T. Kuroda Nagoya Math. J. Vol. 37 (1970), 5-12

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF PARABOLIC EQUATIONS WITH UNBOUNDED COEFFICIENTS

TADASHI KURODA

Dedicated to Professor Katuzi Ono on his 60th birthday

1. Let $Rⁿ$ be the *n*-dimensional Euclidean space, each point of which is denoted by its coordinate $x = (x_1, \dots, x_n)$. The variable *t* is in the real half line $[0, \infty)$. We consider a differential operator

(1)
$$
L = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i \frac{\partial}{\partial x_i} + c - \frac{\partial}{\partial t}
$$

in the $(n + 1)$ -dimensional Euclidean half space $Rⁿ \times (0, \infty)$ and assume that the matrix (a_{ij}) is positive definite in $R^n \times (0, \infty)$. Suppose that for coefficients of *L* there exist constants $K_1(>0)$, $K_2(\geq 0)$, $K_3(>0)$ and $\lambda \in [0,1]$ such that

$$
|a_{ij}| \leq K_1(|x|^2 + 1)^{1-\lambda}, \quad 1 \leq i, j \leq n,
$$

\n
$$
|b_i| \leq K_2(|x|^2 + 1)^{1/2}, \quad 1 \leq i \leq n,
$$

\n
$$
|c| \leq K_3(|x|^2 + 1)^{\lambda}.
$$

Besala and Fife [1] investigated the asymptotic behavior of solutions of the Cauchy problem for such a parabolic differential operator *L* under a non-negative Cauchy data not identically equal to zero.

One of their result is as follows:

Let a continuous function $u(x, t)$ in $R^n \times [0, \infty)$ have the following properties;

- i) $Lu \leq 0$ in $R^n \times (0, \infty)$ in the usual sense,
- ii) *u{x,0) is non-negative and not identically equal to zero*

and

iii) *there exist positive constants μ and v such that*

Received December 18, 1968

TADASHI KURODA

$$
u(x,t) \ge \begin{cases} -\mu e^{\nu(|x|^2+1)\lambda}, & \lambda \in (0,1], \\ -\mu(|x|^2+1)^{\nu}, & \lambda = 0 \end{cases}
$$

 $in \, R^n \times (0, \infty)$.

If there exist a sufficiently large constant a and a positive β satisfying

$$
4\alpha^{2}\lambda^{2}(|x|^{2}+1)^{2\lambda-2}\sum_{i,j=1}^{n}a_{ij}x_{i}x_{j}-4\alpha\lambda(\lambda-1)(|x|^{2}+1)^{\lambda-2}\sum_{i,j=1}^{n}a_{ij}x_{i}x_{j}
$$

$$
-2\alpha\lambda(|x|^{2}+1)^{\lambda-1}\sum_{i=1}^{n}(a_{ii}+b_{i}x_{i})+c\geq\beta
$$

 in $R^{n} \times (0,\infty)$, then $u(x,t)$ grows exponentially as t tends to ∞ and this exponential *growth of u(x, t) is uniform with respect to* $x \in R^n$ *.*

In their proof of this result, the condition that α is sufficiently large, is essential. In this note we shall give a rather simple condition than that of Besala-Fife under a somewhat different condition for coefficients of the operator *L.*

2. In the following we assume that coefficients of the operator *L* in (1) satisfy the following condition in $R^n \times (0, \infty)$ for some $\lambda \in (0, 1]$:

(2)

$$
\begin{cases}\nk_1(|x|^2+1)^{1-\lambda}|\xi|^2 \leq \sum_{i,j=1}^n a_{ij}\xi_i\xi_j \leq K_1(|x|^2+1)^{1-\lambda}|\xi|^2 \\
\text{for any real vector } \xi = (\xi_1, \dots, \xi_n), \\
|b_i| \leq K_2(|x|^2+1)^{1/2}, \quad 1 \leq i \leq n, \\
-k_3(|x|^2+1)^2 + k_3' \leq c \leq K_3(|x|^2+1)^2,\n\end{cases}
$$

where $k_1(>0)$, K_1 , $K_2(\geq 0)$, $k_3(>0)$, $k_3'(\geq 0)$ and $K_3(>0)$ are constants.

First we construct a function of the form $H(x, t) = \exp(-\alpha(t)(|x|^2 + 1))$ *+ β(t)*} satisfying $LH \ge 0$ in $R^n \times (0, \infty)$, where $\alpha(t)$ and $\beta(t)$ are positive and differentiable once in $(0, \infty)$.

Obviously the condition (2) implies

$$
\frac{LH}{H} \ge 4\alpha^2(t)\lambda^2 k_1(|x|^2+1)^{1-1}|x|^2 - 2\alpha(t)\lambda n K_1
$$

\n
$$
- 2\alpha(t)\lambda n K_2(|x|^2+1)^2 - k_3(|x|^2+1)^2 + k_3'
$$

\n
$$
+ \alpha'(t)(|x|^2+1)^2 - \beta'(t)
$$

\n
$$
\ge (|x|^2+1)^3[4\alpha^2(t)\lambda^2 k_1 - 2\alpha(t)\lambda n K_2 - k_3 + \alpha'(t)]
$$

\n
$$
- 2\alpha(t)\lambda n K_1 + k_3' - 4\alpha^2(t)\lambda^2 k_1 - \beta'(t).
$$

We can easily verify that the function

$$
\alpha(t) = \frac{\gamma_0}{\lambda \sqrt{k_1}} \frac{1}{e^{4\gamma_0 \lambda \sqrt{k_1}t} - 1} + \frac{\gamma_0}{2\lambda \sqrt{k_1}} + \frac{nK_2}{4\lambda k_1}, \quad \gamma_0 = \left(k_3 + \frac{n^2K_2^2}{4k_1}\right)^{1/2}
$$

is a solution of the differential equation

$$
4\alpha^2(t)\lambda^2k_1-2\alpha(t)\lambda nK_2-k_3+\alpha'(t)=0
$$

of the Riccati type in $(0, \infty)$ and that for this $\alpha(t)$ the function

$$
\beta(t) = \left\{ \frac{n\gamma_0}{\sqrt{k_1}} (K_1 + K_2) - \frac{n^2 K_2}{2k_1} (K_1 + K_2) - k_3 + k_3' \right\} t
$$

$$
- \frac{n(K_1 + K_2)}{2\lambda k_1} \log(e^{4\gamma_0 \lambda/\overline{k_1}t} - 1) + \frac{\gamma_0}{\lambda \sqrt{k_1}} \frac{1}{e^{4\gamma_0 \lambda/\overline{k_1}t} - 1}
$$

satisfies

$$
-2\alpha(t)\lambda nK_1 + k'_3 - 4\alpha^2(t)\lambda^2k_1 - \beta'(t) = 0
$$

in $(0, \infty)$. Hence we see $LH \ge 0$ in $R^n \times (0, \infty)$ for the function

$$
H(x,t) = (e^{4\gamma_0 \lambda/\overline{k_1}t} - 1)^{-\frac{n(K_1 + K_2)}{2\lambda k_1}} \exp\left\{\frac{\gamma_0}{\lambda/\overline{k_1}} \frac{1}{e^{4\gamma_0 \lambda/\overline{k_1}t} - 1}\right\} \times
$$

(3)

$$
\times \exp\left\{-\left(\frac{\gamma_0}{\lambda/\overline{k_1}} \frac{1}{e^{4\gamma_0 \lambda/\overline{k_1}t} - 1} + \frac{\gamma_0}{2\lambda/\overline{k_1}} + \frac{nK_2}{4\lambda k_1}\right) (\vert x \vert^2 + 1)^{\lambda} + \left[\frac{n\gamma_0}{\sqrt{k_1}} (K_1 + K_2) - \frac{n^2 K_2}{2k_1} (K_1 + K_2) - k_3 + k'_3 \right]t \Big\},
$$

where $r_0 = \left(k_3 + \frac{n^2 K_2^2}{4k}\right)^{1/2}$. Since and $\frac{\gamma_0}{\sqrt{q}}$ $\{1 - (|x|^2 + 1)^2\} < 0, \quad x \neq 0,$

it holds that

(4)
$$
\lim_{t \downarrow 0} H(x,t) = 0 \text{ for } x \neq 0.
$$

3. Suppose that the function $u(x, t)$ non-negative and continuous in $R^n \times [0, \infty)$ has the following property:

(5)
$$
\begin{cases} i) & Lu \leq 0 \text{ in } R^n \times (0, \infty) \text{ in the usual sense,} \\ ii) & u(x,0) \leq 0 \text{ is not identically equal to zero.} \end{cases}
$$

Here *L* is a differential operator of the form (1) with coefficients satisfying (2) and

(6)
$$
-2\left(\frac{r_0}{2\lambda\sqrt{k_1}}+\frac{nK_2}{4\lambda k_1}\right)\lambda K_1 n-4\left(\frac{r_0}{2\lambda\sqrt{k_1}}+\frac{nK_2}{4\lambda k_1}\right)^2\lambda^2 k_1 + k_3' > 0,
$$

$$
r_0 = \left(k_3 + \frac{n^2K_2^2}{4k_1}\right)^{1/2}.
$$

We can find a positive number ε so small that

(7)
$$
-2\left(\varepsilon+\frac{\gamma_0}{2\lambda\sqrt{k_1}}+\frac{nK_2}{4\lambda k_1}\right)\lambda K_1n-4\left(\varepsilon+\frac{\gamma_0}{2\lambda\sqrt{k_1}}+\frac{nK_2}{4\lambda k_1}\right)^2\lambda^2k_1+k_3'>0.
$$

Let *T* be a positive number such that

$$
0<\frac{\tau_{\text{\tiny 0}}}{\lambda\sqrt{k_1}}\ \frac{1}{e^{2\tau_{\text{\tiny 0}}\lambda/\bar{k_1}T}-1}<\varepsilon.
$$

From the assumption for $u(x, t)$ we see by the strong maximum principle due to Nirenberg [5] that $u(x, t) > 0$ in $R^n \times (0, \infty)$. *So* the value $m = \min u(x, t)$ is positive for an arbitrary $r(>0)$ and for any $\delta(>0)$ fixed $\begin{array}{c} |x| = r \\ t \in [\delta, T] \end{array}$

sufficiently small. We may assume that $\frac{T}{2} < T - \delta$. For these *r* and δ , clearly $0 < M_1 = \max_{|x|=x} H(x, t - \delta) < \infty$, where *H* is the function given by (3). $\begin{bmatrix} x & = r \\ t ∈ \delta, T \end{bmatrix}$

Put

$$
w(x,t)=\frac{m}{M_1}H(x,t-\delta)-u(x,t).
$$

Evidently we have $Lw \ge 0$ in $\Omega \times (\delta, T)$, where Ω is the set of all points $x \in \mathbb{R}^n$ such that $r \leq |x|$. Moreover, $w(x, t)$ is continuous on $\overline{Q} \times [\delta, T]$, $w(x, \delta) \leq 0$ for $|x| \geq r$ and $w(x, t) \leq 0$ for $|x| = r$ and $t \in [\delta, T]$. Bodanko's maximum principle [2] implies that $w(x, t) \leq 0$ in $\overline{Q} \times [\delta, T]$. Therefore we get

$$
\frac{m}{M_1}H(x,T-\delta)\leq u(x,T)
$$

for $|x| \ge r(>0)$. As is seen easily, there is a positive constant M_2 such that $M_2H(x,T-\delta) \le u(x,T)$ in $|x| \le r$. Hence by putting $M_3 = \min\left(\frac{m}{M}, M_2\right)$ we have $M_3H(x, T - \delta) \le u(x, T)$ at every point $x \in \mathbb{R}^n$. Since $\frac{1}{2} < T - \delta$, we obtain

$$
u(x,T) \geq M_3 H(x,T-\delta)
$$

\n
$$
\geq M_4 \exp \left\{-\left(\varepsilon + \frac{\tau_0}{2\lambda\sqrt{k_1}} + \frac{nK_2}{4\lambda k_1}\right) (|x|^2 + 1)^2\right\}
$$

in R^n for some positive constant M_4 .

4. Now we can prove the following theorem.

THEOREM 1. *Let L be a parabolic differential operator of the form* (1) *with coefficients satisfying* (2) *and* (6). *Assume that the function u{x, t) continuous in* $R^n \times [0, \infty)$ satisfies (5) and $u(x, t) \ge -\mu e^{\nu(|x|^2+1)^{\lambda}}$ for some positive constants μ and v. Then $u(x, t)$ grows to infinity exponentially as t tends to ∞ and this *exponential growth of* $u(x, t)$ *is uniform in any compact subset of* R^n *.*

Proof. Bodanko's maximum principle shows that $u(x, t) \ge 0$ in $R^n \times [0, \infty)$. As was shown in §3, for a positive number ε satisfying (7) there exist a positive number *T* and a positive constant M⁴ such that

$$
u(x,T) \ge M_4 \exp\left\{-\left(\varepsilon + \frac{\Upsilon_0}{2\lambda/k_1} + \frac{nK_2}{4\lambda k_1}\right)(|x|^2 + 1)^2\right\}
$$

$$
\equiv M_4 H_0(x), \quad \text{say.}
$$

From (7) we can take a positive number *β⁰* which satisfies

$$
-2\Big(\varepsilon+\frac{\tau_0}{2\lambda\sqrt{k_1}}+\frac{nK_2}{4\lambda k_1}\Big)\lambda K_1n-4\Big(\varepsilon+\frac{\tau_0}{2\lambda\sqrt{k_1}}+\frac{nK_2}{4\lambda k_1}\Big)^2\lambda^2k_1+k_3'-\beta_0>0.
$$

Putting

$$
h(x,t)=M_4H_0(x)e^{\beta_0(t-T)}
$$

and $v(x, t) = u(x, t) - h(x, t)$ in $R^n \times (T, \infty)$, we see

$$
Lv \le - Lh
$$

= $-h[4\alpha_0^2 \lambda^2 (|x|^2 + 1)^{2\lambda - 2} \sum_{i,j=1}^n a_{ij} x_i x_j$
 $- 4\alpha_0 \lambda (\lambda - 1) (|x|^2 + 1)^{\lambda - 2} \sum_{i,j=1}^n a_{ij} x_i x_j$
 $- 2\alpha_0 \lambda (|x|^2 + 1)^{\lambda - 1} \sum_{i=1}^n (a_{ii} + b_i x_i) + c - \beta_0]$

in $R^n \times (T, \infty)$, where $\alpha_0 = \varepsilon + \frac{T_0}{2\sqrt{h}} + \frac{nK_2}{4\hbar k}$. Hence it follows from (2) $2λγ$ $k₁$ $4λ$ that

10 TADASHI KURODA

$$
Lv \leq - h[(|x|^2 + 1)^{\lambda} \{ 4\alpha_0^2 \lambda^2 k_1 - 2\alpha_0 \lambda K_2 n - k_3 \} - 2\alpha_0 \lambda K_1 n - 4\alpha_0^2 \lambda^2 k_1 + k_3' - \beta_0].
$$

Evidently α_0 and β_0 satisfy

 $4\alpha_0^2 \lambda^2 k_1 - 2\alpha_0 \lambda K_2 n - k_3 > 0$ and $-2\alpha_0 \lambda K_1 n - 4\alpha_0^2 \lambda^2 k_1 + k_3' - \beta_0 > 0$.

Therefore we have $Lv \leq 0$ in $R^n \times (T,\infty)$. Further, we see $v(x,T) = u(x,T)$ $-M_4H_0(x) \ge 0.$ Applying Bodanko's maximum principle again, we can see $v(x, t) \ge 0$ in $R^n \times [T, \infty)$, so

$$
M_4H_0(x)e^{\beta_0(t-T)} \leq u(x,t) \text{ in } R^n \times [T,\infty).
$$

From this we get the assertion of Theorem 1.

Example. Consider an operator

(8)
$$
L_0 = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} + (-k^2 |x|^2 + l) - \frac{\partial}{\partial t}
$$

in $R^n \times (0, \infty)$. Let $u(x, t)$ continuous in $R^n \times (0, \infty)$ satisfy $L_0 u \leq 0$ and $u(x, t) \geq -\mu e^{\nu |x|^2}$ in $R^n \times (0, \infty)$ for some positive μ, ν and let $u(x,0)$ be nonnegative and not identically equal to zero. The condition (2) is satisfied for $\lambda = 1$, $k_1 = K_1 = 1$, $K_2 = 0$, $k_3 = k^2$ and $k'_3 = k^2 + l$. Theorem 1 implies that, if the condition $l > kn$ corresponding to (6) is fulfilled, then $u(x, t)$ grows exponentially to infinity as *t* tends to infinity. This fact was es sentially proved by Szybiak [6] although his theorem is false as Besala and Fife pointed out. Szybiak missed the condition $l > kn$ out of the statement of his theorem.

5. Assume *I <kn* in (8). In this case, Krzyzaήski [4] proved the following by constructing the fundamental solution of the Cauchy problem for the equation $L_0 u = 0$: Let *u* be the solution of the Cauchy problem

$$
L_0 u = 0 \quad \text{in} \quad R^n \times (0, \infty),
$$

$$
u(x, 0) = f(x)
$$

for the Cauchy data $f(x)$ bounded in R^n . Then $u(x, t)$ tends to zero unit formly in $x \in R^n$ as *t* tends to infinity.

Recently Chen [3] treated an analogous problem for an operator of a general form and proved the following fact.

Let the differential operator L in (1) *satisfy the condition*

$$
(9) \qquad \begin{cases} \quad k_1(|x|^2+1)^{1-\lambda}|\xi|^2 \leq \sum_{i,j=1}^n a_{ij}\xi_i\xi_j \leq K_1(|x|^2+1)^{1-\lambda}|\xi|^2 \quad \text{for real vector } \xi, \\ \quad |b_i| \leq K_2(|x|^2+1)^{1/2}, \quad 1 \leq i \leq n, \\ \quad c \leq -k_3(|x|^2+1)^{\lambda}+k'_3 \end{cases}
$$

for some $\lambda \in (0,1], k_1(>0), K_1, K_2(\geq 0), k_3(>0)$ and k'_3 . Further, let $u(x, t)$ be *a* solution of the Cauchy problem $Lu = 0$ in $R^n \times (0, \infty)$, $u(x, 0) = f(x)$ in R^n and *satisfy* $|u(x, t)| \leq \mu e^{\nu(|x|^2 + 1)^{\lambda}}$ for some constants μ and ν positive. If $f(x)$ is *bounded in Rⁿ and if*

$$
\frac{1}{2K_1}\left[2K_1(1-\lambda)-k_1n\right]\left(\sqrt{n^2K_2^2+4K_1k_3}-nK_2\right)+k_3'<0,
$$

then $u(x, t)$ tends to zero uniformly in $x \in R^n$ as t tends to infinity.

6. Here we shall discuss the case when $\lambda \in [1, \infty)$ in Chen's theorem. Let *L* be an operator of the form (1) with coefficients satisfying (9) for $\lambda \in [1, \infty)$. For $H(x, t) = \exp{\{-\alpha(t) (\vert x \vert^2 + 1)^{\lambda} + \beta(t) \}}$ with $\alpha(t) > 0$ and $\beta(t)$ differentiable once in $(0, \infty)$ we have

$$
\frac{LH}{H} \leq (|x|^2 + 1)^2 [4\lambda^2 K_1 \alpha^2(t) + 2\lambda n K_2 \alpha(t) - k_3 + \alpha'(t)]
$$

$$
- 2\lambda k_1 n \alpha(t) + k_3' - 4\lambda^2 K_1 \alpha^2(t) - \beta'(t).
$$

Hence, if we take

(10)
$$
\alpha(t) = \gamma \ \tanh 4\lambda^2 K_1 \gamma t
$$

and

$$
\beta(t) = [-2\lambda k_1 n \gamma - 4\lambda^2 K_1 \gamma^2 + k_3']t + \frac{k_1 n}{2\lambda K_1} \log \frac{e^{8\lambda^2 K_1 \gamma t}}{e^{8\lambda^2 K_1 \gamma t} + 1} - \frac{2\gamma}{e^{8\lambda^2 K_1 \gamma t} + 1}]
$$

for the positive root *ï* of the quadratic equation $4\lambda^2 K_1 X^2 + 2\lambda n K_2 X - k_3 = 0$, $\tau - \frac{k_1 n}{2 \lambda K_1} \log 2$ then we get $L_H \ge 0$ in $R \times (0, \infty)$, Clearly $H(x,0) = e^{x^2/2} - e^{x^2/2}$ $\frac{P(x)}{x \in R^n}$ w_t(*w*) = $\frac{P(x) - P(x)}{x}$ (*w*) $\frac{P(x)}{x}$ for $\frac{P(x)}{x}$ for $\frac{P(y)}{y}$, where $w(x, t)$ is a solution of the Cauchy problem $Lu = 0$ in $R^n \times (0, \infty)$, $u(x,0) = f(x)$ for the bounded Cauchy data $f(x)$ and satisfies $|u(x,t)| \leq \mu e^{\nu(|x|^2+1)^{\lambda}}$ for some positiontive μ and ν , we have $L w_{\pm} \leq 0$ in $R^n \times (0, \infty)$ and $w_{\pm}(x, 0) \geq 0$. From Bodanko's maximum principle in the case of $\lambda \in [1,\infty)$ we get $w_1(x,t) \ge 0$ in $R^n \times [0, \infty)$, so

$$
|u(x,t)| \leq Me^{-\beta(0)}H(x,t)
$$

\n
$$
\leq Me^{-\beta(0)}e^{\beta(t)} \leq Me^{-\beta(0)}e^{(-2\lambda k_1n\tau - 4\lambda^2K_1\tau^2 + k_3t)}
$$

 $\text{in}~~R^n\times[0,\infty). \quad \text{Therefore, if}$

(11)
$$
-2\lambda k_1 n\tau - 4\lambda^2 K_1 \tau^2 + k_3' < 0,
$$

then $u(x, t)$ decays to zero exponentially as t tends to infinity. Thus we have the following

THEOREM 2. *Let L be a differential operator of the form* (1) *with coefficients satisfying* (9) for some $\lambda \in [1, \infty)$ and let $u(x, t)$ be a solution of the Cauchy problem

$$
Lu = 0 \quad in \ R^{n} \times (0, \infty),
$$

$$
u(x, 0) = f(x) \quad in \ R^{n}
$$

for a bounded continuous Cauchy data f(x) in Rⁿ . Assume that there exist positive constants μ and ν such that $|u(x, t)| \leq \mu e^{\nu(|x|^2 + 1)^{\lambda}}$ in $R^n \times [0, \infty)$. If the condition (11) is valid, then $u(x, t)$ decays to zero exponentially as t tends to infinity and this *decay of u(x, t) is uniform in Rⁿ .*

7. We apply Theorem 2 to the operator (8). In this case we may take $\lambda = 1$, $k_1 = K_1 = 1$, $K_2 = 0$, $k_3 = k^2$, $k'_3 = k^2 + l$ and γ in (10) equal to $\frac{k}{2}$. So (11) reduces to $kn > l$. This is nothing but the result of Krzyżański stated in §5.

REFERENCES

- [1] P. Besala-P. Fife, The unbounded growth of solutions of linear parabolic differential equations, Ann. Scoula Norm. Sup. Pisa III, 20 (1966), 719-732.
- [2] W. Bodanko, Sur le probleme de Cauchy et les problemes de Fourier pour les equations paraboliques dans un domaine non bornέ, Ann. Polo. Math., 18 (1966), 79-94.
- [3] L.S. Chen, Note on the behavior of solutions of parabolic equations with unbounded coefficients, Nagoya Math. Journ., 37 (1969), $1 \sim 4$.
- [4] M. Krzyżański, Evaluations des solutions de l'equation lineaire de type paraboliques à coefficients non-bornέ, Ann. Polo. Math., 11 (1961-62), 253-260.
- [5] L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6 (1953), 167-177.
- [6] A. Szybiak, On the asymptotic behavior of the solutions of the equation $\Delta u \frac{\partial u}{\partial t}$ + *c(x)u=0^f* Bull. Acad. Polo. Sci., 7 (1959), 183-186.

Mathematical Institute, Tohoku University, Sendai, Japan.