefore, Theo-
rem 2 implies Corollary 5. g.e.d.

COROLLARY 6. Suppose that (H4) holds and
(H6) y-kyx,9) 20, z,yek,

where k,(x, y) denotes the partial derivative of k(x, y) with respect to y.
Then every solution of (8) approaches R, as t— oo,

Proor. Let (x(t), y(t)) be any solution of (8). Since we have S(E)=FE
by (H6), Theorem 2 implies that (x(¢), y(t)) — E as t — co. The remainder
can be proved by the same argument as in the proof of Corollary 4.

g.e.d.

To obtain more precise information on the asymptotic behavior of
solution of (8) as ¢ — oo, we need the following lemma which is a gen-
eralization of the result obtained by Thurston and Wong [10] in the case
pP=q=2.

LeMMA 2. Let H(s) and u(s) be nonnegative real-valued functions on
[0, =) such that for positive constants p and q which satisfy 1/p+1/g=1,

(i) r H(syu(s)'ds < oo, and

(ii) t;&ere exist a sequence of positive numbers {s,} and a positive
constant d such that s,., — s, = d and that

(a) H(s) =0 on [s,, s, + d} for all n, or

®) S| |7 Heas [ = o

n
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Then there exists a subsequence {t,} of {s,} such that
ntd
|7 HOu@ds >0 as 1 o,
tn

Proor. If (a) holds, then we can set {t,} = {s,}. We assume that
(b) holds. Suppose that the assertion in the lemma does not hold. Then
there exist 6 > 0 and a positive integer n, such that

&n

0= S * H(s)u(s)ds , n =N

gy

By Holder’s inequality, we have

5 < U“ H(s)ds]”"[s:” H(s)u(s)"ds:l

1/q

Thus
oo 8,+d —q/p oo 8y t+d
S e <o 5 |7 Houtras
=5\ Houerds < e .
Sng
This contradicts (b). Hence the assertion in the lemma holds. q.e.d.

THEOREM 3. Suppose that in addition to (H1) and (H3), the condition
(H2) x-fl@)>0 (&= 0) and Fla) = Szf(s)ds—» v as x| — oo
0

18 satisfied. Moreover suppose that the following condition (HT) holds:

(H7) For any pair (), y()) of bounded continuous functions on
[0, ), there exist a sequence of positive numbers {s,} and a positive
constant d such that s,., — s, = d and that h(s, z(s), y(s)) = 0 on [s,, s, + d]
Jor all n or

n=1

S 17 s, o), wionas | = oo

Furthermore let (x(t), y(t)) be any solution of (8) which approaches R,
a8 t— oo, Then (x(t), y(t)) — (0,0) as t — oo,

Proor. By Theorem 2, the solution (x(¢), y{t)) is bounded on a half
interval [¢, ), that is, there exists a compact set A in R? such that
(x®), y®) e A for ¢t = t,. Consider the Liapunov function defined by (9).
Then for t = ¢,

(d/dt) V¢, (), y(8))
< —h(E, a(®), yE) |y@® [y’ + 2F(=®) + M]™"
= —h(, x(®), y@) | y@®)[***/L ,
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where L =supg,, .s[¥* + 2F(x) + M]**.  Since V{(¢, z(t), y(t)) is non-
negative and nonincreasing, we conclude that

12) S:h(s, a(s), y(8)) | y(s)|*+ds < oo,

and that V(¢ 2(t), y(t)) >k as t— o for some k. Since the positive
limit set of (x(¢), y(t)) is connected and () — 0 as t-— o, it follows
from (H2)' that «(t) — ¢ as t — « for some constant ¢. Applying Lemma
2 to u(s) = |y(s) [***, H(s) = h(s, x(s), y(s)), » = @+ 2 and ¢ = (a + 2)/(a + 1),
it follows from (12) that there exists a sequence {t,}, t,— < as n — oo,
such that

S:m h(s, x(s), y(s)) | y(8)|*"'ds =0 as = — oo

and hence
tntt
[ s, 2(0), ) 9@ [o(e)ds 0 a5 1 oo

uniformly for #€[0, d]. Integrating the second equation of (8) over
[t., t. + d], we obtain for ¢ €0, d],

yt. + 0 = e = =| " hts, 2(6), 96 1) 9E)ds — | fiatt, + o)

ta

h S:W 9(s, x(s), y(s))ds — SW (s, a(s), y(8))ds .

tn
Letting n — <, we have St fleyds =0 for te[0,d]. Therefore, (H2)
[1]
implies ¢ = 0. qg.e.d.
REMARK 3. To obtain a result similar to Theorem 38, Artstein and
Infante [1] considered the following condition in the case where a = 0:

(H8) For any pair (x(¢), y(t)) of bounded continuous functions on
[0, =), there exists a positive constant B such that for all T > 1,

T+ [" (s, 2(s), y(e)ds < B,
Q
This is somewhat easily checked in applications. However (H8) implies
(H7). 1In fact, suppose that (H8) holds. Then we have »*>;_, a, < B,

where a, = i h(s, x(s), y(s))ds and p = o + 2. Here we may assume

that a, # 0 f‘(;ll' all sufficiently large #. Put ¢ = (¢ + 2)/(a + 1). By
Holder’s inequality, for #n > N, we have

n—NZ |: i ak:ll/p[ Zn, a,;q/p]llq < nBl/pl: z"" a;q/p}w .
k

k=N+1 k=N+1 =N+1
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Thus,
o 2k+1 o
Z (a—q/p) > 2 22 —q/p = B-» 2 (1 — 2k/2k+1)q = oo ,
k=1 =1 p=okg k=1

Puts, =n and d = 1. Then (H7) holds for such a choice of {s,} and d.
Further, for the function h(t) = (¢ + 2)log (¢t + 2) and for o =0, we
easily see that (H8) does not hold but (H7) does. Therefore in the case
a =0, (H7) is strictly weaker than (H8). Furthermore, if we can certify
(12), then (H8) implies the condition considered by Artstein and Infante
[1], that is, T* ST h(s, x(s), y(s))|y(s)|"ds £ B, for some constant B,.
Indeed, suppose that (12) and (H8) hold. Then for some constants M
and B, we have > b, < M and 3,7, ¢, < BN*** for all N, where b,

" h(s, x(s), y(s))|y(8)|*"*ds and ¢, = Sn h(s, 2(s), y(s))ds. By Holder’s
mequahty, for all N, we have i

SO h(s, 2(s), y(8))|y(s)|*ds < ; (b tat gty

N 2/(a+2) [ N o/ (a2}
< [Z cn] I:E b ] < BZ/(zx+2)N2Ma/(a+2)
= n — -
n=1 n=1

Therefore we can put B, = B¥@t? Jfo/l=t

We immediately obtain the following corollary which is a generali-
zation of a result given in [1] and [7].

COROLLARY 7. Let (H1), (H2), (H3) and (H7) hold, and suppose that
all the assumptions in Corollary 5 or 6 are satisfied. Then every solu-
tion of (8) tends to the origin as t— oo,

If all the assumptions of Corollary 3 are satisfied, then (H8) obviously
holds. Therefore we have:

CorOLLARY 8. Let (H1), (H2), (H3) and (H4) hold, and suppose that

h(t, x, y) satisfies Condition (B). Then every solution of (8) tends to the
origin as t— oo,

Ballieu and Peiffer [3] investigated the equation (8) in the case

k(x, y) = (@) and g = p =0, under (H1), (H2) and the following as-
sumptions:

(i) 0=+(x) =h(t, 2, y) = b(t)s(x, ¥), b, 4, ¥ being continuous, b(t) >0,
oz, y) 2 0,

(ii) g” (@) dz = m(7) > 0 for all 7> 0,
-7
(iif) S” dt/b(t) = oo, b(t) nondecreasing.
Now we show that (i) and (iii) imply (H7). Since b(¢) is nondecreasing,
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(iii) is equivalent to X2, 1/b(n) = . Put {s,} ={n} and d =1 and
choose a, > 0 satisfying ab(f) = 1 for all ¢. Then for any pair (x(¢), y(t))
of bounded continuous functions on [0, ), we have

o ntd —1/{a+1) , il +
g e 31" 1o, 0, wonas | 2w S abieyas |

8. n —1/{a+1)
3y n

> MVt 2’; [ab(n + 1)] ety > pf-Viatngot i“ n+ 1Dt =c,

where M is a positive constant satisfying M > sup ¢(x(t), ¥(¢)). Therefore
(H7) holds for such a choice of {s,} and d.
Thus the following is a generalization of Ballieu and Peiffer’s result.

COROLLARY 9. Let (H1), (H2) and (H7) hold. Moreover suppose
that g = p =0 and that (i) 0 < 4(x) < h(t, 2, ¥) and H(x) is continuous,

and (ii) S” y@)dr = m®m) >0 for any 7 > 0. Then every solution of
~7
(8) tends to the origin as t — oo,

Proor. On account of Theorem 3, it suffices to prove that y(¢) — 0
as t — o for any solution (x(¢), y(t)) of (8). Define Ulz, ) = ¥*/2 + F(x).
Then we have Ug(x, ) = —h(t, z, P |y|*"? < —(x)|y|*"* = 0. Define the
set B = {(x, ¥): y-¥(x) = 0}. Then we have S(E) = E and hence 2 C E,
where £ is the positive limit set of (x(¢), y(t)). Furthermore, there
exists a constant ¢ such that QcrI': = {(x, ¥): F(x) + ¥*/2 = ¢}, and hence
RQcl'nkE.

Suppose that y(t) »0 as ¢t — . Then there exists an (x, y,)€2
such that y, = 0, and consequently F(x,) < c¢. We shall derive a con-
tradiction. Consider the case z,>0. By (ii), we can choose & satisfying
el <2 F@E <ec¢ and @ >0. Thus 2cl,UTl, where I',=
{w,y)el:x>¢} and Iy, ={(x,y)el:x < g. Since 2 is connected and
(@, ¥) €L NI, we have 2 I',. Then for a sufficiently large number
T, we have

13) z(t) > & and Ux®), y@t) =c forall t>T.

Furthermore, since x(t) is bounded, we have 2N R, # @&. Choose a
point (2, 0)e 2. Then F(z,) < F(x) =¢, &<z, and consequently, by
H2)!, =, < x,. Therefore it follows from (13) and the fact (x,, ¥,),
(¢, 0) € 2 that there exists a number T,, T, > T, such that z, < 2(T) < z,,
Y, &(T) < 0 and that y,-y(T,) > 0, which yields a contradiction, since
#(t) = y(¢). In the case z, £ 0, almost the same argument will lead us

to a contradiction. g.e.d.

REMARK 4. In order to guarantee that every solution of (8) is
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bounded in the future, the assumption (H2)’' is too strong. In fact, this
assumption may be replaced by the following weaker one [10]:

(H2)" (1) «f(x) >0 (x+# 0) and (ii) for any constant B > 0, there
o0
exists a nonnegative function u(x) depending on B such that S (u(x) +
1]
f@)dx = £ and max (u(x) — 75,,(x), 0) € L(— oo, ), where

u(x) if |fle)|>B-ux) or =20,
ir;f {k(x, y): | f@)|/u(x) < y-sgne < B} .

Therefore, replacing (H2) by (H2)”, we obtain results similar to those
in the above Theorem 3 and Corollaries 7, 8 and 9. Furthermore, we
note that in the case a = 0, (H7) is identical with the assumption (A5)
in [10].

Finally, as another application of Theorem 1, we consider the follow-
ing system on [0, «) X R"*?,

B = —eh®y — 3, 0Dz

(14) ¥ = by(0)f (@) + &)
4= —h(t, 2, ¥, D22 + bO)f() + eld)

i1=12 -+, n), where a; = 0, ¢, > 0 are constants and z = (¢, ---, z,).
A system of this type was discussed by Levin and Nohel [5] and Miller
[6] and others. Consider the following:

(A1) by, e;, h; and f are continuous, e¢,€ L]0, ) and each b, is
bounded on [0, ), .

(A2) ©-fl2) >0 (@ 0) and F(o) = | fle)ds— o as |a|— =,

(A8) there exists a continuous function #&(x, y,2) such that
hi(t, x, 9, 2) = k(z, ¥, 2) > 0 (z # 0) for all 4,

(A4) there exists at least one index 4, for which &, satisfies (HT)
with a = a,,

(A5) for an index 4, in (A4), liminf, . |b,(t)| + O,
and

(A6) liminf, .. |b,(t)] # 0.

THEOREM 4. If the above hypotheses (Al) through (A6) are satisfied,
then every solution of (14) is bounded in the future and tends to the
origin as t— oo,

75,4() =

ProoF. Define

15) Vit %,9,2) = exp(—E@)e/2 + X ez + F@) + 11,
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where E(t) = 3, St |ci%e,(s)|ds. Then an easy computation shows that
0

16) Vit 7, 9, 2) < —exp (—E() 3. eihalt, @, 9, 2)| 2]+

< —exp (—E(=)k(x, 3, ) S eila 5 0.

From (A1), (A2), (15) and (16), it follows that every solution of (14) is
bounded in the future. Clearly, the equation (14) satisfies Condition (C)
with I = {1, 2}. Therefore, Theorem 1 implies that every solution (x(f),
y(t), 2(t)) of (14) tends to the set S(E) = E = {(z, y, 0): z, y € R} and hence

amn 2(t) >0 as t— oo,
Furthermore, from (16), it follows that

> r hy(s, 2(3), y(8), #(8))|2:(8)|***ds < oo

i=1
and hence, by (A4) and Lemma 2, we conclude that there exists a
sequence {f,}, t, — o« as m — oo, such that

a8 [T s 20, 96), 2012, &) A5 >0 85 ms oo

Taking a subsequence if necessary, without loss of generality, we may
assume (x(t,), ¥(t.) — (p, @) as m — o for a point (p, g). We shall show
(p, @) = (0, 0). Consider the functions «,(&) = x({ + t.), Yn(t) =y + t.),
m=1,2,---, defined for te[0, d]. Since (x(f), y(t)) is bounded, the func-
tions {«,(?)} and {y,.(t)} are uniformly bounded and equicontinuous on [0, d].
By Ascoli’s theorem, taking a subsequence if necessary, we have z,(t) —
é(t) and y,(t) — (¢) as m — o« uniformly on [0, d] for some continuous
functions ¢(t), ¥(¢). Integrating the equation of 2, in (14) over [t, + d,,
t. + d,] for any d, d,€[0, d], d, < d,, and letting m — -, by (17), (18)
and (A1), we conclude

ﬂ? bi(s + ta)f@na(8)ds — 0 as m— oo
and consequently
d.
S: bi(s + t)f@(8)ds —0 as m— o for any d, d,e[0,d],
1

since b,(t) is bounded on [0, o) and x,(t) — ¢(¢) as m — o uniformly on
[0, d]. Therefore, by (A5), we have f(¢(t)) = 0 on [0, d] and hence, by
(A2), ¢(t) =0 on [0, d]. Furthermore, integrating the equation of % in
(14) over [t, + d,, ¢, + d,] for any d,, d.€[0, d], d, < d,, and letting
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m — oo, We have S B8 + t.)yn(s)ds — 0 as m — oo by (A1), (1) and the

fact that «(t + ¢,) — ¢(t) = 0 as m — o uniformly for £&[0, d]. Then by
(A6) and the same argument as in the case ¢(t), we conclude () =0
on [0, d]. Hence p = ¢(0) =0, ¢ =+(0) =0. Thus we have

(19) (@(tn)y Y(En), 2(tw)) —(0,0,0) as m — oo .
Now, we shall prove that (x(¢), y(t), 2(t)) — (0, 0, 0) as t — c. Define

U, z,9,2) = I:coy2 + gl c.R; + ZF(x)] + Z c“S less)|ds .

Then an easy computation shows Um)(t, z,Y,2) 0. Then for t=t¢,,
we have

20) 0 = UG, 2Q@), y(©), 2() £ Ultn, o(tn), y(tn), 2(t)) -

Since U(t,, x(t,), y(tn), 2(t,)) — 0 as m — o by (19) and (Al), it follows,
from (20), that U(¢, (1), ¥(t), 2(t)) = 0 as t— c and hence by (A2), we
conclude that (x(t), y(t), 2(t)) — (0,0, 0) as £ — oo, q.e.d.

REMARK 5. One of the most essential assumptions given in [5], [6]
is the following: Al h,(t, =, ¥, 2) are bounded when »* + y* + |2 is
bounded. Therefore Theorem 4 is a generalization of the results obtained
in [5], [6].
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