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Introduction 

F o r  some parabo l ic  dif ferent ia l  equat ions  i t  is known  t h a t  a n y  solut ion in a cy- 

l indr ical  domain  wi th  axis  t >  0, t ends  to a l imi t  as t - * ~  p rov ided  the  b o u n d a r y  

values  and  the  coefficients of the  equa t ion  t end  to  a l imi t  as t -~ co. Fu r the rmore ,  

the  l imi t  of the  solut ion is known  to be the  solut ion of the  l imi t  equat ion .  F o r  second 

order  parabo l ic  equat ions,  this  has been  p roved  b y  the  au tho r  [5] for the  f irst  m ixed  

b o u n d a r y  va lue  problem,  t h a t  is, when the  solut ion u is p rescr ibed  on the  la te ra l  

b o u n d a r y  of the  cyl inder .  Ex tens ion  to  equat ions  wi th  a nonhomogeneous  t e rm  which 

is " s l i gh t ly"  nonl inear  in u, is also given in [5]. I n  [6] i t  was p roved  t h a t  if bo th  

the  coefficients of the  parabo l ic  equa t ion  and  the  b o u n d a r y  values  a d m i t  an a s y m p t o t i c  

expans ion  in  t -1 (t-->o~), then the  same is t rue  of the  solution.  A s y m p t o t i c  conver-  

gence for solut ions of second order  parabo l ic  equa t ions  sa t is fying a nonl inear  b o u n d a r y  

condi t ion  (generalized Newton ' s  law of cooling) was es tab l i shed  b y  the  au tho r  in [7]. 

The presen t  pape r  consists of two par ts .  I n  P a r t  I we consider second order  

parabo l ic  equat ions  and  es tabl ish  the  a sympto t i c  behav ior  of solutions,  bo th  for the  

f i rs t  and  the  second (and even more general)  m i x e d  b o u n d a r y  va lue  problems.  The 

nonhomogeneous  t e rm is a nonl inear  pe r tu rba t ion .  The domains  are "a lmos t  cy l indr ica l , "  

i.e., the  cross sections t = const,  t end  to  a l imi t  as t -*  ~ .  F o r  the  f irst  m i x e d  b o u n d a r y  

va lue  problem,  the  p resen t  t r e a t m e n t  is no t  only  an  i m p r o v e m e n t  of the  ana logous  

resul ts  of [5], b u t  i t  is also a much  more  s impl i f ied  t r ea tmen t .  Thus  for instance,  

we do no t  make  here a n y  use of exis tence theorems  for parabo l ic  equat ions.  W e  
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use however the Schauder existence theory for elliptic equations [17] and, for the 

second mixed boundary problem, recent results of Agmon, Douglis and Hirenberg [1]. 

In Part  I I  we consider general nonhomogeneous parabolic equations of any 

order in an "almost cylindrical" domain, and solutions having prescribed Diriehlet 

data on the lateral boundary. We first prove that  if both the coefficients of the equa- 

tion and the boundary values tend to a limit as t-> ~ ,  then the solution u (x, t )con- 

verges in the L 2 norm to a solution of the limit elliptic equation. The special case 

of homogeneous equations in a cylindrical domain with zero boundary values was 

proved by Vishik [20]. In our derivation of the L 2 convergence, we make essential 

use of some results of the paper of Agmon, et al. [1], already mentioned above. Having 

derived the L 2 convergence, we use it to get a uni/orm convergence. Here we make 

use of the fundamental solutions for parabolic equations [4] [19] and also (for cylin- 

drical domain--where stronger results are derived) of Green's function considered by 

P. Rosenbloom [16]. Finally, we derive asymptotic expansions in t I for the solutions. 

Part I. Second order parabolic equations 

In this part we consider the asymptotic behavior of solutions of second order 

parabolic equations satisfying either the first or the second (and even more general) 

boundary conditions. In 5 1 we state the main results about uniform convergence 

(as t ~ )  of solutions of the second mixed boundary value problems (Theorems 1, 2). 

Theorem 1 is proved in 52 and Theorem 2 is proved in 55 3, 4. In  w 5 we discuss 

the asymptotic expansion in t -1 of solutions, as t-->c~. The results of w 1-5 are 

extended in w 6 to solutions of the first mixed boundary value problem. Finally, in 

5 7 we consider the behavior of solutions satisfying a generalized second boundary 

value condition. 

1. Statement of results for the second boundary value problem 

Let D be a domain in the (n+l)-dimensional space of real variables (x,t) 

= @1 . . . . .  x~, t) bounded by a bounded domain B on t =  0 and a surface S in the half 

space t>  0. We denote by B~ the intersection D N {t = 3) and assume that  for every 

T > 0 B~ is bounded and nonempty. We further denote by D~ (Dr162 = D) the domain 

D N { 0 < t < 3 )  and by S~ the set S f i { 0 < t < 3 } .  The boundary of a domain G i s d e -  

noted by ~ G, the closure of a set G is denoted by G, and the complement in a set 

G 2 of a set G 1 is denoted by G 2 -  G1. Later on we shall assume that  there exists a 
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bounded  domain C in the x-space such that ,  as t--->oo, Bt-->C in a certain sense. 

For  simplicity we assume th roughout  this paper  t h a t  C and  S are each composed of 

one surface, bu t  all the results can easily be extended to the case tha t  C and  S are 

each composed of a finite number  of surfaces. 

DEFINITION.  We say tha t  w (y, t)---~z (x) uniformly in (y, t) ED, x E C as y->x, 

t-->oo and also write 

lim w (y, t) = z (x), 
y--~X 
t--) Oo 

if for any  s > 0  there exist 6 > 0 ,  t 0 > 0  depending on s such t h a t  I w ( y , t ) - z ( x ) i < s  

whenever (y, t) E D, x E C, ] y - x I < 8, t > to, A similar definition can be given for func- 

t ions defined only on S. 

Consider the equations 

x t ~2u ~ ~ u  ~ u  Lu~--~.j=l ~ a i , ( ,  ) ~ §  ~ l b ~ ( x , t ) ~ x + C ( x , t ) u - - ~ = / ( x , t ) + k ( x , t , u )  fo r (x , t )  ED, 

(1.1) 

c ~2 v 
L~ ~ a " ( x ) ~ §  r for xEC,  (1.2) 

where u = u  (x, t), v=v  (x), and the boundary  conditions 

~ (x, t) 
T ~- g (x, t, u (x, t)) = h (x, t) for (x, t) E S, (1.3) 

dv (x) 
d T  +g(x) v (x )=h(x)  for x~_cqC. (1.4) 

Here (?u~O(X,T t) limy_~ ~.j=l ~ aij (x, t) cos [v (x, t), xj] cgUo(yY' t) (1.5) 

yEy 

for all rays  y issuing from (x, t) and pointing into the interior of Bt. We call ~ u/~ T 

the transversal (or conormal) derivative of u. I n  (1.5), v (x, t) is the ou tward ly  directed 

normal  to ~Bt at  the point  (x, t). Similarly we define 

dv (x)= lira ~ a~j (x) cos [v (x), xj] ~v (y) 
d T ~ "  ~,j=t ~ xt 

Yelp 

(1.6) 

as the transversal  derivative of v (x), where the rays ~, s tar t  a t  x and point  into the 
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interior of C. I n  order to avoid confusion later on, we have denoted the transversal  

derivat ive on S by  8/8 T and on 8 C by  d i d  T .  

DEFINITION.  Given a bounded domain G in the x-space, its boundary  8G is 

said to he of class C z+~ (m integer, 0 < f l < l )  if to  each point  y of G there corre- 

sponds a sphere V (in the x-space) having y for its center and  such tha t  V N 8 G can 

be represented, for some i, in the form 

xi=yJ (x 1, . . . ,  xi 1, X~+l, ..., Xn), (1.7) 

where ~v possesses m H61der continuous (exponent fi) x-derivatives. If  the functions 

~v are only assumed to be m times cont inuously differentiable, then 8 G is said to  

belong to the class C m. 

For  any  function w = w  (x) in G we introduce the norms: 

Iwlg=l.u.b. Iw(x)l, Iwl2=lwlo  § (w), 
x E G  

where 8 / 8 x  denotes any  part ial  derivative with respect to the xj and 0 ~ < ~ <  1, and 

H i  (w) = 1.u.b I w (x) - ~(Y) I 
x.y~G I x - y  

When  there is no confusion, we omit  the superscript G from the norm sign. 

When  we write, for functions z (x) defined on 8 G, the norm ]z] ~ we mean the 

following. A finite covering of 8 G is given and, hence, in each such por t ion z be- 

comes a funct ion of n - 1  variables. We then  take I zl~ a to be the sum of the d- 

norms of z in these portions. We shall clearly assume then  tha t  8 G is of class C e 

with  e>~ d. Let  the above finite covering be composed of port ions 8 Gj of 8 G and let 

F=~v  r be the representat ion (1.7) for 8 Gj. We then  define 

1 

:Finally, we denote b y  I G[ the diameter  of G. 

We shall need, later on, various assumptions on L,  Lo, /, k, 9, h and D. For  the 

sake of clarity we list mos t  of them now. 

(A) The coefficients of L are continuous in / )  and are bounded  b y  a positive 

constant  M,  and L is uniformly parabolic in /) ,  t ha t  is, there exists a positive con- 

s t an t  M '  such that ,  for all (x, t) in / )  and for all real vectors $ = (~x . . . .  , ~=), 
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g, j -1  ~-1 

(A0) The following limits exist, uni formly  in (x, t ) e  2) and  y E C: 

l im a~j (x, t) = a~j (y), l im b~ (x, t) = b~ (y), lira c (x, t) = c (y). 
X - - > y  X - - > y  X - ~ y  
t ---> oO t ---> oO t - ~  oO 

The functions a~j (y), b~ (y), c (y) are ]-I51der cont inuous (exponent  ~) in C. 

(B) / (x ,  t) is a continuous funct ion in 2~. 

(B0) As x->y, t---> oo, / (x, t)--->] (y) uni formly  with  respect  to (x, t) e D and  y e C, 

and  / (y )  is HSlder  continuous (exponent  ~) in C. 

(C) k (x, t, u) is continuous for (x, t, ) e / ) ,  - c~ < u < oo, and  

Ik(z,t, )l<z01u], (1.9) 

where /t o is a sufficiently small  cons tant  (depending on M,  M' ,  the  co-norms of t he  

coefficients of i and  1.u.b. ([Bt[ + [~Bt[1); see (n)).  
t 

(Co) As x-->y,t-->~, k ( x , t , u ) - ->k (y ,u )  uniformly  with respect  to (x,t) CD,  y E C  

and u in bounded  intervals.  The funct ion k (x, u) is }tSlder cont inuous in (x, u) for  

x E C and u in bounded  intervals,  and  ~ k (x, u) /~ u is continuous for x E C and u in 

bounded  interval ,  and  

t k (x, u)[ ~< 
/% (1.10) 

t u  I 

where /z 0 is a sufficiently small cons tant  (depending on the  same quanti t ies  as t he  

#0 in (1.9) and, in addition, on bounds  on ]/[, g, I hi and  ]~ C]e+~). 

(D) For  every  t > 0 ,  r U t  is of class C 1 and  1.u.b. ( I B t ] + [ a B t l l ) <  ~ .  
t 

(Do) ~ C is of class C 2+~ and to every  point  x on ~ C there  corresponds one a n d  

only one point  (xt, t) on each Bt ( t > 0 )  such t h a t  (i) xt-->x as t-->c~, un i formly  wi th  

respect  to x on ~ C, and  (ii) as t--> ~ ,  the  direction cosines of the normal  v (xt, t) to  

~Bt t end  to the  direction cosines of the normal  v ( x ) t o  ~ C  a t  x, un i formly  wi th  

respect  to  x on ~C. 

Remarks. (a) B y  (A0), (Do) it follows t h a t  if z (x) is cont inuously  differentiable 

in a neighborhood of ~ C, then  as t--> ~ ~ z (xt)/~ T-->dz (x ) /d  T uni formly  wi th  respee~ 

to x on t C. (b) If  D is a cylindrical domain,  then  (Do) reduces to the  a s sumpt ion  

t h a t  tB~:- -~C is of class C 2+~. 

(E) h (x, t) is a cont inuous funct ion for (x, t) on S. 
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(Eo) As t - - -~ ,  h (xt, t)---~h (x) uniformly in x E ~ C. 

(F) g (x, t, u) is continuous for (x, t) E ~q, - ~ < u < c~, and there exists a positive 

constant  #1 such tha t  

g (x, t, u) 

U 

- - ~ > t t l  for (x,t) ES, - - ~ < u < ~ ,  u # 0 .  (1.11) 

(Note, by  taking u~O, u-->O t ha t  g (x, t, 0 ) ~ 0 . )  

(F0) As t-->~, g (xt, t,u)--~g (x)u uniformly with respect to  x on ~ C and u in 

bounded  intervals. (Note, by  (F), t ha t  g (x) ~>/~1 > 0.) 

(G1) a~j (x) belong to C 1+~ in some outside neighborhood of ~ C. 

(G~) ~C  is of class C ~+~. 

DEFINITION.  We say tha t  u (x, t) is a solution in D of the system (1.1), (1.3) 

if (i) u is continuous in D, (ii) the derivatives ~ u/O x~, ~2 u/O x~ ~ xj, ~ u /~ t  are con- 

t inuous in D and (1.1), (1.3) are satisfied. We say tha t  v (x) is a solution in C of 

the system (1.2), (1.4) if (i) v is continuous in C, (ii) the derivatives ~ v/O x~, ~ v/~ x~ ~ x~ 

are continuous in C and (1.2), (1.4) are satisfied. 

We can now state the main results on the uniform convergence of solutions of 

(1.1), (1.3) as t---~oo. 

TItEOREM 1. Assume that (A)-(F) hold and, in addition, that 

lira h (x, t) = 0, lim / (x, t) = 0, lim sup c (x, t) ~< 0 (1.12) 
t--> r t-->~r t-->ao 

uni/ormly with respect to (x, t) E S, (x, t) E D and (x, t) E JD respectively. I / u  (x, t) is a solu- 

tion in D o/the system (1.1), (1.3), then, uni/ormly in (x, t) E .D, 

lim u (x, t) = 0. (1.13) 
t - - ~  

THEOREM 2. Assume that (A)-(F), (Ao)-(F0) (G1), (G2)hold and thatc(x)<~O. I /  

u (x, t) is a solution in D o/the system (1.1), (1.3), then 

lim u (x, t) = v (y) (1.14) 
X--> Y 
t-->OO 

uni/ormly with respect to (x, t) in D and y in C, and v (y) is the unique solution in C o/the 

system (1.2), (1.4). 

I n  a prel iminary report  [9] we have proved Theorem 1 as s ta ted above, and Theo- 

rem 2 wi thout  assuming (G1), (G2). 
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In  the  proof of Theorem 2 there  appears  a decisive l emma  (Lemma 3, below) 

whose proof  involved tedious potent ia l  theoret ic  calculations. The  present  proof  avoids 

these calculations by  s imply  using a recent  result  of [1]. However ,  we have  to as- 

sume (G1) , (G2) 

In  the course of the  proof  of Theorem 2 it will be shown t h a t  if h (x), g (x) 

belong to C 1+~ then  v (x) belongs to C 2+~ in C, and  thus it  satisfies (1.4) in the  classi- 

cal sense. 

:From the proofs of Theorems 1, 2 i t  will become clear t h a t  they  remain  t rue  ff 

~/~ T is replaced by  any  other  oblique der iva t ive  ~/~ T provided,  as t--~ oo, a / ~  T - - > d / d  T 

(at the corresponding points).  

2. Proof of  Theorem 1 

We introduce the  funct ion 

cf (x) = e ke - e ~~1, (2.1) 

where R is a posit ive number  satisfying 2 x I ~< R for all (x, t ) =  @1 . . . . .  x=, t) in /),  and  

4 is a posit ive constant .  4 and  R will be de te rmined  later,  cf (x) satisfies 

(L  qJ) (x, t) = - a l l  (x, t) 2 ~ e axl - b 1 (x, t) 4 e ~ '  § c (x, t) (e ~R - e ~xl) for (x, t) E D ,  

~q~(x)  ~ - g ( x , t , ~ ( x ) ) > ~  - 4 e  ~x~Oxl (e ~R T ~ +/s~ - e ~z<) for (x, t) e S. 

Using (A), we m a y  choose 4 sufficiently large such t h a t  

(L ~v) (x, t) < - 2 e ~z~ + c (x, t) (e ~R - e ~ ' )  for (x, t) E D. (2.2) 

Hav ing  fixed 4, we choose R so large t h a t  

~ (x) ? g (x, t, ~o (x)) ~>/z 2 > 0 for (x, t) E S. (2.3) 
9 T  

Note  t h a t  the  constants  4, R , / z  2 are independent  of (x, t). B y  (1.12) it  follows 

t h a t  there exists a sufficiently large number  5 such t h a t  

c ( x , t ) ( e ~ S - e ~ Z ' ) < e  ~ for all ( x , t )  E D - D ; .  (2.4) 

Subst i tu t ing (2.4) into (2.2), we get  

(L ~v) (x, t) < - 2 (5 for (x, t) E D - D ; ,  (2.5) 
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For  later purposes we define 

d o=  g.l.b. ~ (x), d l =  1.u.b. ~v (x). 
(x, t)eD (x, t )eD 

(2.6) 

The function ~ (x) will now be used to construct  a comparison function which 

will majorize the solution u (x, t). Consider the funct ion 

~f (x, t) = 2 e ~ 2 ~  + s ~ (x) + A (p (x) e_~(t_o) ' (2.7) 
#2 do 

where e, A ,  ). are any  positive numbers,  and a ~> &. Using the properties of ~ (x) derived 

above, we get  

v (x, t) < e dl, (2.s)  

L ~ (z, t) < - 2 s - 2 d s _ 2 d A e_r(t_~) + Y A dl e_,(t_~) (2.9) 
#2 do do " 

~2 = d / d 1 ,  d 2 = d / d  I ( 2 . 1 0 )  Defining 

and using (2.8), we obtain  from (2.9) 

L yJ (x, t) < - s - d2 ~ (x, t) 

Using (1.11) and  the choice of R, we also get  

y~ (x, t) 
~ T  ~ - g ( x , t , y ~ ( x , t ) ) > s  

for (x, t) E D - D o .  (2.11) 

for (x, t) e S. (2.12) 

The function yJ (x, t) will now be used to  estimate u (x, t). 

Let  s be an  arb i t rary  positive number.  I f  we prove tha t  for a sufficiently large 

number  Q = Q (e) 

l u ( x , t ) l < A o s  for (x , t )  e D - D ~ ,  (2.13) 

where A 0 is a constant  independent  of s, Q, then the proof of Theorem 1 is completed. 

Now, by  (1.12) there exists a = a  ( s ) > 0  such tha t  

I h (x, t) l < e for (x, t) e S -  So, (2.14) 

I / ( x , t ) l < e  for (x , t )  e D - D ~ .  (2.15) 

We take a such t h a t  also a > 5  (and then (2.11), (2.12) hold). We next  take in 
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the  definit ion of to above  the  numbers  a, s to  be the same numbers  as the  present  

ones, and  

A = 1.u.b. I u (x, a)I" (2.16) 

We shall prove  t h a t  

u(x , t )<to(x , t )  in D - D , .  (2.17) 

The  proof is based on an a rgumen t  similar to  t h a t  appear ing  in [21]. We first  note,  

b y  (2.14), (2.15), (2.16) and  (1.9), t ha t  

L u > - e - ~ o ] U  I for (x,t) E D - D , ,  (2.18) 

~ u / ~ T + g ( x , t , u ) < r  for (x,t) E S - S o ,  (2.19) 

u (x, (r) < to (x, a) for x E B~. (2.20) 

Consider now the set  ~ of points  t >~ a such t h a t  to > u in /J~  - D, .  B y  (2.20), Z is 

nonempty .  I t  is clearly an open set. I f  we prove  t h a t  ~ is closed, then  the proof  

of (2.17) is completed.  Suppose then  t h a t  t is such t h a t  to (x, T)> u (x, 7:) in Dr-Do,  

and  we have  to prove  t h a t  ~p (x, t) > u (x, t) for x E B t .  I f  this  is not  the  case, t hen  

the funct ion 4(x , t )~ to  (x, t ) - u ( x ,  t) obtains  its m in imum zero in the  set D t - D ~  a t  

a point  (x ~ t) on /~t. We shall derive a contradict ion b y  proving t ha t  (x ~ t) can belong 

nei ther  to ~Bt nor to  Bt. 

I f  (x ~ t)E ~ Bt then,  noting t h a t  ~/~ T is a der ivat ive  along an ou tward  direction 

to  ~Bt,  we get  

a (x ~ t) - ~ (y, t) ~ ~ ~ (x ~ t) 
o>/ izO_y I = ~ - T ~ ( ~ , t ) - ~  ~ T  ' 

as y-->x ~ along the  t ransversa l  r ay  issuing a t  the  point  (x ~ t). Since also g [x, t, u (x, t)] 

= g [x, t, to (x, t)] a t  x = x ~ we get 

to (x ~ t) 
a ~  ~- g Ix~ t, to (x ~ t)] < - -  

which contradicts  (2.12), (2.19) combined.  

I f  (x ~ t) E Bt then,  a t  t ha t  point,  

u (x ~ t) 

~ T  

~ = t o ,  l ~ l = t o ,  ~ / ~ x ~ = ~ t o / ~ x .  

Also, since (aij) is a posi t ive mat r ix ,  

~ to 
~a~j ~ x ~ x j  

~- g Ix ~ t, u (x ~ t)], 

~/~ t >I ~ to/~ t. 

9 2 u 

- -  1> Y a~j ~ at  (x ~ t). 

(2.21) 

(2.22) 
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Combining (2.21), (2.22) we conclude that, at  the point (x ~ t), 

L u + e + t t o [ U l < ~ L v  +e+~uo~f. 

The last inequality however, contradicts (2.11), (2.18) combined, provided 

~u0 ~< 52. (2.23) 

Hence, assuming /~o to be sufficiently small so that  (2.23) is satisfied, we conclude 

that  (x ~ t) cannot belong to Bt. This completes the proof of (2.17). 

In a similar way, replacing (2.11), (2.12) by 

L ~ > e  + ~ [v~ 1, 0 + g ( x , t , ( f l ) < - e ,  (2.24) 

where v~= - V  and replacing (2.18), (2.19) by 

L u < s + t t o [ u [ ,  ~u ~-~ + g (x, t, u) > - e, (2.25) 

we can prove that  u>v~ in D - D a .  Combining this ineqality with (2.17), and recalling 

the definition of V in (2.7), we have 

e e A 
] u (x, t) l < -($ q~ (x) + ~ q~ (x) + ~-o q~ (x) e-v(t-") for (x, t) 6 D - na. (2.26) 

Taking @ sufficiently large such that  A (~1 e-V(e-")/~0 ~< e the proof of (2.13) is completed. 

From the above proof the following corollary follows. 

COROLLARY 1. I /  the assumption (1.12) in Theorem 1 is replaced by 

lim sup I h (x, t)[ ~< s, lira sup [/(x, t) l ~ e, lira sup c (x, t) ~ 0 (2.27) 

uni/ormly in (x, t) 6 .D, and i / the other assumptions o/Theorem 1 remain unchanged, then 

lim sup l u (x, t) I ~< A18 (2.28) 
t---> Oo 

uni/ormly in (x, t) 6 D, where A 1 is a constant independent o/e. 

3. Proof of Theorem 2 for smooth h, g 

In this paragraph we prove Theorem 2 under the additional assumption that  h, g 

are C 1+~ in some outside neighborhood of ~ C. This assumption will be removed in 

w 4. We need a few preliminary results. 
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We recall t h a t  ~ C  is of class C 3+~. Now a t  every  point  x ~ of ~ C  we draw an 

outwardly  directed normal  r (x ~ to  ~ C and denote by  ~ (x ~ the  segment  on v (x ~ of 

length (~' ( ~ ' >  0) and initial point  x ~ We obta in  a fami ly  N of s t ra ight  segments.  

I t  is e lementary  to  see t h a t  every  point  x outside C and sufficiently close to ~ C lies 

on one and only one normal  segment  ~ (x ~ provided  (~' is sufficiently small, say 3' ~< ~. 

I n  wha t  follows we take  ~ ' = ~ .  

We now measure  any  fixed distance ~, 0 < ~ ~< ~ on each ~ (x), x e ~ C and denote 

the  set of the end points  b y  ~ C~. The  following l e m m a  is well known.  

LwMMA 1. Each ~C~ is a sur/ace orthogonal to the /amily N ,  and 1.u.b. 1~C~[2+~ 

<~ const. < oo. 

Using local coordinates x~=/~(s) ( l<~i<~n,s= (s 1 . . . . .  sn-1)) for ~C, we can re- 

present  ~ C~ locally in the form 

x~ =/~ (s) + g~ (s) t, (3.1) 

where gi (s) is ( - 1 )  ~-1 t imes the de te rminan t  of the  ma t r ix  obta ined  f rom the  ma t r i x  

(~/~/~ sj) (i indicates rows, ] indicates columns) b y  erasing the i th  row. t is defined b y  

t = (~/g (s) ,  (3.2) 

where g ( s ) =  L= ~ (gi (s))~] ~. (3.3) 

We nex t  need a recent  result  of Agmon  et al. [1, Chapter  I I ] :  

L E M ~ A  2. Consider the system (1.2), (1.4) with k- -O and assume that ~ C is o/class 

C 2+~, that / and the coe//icients o/ L o are C ~ (C), that a~j are C 1+~ (~ C), and that h, g are 

C 1+~ (~ C). / / c  (x) ~< 0, g (x) > 0, then there exists a unique solution o/ (1.2), (1.4) which is 

o/class C 2+~ (C), and 

< K (I h + l l  If), (3.4) 

where K depends only on bounds on the quantities 

a oc la,jlL Ib, lf, lelf, Igloos, I1/glo ~176 IcI, MP, t] l + a ,  

We are now going to  consider differential  sys tems analogous to  (1.2), (1.4) in 

each C~, C~ being the  interior of ~ C~. The solution v ~ (x) will be "c lose"  to bo th  

u (x, t ) ( t - - > ~ )  and  v (x) appear ing in the  formula t ion  of Theorem 2. We pu t  C ' =  C~, 

where ~ appears  in L e m m a  1, and  write C '  for the closure of C'. We m a y  assume 

t h a t  the  a~ (x) are C ~+~ in C ' - C ,  as follows b y  assumpt ion  (G~). 

E v e r y  funct ion p (x) defined in C or on ~ C can be ex tended  to  C '  - C as follows. 

Let  x e C ' - C  and let  x ~ be the  point  on ~ C  such t h a t  x lies on O(x~ We then  
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define p ( x ) = p  (x~ We extend in this manner the functions b~ (x), c (x), /(x), /c (x, u) 

(u fixed). I t  is clear tha t  the extended functions have the same HSlder-continuity 

properties (in x) as the original functions. We denote the transversal derivatives at  

the point x on ~ (x ~ by  d / d T  ~. 

Consider the system 

L 0 v ~ (x) = / (x) +/c (x, v) in C~ (3.5) 

W e s h M l p r o v e :  

LEMMA 3. 

a s ~ O ,  

d v ~ (x) 
d T s § g (x) v ~ (x) = h (x) on ~ C~. (3.6) 

The system (3.5), (3.6) has (/or 0 <~ (~ ~ ~) a unique solution v ~ (x) and 

{ dye(x) dv~(x') } 
l.u.b.x~oc ]v~(x)-v~ + d T  d T  ~ ->0, (3.7) 

where v ~ v  ~ and x' is the point on a Cs which lies on ~ (x). 

Proo/. Using the maximum principle [11] and (1.9) we easily conclude tha t  if 

solution v s exists, it must  be bounded independently of (~, the bound being dependent 

only on the given functions of the system and on I C I" Hence, without loss of gener- 

ality we may  assume tha t  k (x, u), for l ul larger than  a certain a priori determined 

constant, satisfies the regularity assumptions in (C), (Co) with constants independent of u. 

We next consider the set ZN of functions w defined in Cs which satisfy Iw I ~  N. 

We define a transformation T w  as follows. Replace in (3.5) k (x,v) by  k (x,w). T w  

is the solution of the modified system (3.5), (3.6). By Lemma 2 it exists and (using 

Lemma 1) 

I Twlp. <-K (I § lll  § l kl ), 

where K is independent of ~. Noting tha t  ] Ic ]~ <~ K 1 +/~o K2 N, where K1, K 2 are con- 

stants independent of N and ~, we conclude, upon taking N = K (I h ]1+~ + I/I~ + g l )  + 1 

and assuming /~0 to be sufficiently small, ITwl2+~<~N. Hence, T w  maps Zy into a 

compact subset. 

T is also a continuous transformation on Zg. Indeed, if we write the differential 

systems for Twl ,  T w  2 and subtract  one from the other, we find, using Lemma 2, tha t  

I Twl--Tw212+~<.Ka I It (x, wl)--Ic (x, w~)I~<~K4 Iwl-w2]~. 

Having proved tha t  T is a continuous transformation of a convex and bounded subset ZN 
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of a Banach space Z~o into a compact subset, we can apply Schauder's fixed point 

theorem [18] and conclude tha t  there exists a fixed point v = T v .  

To complete the proof of Lemma 3 we have to prove (3.7). The second state- 

ment  of (3.7) follows from the inequality I v~ IC+~< N, which, in particular, guarantees 

the equi-continuity of {v ~} and of their first derivatives in their respective domains C~. 

The first s tatement  follows by  either an appropriate use of the maximum principle, 

or by  the comparison argument of w 2. 

COROLLARY. Erom the above proo] i/ /ollows that the convergence in (3.7)is uni- 

/orm with respect to /, h, provided ]/I~, I h]l+~ are bounded by a ]ixed constant. 

Proo] o/ Theorem 2. Given any positive number  s, we shall prove tha t  there 

exists fl > 0, ~ > 0 depending on s such that  

] u ( x , t ) - v ( y ) i < A 8  for (x,t) E D - D e ,  yEC,  I x - y l < ~ .  (3.8) 

Here and in the following, A is used to denote any constant independent of e. In  

[5] we simply defined w = u - v  and applied Theorem 1 to w. This method, however, 

fails in the present case, mainly since D is not necessarily a cylindrical domain. To 

overcome this difficulty, we shall not t ry  to estimate u -  v directly. Instead, we shall 

approximate  v by  a family of functions v~, (6-+0) and estimate u-v~, .  

We introduce the functions 

h . ( x ) = h ( x ) - s  for x E ~ C ,  

and apply Lemma 3 with / ,h  replaced 

0 < 6 ~<~ there exists a unique solution v~. (x) of the system 

L 0 v~. (x) = / .  (x) + k (x, v~.) for x E C~, 

d v~, (x) 
- d  T ~- § g (x) v~, (x) = h, (x) for x e ~ C~. 

/ , ( x ) = / ( x ) + s  for x E C  (3.9) 

by  / , ,  h,. We conclude tha t  for every 

(3.10) 

(3.11) 

We define v, (x)= v~ (x). By  Lemma 3 and its corollary we also conclude tha t  

there exists a /ixed 6 > 0 depending on s, such tha t  

1.u.b. IvY, (x) - v, (x)[< s, (3.12) 
X E C  

l.u.b, dv~*(~) dv~*(x')l ~ 
x~oc d T d T ~ ]~<~, (3.13) 
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l .u.b. I g (x) v~, (x) - g (x') v~, (x')l < ~- 
xe0c 4 '  

(3.14) 

8 
1.u.b. I h ( x ) - h ( x ' ) l  < V~" 
xeOC 

(3.15) 

Consider the  funct ion 

w (x, t) = u (x, t) - v~, (x) for (x, t) E D - Do. 

Here  a is a sufficiently large n u m b e r  such t h a t  all the  domains  B ~ (which are the  

projections of Bt on t = 0 )  lie in a fixed closed set contained in the  interior of C~, 

provided t>~ a (recall t h a t  ~ is a f ixed number) .  The funct ion w (x, t) is thus  defined 

in D - D , ,  and  it  satisfies the  differential  equat ion  

L w = L u - (L - Lo) v~, - L o v~, 

= [ / (x ,  t) - / ,  (x)] + [k (x, t, u)  - k (x, u)]  + [k (x, u) - k (x, v~,)] + (L - Lo) v~, 

F (x, t). (3.16) 

B y  the  corollary a t  the  end of w 2 we obta in  

I u (x, t) ] ~< A for all  (x, t) E D - D , ,  (3.17) 

provided (r is sufficiently large. 

(x, t) E D. We also have  

Hence,  k (x, t, u)--->k (x, u) as t -+ ~ ,  un i formly  in 

1.u.b. IvY, ]gt 4 A, (3.18) 
t>cr 

since U Bt  is contained in a closed set interior to Co. 

Combining these r emarks  and  using (3.9) we obta in  

Z w < it(x,  t) w,  (3.19) 

where I/~ (x, t) i ~</~o ((x, t) E D -  Do), provided a is sufficiently large. We  tu rn  to the  

bounda ry  condition. B y  (Do), 

xt---~x, direction of v (x~, t)---> direction of v (x) (3.20) 

as t--->~, un i formly  in x E ~ C .  Using the  definitions (1.5), (1.6) and  R e m a r k  (a) in 

w 1 (following the  assumpt ion  (Do)), we get 

v~, (x)--->0 t---> c~, (3.21) g (xt) v ,  (xt) - g (x) as 
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v~, (z~) d v~, (~) - ~ 0  as  t - ~  
~ T  d T  

(3.22) 

uni formly  with respect  to x on ~ C. Now, on a Bt we have  

w (xt, t) 
T ~ g (xt) w (x~, t) = [g (xt) u -  g (x~, t, u) ]  + h (xt, t) - ~ @* (xt) a T - g (xt) v ,  (xt) 

r 

= [e (x~) u - g (z~, t, u ) ]  + [h (x~, t) - h .  (~ ')]  + [ d v . ( z  ) 
[ d ~  ~ 

+ [g (x') v~, (x') - g (x t) v~, (xt)] ~ I ,  § I S + I a + 14. 

~f j 

(3.23) 

As t - ->~ ,  I1 -~0  b y  (F0) and  (3.17); I S becomes larger t h a n  ~s ,  by  (E0), (3.9) and  

(3.15); I a becomes smaller t han  �89 b y  (3.13), (3.22), and 14 becomes smaller t han  �89 

b y  (3.14), (3.21). The above s ta tements  hold uni formly  with  respect  to x E~ C. We  

conclude t h a t  

aw (x,t) 
T ~- g (x) w (x, t) > 0 for (x, t) C S -  S~, (3.24) 

provided ~ is sufficiently large. 

Wi th  the aid of (3.19), (3.24) we proceed to es t imate  w. ~ is now a f ixed num-  

ber. Consider the funct ion 

0 (x, t) = - A  o ~ (x) e -~(t ~ (3.25) 

where ~ (x) and  y are defined in w Using the  propert ies  of 9~ (x) derived in w 2 we 

conclude t h a t  

L 0 > ]c (x, t) lO I for (x, t) e D - D~, (3.26) 

a 0 (x, t) 

~ T  
- -  + g (x, t, 0) < 0 for (x, t) E S -  So, (3.27) 

provided a >  & which we m a y  assume. Taking 

A0 = ~ 1  1.u.b. [w (x, o) [ + 1, 
x ~ B  q 

we can use the  compar ison a rgumen t  of w to  conclude t h a t  

w (x, t) > 0 (x, t) for (x, t) E D -  Do. (3.28) 

Taking  Q > a  such t h a t  A 0 ~  (x)e-'(~-~)~<~ and using (3.25), (3.28) we get, using the  

definit ion of w, 

u (x, t) > v~, (x) - s for (x, t) e D - D~. (3.29) 
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Since v~, (x) is a continuous function in Co, there exists fi > 0 such that  

I v ,~(x)-v,~(y)[<e if I x - y l < / ~ ,  y e C ,  xEC~. 

Combining (3.30) with (3.29), (3.12) we get 

u (x, t) > v.  (y) - 3 e 

Consider now the function 

if y e C ,  (x,t) E D - D  e, I x - y l < f i .  

(3.30) 

(3.31) 

I t  satisfies the system of differential inequalities 

L o v > - s - / & [ v I  for xEC,  (3.33) 

d ~ (x) 
d T  ~-g(x)v<~e for xE~C.  (3.34) 

Using the comparison argument of w 2 (considering L 0 v as (L 0 -  ~/~ t)v) we easily 

obtain, 
(x) ~< A ~ for x E C. (3.35) 

Combining (3.35), (3.32) with (3.31) we get 

u ( x , t ) > v ( y ) - A e ,  if (x,t) E D - D ~ ,  y e C ,  [ x - y l <  ft. (3.36) 

In a similar way, by defining h* (x)= h (x)+ e, /* ( x ) = / ( x ) - e  we can prove that  

u ( x , t ) < v ( y ) + A e ,  if (x,t) E D - D ~ ,  yEC,  Ix-yi<~fl .  (3.37) 

Combining (3.37) with (3.36), the proof of (3.8) is completed. 

From the above proof we easily derive: 

COI~OLLAI%~ 2. I/ the assumptions: / (x , t ) - -~/(x) ,  h (x , t ) -~h(x ) ,  g (x , t ,u ) -> 

g (x, t) u are replaced by 

lim sup l/(x,  t) - / (y)] < e, lim sup ]h (x, t) - h (x)] ~< e, 
X--~ y X--> y 

t ~  t--,~ (3.38) 

lim sup Ig(x,t,u)-g(x)ul<elul (~>0), 
t--> Oo 

uni/ormly with respect to (x,t) ED, y E C ;  (x,t) ES, y EO C and (x,t) ES, yEOC, u in 

bounded intervals, respectively, and i/ the assumptions o/ Theorem 2 are otherwise the 

same, and i/ g (x ) ,h (x )  are C 1+~ on ~C, then 

(x) = v (x) - v. (x). (3.32) 
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lim sup l u (x, t) - v (Y) I ~< A e (3.39) 
X---~y 
t--->~ 

uni/ormly in (x, t) 6 D, y 6 C, where A is a constant independent o~ e. I /  h (x), g (x), 

1/g (x) and /(x) are bounded by K o, then A depends on K o but not on h (x), g (x), /(x).  

This corollary will be used in the following section. 

4. Proof of Theorem 2 (for general h, g) 

I t  remains to prove Theorem 2 in case h, g are only assumed to be continuous. 

The essential point  is the proof of the existence of a solution v (x) of (1.2), (1.4). 

Once this is proved, the proof of Theorem 2 can be completed as follows. 

We have to prove (3.8) for every e > 0 .  We construct  C 1+~ functions ~, /~ in a 

neighborhood of ~ C which satisfy 

1.u.b. [Ig(x)-~(x)l  § Ih (x)-  ~ (x)l]< ~. (4.1) 
x e O c  

Let  ~ (x) be the solution of (1.2), (1.4) with g, h replaced by  #, )~. B y  the results of 

w 3, ~ (x) exists and, by  Corollary 2, 

l u ( x , t ) - ~ ( y ) ] < A s  if (x,t) E D - D ~ ,  yeC ,  I x - y l < f l  (4.2) 

for @ sufficiently large. 

Next,  the funct ion w (x) = v (x) - ~ (x) satisfies: 

L 0 w (x) = ~ (x) w (I fc] < #0) for x E C, (4.3) 

d w / d T §  ( x ) ] + [ g ( x ) - ~ ( x ) ] ~ H ( x )  for x 6 ~ C .  (4.4) 

By  the max imum principle we find tha t  ~ is bounded independent ly  of ~ (provided 

we take, as we certainly may,  )~, # and 1/# to  be bounded independent ly  of ~). I t  

thus follows tha t  IH(x) I<~A le, Where A 1 is independent  of e. 

We can now apply  to the system (4.3), (4.4) either the max imum principle, or 

the comparison argument  of w 2 (writing Low= (Lo-O/~t) w). We conclude tha t  

I w (x) I = Iv (x) - ~ (x) I < A2 ~ fo r  all  �9 e e ,  (4.5) 

where A 2 is independent  of e. Combining (4.5) with (4.2), the proof of (3.8) is com- 

pleted. I t  thus remains to prove the existence of v (x). 

EXISTENCE OF V. We recall tha t  the coefficients of L 0 have been extended to C'. 

We n.;w need to introduce a principal /undamental solution of L 0. This is a funda- 

2 -- 61173055. A c t a  m a t h e m a t l c a .  106. I m p r i m 4  le 26 s e p t e m b r v  1961. 
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mental  solution F (x, t) in the whole n-dimensional space E~ of an elliptic equation 

which coincides with L 0 u = 0  on C'. Furthermore,  it satisfies (uniformly in ~ in 

bounded sets) 

F (x ,~) -~0 ,  ~ F ( x , ~ )  *0 as ]x l - ->~ .  (4.6) 
x~ 

In  the general case tha t  L 0 is a l ready defined in the whole space En, the construc- 

t ion of F is fairly complicated. I t  was given by  Giraud [10]; see also [13, w 20]. 

I n  our present case, the construct ion can be simplified and we proceed to describe it. 

We first extend the coefficients of L 0 into the whole space E~ in such a manner  

t ha t  for some R > 0  

a~j(x)=6~j, b~(x)=0,  c ( x ) = - k  2 < 0  if [ x l > R  

(k constant)  and such tha t  all the coefficients are again HSlder-continuous (exponent ~) 

in En and c (x) ~ 0 in E~. In  what  follows we shall consider only the case tha t  n > 2. 

I n  the case n = 2 some of the formulas take a different form, but  the methods and 

results are the same. 

Le t  J (t) be the  Bessel funct ion which solves the equat ion 

and which, for t->O, satisfies 

d 2 J  n - l d J  
~- J = O  

d t 2 t d t  

J ( t ) = K t  ~-~ (l +O(t ) ) ,  J '  ( t ) = ( 2 - n ) K t  1-n (l +O(t ) ) ,  (4.7) 

where K is a positive constant .  Furthermore,  

J (t) = 0 (e-rot), J '  (t) = 0 (e -mr) as t-+ 0% ( 4 . s )  

where m is some positive constant .  Following the parametr ic  method we proceed to  

construct  a fundamenta l  solution F 1 (x, ~) in En for the elliptic operator  

L1 = [L0 - c (x ) ]  - k s, (4.9) 

which has for its essential singulari ty the kernel 

~n -2 

F 0 (x, ~) = i det  (a~j (~)) 1�89 J [k (5 a ~ (~) (x~ - ~) (xj - ~j))�89 ( 4 . 1 0 )  

Here (a *j) is the  matr ix  inverse to (a,j). 
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We write F 1 in the form (compare [13, p. 55]) 

F 1 (x, 8) = P0 (x, 8) + I_  Pl (x, •) K (~, 8) d~. (4.11) 

Noting that  ~ aij (8) 92 F0/9 x~ 8 xj =/c ~ Fo, and assuming that  the second term on 

the right side of (4.11) is of smaller order of singularity compared with the first term 

(this can very easily be verified a posteriori), the equation L 11~1 = 0 implies that  

P~ + 5 b~ (x) ~ F~ (4.12) K (x, ~) = 5 [a~j (x) - a~j (8)] ~ x~ ~ xj ~ x~" 

Note that  

Ao 
Ig (x ,~ ) l  <<- ix_~ln_~exp ~ = m ( ~ ) ,  (4.13) 

and A 0 is independent of k. We next observe that  if we prove that  

f IK(x,~)ldx<e <1 (e constant), (4.14) 
n 

then the solution of (4.11) is given by iteration, that  is, 

F o (x, ~1) K(m) (~1, 8) dr], (4.15) P. (x, ~) = F0 (x, 8) + ~ 0  

where K~ Indeed, using (4.14) and the elementary inequality 

fE 1 1 const. 
 lx- l < (4.16) 

provided 0 < fl < n, 0 < y < n, fl + 7 < n, one can prove, by induction, that  for j > n and 

for all xEE~, 8EE~ 

(x, ~)[+ I_ IK(J)(~' ~)]g~ < const, e j, (4.17) I 
n 

where the constant is independent of j .  Furthermore, noting by (4.8), (4.10), (4.12), 

that  (4.6) is satisfied for F replaced by F 0 and for F replaced by each term 

f F0 (x, ~) (~1, 8) d~, K(m) 
D, 

we conclude, upon using (4.17), that  (4.6) is satisfied also with F replaced by F 1. 

I t  remains to prove (4.14). 
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Noting that  in (4.13) m (/c)-,oo as lc-->oo, it  follows that  if k is sufficiently large 

then (4.14) is satisfied. 

We proceed to construct F. We write it  in the form 

r(x ,e)=rl(x ,~)+ f F(x,~)y(~)r~(~,~)d~, (4.18) 
1,71<R 

where Y(~])={;  (~)+k2 if t ~ ] K R } i f  , ~ I > R  " (4.19) 

In the bounded domain (~, V), ] ~ I < R, ]V ] < R we can apply the Fredholm theory. 

I t  follows that  if (for any fixed x) a unique solution F (x, ~) of (4.18)does not exist, 

then there exists a nontrivial function w (~) which satisfies the equation 

w(~)=y(~)  f I Fl(~,V)w(v)d~=_y($)~(~) (4.20) 
,~L<R 

for I}I~<R, where ~(})  is an abbreviated notation for the integral. However, we 

can then define ~(})  for all }EEn  (in terms of the in tegra l )and  it satisfies the 

equation 
Lo~=(L,+y)~=O in En. 

By (4.6) with F replaced by F 1, ~ (} ) -*0  as I}1-*oo. Applying the maximum prin- 

ciple [11] we conclude that  ~ 0 ,  which is a contradiction. 

We have thus proved that  for every x e E,~ there exists a unique solution F (x, }) 

of (4.18) for [}[~<R. We can now use the right side of (4.18) to define F (x,_~)also 

for I } l > R .  

In order to study the behavior of F(x ,})  as x-->~ and as ]xl-+oo we first mul- 

tiply both sides of (4.18) by  F~ (x', x) and integrate with respect to x, I xl ~ R. Next  we 

multiply the resulting equation by 1~1 (x", x') and integrate with respect to x'. Proceeding in 

this manner n - 2  additional times, we obtain n +  1 integral equations: the first one 

determines F, the second equation determines ] F~F, etc. The last equation (with 

variables x ('), }) determines ] ... ~ F 1 ... F 1 F (n integrations) and the nonhomogeneous 

term is continuous in x (n), and tends to zero as I x(~)l-->oo. Therefore, the same can 

be proved for the solution ] ... I F , . . .  F 1F (n integrations). We now turn to the 

( n - 1 ) t h  equation, ( n - 2 ) t h  equation, etc. In this manner we conclude that  

F (x, ~) = F 0 (x, ~) + F' (x, ~), (4.21) 

where F' satisfies (4.6) with F replaced by F', and F' has a smaller order of singu- 

larity than F 0. Thus, 



ASYMPTOTIC BEHAVIOI% OF SOLUTIONS OF PAI%ABOLIC EQUATIONS 21 

A ~ F '  A ~2 F '  A 
Ir ' l<l~-~l~-~-~' ~x ~ l z - $ l  ~ ~-~' ~ < lx -~ l  ~-~' (4.22) 

where A is a constant. We have thus completed the construction of the principal 

fundamental  solution F. 

We now return to the proof of the existence of v (x). We consider the space ZN 

of functions w(x) on C with norm Iw]~ <N for some e > 0 .  We define ~ = T w  as 

follows : 

ffJ(x)= fo c r(x,~)/~(~)d2- fc r(x,~)[/(~)+kff],w(~))]d~, (4.23) 

where # (x) is defined for x 6 ~ C as the solution of 

( [d r (x, ~) ] 

= (x) + f [ a " (x' ") , (x,,)] [/(,)+ k(~, w (~?))] d~------ ]~ (x). (4.24) 

Here d ~ is the surface area element on 8 C. By the properties of F [15] [13, 28-30] 

it follows tha t  if # (x) is continuous on 8 C then ~ (x) is a solution of the system 

L 0 ~ = / (x) + k (x, w) in C (4.25) 

d ~ (x) 
d T + g (x) w (x) = h (x) on ~ C (4.26) 

in the sense defined in w 1. Hence it remains to prove the following two statements:  

(a) # (x) exists as a unique solution of (4.24), 

(b) @= T w has a fixed point. 

Proo/ o/ (a). Since the kernel of (4.24) is integrable, it is sufficient (by Fred- 

holm's theory) to show tha t  if 

� 8 9  cL d ~  {- g(x) F ( x ' ~ )  # ( $ ) d 2 = 0 ,  (4.27) 

then #----0. Consider the function 

z (x) = f F (x, ~)/~ (~) d ~. (4.28) 
J 0  c 
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B y  (4.27), d z (x)/d T + g (x) z (x) = 0 on ~ C. Using the  m a x i m u m  principle and the 

pos i t iv i ty  of g (x) we easily conclude tha t  z ~ 0  in C. We nex t  consider z (x) in E n -  C. 

I n  this domain  it satisfies Loz = 0 and  it vanishes on ~ C. Since by  (4 .6) i t  also tends  

to  zero as ]x] --~ ~ ,  the  m a x i m u m  principle yields z ~ 0  in E n - C. Applying  the j u m p  

relat ion for the  t ransversa l  der ivat ives  of simple layers (a s imple layer  is a funct ion of 

the  form (4.28) with a n y  funct ion /~) we get  # ( x ) ~ 0 .  

Proo/ o/ (b). B y  a comparison a rgument  similar to t h a t  given in w 2, we find t h a t  

v (x), if existing, is a pr ior i  bounded.  Hence we m a y  change the definit ion of k (x, u) 

for  large u wi thout  restr ict ing the general i ty  of the  proof.  We thus m a y  assume t h a t  

k (X, U) ~< K1 for all x E C, - ~ < u < + ,  (4.29) I k (x, ~)1 < K1, / 

where K 1 is a constant .  Solving (4.24) we then  find t h a t  

1.u.b. ]# (x) l < K  2 1.u.b. ] ]~ (x) l, (4.30) 
xeOC x e O C  

where Ke is independent  of h. Using (4.29) and  the  definit ion of h we conclude t h a t  

1.u.b. I/~ (x) l<K3, (4.31) 
x e O c  

where K a is independent  of bo th  N and the  par t icu lar  w of ZN. 

Using [15, Theorem 8] we fur ther  get ]@I~<K4,  where K 4 is also independent  

of bo th  N and w in ZN. Hence,  if we take  N = K  4, then  T maps  ZN into itself. 

T (ZN) is compact ,  since b y  [15, Theorem 8] we have  I@ ]8 ~< K5 for any  fi < 1, and  

it  is enough to t ake  fl > s. 

The cont inui ty  of T on ZN is easily p roved  using (4.24) and  (4.23). We  can thus  

a p p l y  Schauder ' s  f ixed point  theorem [18] and  conclude the existence of a f ixed point  

for T. H a v i n g  completed the proof  of (b), the  proof of Theorem 2 is completed.  

Remark 1. The  above proof of the existence of v (x) does not  m a k e  use of the  

assumpt ions  (G1) , (G2). Fur thermore ,  ~ C need only to be  C 1+~. 

Remark 2. Corollary 2 a t  the  end of w 3 holds also under  the weaker  a s sumpt ion  

t h a t  g (x) and  h (x) are only  cont inuous on a C. 

Remark 3. I f  g (x, t, u) is monotone  decreasing in u, then  existence of a solution 

for the sys tem (1.1), (1.3) was p roved  in [7]. 
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Remark 4. If a~jEC 2+~ (C), b~ E C x+~ (C), then  we can write Lou in a variat ional  

form and use the (1 + ~) estimates of Agmon et al. [1] instead of the (2 + ~) estimates. 

I t  is then  sufficient to assume in the above proof of Theorem 2 t ha t  ~C belongs 

to C 2+~. 

5. Asymptotic expansion of solutions 

We shall need the following assumptions: 

(D*) D is a cylinder and ~B (or ~C) is of class C ~+~. 

(C*) k (x, t, u) = 0. 

(Am) F o r  (x, t) in /),  

aij (x, t) = ~ a~j (x) t -~ + t '~ o (1), 
.t=0 

b~ (x, t) = ~ b~ (x) t - ~ + t  -~  o (1), 
A=0 

c(x, t) = ~ c~'(x) t-x+t too(l) ,  
2=0 

where o (1)--~0 as t--~ ~ ,  uniformly in x E/];  the functions a -~-~J, b~.�9 c x belong to C ~ (/~) 

and a 9.~J also belong to C 1+~ (OB). 

(Bm) For  (x, t) in D, 

/ (x ,  t )=  ~ / X ( x ) t  x+t-mo(1), 

where o (1)-->0 as t--+c~, uniformly with respect to x EB, and the f belong to C ~ (/~). 

(Era) For  (x, t) E ~B, 

h (x, t )=  ~ h~(x) t-~§ 

where o(1)-+0 as t - + ~ ,  uniformly in xEgB, and the h A belong to CI+~(~B). 

(Fro) g (x, t, u) ~- g (x, t) u and for x E b B ,  

g (x, t)= ~ g~(x) t-~+t-m o (1), 
2=0 

where o(1)-->0 as t-->c~ uniformly in xE~B, and the g.1 belong to CI+~(gB). 

We introduce the operators 
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~2 V n ~V 

L A V---- i,/'=1 ~ a~ ( x ) ~  § ~1= b~ (x) ~x~ + c  (x) v, (5.1) 

dv(X)dT ~ *.y=~ a~ (x) c~ (~(x)' xs) ~V~(xX) (5.2) 

We can now state: 

THEOREM 3. Let the assumptions (A), (B), (C*), (D*), (E), (F) and (Am), (Bin), 

(E,~), (Fro) be satis/ied /or some non-negative integer m and let e ~ (x) <~0. I[ u (x, t) is 

a solution o/ the system (1.1), (1.3) then 

u (x, t) = ~ u 4 (x) t -4 + t -mo (1), (5.3) 
4=0 

where o (1)->0 as t-->~, uni/ormly in x EB,  and the u 4 (x) are determined successively 

by the [ollowing system: 
4 

L ou ~ ( x ) = / 4 ( x ) - ( z -  1)u 4-1 (x)-- ~ L#u 4-"(x) (xeB) (5.4) 
,u=l 

d u 4 (x) ~ gO (x) u 4 = h 4 4 4 
d T  (x) ( x ) -  ~ g~(x) u4-~(x) - ~ u4-~(x) (xE~B) .  (5.5) 

g = l  ,a=l w..t 

It  is understood that lor 4 = 0  the right sides o I (5.4), (5.5) are replaced by ]o (x) and 

h ~ (x) respectively. 

6. The first mixed boundary value problem 

In  this chapter  we shall prove analogs of Theorem 1.2 to the case of the first 

mixed boundary  value problem. The boundary  conditions (1.3), (1.4) are replaced by  

u (x, t) = h (x, t) for (x, t) E S, (6.1) 

v (x) = h (x) for x e ~ C. (6.2) 

The assumptions (D), (Do) are replaced by  the weaker assumptions: 

(D') 1.u.b. I Btl < ~ ,  
t 

(Do) ~C is of class C 2+~ and to every  x on ~C there corresponds one and on ly  

one point  (xt, t) on each ~ Bt such t ha t  x r * x  as t---> ~ ,  uniformly in x E ~ C. 

THEOlCEM 4. Let the assumptions (A)-(C), (D'), (E) be saris/led and assume that 

l i m h ( x , t ) = 0 ,  l i m / ( x , t ) = 0 ,  l i m s u p c ( x , t ) < 0  (6.3) 
t - ~  t--~oo t-*oo 
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uni]ormly with respect to (x, t )~S,  (x, t )ED and (x, t )ED respectively. 11 u (x, t) is a 

solution in D o I the system (1.1), (6.1), then u(x ,  t)->O as t-->c~, uni/ormly with respect 

to (x, t) in D. 

The proof is similar to t ha t  of Theorem 1, and employs  the same funct ion ~ (x) 

and  a compar ison a rgumen t  similar to t h a t  used in w 2. Details  are omit ted.  

TH]~OI~:nM 5. Let the assumptions (A)-(C), (D'), (E) and (Ao)-(Co), (Do), (E o) 

be satislied and let c(x)~O.  I /  u(x ,  t) is a solution in D o/ the system (1.1), (6.1)then 

lira u (x, t) = v (y) (6.4) 
X--~y 
t-->~ 

uni/ormly with respect to (x, t)E D, y E C, and v (y) is the unique solution in C o /  the 

system (1.2), (6.2). 

Proo I. We first p rove  the theorem in the  case t h a t  h (x) is a polynomial .  The  

proof  is then  similar to  the proof  in w 3, except  t h a t  ins tead of using L e m m a  2 we 

use Schauder ' s  (2 + ~ )  es t imates  [17] (see also [3], [13]). The  existence of v (x)fol lows 

b y  using these es t imates  and  Sehauder ' s  f ixed point  theorem,  as in w 3. The fami ly  

v ~ of approx imat ing  functions is constructed as follows: 

Le t  C~ be a sequence of domains  which tend  to C (as (~-->0) f rom the outside, 

and  which satisfy: 

1.u.b. [~ C~ ]2§ < ~ .  (6.5) 

We can construct  the  C~ in such a manner  t h a t  there  exists a one-to-one correspond- 

ence x*-*x ~ f rom ~ C onto  ~ C~ such t h a t  x~-~x as (~--~0, uni formly  in x E~ C. 

We nex t  t ake  C' to be any  fixed domain  containing C, and  ex tend  the coef- 

ficients of the  sys tem (1.2), (6.2) to  C' in such a manner  t h a t  they  remain  HSlder- 

continuous (exponent  a). This can be done even with preserving the HSlder  coefficients 

(see [12]). 

I n  each C~ we solve the p rob lem 

L o v ~ = / (x) § k (x, v ~) in C~, (6.6) 

v ~ (x) = h (x) on a C~. (6.7) 

By  the  Schauder  es t imates  (and on using (6.5)) we get  

C~ 
v 2+~ ~ const, independent  of (~. (6.s) 
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From this inequal i ty  we get a lemma analogous to Lemma 3, and we then complete 

the proof by  the method of w 3. Furthermore,  Corollary 2 can also be extended to 

the present case. 

In  the general case tha t  h (x) is not  a polynomial,  bu t  only a continuous func- 

tion, we construct,  for any  given s > 0, a polynomial  h (x) such tha t  

l -hlo~ (6.9) 

The existence of v (x) is proved by  approximat ing h by  smooth  functions hm and 

finding, by  using interior (2 § a) estimates [17, 13, 3], t ha t  the corresponding solu- 

tions Vm converge to a solution in the interior of C, whereas, by  using the max imum 

principle, we find tha t  the convergence is uniform in C. Hence lim vm is the desired 

solution v. 

:By the m a x i m u m  principle we have 

I ~ - v Ig ~< A e, (6.10) 

where A is independent  of ~, and ~ is the solution of (1.2), (6.2) when h is re- 

placed by  ~. 

The proof of Theorem 5 can now be completed (similarly to w 4) by  applying 

to ~, u a corollary analogous to Corollary 2, and by  using (6.10). 

Remark 1. If  a~j E C 2+~ (C), b~ E C 1+~ (C), then we can write L 0 is a variat ional  

form and use the ~-estimates of Agmon  et al. [1] instead of the (2 + ~) estimates. I t  

is then sufficient to assume tha t  ~ C in Theorem 5, is only C% 

Remark 2. In  [6] we have proved an analogue of Theorem 3 for the first mixed 

boundary  value problem. 

7. General ized second  boundary  va lue  problem 

I n  this section we discuss the extension of Theorems 1-3 to the case where in- 

stead of (1.3) we have 

~ u ( x ' t )  + g (x ,  t, u ) = h ( x ,  t) on S, (7.1) 
~T 

where ~ u /~  ~ = fi (x, t) ~ u /~  t + ~ u /~  T. I t  will be assumed tha t  

(G) fi (x, t) is continuous on S and 0 ~< fi (x, t) ~< eonst. < oz. 

Theorem 1 remains true i] we replace (1.3) by (7.1) and assume that (G) holds. 
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To prove this statement we proceed along the proof of w 3 with appropriate 

modifications. Thus, in the definition of ~ (x, t) we take y smaller than that  in (2.10), 

depending on 1.u.b. ft. We thus derive (2.11) and 

~ (x, t) 
Or b g ( x ,  t, ~f(x, t))> s. (7.2) 

If we prove that  the function w (x, t) = ~# (x, t) - u (x, t) is positive in D -  D~, then 

the proof is easily completed. 

The proof can be given similarly to that of w 2, noting that ~ / ~  is a derivative 

in an outward-upward direction. 

We note that the uniqueness of u, for more general quasi-linear equations and 

with h in (7.1) being a nonlinear function of u, Ou/~x~, was proved in [8]. 

Theorem 2 can also be extended to the present problem, and also Theorem 3 

with the u ~ (x) depending also on the coefficients in the expansion of ~ (x, t). 

Part II. Higher order parabolic equations 

In  this part  we prove that  if tile boundary values and the coefficients of a para- 

bolic equation of any order tend to a limit as t--> oo, then the solution also tends 

to a limit which will be the solution of the limit elliptic equation. The convergence 

is first proved in the L 2 sense and then it is extended to a uniform convergence. 

Naturally, since an appropriate maximum principle for higher order equations is not 

known, the regularity assumptions on the differential system will be stronger than in 

the case of second order equations. The methods are also quite different. 

In  w 1 we state some results of Agmon et al. [1], part of which overlap with 

results announced by Browder [2]. These are used very substantially in the following. 

In  w 2 we formulate the main result on L~ convergence. (The domain is not neces- 

sarily cylindrical.) The proof is given in w 3. Using the L 2 convergence we proceed 

in w 4 to establish uniform convergence. We finally discuss in w 5 the question of 

asymptotic expansion of solutions. 

In  what follows, the notation introduced in Part  I, w 1 will be used freely. All 

the functions are real. 

1, Auxiliary theorems on elliptic equations 

Let G be an n-dimensional bounded domain and denote 

x = (xl . . . . .  x~), i = (~1 . . . .  in), 
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I i 1 = i 1 + . . .  +i~, x '=x~ ~ ... x~', D '=D~ 1 ... D~', 

where Dk = ~/~ xk. Consider in G the differential equation of order 2 m 

Lo u=- 5 a , ( x ) D ~ u ( x ) = / ( x )  �9 (1.1) 
1~l~<2m 

L 0 is said to be uniformly elliptic in G if for any x e G and any real vector ~, 

AoI~pm~<(-1)  ~ 5 a , (x )~ '<A~l~P  ~ (Ao>0, A~>0)" 
Iq=2m 

Together with (1.1) we consider the boundary conditions, on a G, 

~ u 
~ j  =~j(x), O<j<m-1, (1.2) 

where v is the outwardly directed normal to ~ G. We state  the following results of 

Agmon et al. [1, Chapter IV] as a lemma. 

LEMMA 4. Let L o be uni/ormly elliptic in G, and assume that aG is C 2m+k+~ /or 

some non-negative integer k, that [ (x) and a~ (x) are C k+~ (G) and that the ~j belong to 

C2m+z-J+~(~G). I] the system (1.1), (1.2) cannot have more than one solution, then there 

exists a unique solution u (x )  o/ (1.1), (1.2) and it satisfies 

(, ml ) 
(1.3) lul~m+~+~<K ll~+~+ ~ JvJl~,~ . ~  , 

j=O 

where K is a constant depending only on Ao, ]~GI2~+k+~, and on the (Ic+o~) norms o/ 

a~ in B. 

For elliptic equations in variational form Agmon et al. derived in [1, Chapter IV], 

existence and a priori estimates for l ul~_l+k+~ (k~0) .  We formulate this result for 

the equation (1.1): 

L]~MMA 5. Let L o be uni/ormly elliptic in G, and assume that ~G is C m-~+k+~ 

/or some non-negative integer / c < m +  1, that / ( x )  is C ~ (G), that q~ is C m-l+~-s+~ (aG), 

that a~ (x) is C ~ ((J) and that ai (x) is C Iq-m+l+~ (0) i/ Ill ~ m. I / t h e  system (1.1), (1.2) 

cannot have more than one solution, then there exists a unique u (x) o/ (1.1), (1.2) and 

it satis]ies: 

lUlm-]+k+~K I11=+ Z I~lm-l+~-~+= , (1.~) 

where K is a constant depending on A0, laGl,,._l+k+:, on the ~-norms o/ the a, and on 

the (1~1- m + 1 +  ~) norms ol the a, ~ith l i l  >/m. 
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2. Statement o f  the m a i n  result on L~ stability 

We shall consider the parabol ic  equat ion (u=u (x, t)) 

~u L u _ ~ U  t ~- = ~ + ~ a, (x, t) n * u = l (x, t) in D (2.1) 
]/[~2m 

and the  Dirichlet  bounda ry  conditions 

DJ u 
~v~-q~j(x, t) ( 0 ~ < ] < ~ m - 1 )  o n  ~Bt, 0 < t <  cr (2.2) 

where vt is the o u t w a r d l y  directed normal  to ~Bt. For  clar i ty we first s ta te  the 

assumpt ions  needed later.  In  wha t  follows, A will denote any  cons tant  independent  

of t ,h. 

The assumpt ions  on D will look somewhat  complicated.  Roughly  speaking, it will 

be assumed t h a t  S is smooth  and  the  B t t end  regularly (or s m o o t h l y ) a n d  sufficiently 

fas t  to  their  l imit  C. 

Assumptions on D 

(hi) ]~ Btl2m+~<A. 

(A2) There  exists a one-to-one t r ans fo rmat ion  xt~-~x~ f rom ~ Bt onto ~ B,, for any  

t, z, such t h a t  if xt+a-xt=st.h(xt), then  

1 OBt (i) for IhJ <l, 

1 cTxt dx~ m-l+~, 
(if) as h-->O, ~ et,~ (xt)---->~[ uniformly  in xtEaBt, and d t  =o (1 )  as t - ~ .  

1 
(Aa) The  funct ion Nt.~ ( x t )=~  cos {vt (xt), rt+h (xt+h)} satisfies 

(i) for I h[~<l,  I ar 0s, ~<A, x'~t,h m - l + ~ - -  

~vt = o (1) as t -+co .  (if) as h-+0,  Nt h (xt) "--~t~7~t (xt) uniformly  in xt EaB~, and 
' ~t  ~t m - l + g  

(At) There  exists a bounded  domain  C=B~ such tha t  there is a one-to-one 

correspondence x t~x~  between aBt and ~B:r I~B~  I,n+~< c~ and  the  funct ion st@t) 

= x ~ -  x~ satisfies 

as 

(As) The funct ion Nt (xt)= cos [vt (xt), v~ (x:r satisfies 

()Bt ]Ntlm_l+ -o(1) as 
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Assumption on the boundary values 

l~oughly speaking the assumptions are tha t  the ~j are sufficiently smooth and 

they converge sufficiently fast to a limit as t - ->~.  More precisely: 

(B1) ~ I~  ( ", t) ~ ,  < A 2m-]+a: 
t 

(B2) The functions s 1 Rt. h (xt) = ~ [cfj (xt +h, t + h) - cfj (xt, t)] satisfy: 

m--1 

(i) for l hi <1,  2 R '  0B, ~<A. t .h  m - l - j + ~  
f = 0  

(x~) d~j (x~) m-1]dq~ j oB, 
(ii) as h-->O, Rt, nJ dt- uniformly in x,E~Bt, and j=o ~ ~ -  m-l-j+~ = ~  

a S  t - - >  c ~ .  

(B3) There exist functions ~j (x~) of class C m-j+~ on 8 B ~  such tha t  the functions 

S{ (xt)= q~ (xt, t ) - c f j  (xoo) satisfy 

Is{ o~, m_l_j+ =o(1 )  as t-+c~. (2.3) 

Assumptions L, Lo, / 

(C1) L is uniformly parabolic, tha t  is, for every (x, t)E D and any real vector ~, 

A ~ I ~ I ~ < ( - 1 )  ~ ~ a , ( z , t )~ '<A~l~ l  ~'~ ( i ~ > 0 ,  A~>0). 
lil=2m 

(C2) L is positive in the L2-norm , tha t  is, there exists 7 > 0 such tha t  for every 

t > 0  ~nd for every function ~ of class C TM (Bt), C ~-1 (/~,) which vanishes on ~B, 

together with its first ( m - 1 )  normal derivatives 

~ ;~(x)L6(x)dx>~r f.(v(x))~dx. 

(Ca) There exist functions ai (x), ] (x) defined in the closure of the domain 

B .  = U Bt, and satisfying: / and a~ belong to C ~ (/~.) for ]i t < m ,  and the a~ belong 
t > 0  

to C I''-~+1+~ (~ , )  if 2 m >~ l il/> m. 

(Ca) As t - ~  

Ill(', t)-/(.)ll ' ,-+o, Y I1~,(., t ) -a( ' ) l l"~o.  
lil~<2m 

In  (C4) the following notation has been employed: 
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Remark 1. I f  in (C2) we make  a s tronger  assumpt ion  abou t  the  vanishing of 

on ~Bt, namely,  if we assume ~ to have compac t  suppor t  in Bt, t hen  we obta in  a 

new assumpt ion,  say, (C~). I t  can be shown t h a t  (C~) is equivalent  to (C2). 

Remark 2. The  assumpt ions  (C2), (C4) combined imply  (using R e m a r k  l) t h a t  

L 0 defined by  (1.1) is a posit ive opera tor  in B~.  Hence  the  existence theorems of 

L e m m a s  4, 5 can be applied. 

Before s ta t ing the  result  of the  L 2 convergence we have  to  introduce one more  

notat ion.  We denote b y  ~Bt. , (a>O) the  surface obta ined f rom ~Bt by  shifting each 

point  of ~Bt a dis tance a along the  inner normal .  B y  Bt. ~ we denote the  interior 

of ~Bt,~. I t  is well known tha t  ~Bt.,, for small  a, is or thogonal  to  the  family  of 

the  normals  issuing f rom ~Bt. 

T h e O R e M  6. Let the assumptions (A1)-(As) , (B1)-(Ba) , (C1)-(C4) be satis/ied. I /  

u (x, t) is a solution o/ (2.1), (2.2) in D, then 

II u ( . ,  t) - ~ ( . )  I I " ~  as t - ~  ~ ,  (2.~) 

where a ~ l . u . b .  ]xt-x~r as t-~c~ (and hence Bt.~----~B~ in a uni/orm manner), and 
XtE()Bt 

v (x) is the unique solution in B~ o/ the system (1.1), (2.2), where ~j(x)=q~j(x~). 

The assumpt ions  of Theorem 6, wi th  the except ion of (2.3), seem to be quite 

natural .  I t  would be desirable to assume ~ =  0 in (2.3). For  the case of two space 

dimensions this can be done (see the  end of w 3). 

3. Proof  of  Theorem 6 

Let  v (x, t) be a solution of the  Dirichlet  problem 

LoV(X, t ) = / ( x )  in Bt (3.1) 

~J v (x, t) 
~v~ ~j (x, t) on ~Bt. (3.2) 

Be L e m m a  4 and our assumptions,  v exists and  satisfies 

Iv ( . ,  t ) ]~+~ ~< H,  (3.3) 

where H,  here and in the following, is used to  denote  any  constant  independent  of 

to h. We shall first es t imate  the  L~ (Bt) norm of the  funct ion 

z (x ,  t) =- u (x,  t) - v (x ,  t). ( 3 .4 )  
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z satisfies the system 

~ z +  ~ a , ( x , t )  D ~ z = ] ( x , t )  
~ t  Iq<2m 

in D~ 

where f-= [1 (x, t) - / (x)] - 
~V 

[a~ (x, t) - a~ (x)] D' v -  aW, 

(3.5) 

~J Z 
~v+=0~ on ~Bt, 0 < t < o o ,  (3.6) 

In  writing (3.5) we have assumed however tha t  ~ v / ~ t  exists. We now proceed 

to  prove the existence of ~ v/~ t and to est imate it. 

Consider the funct ion vh (x, t) = [v (x, t + h) - v (x, t)]/h. I t  is defined in Bt N Bt+h 

(here we imagine, for simplicity, t ha t  the B~, 0 < a < oo, lie on the hyperplane t = 0). 

For  small (~>0, the points xt,~ on a B t . ,  are in one-to-one correspondence with the 

points xt of ~Bt,  and the t ransformat ion xt-->xt.~ is of class C 2"-1+~. Hence, using 

(A2) there is a one-to-one t ransformat ion xt.o~-~x~+h from ~Bt.(~ onto ~Bt+h which is 

of class C m-l+~. We take 

cr = 1 .u.b.  I x t -  xt+hl (3 .7)  
Xt E OBt 

and then  vh (x, t) is defined in Bt,(;. 

vh satisfies the differential equat ion 

L0 vh (x, t) = 0 in Bt, o, (3.8) 

(3.9) 

where vt.~ is the outward normal  to ~Bt,(~ (and hence ~/~v t .o=~/Sv~) ,  and where 

1 [ ~  j a ~ ] 
o . j  v (xt. ~, t + h) - - -  v (xt. ~, t) 

1 [ ~  j ~J ] 
= -  ~2~.jv(xt.(~, t-F ] t ) - - ~ v ( x t + n ,  t + h) 

h ~ v~ ~+h 

1 [ ~  ~ ~J ] 1 
h U~r v(x~'~ t ) - ~ v ( x , ,  t) +~[~(~+ ,~ ,  

= O ~ +  O~ + O~. 

t + h)  - ~ j  (xt,  t)] 

(3.10) 

B y  assumption (B2), 
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[ ~  0B~ (3.11) ,n_ l-i+~ <~ A, 

provided [hl~< 1, which we may assume. 

l f i d  0 s 
77jv(~xt.o+ (1 --2) xt, t) d2 Next writing - o h  = h ~ 0 rt 

and using (3.3) and the differentiability assumptions on 8Bt, we obtain 

we m_1_i+~ h' (3.12) 

where for simplicity, we take h > 0, here and in the following. 

To estimate dp~, we write it in the form 

1 1 8 '  8' ] r ~ v(x,.~, t+h)-~,(x,+,~,  t+h) 

118' ~, ] +~ ~ v(,~+~, t+a)-  a~{+~-~ v(~+~, t+a) ~_r162 (3.13) 

@~ can be estimated similarly to (I)}. We thus get (using (A2) , (i)) 

m- l - j~  ~ §  (3.14) 

Using (3.3) we obtain 

I(~h21OmBt;~_]+<H [ COS [~t (Xt), ~t+h ( x t + h ) ]  m-l+~'0Bt (3.15) 

Combining (3.11)-(3.15) and recalling that, by assumption, cr/h <~ A, we obtain, using (Aa) , 

0B~.~ ~<H. (3.16) I~)Jh m-1 ]+:~ 

Applying Lemma 5 to the system (3.8), (3.9) and using (3.16), we get 

v ~t.~ ~<H. (3.17) h m - l +  r162 

Also, by the interior estimates of [3] we have, for any compact subset E of B~,~ 

E t 
i vn ]em+~ ~< const. I vh lg ~,~ ~< H ,  (3.18) 

where H'  depends on E but not of h, if h is sufficiently small. 

Using the assumptions (A1)-(Aa) it is seen that as h-->0, lim ~jh (xt.,) exists. 

Denoting it by 93j (xt), we have 

3 -  61173055. Acta raathematica. 106. Impr im6 le 26 septernbre 1961. 
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1 d~j 

5 - -  

where o (1)-+0 as t--+~. 

The system 

+ ~ t  m ~+=)=~ (3.19) 

L 0 ~ = 0 in Bt~ (3.20) 

~v~=~j on ~Bt, (3.21) 

has, by Lemma 5, a unique solution b (x, t) and, by (3.19), 

]vim 1+~=o (1). (3.22) 

We claim that  ~v/~t exists and is equal to ~. Indeed, by (3.17), (3.18) it follows 

that  any sequence {hk) (hk-*0) has a subsequence (h~) such that  the corresponding vh 

converge in the interior of Be to a solution v' of L 0 v' = 0, and v' has a finite (m - 1 + ~) 

norm in Bt and satisfies (3.21). Hence, the limit v' coincides with ~. Since ~ is 

uniquely determined, it follows that  as h-+0, vh converges to ~, uniformly in every 

compact subset of Bt. Hence ~v/Ot exists and is equal to v. By (3.22) we also have 

~v st 
~ t  m 1+~=~ (1), as t - + ~ .  (3.23) 

I t  is now easy to complete the estimation of z. By assumption (Ca), 

I I / ( ' ,  t ) - / ( . ) [ l " + 0  as t + ~ .  (3.24) 

By (3.3) and by assumption (Ca) , 

II[a~(., t)-a~ ( - )n ' v ] ] ' - ->0  as t - ~ .  (3.25) 
}il~<2m 

Combining (3.25), (3.24), (3.23) we conclude that,  in (3.5), 

]]](., t)]lBt=-e(t)-->O as t - + ~ .  (3.26) 

Multiplying the equation in (3.5) by z (x, t) and integrating o v e r  Bt, we obtain, upon 

making use of the boundary conditions (3.6) and the positivity of L, 

F' (t) +2yyJ  (t) <~2 fB](X, t) Z(X, t) dx, (3.27) 

~f (t)= [ (z (x, t))2dx. Using Schwarz's and the inequality fiy<~l(sfi~+y2/s) where 
J B  t 

( s>0 ,  f i>0 ,  y > 0 ) ,  we get 
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lP' (t) + y y~ (t) ~< ~ s 2 (t). (3.28) 

We claim tha t  ~o (t)-->0 as t -+oo.  Indeed, for any  given (~ > 0 ,  we choose t o such 

tha t  e 2 ( t )< ~y2/2  if t >  t 0. In tegra t ing (3.28), we obtain  

1 e2 (~) er~d ~ +erto w (to) <~2 + (t) < e -~t . ~ W (to) < 0 

if t is sufficiently large. We have thus  proved tha t  

l l u ( ' ,  t ) - v ( . ,  t ) l lB,=~l lz( .  , t)tlB,--~o as t-->oc. (3.29) 

We next  consider the funct ion 

w (x, t) = v (x, t) - v (x), (3.30) 

where v (x) is the solution of 

w satisfies the system 

where 

L o v =  [ (x) in B~r (3.31) 

~Y v 
~vs  =~vj (x~) (0~< j~<m-  1) on ~B~.  (3.32) 

and where 

L o w = 0 in Bt, ~, (3.33) 

~J w 0 Ov~ =cfi (xt..) (O <~j < . m -  I) on O Bt, o (3.34) 

a = 1.u.b. I xt - xr I (3.35) 
XteOBt 

+ [q~j (xt, t) - ~v; (xor - ~F~ +~t_27-~--a. (3.36) 

Using (3.3) and (A4) we get 

•12• OBt ~ H (y. 
1 m - l - ] + ~  

Next,  by  assumption (B3), 

[ue~,o~, - o ( 1 ) ,  as t - + ~  - - 3  I m - l - J + ~ - -  

To estimate ~F~, we write it in the form 

(3.37) 

(3.38) 
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�9 Ft2= ~vjv(xoo)_Or__s~v(xt., ) + ~vjv(xt.o)_~vJt.v(x~.o) =_~ ,+~: t .  (3.39) 

Since, by  Lemma 5 with I t= 1, we have 

B ~  I v ( ' ) l ~ + ~ < H ,  

we easily get, using (A4), 

t oB~ ~< oB~ - o ( 1 )  as t - ~ .  

(3.40) 

(3.41) 

Finally, using (As) , (3.40), 

I I.I2t20"m_l_]+a~ u Icos[~t(xt),r~(x~) ] OStm_l+~ ----~ as t~-> ~ .  (3.42) 

Combining (3.36)-(3.39), (3.41), (3.42) we easily get 

0 0 B t  a - - 0  ~ - - - ~ .  ~J m i - j + , -  (1), as (3.43) 

Using Lemma 5 with k =  0 we obtain, 

IV ("  , t)  - -  V ( " )  mBt . . . . . .  1 + ~  - -  ~ ( "  , t )  m-l+aBt'  a ----~1~ aS t - -~  o o .  (3.44) 

Combining (3.44) with (3.29), the proof of Theorem 6 is completed. 

Remark. From the above proof we see tha t  the assumption (2,3) was needed in 

making use of Lemma 5 with / - 0 ,  k = 0 .  Hence if Lemma 5, for / - 0 ,  k = 0 ,  holds 

with zr 0 in (1.4), then it is enough to assume, in (Ba), tha t  (2.3) is satisfied for 

~ = 0 .  Also, it is enough to assume that  (A2)-(As) and (B2) , hold with ~ = 0 .  The 

desired a priori inequality (that is, (1.4) with k -  zr = 0 , / -=  0) can be viewed as a gener- 

alization of the maximum principle to higher order equations. I t  w~s recently proved 

by  Miranda [14] for n = 2, provided L 0 is positive in the sense tha t  

f.  (X)LoV(X)dX>  o Z [ (70>0) 
l~l<mJBoo 

for any 56c2m(B~), ?~6Cm-l(Bov), and v having zero Dirichlet data on OB~r 

Added in prop/: Extending Miranda's results S. Agmon (in Bull. Amer. Math. 

Soc. 66 (1960), 77-80) has very recently proved max imum principles ~nd, in particular, 

Lemma 5 for f ~ 0 ,  k - 0 ,  a = 0 ,  provided the a~(x) belong to CPI(G) and ~G is of 

class C 2m. Hence, if a~(x)ECI~I(/~oo), then Theorem 6 holds when the assumptions 

(A2)-(As), (B2) , (Ba) are weakened by  taking ~ =0 .  A similar improvement  holds also 

for Theorem 7-9 below. 



A S Y M P T O T I C  BEHAVIOI:~ OF S O L U T I O N S  O ~  :PARABOL10 E Q U A T I O N S  37 

4. U n i f o r m  convergence 

Hav ing  proved  the  L 2 convergence of u (x, t) to  v (x), we proceed in this section 

to  derive, under  s tronger  assumptions,  uni form convergence.  The  first  result  is abou t  

convergence for x in compac t  subsets of B~.  The  second result  is abou t  convergence 

in the whole domain  D, provided D is a cylinder. F inal ly  we ment ion  a few addi- 

t ional  results t h a t  can be derived b y  some modif icat ions of the  methods.  

4.1. Convergence in compact subsets 

We need the  following addi t ional  assumptions:  

(C~) As t - > ~  

l / ( ' ,  t ) -  l ( ' )  Io"-~0, ~ a, ( . ,  t ) -  a, (.)[#'--~0. 
H<2m 

(C~) The  coefficients a~ (x, t) of L have  Il l  continuous der ivat ives  in 1) which are 

hounded (in /~) b y  a cons tant  A a. 

THEOI~EM 7. Let the assumptions (A1)-(As) , (BI)-(Ba) , (C1)-(Ca) and (C~), (Cg) 

be satisfied. I 1 u (x, t) is a solution o I (2.1), (2.2) then/or  every compact subset G o/ Boo, 

l u ( . ,  t) - v ( . )  Jg-+0, as t -~ ~ ,  (4.1) 

where v(x)  is the solution o/ (1.1), (1.2) with ~ j ( x ) = ~ j ( x ~ ) .  

Note  t h a t  (4.1) is equivalent  to  the  s t a t ement  u (x, t)-->v(y) as x->y, t-->oo uni- 

formly  in x E G, y E G. 

Proo]. I n  the  proof of Theorem 6 we in t roduced the  functions z (x, t ) =  u (x, t) 

- v  (x, t) and  w (x, t ) =  v (x, t ) - v  (x). For  the second funct ion we derived a uni form 

convergence to zero (see (3.44)). For  z (x, t), however,  we derived only 152 convergence 

to  zero (see (3.29)). I t  thus  remains  to  prove  uniform convergence for z. B y  the  

es t imates  in w 3 and by  (C~) we a l ready  know t h a t  z satisfies (3.5), (3.6) and  

I] ( ,  t)13,-~0, as t-~ ~ ,  (4.2) 

Jl z ( . ,  t)Jl~,-~o, as t-~ ~ .  (4.3) 

Let  E be a domain  which satisfies G c E ~ / ~ c  B~.  Consider the cylinder Q with 

base E and 0 < t < c o .  I f  t is sufficiently large, say t~>@, then  Q - Q e  is contained 

in D - D  e. Le t  K (x, t; #, ~) (t > v) be a fundamen ta l  solution of L * - ~  u/~  ~ (the ad- 

joint  of L + ~ u / ~ t )  as a funct ion of (~, T), wi th  s ingulari ty a t  (x, t), in the  cylinder 

Q - QQ. Under  the  assumpt ion  (C~), its existence was proved  b y  Slobodetski  [19] (and, 



3 8  AVlqER F R I E D M A N  

under  slightly stronger assumptions, earlier by  Eide lman [4]) and certain smothness 

and boundedness properties have been derived. In  particular,  

f l K (x, t; ~, ~) [ d ~ < H o (H o const.), (4.4) 

provided ~ > p, 0 < t - ~ ~ 1, and 

fF[K (x, t; ~, H~ T)] 2 d (H 1 const.), (4.5) 

provided T > ~, t - v = 1. 

We introduce a funct ion ~p (~) which is 1 in some neighborhood of G, zero out- 

side E and which is defined and of class C 2~ for all ~. Writ ing down Green's ident i ty  

for the operator  L + 8/8 T with the functions z (~, ~), ~p (~) K (x, t; $, T) and integrating 

over the domain ~EE ,  t - 1  < T < t  we find, for any  fixed xEG,  t - 1  >~Q 

;L z(x, t )=  ](~, T)yJ (~)K(x,  t; ~, T)d~d~ 
1 

- z ($ , t )  L * - ~  [y J (~ : )K(x , t ;~ ,~ ) ]d~d~ :  
-1  

+ ~  z(~, t -1)y j (~)K(x ,  t; ~, t - 1 ) d ~ T I + T 2 + T  a. (4.6) 
J E 

By (4.2), (4.4) and by  (4.3), (4.5) we get 

I T ~ I ~ o  a~ t ~ ,  I T~ l~o  as t ~ .  (4.7) 

Next ,  since ~ = 1 in some neighborhood of G, (L* - 8/8 z) (~p K) must  vanish for 

in this neighborhood. Since x C G, it follows tha t  if (L* - 8/8 z) [~0 (~) K (x, t; ~, z)] =~ 0 

then  I x -  ~[ ~> fi > 0 for some constant  fl independent  of t, T. Hence (by resul ts  of 

[19], [4]) 

I ( L * - ~ ) [ y J  (~)K (x, t; $, T)] [<H~,  (4.8) 

where H 2 is independent  of x, t, ~, 3, provided x E G. 

Combining (4.8) with (4.3) we get 

I T~l~o as t - ~ o ,  (4.9) 

which, combined with (4.7), (4.6), completes the proof of the theorem. 
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4.2. s  in the whole domain D 

We shall prove convergence in the whole domain D, for cylindrical domains. 

For  such domains the assumptions (A1)-(As) , (B0-(Ba) of Theorem 6 take a much 

simpler form and we therefore reformulate  them. 

(A) D is a cylinder and 0 B  is of class C 2m+~. 

. OB (B) Z l ~ ( ' ,  t) 2m~ ~+~ ~-<A, ~ 1 ~  ( )],~ j + ~ < A  
J ] 

i ~(PJ t) o8 o,  ( t - + ~ ) .  ~: e ( "  Im 1-j+~ j 
=o(1), ~1~( ' ,  t)-~j(.)lm_l_j+~=o(1) 

We shall need the following new assumption: 

(C~) L is strongly positive in D, t ha t  is, for any w (x, t) which is of class C TM (D) 

and with compact  support  in D, 

f D ~ V L w d x d t > ~ Y l ~ m f D ( D ~ v ) 2 d x d t  (7 > 0). 

T ~ E O R ] ~  8. Let the assumptions (A), (B), (C0, (C~), (C8), (C~), (C~) be satis]ied 

and let 2 m > � 8 9  I] u(x, t) is a solution o/ (2.1), (2.2) then 

l u ( . ,  t) - v ( . )  Ig-~0,  as t--> ~, ,  (4.10) 

where v (x) is the solution o/ (1.1), (1.2). 

Proo]. As in the proof of Theorem 7, we only have to  consider z(x, t). More 

specifically, we have to prove tha t  

1.u.b. Iz(x, t)]-->0, as t-->r (4.11) 
x r  

where z is the solution of (3.5), (3.6) and (4.2), (4.3) hold. 

We shall make use of Green's funct ion G (x, t; ~, T) constructed by  Rosenbloom 

[16, 122-123] for all (x, t) E/) ,  (~, v) E J0, (x, t) :~ (~, ~), t > v. By  our regular i ty  as- 

sumptions on the coefficients of L it follows tha t  z can be represented in the form 

L z(x, t)= e(x,t;~,T)](~,r)d~d~+ G(x,t;~,t-1)z(~,t-1)d~. (4.12) 
-1  B 

Furthermore ,  we have [16] 

f[G(x,t;~,~)] 2d~<~ -H-~3,~, 2 (H a const.), (4.13 / 
( t -  ~) ' m 

provided O < t - ~ l .  Using Schwarz's inequal i ty  in (4.121 and making use of (4.131, 

(4.2), (4.3), the proof of (4.111 immediate ly  follows. 
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Remark 1. The assumption 2 m >  �89 n was used only in concluding via (4.13), that  

; - l f B  'G(x ' t ;  ~' ~ ) 'd~dr<~ c~ independent  ~ t" (4.14) 

If one could establish (4.14) for any m, n then Theorem 8 would follow for any m, n. 

Remark 2. The assumption (C~) may become too restrictive in some applications. 

In some cases this assumption may be replaced by the assumption (C2). We give 

one example: 

Suppose (A), (B), (C1)-(C4) are satis/ied, and suppose that 

B__~O ' 0 OB ~ -+0, 
a~ (x, t) =- a, (x), ~t  ~j ( ' '  t) ~m j 

I ~ O~I_j+s>O, 
~ [ ~ j  ( ", t) as t--->c~, 

1/ 2 m > !~ n, then (4.10) holds. 

Indeed, by the method of w 3 we can prove that  

18 t) ~m+~ ~ v ( . ,  = o ( 1 ) ,  as t ~ ,  

~ v ( ' ,  =o(1) ,  as t - + ~ .  

We now differentiate (3.5), (3.6) with respect to t and apply to Oz/Ot the argument 

applied in w 3 to z. We get 
O z ( ' ,  t) B 

---~0~ as t-->c~. (4.15) 

Using L 2 estimates for elliptic equations (for instance [1, Chapter IV]) we obtain, using 

(4.15) in (3.5), (3.6) (for each fixed t), 

IID'z(., t)]l~-~0 as t ~ .  (4.16) 
Iq<2m 

Since 2 m > �89 n, we conclude from (4.16), upon using Sobolev's lemma, that  (4.11) holds. 

The above method can be used even in case 2 m ~< �89 n. We then apply it several 

times (estimating successive t-derivatives of v, z). Naturally we then have to make 

further assumptions on the rate of convergence of ~j and / as t--~oo. Note, finally, 

that  if it is a priori known that  ~ I D' u ( ", t)I~ ~< Ha (H4 independent of t) then we 
Iq<zm 

may take in the above proof a, (x, t) depending also on t, provided 

I ~ a , ( . , t )  B-+0, as t - + ~ ,  
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Remark  3. In  the proof of Theorems 6~8 we could define v (x, t) in a different 

manner, namely, v is the solution of 

L v = / ( x )  in Bt 

~Sv 
v i=  q~s (xt, t) on 8Bt. 

In  the case / ~ 0 ,  % (x:r this gives a new result. Indeed, we obtain the conclu- 

sion of Theorem 6 under somewhat different assumptions on the rate of convergence 

of the coefficients. The method is the same as in w 3. 

Remark  4. For second order parabolic equations it is seen from the proofs of 

Theorems 1, 2, 4, 5 that if both the coefficients and the nonhomogeneous terms tend 

to their limits faster than e (t), then the same is true of the solution�9 Here e (t) is 

any monotone function which decreases to zero as t-->~ (for instance, e ( t )=t  z, 2 <  0). 

This result can easily be proved also for higher order equations, by following carefully 

the proofs of Theorems 6-8�9 

5. Asymptotic expansion of solutions 

We shall need the following assumptions: 

(B k) For every j, o ~ j < ~ m - 1 ,  

k 

~j(x, t)= ~ ~; (x)t-~+~j (x, t)t -k 
,1=0 

k 

and Z [  ~lo~ o. ~, I~m-S§ < A, I~, ( ", t)I~m-j+<< <-A, 

2,+,( ~ �9 -+0 ,  1~i ( ' ,  t) lm-1-/+a "+0, aS t -+  c~. 

(C k) For every ], 0~<[ji~<2m 

k 

aj (x, t) = ~ aj (x) t-a + ds (x, t) t -k  
~=0 

k 

/(x, t)= ~ f (~) t-~ + } (~, t) t -~ 
~=o 

k k 

and Y~ Ia~i~ < A ,  Y ~ " a ~ " < A ,  if ]/[>~m, I/ [ ~ ~ A ,  [ ] ] - m + x + a  
),=0 ~ - 0  

I la , ( . ,  t)ll'---,o, I I ; ( . ,  t ) l l ' - ,o ,  as t--,<>o. 

We can now prove the following theorem. 
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THEOREM 9. Let the assumptions (A), (Be), (C1) , (C2) , (C k) be satisfied. I[ u(x, t) 

is a solution o/ (2.1), (2.2) then 

k 

u(x,  t ) =  ~ u2(x) t-~+~t(x, t) t -k, (5.1) 
2 - 0  

where I lg ( . ,  t)lIB-+O as t--~ co, and the u ~ satis/y the equations 

(9 u ~ 4- L o u ~ = f (x) - (), - 1) u 2-1 (x) - ~ L ,  u ~-" (x), (5.2) 
~t u=l 

~J 
~uX(x )=q)~ (x )  (0~<}~<m-1)  on aB,  (5.3) 

where L2-- ~ a~ (x)D ~, and i/ ~ = 0 it is understood that the right-hand side o/ (5.2) 
H~<2m 

is replaced by /o (x). 

The proof can be given by  induct ion  on It. The case ]c= 0 is a consequence of 

Theorem 6. The passage from /~ to /c + 1 is performed similarly to the case of second 

order equat ions in [6] and,  therefore, we omit  fur ther  details. 

I n  view of Theorems 7, 8, we can state a theorem similar to Theorem 9 which 

is concerned with uni form convergence. 
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