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Summary. - Cow, sider a solution to a second-order pseudo-parabolic equation with sufficiently 
smooth time-independent coe~eients in a eylindvi(al  dv~ao~. I f  i t  vanishes ~ the cy. 
lindrical surface for all times and i /  its restriction to a fixed i~stant  belongs to C2d-a, 
then its pointwise values decay exponentially as t ~ c~ while its Dirichlet norm grows 
expontially as t ~ --  co. S imi lar  couclusion still hold for solutions to non-homogeneous 
equattons under non-homogeneous boundary conditions p~'ovided the free te~'m and the 
boundary data posses these asymptotic behaviors. 

1.  I n t r o d u c t i o n .  - L e t  G b e  a bounded domain i n  R ~ with 3G, boun- 
dary of G, being of class C~+ ~, [4]. Denote by C.~+~(G) the BA~_~CH space of 
func t ions  with par t i a l  der iva t ives  up to and  inc lud ing  order  m ~ 0 u n i f o r m l y  
HtiLDER con t inuous  in G with exponen t  a .  The well  k n o w n  HiILD]~R norm 
[3-5] on the space C~+~(G) will  be denoted  by [] 1~+~. 

W e  shall  be concerned  with s tr ict  so lut ions  u(t, x)  of the pseudo-pa ra -  
bolic pa r t i a l  d i f fe ren t ia l  equat ions ,  

(1.1) M u , -  L u  : f(t ,  x), 

in a cy l indr ica l  doma in  G X ( - - T ,  T). He re  u , - - 3 u / 3 t  and L and M s tand  
for s econd-o rde r  d i f fe ren t i a l  opera tor  in the d ivergence  fo rm:  

(1.2) L u  --= ~-~ (l~i(X) ~x]) - -  l(x)u,  

Mu =-- m(x)u - -  ~ ~x~ 

In  wr i t ing  (1.2) as well  as what follows, we have adopted  the s u m m a t i o n  con. 
ven t ion  over  the r epea ted  indices .  Also~ we shall  a s sume  tha t  for some ~, 
0 < ~ < 1, the real  coeff ic ients  l~](x) and m~j(x), be long to CI+~(G) and that  l(x) 

and  re(x) be long to C~((~). Fur ther ,  L abd M will be res t r i c ted  to be symme- 
tric and  un i fo rmly  el l ipt ic  in G in the sense tha t  there  are cons tan ts  

(*) Work of the second named author was partially supported by N. S. 1¢. Grant ~ro. 
GP-19590. 

(**) Entrata in Redazione il .99 gennaio 1971. 
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kL ,  KL, kM and KM sucl~, that for all real vectors, 
inequali t ies 

kL [ ~ t 2 ~ l~j (x) ~ j  ~ KL [~ 12 , 

-- (~, ~2, ..., ~), the 

(1.8) kM I ~ 12 ---- < m~j(x)~] ~< KMt ~ 12 , 

r~ 

hold for all x in G. Finally, the function l(x) will be assumed to be non-ne- 
gative and re(x) to be strictly positive throughout G. 

Equations of the form (1.1) appears in the flows of second-order  fluids 
[13, 18], the consolidation of clay and the seepage of fluid through fissured 
rocks [t4, 15]. It has been shown [7] that mixed initial and boundary value 
problems for (1.1) are  well-posed ones. Also, the solutions of the initial value 
problems of parabolic equatinos are l imiting cases of that of the pseudo-pa- 
rabolic equations [17]. The asymptotic behaviors of weak solutions of (1.1) 
have been studied in [7] and the present  objective is to study these behaviors 
for strict solutions at t - - ->~.  We are indebted to Prefessor  TRUESDELL for 
pointing out the re[erences  [14] and [15]. 

0 - -  

2. Solutions of  homogeneous problems. - Denote by 02+~(G) the closed 
subspace of C2+~((7) consisting of functions which vanish on 8G. Consider the 
problem of f inding a strict solution u(t, x) such that 

Mu, ---- Lu for x in G, - - ~  < t ~ c,.~, 

(2.1) u ~-0  on c~G for all time t, 

u(O, x) -- Uo(X) in (~, uo ~ 0°+o(G). 

It  is known [7] that a unique solution of (2.1) exists and that it belongs to 
C~°+=(G) for all t ime t. We wish to show that 

T~.EORE~ 1. - I f  u(t, X) is the solution of the problem (2.1) in more than 
one space variable, then there are positive constants C and ~ depending only 
on a, L ,  M and the domain G such that for all t ~ 0 

11 u(t, .)t12+~ < c l  uoU2+~ e-~'. 
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To this end, it 
" : -  t /k,  the function 
problem : 

(2.2) 

is convenient  to change the time scale. Upon setting 
u(t, x)--" u(t(':), x) becomes the solution of the following 

k-lMu~ -- L u  in G X (--  c.,~, c,.~), 

u - - 0  on ~(~ for all time ~:, 

u(O, x)"-Uo'X) in G. 

Now we choose the constant k so large that 

(2.3) k~ ~ KM/k ~ A > 0 

where kL and KM are the constants appear ing in (1.3). In  what follows we 
shall consider the solution u(~, x) of (2.2) instead of u(t, x). For the solution 
u(z, x) we have 

LEMMA I. - I f  U(Z, X) is the strict solution of  (2.2), then there is a posi- 
tive constant ~o depending only on o:, L ,  M and  the domain G suoh that: 

(2.4) tl • )t12+  e- o J l,/J e- ol l 

remains uni formly  bounded for all values of  z. 

PROOF.-  Denote by kM-~Luo tile unique solution in C°+~(G) of the 
DIRICItLET problem, 

(2.5) k - l M u - - L u o  in G, u----0 on OG, 

y0 where Uo is a given function in C2+~(G). Then, we have the SC~ZAUDER boun- 
dary estimate [1-5], 

(2.6) Ilu[[2+~ = ilki-~Luot[2+~ ~ const. IIiuo[l~ ~ )~o(]UoiI=+~, 

where the constant  ).o depends only on ~, L ,  M and G and is independent  
of uo. Since for all Uo in C°+~(G), problem (2.5) always has a unique solution 

C o - in 2+~(G), the operator  M - ~ L  is defined on the entire space C°+~(G). Also 
0 - -  C 0 the est imate in (2.6) ~hows that as a mapping of C2+~(G) onto 2+~(G) the ope- 

rator  M - ~ L  is bounded with respect  to the HitLDER norm It l!2+~. 
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Based ou this fact it is shown in [7] that (2.2) alwasy has a unique solution in 

C~2+a(G) and it is given by the formula :  

(2.7) u(z, x) --  I exp ( ':kM-~L } uo(x). 

(2.8) exp ( ' : k M - ~ L ) ~  Y, ( z k M - I L ) ' / n l ,  
n ~ O  

where the equal i ty  sign holds in the sense of I] I]2+~ ~ morro. 
For  later  applicat ions we also note that as a consequence of (2.7) the 

solution u(z, x) is analytic in x for all time ":. 
From the est imate (2.6) and the formula (2.7) it follows that 

which is the first part  of the lemma. 
For  the second part  of the lemma we note that u: also belongs to C°+~(G) 

for all values of ~ and that it is given by [7] 

u,~(':, x) --  k M - 1 L  { exp (~kM-~L) } Uo(X). 

It follows from this formula and the estimate in (2.6) that 

which is the second part of the lemma. 
Lemma 1 ensures that the Laplace transform of the solution of (2.2) 

v('~', x) ~ f u(z, x)e--vTdz 
0 

and its part ial  derivatives ~v/~x i and ~2v/~x~xj will exist for all values of "f 
with Re "~ :> ),o. Further,  upon an integration by parts and upon applying 
the initial eondiiion in (2.2) and the lemma 1, we find 

c o  

f u~(~, x )e-~dz  --  - uo(x) ~ "~v(y, x). 
0 

Hence  by mult iplying the equat ions in (2.2) by e-v ~ and then integrat ing the 
result ing equations from z -  0 to 1: ___ c~ we get 

(2.9) (L - -  ~'k-lM)v -- - -  MUo in G, v(y, x) - -  0 on ~G. 
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This shows that the Laplace transform v(,/, x) of the solution of (2.2) is ne- 
cessarily a solution of (2.9) provided Re ~[ > )~o. 

We proceed to consider the solutions of (2.2) when y takes on various 
complex values.  To this end we check that 

LEMMA 2. - For  al l  values of  ~[ w i th  Re ~[ ~ ~ 1, the d~.fferential operator 
L ~ y k - ~ M  is un i formly  and  properly  elliptic in  G, [3, 5, 6]. 

PRoo)  ~. - Denote by L' and M' the principal  part of L and M respecti- 
vely. If  R e $ ~ - - 1 ,  then for all real vector ~ - - ( ~ ,  ..., ~) the inequal i ty  

I L'( x, ~) - -  ~k-~ M'( x, ~)l = Ill,j(x) + " :k -~mdx)]~  l 

>~ (kL - -  I Re ¥ 1 k -  ~KM) 1 ~ I ~ 

holds for all x in (~ in view of the choice of the contants k in (2.3). This 
verifies the uniform ell iptici ty condition. 

Since the root condition (or the supplementary  condition or the proper 
ell iptioity condition is automatical ly satisfied if the number  of space varia- 
bles are greater  than two, we need only to check it for the two dimensional  
case. To do this we choose a rec tangular  coordinate system with origin at 
the point under  considerat ion such that relat ive to this par t icular  chosen 
coordinate system both the matr ix (l~]) and the matr ix  (mu) become diagonal 
ones. Indeed, such a choice of the coordinate system is always possible, be- 
cause both (1~i) and (m~]) are real symmetric  positive definite matrices [4, vol. I, 
pp. 37-39]. Let  ~ and ~' be two unit vectors  along the coordinate axes, i.e., 

--(1,0), and ~" - ' (0 , l ) .  Let  y - - ) ~ - t - i ~  and let w be the solution of the 
equation 

Since (l~j) and (m~j) are now diagonal matrices and since ~ and ~' are unit  
vector along two distinct coordinate axes, we find, upon expanding the lef t -hand 
side of the equation, that 

(2 .10)  ~v ~ A_ (ci + ikl)/(c3 -}- ik3) = 0 

cl ~ l~ + ~m~,  e3 = ~mn, kl = 122 + )an22, 

k3 ~ ~ 2 2 ,  

Note that the positive def in i teness  of (m~j) ensures that the denominator  
c3 "-F ik3 never vanishes. Thus if wl = ul + iv1 and w2 = u2 -F iv2 are the two 
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solutions of (2.10), then it is necessary that 

u~ -+- u2 + i(v~ -4- v~) - -  O. 

Hence v~ ~ v2 ~ 0 and we conclude from the ellipticity condition that v~ and 
v2 arc non-zero constants equal in magnitude and opposite in sign. This 
proves that the supplement condition on L -  yk-~M is satisfied for the two 
part icular  orthogonal unit  vectors Z and ~'. 

However our just i f icat ion of the supplement condition is completed by 
the observation [3, p. 625] that the root condition holds generally provided it 
is satisfied at a part icular  point for some pair of l inearly independent  vectors. 
This observation was based on the ellipticity condition and the continuous 
dependence of w upon the coefficients l~j and mq and the fact that if w is a 
solution of (2.10) for given ~ and ~' then - - w  is also a solution of (2.10) 
for - - ~  and S'. 

L EMMA 3. - For all values of y with R e y  ~ -- 1, problem (2.9) always 
has a unique solution v(y, x) whioh is analytic in y. 

PROOF. - First, we check that if R e y  ~ - - 1  then the uniqueness of so- 
lution holds. Indeed, if w is a solution in C~+~(G) of the homogeneous diffe- 
rential  equation in (2.9) and it vanishes on ~G then 

f - 
[(L --  yk-~M)w]wdx = O. 

G 

By setting ~" : k ~ i~, w(y, x) -" "~(~[, x) ~ i~('{, x) we fiud, in virtue of the 

symmetry of L and M, that 

f [¢c(L - -  ~k-1M)~ + ~(L --  k-11~1)~]dx = O, 

G 

f ~k-~[~M~ -~ ~M~]dx --  O. 
G 

Since the operators L and .M are assumed to be elliptic and the operator 
L - )~k-~M is also elliptic because of the choice of k and the restriction on 
),, the above two relations hold for all values of ~ only when ¢P(T, x) and 
~(~, x) vanish identically in G. 

Because of Lemma 2, the existence of a solution to problem (2.9) follows 
from its uniqueness, [3, Th. 12.7]. Thus, we are assured of the existence of 

0 the solution v(y, x) in C2+~(G) to (2.9) for all values of y with R e y  ~ -  1. 
Consequently, the ha l f -p lane  .Re ~" : : > -  1 is contained in the resolvent set of 

the operator k M - ~ L -  "~. 



R. E. SHOWALTER - T. W. TING: Asymptotic Behavior oJ Solutions, etc. 247 

The analyt icy of v('(, x) in y for Re,(  :> - -  1 now follows the fact that 
the resolvent R ( x ) ~ ( k M - ~ L - - ? ) - ~  is a holomorphic function of y in each 
component  of the resolvent set of the operator  k M - ~ L  - -  y, [16, Th. 1, p. 211]. 
So v(?, x), as an element in G°+~(G), is analytic in ~. and so is its value at 
any point x in G. 

P R O O F  OF T H E O R E M  1. - First, we recall that problem (2.1) always has 
0 a unique solution u(x, x) in C2+~(G) and its Laplace t ransform v(% x) is the 

unique solution v(y, x) of the problem (2.9). Since u(z, x) must satisfy the 
estimate in Lemma I, the inversion theorem for Laplace transform [4] ensures 
that 

x)= i f  (2.17) 2v:--i v(y, x)er~d~', 
.J 
L1 

where the path L~ is the line Re,I  ~ )q and ),~ is a positive constant greater  
than ),o which appears in Lemma 1. We wish to show that u(z, x) in (2.17) 
is also given by 

(2.17)' u(':, x) - -  ~-~ v(y, x)rTdy 

L3 

where the path L2 is defined by B e y  ~ - -  1. 
For ? ~ 0, we can write (2.9) in the form: 

(2.9)' (y-1L - -  k - l M  )v =- - -  "~-lMuo in G, v(y, x)-=O on ~G. 

Clearly, for an appropriately given constant k', the operator ~ : - I L - - k - I . M  
will be in the (8, k')-neighborhood of the operator  - - k - ~ M  for all suff iciently 
large ]y 1, [3, p. 687]. Also, the DIRICHLET problem, 

k - lMv(¥ ,  x ) - - 0  in G, v(?, x ) - - 0  on ~G, 

has only the solution zero. Hence  for all sufficiently large ]YI, we have the 
estimate, [3, Th. 12.3], 

(2.18) l]v(•, -)112+~ ~< const. I/Uuoll~/jy[. 

where the constant depends only on ~, M and G and is independent  of y. 
In  part icular ,  it implies that 

(2.i9) Iv(y, x) t - -  0(1/I'(f ) as Iy[-->c~.  



248 R .E .  SHOWALTER - T. W. TING: Asymptotic Behavior of Solutions, etc. 

Now it follows from (2.17) and (2.19) and the GAucaY integral  theorem that  

f v($, x)er~d~ - -  f x)ev~dz. 
L~ L: 

This estanlishes the representat ion formula  (2.17)' for u(':, x). 
We proceed to derive the desired conclusion in the theorem by combining 

the formulas in (2.17) and (2.17'). Denote by Y:, y2 lhe complex variableB 
related by 

(2.20) Re y: - -  k~ , Re y2 - -  - -  1, I m  y: = I m  y2 =-= ~. 

Further ,  let v:(y: , x), v2(y2, x) be the solutions of (2.9) with Y =Y:  and y = y2 
respectively, Then we can write (2.17)' as 

u(z, x ) =  l f ivl(~l + i~, x ) ÷  v2(--1 ÷ i~, x) 

- -  v:(;~: + i~,  x)} e(-:+:~) d~ 

e-'r~ 

where  (2.17) has been used in deriving the second equality. Accordingly, 

(2.2t) 

o o  

~--'rf II u(x, • )[12+~ ~< [] u(':, • )ll~+~e-O+~,)~ "4- ~ I[ v2 - -  v~ 112+~ d~. 

On the other hand, in the proof of Lemma 1 we have shown that 

By combining (2.21) and (2.22) we find 

v2 - -  v~ 1t2+~ d~. 

By letting ),:---> ~o in the above inequali ty it yields 

(2.23) tluI~, .1112÷~ <= II~oIl~÷~ -~ + ~-~ ~ f nv2 - v~ll2÷~,~. 
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To complete a proof of the theorem it remains  to show that the integral  
on the r ight -hand side of (2.23) exists and is finite. To do this we note that 
for fixed y1 and ~'2 the funct ion v2 - v l  satisfies the equations 

(2,24) (L - -  "(~k-~M)(v2 - -  v~) = (1 -t- )~)k-~Mv2 in G, v2 --  v~ = 0 and ~G, 

in vir tue of the fact that Ira ' ( ,  --- Im y2 = ~. By precisely the same reasoning 
as that for deriving the estimate in (2.18)we conclude that for all suff iciently 
large I~'1 } 

(2.25) 11 v~ - v~ll~+~ ~ C'(1 + )~l)k- 11] Mvzll~/1~1 I. 

where  the constant C' depends only on ~, G and M and is independent  of 
;+~ and v2. Thus, (2.25) and (2.18) combined imply that for all sufficiently 
large tY1~'21 

IIv~ - vxfl~+~ ___< O"llMuoll~/I yxy~{ 

with C" being dependent  of uo, y, and y~. For  convenience,  we state this 
estimate in the form: for all large 18] greater  than some positive constant ~o 

(2.26) I v2 - vl i{=+= < c '" l  UolI+=/I ~ 12 

with constant C"' depending only on :¢, ~o, G, L and M and independent  of 
uo and ~. On the other hand, for all [ ~ ] I ~ o  the solution v2(--1--[-i~, x) of 
(2.9) and the solution v 2 -  vl of (2.24) are subject to the estimates 

and so for all I~{~_~< ~to 

(2.27) 

with the constant b depending only on a, ~o, G, L and M. Now from (2.26) 
and (2.27) we see that for all values of 

Ilv~ - vl[I2+~ _-< c ,  tlUo[{2+~/(1 + ~2) 

where the constant  C~ depends only on a, G, L and M.  Hence  

(2.28) 
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whore the constant  C2 depends only on ~, G, L and M.  By combining the 
est imates in (2.23) and (2.28), we find 

(2.29) 

with the constant  C being independent  of uo. Replacing ~: by t/k in (2.29) it 
gives 

1] U(t, ° )112+~ < C I] U o [!z+c, e -'/k 

which is what to be proved. 
As we already mentioned, for uo(x) in C°+~(G) the solution u(t, x) of (2.1) 

is, as an element in C o ~(G), analytic in t for all values of t. Thus u,(t, x) is 
the unique solution of the problem 

M (u,), -" Lu, in G X (-- c..?, c,D), 

u,(t, x ) =  0 on ~G for all time t, u,(O, x ) -  u,(O, x) in G. 

By repeat ing the same reasoning as was shown in the proof of Theorem 1, 
we conclude that in the case of more than one space variable u,(t, x) decays 
expontial ly  as t--> c<~. Since we can repeat  the same argument  as many times 
as we like it follows that 

GO~tOLLAR¥ 1. - I f  U(t, x) is the solution of (2.1) in the case o f  more than 
one space variable, then u(t, x) tegether with its time derivatives of  all orders 
decays expontially as t ---> c~. 

To simplify notation, we write E ( t ) :  exp (tM-:L). Since the bounded 
o operator  M - : L  maps the complete space C2+~( )on to  itself. Theorem 1 says 

that for a given pair  of elliptic operators L and 2d and for a given smooth 
domain G the inequali ty 

holds for all function Uo(X) in C°+~.(~ t) with the constants C and k being in- 
dependent  of u0. Thus we have 

COrtOLLA~Y 2, - The group of bounded operators E(t) decays exponentially 
as t .--> o,z. That is 

with the constant C and k depending only on ~, G, L and M.  
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REMARK 1. - Since the operator  L -  "(k-~M is not properly elliptic if 
the domain G is a set on the real line, we have excluded this special ease 
in Theorem 1. However,  we can mult iply the first equation in (2.1) by u and 
integrate the result ing equation over G to obtain 

(2.31) f + ,~u~)dx = --  f (t,+u,u+ + lu2)dx. 
G G 

The essential  feature ef this equation is that t!~e value of the r ight -hand 
side is non-negat ive  for all functions u .  By applying the ellipticity condi- 
tion L and M and by applying POI~CAR~'s inequal i ty  [9] we derive from (2.31) 
that 

d ~u(t, . ) t I~<~-  Cll,(t , .)M, (2.32) d--t 

where the constant D depends only on L and M and the domain G and where 

~u(t, .)tiM ~ f (ra~ju~u] 2 + mu~) dx.  (2.33) 
a /  

G 

upon integrat ing (2.32) from 0 to t with t > 0, it gives 

It u(t, • )IiM ~ II u(O, .)IIM e -=~, t > 0. 

This inequali ty together with SOBOLEV'S temma [8] implies that i f  u(t, .) is a 
strict solution of  (2.1) in one space variable, then for all t ~ 0 the L2-norm 
of  u, IlU][o, is subject to the estimate 

(2.34) Ilu(t, ")llo ~ eonst, llu(0, ")liMe -c', 

where the positive constant depends only on a, L, M and  G. 

REMARK 2 . -  Theorem 1 and Lemma 1 furnish upper  bounds for 
llu( t, ")112+¢, for - -  ~ < t ~ ~ .  For  the lower bound for []u(t, ")lIi as t--> --  c<~, 
we integrate (2.32) from 0 to t with t < 0  te obtain 

[In(t, ")lira > Ilu(O, ")tlMe c~t,  t < O, O > O. 

This means that i f  u(t, x) is the solution of  (2.1) then for all t < O, 

tlu(t, .)[~ ~ eonst, ilu(t, * ) I L ~  const, llu(0, ")liMe cj' j ,  

where the constants depend only on ~, L, M and G and  where {lu[]~ stands 
for the Diriehlet norm of  u .  
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3. Solu t ion  o f  non-homogen( 'ous  problem.  - By es tabl ishing the asym- 
ptot ic  behavior  of the solut ions of homogeneous  problems,  it is easy  now to 
ex t end  these resul t s  to the genera l  case. In  what  follows we as sume  for all 
t ime l,  f(t, x) as a m a p :  t--> C~((~) is s t rongly  con t inuous  in t and  h(t, x) as 
a m a p :  t--> C:+~((~) is s t rongly  con t inuous ly  d i f fe ren t iab le  in t. Let  u(t, x) be 
the solut ion in C2+~((7) of the p rob lem:  

Mu~ - -  L u  - -  f(t ,  x) in Ox(--  c,z, c,.~) 

(3.1) u(t, x ) ~  h(t, x) in ~G for all t ime t, 

nO,  x) - -  no(x) in (~, 

where  uo($) is a g iven func t ion  in C2+~((~). W e  wish to show that. 

THEOREM 2. - Let  u(t, x) be the solut ion o f  (3.i) in  more t han  one space 
variable. I f  for  some posi t ive constant  

(3.2) [[ f ( t, . ) L]~ e+~*, [I h( t, . ) [l~+~ e+~,  [l h,( t, . ) t~+~ e+~* , 

r e m a i n  u n i f o r m l y  bounded for all  t ~ O, then for  all  t > O, 

(3.3) flu(t, x)II2+~ ~ eonst,  e -* mtn. (L[~), ~ :~ ~t 

llu(t, x)It2+~_< const, te -~,~, )~-~ ~t, 

where the constants  depend on :¢, k, ~, f, h, L,  M a n d  G a n d  k is the same 
as in  Theorem 1; i f  for some cons tant  ~ > 0 

I]f(t, .)[]~, [Ih(t, ")ll~+-~, [Ih~(t, ")[t~+~ = 0(t-~) (3.4) 

as t .-> ~ , then 

(3.5) it u(t, .) II~+~ - -  0(t-© as t ---> c-.). 

In  (3.4) and  (3.5) and th roughout  this sect ion we use the nota t ion that  for any  
~ O, t~ • O(t-~) --> 0 as t .--> cx~. 

]?ROOl~.- First ,  we cons ider  the case h(t, x ) ~  0 ident ical ly .  Fo r  each 
f ixed  t, let  v(t, x) be the solut ion of the DIRICItLET prob lem:  

(3.6) My(t, x ) =  f(t ,  x) in G, v(t, x ) - - 0  on 3G. 
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o Then v(t, x) belongs to C2+~,( ) for all time t. Fur ther  we have the SCHAUDER 
estimate, 

]Iv(t, ")]12+~ ~ eonst. Uf(t, " )I]~ 

with the constant depending only on ~¢, M and the domain G. This est imate 
shows that v(t, x) as a map:  t --> C°+~(O) is strongly cont inuous in t. Further-  
more, if the conditions in (3.2) hold, then for all time t 

(3.7) flY( t, ")l12+a~ eonst, e-~' 

with the constant depending only on ~, M I f and G; if the conditions in (3.4) 
holds then 

(3.8) llv(t, .)112+~ = 0(t-e) as t ---> ~ .  

0 - Since h(t, x) is assumed to vanish identically, Uo(X) must belong to C2+~,(G) 
so as to be compatible. By principle of superposi t ion or DUHAMEL'S principle,  
one sees that the solution (3.1) is given by the formula, 

t 

(3.9) u( t, x) - -  E( t)u~ -k / E(  t - -  x)v(x , x)dx , ~ c,z ~ t ~ c,z , 
0 

where the equal i ty  sign holds in the sense of I] ]~+a-norm and E(t) =_ exp ( tM-~L) .  
It follows immediately from (3.9) that 

(3. ~ O) 
t 

l] u(t, .)ll~+~ < II E(t)uoll~+~ + f U E(t -- ~)ll~+~ II v(t, . )][,+~ a~ 
0 

for all time t ~ 0 .  Indeed, the dependence of the operalor  E(t)  on t is con- 
t inuous in the uniform operator  topology [7] and v(% x) has been shown to 
be strongly continuous in ":. Hence  the integral  on the r ight-hand side of 
(3.10) exists in the RIEMAN:~IX~ sense for all t ~ 0. Also from Corollary 2 
we see that for all ~__~ t. 

(3.11) []E(t - -  z)ll2+~ ~ oonst, e-~.('-~) 

with the constant  depending only on % L, M and the domain G. 
If  the inequal i ty  in (3.7) holds, then it follows from (3.11) that 

(3.~2) 
t 
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with the constant depending only on ~, ),, ~t, f, L,  M and G. Thus the asser- 
tion in (3.3) follows from (3.10), Theorem 1 and (3.t2). 

In  case ) , -  ~t, then instead of (3.12) we have 

(3.12/ f i l E ( t - -  ~)[[2+:[Iv(~, .)I[2+:d~ ~< const, te - ~ '  
J 

0 

with the constant depending only on o:, f, L,  M and G. Thus we have proved 
the first part  of Theorem 2 under  the homogeneous boundary conditions. 

Suppose that the hypotheses in (3.8) hold. Then  for t--~ 0 

Ilv(t, ")[t2+~.--<_ const. (1 + t)-~ 

with the constant being independent  of t. Hence 

t t 

(3.13) 
J 

0 0 

with the constant depending only on ~, f, L, M and G. We now assert that 
there are positive constants to and k such that 

f ( 1  -~ z)-~,e~d~ ~ k(1 + t)-~e+ ;,~ ~ ~(t) (3.14) ~(t) 
/ 

0 

for all t ~ to. Indeed, for the functions ~(t) and ~(t) so defined we have 

d-~( ~ - - ~ ) = ( 1 - ~ t ) - ~ e  ~' k X - - l + t  

If we choose to so that ~/(1-~-to)_--~ k/2 and choose k so large that k). :> 2 then 

d( 
(3.15) d-~ ~ --  ~) ~ 0 for all t ~-~ to. 

~¢Ioreover, it is immediately seen that we can choose the positive constant k 
so large that the inequal i ty  in (3.14) holds for t - - t o .  But then (3.14) holds 
for all t :> to in vir tue of the differential  inequali ty in (3.15). By combining 
the estimates in (3.10), (3.13) and (3.14) we find 

flu(t, ")it2+= -< llE(t)Uoil~+= + eonst. (1 + t)-~ 

Const. e-~-{ - eonst. (1 ~ t)-~ ~, 
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with the constants depending only on ~, f, L, M and G. This proves the as. 
sertion in (3.5) under  the homogeneous boundary  conditions. 

0 If  h(t, x) does not vanish identically, then Uo--h(0,  x) belongs to 02+~(G). 
Consider the function w(t, x ) =  u(t, x ) - - h ( t ,  x). It  is in C~+~(G) for all t ime 
t and satisfies the equation, 

M W ,  --  L w  = f(t,  x) - -  (Mh, - -  Lh) in G X (--  co,  c,,~). 

Accordingly, the above proof applies to the funct ion w(t, x) in vir tue of the 
conditions in (3.2) and (3.4) on the given function h(t, x). Consequently, 
u(t, x) ~ w(t, x) ~ h(t, x) has the properties as stated in Theorem 2. The proof 
is now complete. 

We proceed to consider the case of one space variable. Let f(t ,  x), h(t, x) 
ltbo given functions as specified at the beginning of this section. Denote by 
fL1o the L~-norm of f and by ~fUM the DImOnLET norm of f as defined in 

(2.33). We wish to show that 

T~EOREM 2'. - Let u(t, x) be the solution in  C2+,(G) o f  (3.1). I f  for some 
constant b > 0 

(3.16) llf(t, .)loe+b', [Ih(t, .)UMe+b', []h,(t, .)[IMe+b' 

remains  un i formly  bounded for all t ~ O, then, with C given in  R e m a r k  1, 

(3.17) t]u( t, ")lie < const, e- '  ,,i, (b.c) for all t ~ 0 

with the constant being independent  of  t; i f  for some constant b > O. 

(3.18) []f(t, ")[lo, [Ih(t, ")JIM, t]h,(t, °)llM = oct -b) 

as t --> c,z , then 

(3.19) llu(t, ')ll0 = O(t -~) as  t ~ .  

PROOF. - It is now clear that for all time t the solntion of (3.1) has the 
representat ion 

u(t, x) "- h(t, x) -at- E(t)(uo - -  h(O, x)) + f E(t x)d: ,  
0 

0 ~ where v(t, x) belongs to ~+~(G) for all t ime t and 

(3.20) Mv = f(t,  x) - -  (Mh~ - -  Lh) in G. 
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Hence  for all t > 0  

(3.21) ltu(t,, • )lie -< ~h(t, ")lie + IE(t)(Uo - -  h(O, ")tlo 
t 

+.f[IE(t- ~)v(~, .)lid*. 
0 

we prooeeed to es t imate  eaoh term on the r ight  of this inequali ty.  
If  the hypotheses in (3.16) hold, then SOBOLEV'S lemma ensures  that there 

are constants  independent  of t such that 

(3.22) tIh(t, .)~o --< const. Iih(t, ")iIM ~-- const e -b ' .  

Since the funct ion uo h(0, x), belongs to C2+~(G), an appl icat ion of (,.34) 
gives 

(3.23) IIE(t)(uo - -  h(0, .)11o =< const ,  [lUo - -  h(O, .)O~e -* ' .  

0 - Also v(t, x) belongs to C2+~,(G) for all t ime t, fur ther  appl ica t ion of (2.34) 
leads to 

t 

(3.24) H - .)11o = f tl EIt)v(t, .)tie 
0 0 

t 

< const, e -c' f [Iv(t - -  
0 

• .~ .)[1Md'~ 

with the constant  being independen t  of t. By mul t ip ly ing  (3.20) by v(~, x) and 
then in tegra t ing  over G for f ixed t, we obtain, after integrat ion by parts  and 
appl ica t ion of el l ipt ici ty condit ion and POINCAaE'S inequali ty,  

iiv(t, .)tiM_<- const ,  fill(t, ")lie + llh(t, ")IIM + tIh,(t, -)UMt 

const, e -bt, 

with the constants  being independen t  of t. By combining this est imate with 
(3.24) we find 

t t 

(3.25) f IIE(t--'z)V(~, " )llodr. <-~ const, e - " / e  -bO-~) dz 
0 0 

const, l e - "  - -  e-b' l .  

Thus ,  the assert ion in (3.17) follows from (3.21)-(3.23) and (3.25). 
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If  the hypotheses  in (3.18) hold, then  by the same reason ing  as that  for  
de r iv ing  (3.14) we have for all t g rea te r  than to > 0. 

(3.26) / 1 ] E ( t - -  x)v(x, .)Ilodx <~_ const,  f e-4'-~)(l q- ~)-bdx 
0 0 

<~ const.  (1-~-I~) -b 

with the cons tan t  i ndependen t  of t. Thus,  the asser t ion  in (3 19) fol lows f rom 
(3.21), (3.18) and (3.26). 

RE/~IARK 3. - Le t  v(x) be the so lu t ion  of the DIRICHLE~ p r o b l e m :  

(3.27) L v  - - -  g(x) in G, v(x) "- k(x) on sO,  

with g(x), h(x) being g iven func t ions  in (Ja(~) and  C2+a(0) respec t ive ly .  I f  the 
func t ions  f(t ,  x ) - - g ( x )  and h(t, x ) - - k ( x )  sa t i s fy  the hypotheses  in (3.2) or  
(3.4), then the co r r e spond ing  so lu t ions  u(t, x ) -  v(x) have the a sympto te  beha- 
v iours  as s ta ted  in (3.3) or  t ha t  in (3.5). S imi la r  s t a t emen t s  hold for  the case  
of one  space  var iable .  This  shows how the so lu t ion  u(t, x) of (3.1) conve rges  
to the s teady  so lu t ion  v(x) of (3.27). 
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