Asymptotic Behavior of Solutions of
Parabolic Equations

AVNER FRIEDMAN*

Communicated by E. Hopr

Introduction. Consider the parabolic equation

n

1 Lu= Y a, t)a ax + Zb(x t)—+c(x bu — — = f(z, )

i,i=1

im=]

in a cylinder D with a bounded n-dimensional base B (D = {(z, #);z ¢ B, t > 0}).
Let u(z, t) be a solution of (1) in D with the boundary condition

2) w(z, f) = bz, ) for zeB, t>0 (B = boundary of B).

It was proved in [1; Theorem 2], under very simple assumptions on L and D,
that if h, f and the coefficients a.; , b; , ¢ of L tend to limits 2% f°, a2, , 8%, ¢°
ast — o, then u(x, t) tends to a limit 4°(z) which satisfies the elliptic equation

@ et "’“(”) '+ T b 240 D4 @ = 0 @eB)
and the boundary condition

(4) u’(z) = h'(2) (xeB).

The purpose of this paper is to use the above theorem in order to get precise
information about the asymptotic behavior of the solutions u(z, f), provided
that precise information about the asymptotic behavior of f, h and the co-
efficients of L is given. Although the considerations in this paper are quite
simple, the results obtained here on the asymptotic behavior of the solutions
might serve as a quite useful tool in practical calculations.

This paper should be considered as a continuation of [1], and in what follows
we shall make free use of the results and notations which appear in [1; Part I}
It is only because [1] is already in the process of being printed that this paper
appears separately.

* Prepared under ONR Contract Nonr-222(37) (NR 041 157) with the University of
California in Berkeley.
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1. Statement of the theorem. In addition to the assumptions made in [1;
Theorem 2] we shall need the following assumptions:

(C,.) The coefficients of L satisfy (uniformly in z ¢ B, as t — «)
s, ) = @) + 5@ + o+ Eon@ + o)
0 1., 1 ... 1
b, 0 = 1@ + L@ + - + 50w + o L)

1 1 . 1

@, ) = @) + Lé@ + -+ Ko + o 2)
and all the functions af;(z), b%(x), c*(x) are Holder continuous (exponent \)
in B.
(F..) f(x, t) is Holder continuous in compact subsets of D,

1 1 . 1
o, 0 = P& +57@ + - + 5@ + o 2)

uniformly with respect to x € B, as { — «, and the functions f*(z) are Holder
continuous (exponent \) in B.

(H,)) h(z, t) is a continuous functions on D and
1., "
Ma, ) = B0 + W@ + -+ @ + o )

uniformly with respect to « ¢ B, as t — o ; the functions 4*(z) are defined and
have second Holder continuous (exponent A) derivatives in B.

We shall use the notation

k. 3 % 1 ﬂ &

MY = Z a:;(x) oz, oz, + Z bi(z) oz, + c(@v.
Theorem. Assume that L satisfies (A), (B), (C,.) and that @) £ 0. Assume

further that B satisfies (D'), that f satisfies (F,.) and that h satisfies (H,,). If u(z, ¢)

18 @ solution in D of (1) and if it satisfies the boundary condition (2), then

®) ulw, ) = ') + U@ + o+ ) 0(%)

uniformly with respect to x ¢ B as t — o, The functions w*(x) are defined suc-
cesswvely as solutions of the elliptic Dirichlet systems

(6) W) = ) — (b — Du' (@) — ;} MY™()  (veB),
@) u'@) = K@)  (zeB)

(if & = 0, the right side of (6) is replaced by {°(x)).
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2. A lemma. To prove the theorem we shall need the following lemma.

Lemma. Assume that L, defined by (1), s uniformly parabolic and with bounded
continuous coefficients in D and that lim sup c(z, t) £ 0 ast — o (uniformly in
x ¢ B). Then the following maximum-principle type estimates hold:

(a) If Y(z, t) satisfies
Ly = Flx,0) in D— D,,
=0 on B, and on D-—D,,
then
Lub. |y| £ K, 1.ui)b. IF|

D—Dgy D

where K, depends only on M, M’ and the diameter of B, provided o is sufficiently
large (independently of ¥).
(b) If ¥(x, 1) satisfies

Ly =0 @ D-—D,,
Y| <e on B, andon D — D,,
then

l'u.b- !‘b] é K2€

D—Ds

where K, depends only on M, M’ and the diameter of B, provided o is sufficiently
large (independently of ¥).
() If ¢(x, t) satisfies

Ly =0 i D-—D,,
vy =0 on D-—-D,

and if o is sufficiently large (independently of ¥), then for any ¢ > 0 there exists
T depending on ¢, M, M’, the diameter of B and on Lu.b. |¢(z, ¢)| (x & B) such that

ly(x, )| <e in D — Dy.

Proof of (a). Without loss of generality we may assume that all the points
x = (x,, -+ ,x, of Bsatisfy 0 £ 2, < R. Consider the function
o) = e*® — ¢*
used also in [3]. If « is sufficiently large then
Lv(x) <0 in D

provided c(z, ) < 6 and § is a sufficiently small positive number depending on
M, M’ and R. Take o such that ¢(z, ) £ §in D — D, . Then the function

w(xr) = Cl(l.l:}.b. |F v(z)
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(where C, is such that C;Ly < — 1) satisfies
Lw < —lub. |F|

D—Dg
(since, as we may assume, Lu.b.,_p, |F| > 0) and
w>0=¢ on B, andon D—D,.

Since Ly = — Lu.b. |F|, we can apply a lemma of WresrenaL-Propi [6], [4]
(see also [2]) and thus conclude that ¢y < win D — D, . Similarly — ¢ < w,
and the proof of (a) follows.

Proof of (b). Let C, be a constant which satisfies Coo(z) > 1 for allz ¢ B and
define w(x) = C,ev(x). Comparing, as in the previous proof, &= ¢ with w by
means of the lemma of WesrpaaL-PrODI, the proof of (b) is easily completed.

Proof of (¢). The function

2z, ) = (N — ) exp {—d(t — 9)},

introduced by NarasiMuaN {2] and used also in [1], satisfies (for appropriate
N, 8, 8), as one can easily prove, Lz < 0 provided ¢(z, {) < v and v is positive and
sufficiently small. Hence if ¢ is sufficiently large then Lz < 0in D — D, . Taking
C; to be such that Csz(x, o) > |¢(x, o)| for x ¢ B and applying the lemma, of
WaesrraAL-PRODI, the proof of (¢) is easily completed.

3. Proof of the theorem. We first remark that [1; Theorem 1} (about the
convergence to zero of solutions of (1), (2), with f — 0, b — 0 as { — ) remains
true if the assumption ¢(z, ) = 0 made in that theorem is replaced by the
weaker assumption lim sup ¢(z, £) = 0. Indeed, reviewing the proof of [1; Theorem
1] we see that the functions w, , w’ and w"’ can be estimated as in [1] under the
present weaker assumption on c(x, ) with the aid of the parts (a), (b) and
(¢), respectively, of the lemama.

Using the above remark we next observe that the proof of [1; Theorem 2]
also remains valid if the assumption c¢(x, {) < 0 is replaced by the assumption
lim ¢(z, ) = ¢’(x) < 0. This last fact will be used in what follows.

We immediately use it to conclude that u(z, {) = u’(*) + o(1). Proceeding
to prove (5) by induction we assume that

1 1 .- 1
®  ue ) =@+ 50w @ o)
where the u* satisfy (6), (7), and we shall prove (5) with 4™(x) satisfying the
system (6), (7) with k = m; this will complete the proof of the theorem.

Using the definition of M* and writing

© e, ) =) + 1@ + o+ @) + e, 6,

equation (1) can be written in the form
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(= 3)+ B+ 2dg) 555+ £l )afcﬁ"(z}?)]

(10) -[uo(x) + }iul(x) 4o

= u" ' (2) —I— v(x t):|

=@+ 1w ;%f“(x) + o 2)

Using (6) we find that f*(z) (0 £ k < m — 1) is equal to the coefficient of ¢*
on the left side of (10) which is (not counting a possible contribution from

v(z, 1))
Wz) + (k& — Du(z) + ZM’ i),

Thus v(x, £) satisfies the equation

(0 = 2+ o 2 Yt X o) 2 olt
()

— @) — (m — Du"(x) — > M 4 oL).
k=1
Here we made use of the fact that foreach k < m — 1

()
ox;

u*(x)
dx; ox;
The truth of (12) follows from the Schauder theory [5] (see also [3]); one can
prove by induction on & that each u*(z) has second Hélder continuous (exponent
\) derivatives in B. Here we make use of the regularity assumptions on the A*(x).
Substituting in the boundary condition (2) the function u(z, {) in its form
(9) and using (7) fork = 0,1, --- , m — 1, we conclude that v(x, &) satisfies

(13) o(x, t) = k™) + o(1) for zeB.

We now apply to the function v(zx, t) [2; Theorem 2] in its strong version,
namely, [2; Theorem 2] for Lv such that the coefficient of v in Lv is not necessarily
non-positive, but tends to a non-positive limit as { — «. We then conclude

(12) < const., < const. (zeB).

w"(z) = lim,,. v(z, {) exists uniformlyin z e B

and u™(x) satisfies (6), (7) with & = m. Substituting v(z, t) = 4™(z) + o(1) in
(9), the proof is completed.

Added in proof. Using the remark “Added in proof”’ of [1] it follows that the
theorem holds also in case f(z, ) is not assumed to be Holder continuous in
compact subsets of D but merely continuous.

4. Remark 1. In the case m = 0 we assumed only that A°(z) is continuous
[1]. For m > 0 it is not enough to assume merely the continuity (or even exist-
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ence of second continuous derivatives) of the h*(x), since this will not ensure
the existence of solutions u"(x) of the system (6), (7). The theorem, however,
will remain true if we weaken the assumption (H,,) by assuming that h™(x) is
merely continuous on B. Indeed, the proof for k < m remains the same. For
k = m we first approximate h"(z) by a polynomial #"(xr) and then conclude
(as in [1]) that the corresponding solution #™(x) (&"(z) satisfies (6) with k = m
in B and is equal to £”(x) on B) approximates v(z, t) as t — «. Since #"(z) also
approximates u™(z) (by the maximum principle), we conclude that lim,..
v(z, ) = u"(x).

Remark 2. Clearly, the theorem remains true also for m = o. In that case
we obtain for u(z, t) the asymptotic expansion

ulz, t) ~ i w(2) "

which, however, need not converge.

Remark 3. Consider the equation Lu = f(x, {, w) where f is nonlinear in w.
Assume that for large ¢

fe, t,w) = fz,w) + %f‘(x,u) + -+ 21; fr(x, w) + 0<t—,1,,)

uniformly with respect to x ¢ B and |u| < A (for any fixed A). Under certain
conditions on the functions f*(x, u) one can extend [1; Theorem 4] (which is
the analogue of [1; Theorem 2] for the equation Lu = f(x, {, u)) and obtain an
asymptotic expansion for u(z, f).
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