Asymptotic Behavior of Solutions of Pseudo-parabolic
Partial Differential Equations (¥).

R. BE. SuowarTeEr and T. W. Ting, Urbana Illinois (U.8.A.) (**)

Summary. - Consider a solution to a second-order pseudo-parabolic equation with sufficienily
smooth time-independent coefficients in a cylindrical domain. If it vanishes on the cy-
lindrical surface for all times and if its restriction to a fixed instant belongs to Citq,
then its pointwise values decay exponentially as t — oo while its Dirichlet norm grows
expontially as t — — co. Similar conclusion still hold for solutions fo non-homogeneous
equations under non-homogeneous boundary conditions provided the free term and the
boundary data posses these asywmplotic behaviors.

1. Introduction. - Let G be a bounded domain in E* with 3G, boun-
dary of G, being of class C*+>, [4]. Denote by C..,(G) the BANACH space of
functions with partial derivatives up to and including order m = 0 uniformly
HoLDER continuous in G with exponent «. The well known HGOLDER norm
[3-5] on the space C,i,(G) will be denoted by | |nis-

We shall be concerned with striet solutions wu(f, z) of the pseudo-para-

bolic partial differential equations,
(1.1) Mu, — Lu = f(t, z),

in a cylindrical domain G X (— T, T'). Here u, = du/3¢f and L and M stand
for second-order differential operator in the divergence form:

2 ou
_ 9 L
Mu = m(z)u — 3, (m(z) 3

In writing (1.2) as well as what follows, we have adopted the summation con-
vention over the repeated indices. Also, we shall assume that for some o,
0 < « < 1, the real coefficients /;(x) and m(z), belong to Ci1,(@) and that I(z)
and m(z) belong to C,(G). Further, L abd M will be restricted to be symme-
tric and wuniformly elliptic in G in the sense that there are constants
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ki, Ki, kw and Ky such that for all real vectors, &= (i, &, .., &), the
inequalities
kLB = Uy (0) B =< Ko |E],

(1.8) kul§ 12 = mij(x)&i&j = Kyl 5\2,

[EP= I &)

f=1

hold for all z in G Finally, the function [z) will be assumed to be non-ne-
gative and m(z) to be strictly positive throughout G.

Equations of the form (1.1) appears in the flows of second-order fluids
[13, 18], the consolidation of clay and the seepage of fluid through fissured
rocks {14, 15]. It has been shown [7] that mixed initial and boundary value
problems for (1.1) are well-posed ones. Also, the solutions of the initial value
problems of parabolic equatinos are limiting cases of that of the pseudo-pa-
rabolic equations [17]. The asymptoiic behaviors of weak solutions of (1.1)
have been studied in [7] and the present objective is to study these behaviors
for strict solutions at { —>occ. We are indebted to Prefessor TRUESDELL for
pointing out the references [14] and {15].

2. Solutions of homogeneous problems, - Denote by 03 4(G) the closed
subspace of C»1,(G) consisting of functions which vanish on 2@. Consider the
problem of finding a strict solution u(f, z) such that

Mu, = Lu for z in @, — co <t < oo,
(2.1) u =0 on G for all time /,
w0, z) = uo(®) in G, uo€ 0§+a(é).

It is known [7] that a unique solution of (2.1) exists and that it belongs to
C2,,(@) for all time {. We wish to show that

THEOREM 1. - If u{t, &) is the solution of the problem (2.1) in more than
one space variable, then there are posilive constants C and ) depending only
on o, L, M and the domain G such that for all t =0

lult, )ets = O“ Uo ot €72
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To this end, it is convenient to change the time scale. Upon setting
© = t/k, the function wu(f, z)= u(i(t), z) becomes the solution of the following
problem:

EtMu, = Ly in G X (— oo, o),
2.2) # =0 on 3@ for all time =,
w0, z) = uyz) in G.
Now we choose the constant k¥ so large that
(2.3) ke —Kylk=4>0

where k. and Ky are the constants appecaring in (1.3). In what follows we
shall consider the sclution u(t, z) of (2.2) instead of wu(f, z). For the solution
u{t, ) we have

LeMMa 1. - If u(t, =) is the strict solulion of (2.2), then lhere is a posi-
tive constant A depending only on o, L, M and the domain G such that:

(2.4) Jult, Yerae ™, |z, «)|orqe

remains uniformly bounded for all values of <.

ProoF. - Denote by EM—'Lu, the unique solution in C5.(G) of the
DiricHLET problem,

(2.5) E—*Mu = Luo in G, u =0 on 3G,

where #o i8 a given funetion in 02+x(§). Then, we have the SCHAUDER boun-
dary estimate [1-D),

- (2.6) lofaqe = oM~ Lato oy, = const. | Luto], =< Aol #o]sto s

where the constant A, depends only on «, L, M and G and is independent
of u,. Since for all u, in Og+a(§), problem (2.5) always has a unique solution
in G;’ﬂ(é), the operator M—'L is defined on the entire space 0;’+a(é). Also
the estimate in (2.6) shows that as a mapping of Ci.,(G) onto Cyy,(@) the ope-
rator M—L is bounded with respect to the HOLDER norm | |oy,-
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Based on this fact it is shown in [7] that (2.2) alwasy has a unique solufion in
Og+a(§} and it is given by the formula:

2.7 u(t, z) = {exp (ML} udx).

2.8) exp (tkM—L) = T kM—Ly"/n!,
n=0

where the equality sign holds in the sense of | |pt, — morm.

For later applications we also note that as a consequence of (2.7) the
solution u(t, z) is analytic in < for all time <.

From the estimate (2.6) and the formula (2.7) it follows that

ful, eta = €4 [tofots

which is the first part of the lemma.
For the second part of the lemma we note that u. also belongs to O§+G{G)
for all values of t and that it is given by [7]

Uuit, 2) =kEM—'L| exp (tkM—'L)}uoz).
It follows from this formula and the estimate in (2.6) that

luales leto = doeh ttofopa,

which is the second part of the lemma.
Lemma 1 ensures that the Laplace transform of the solution of (2.2)

[os]

vy, x) == f u(t, xje~rde

o

and its partial derivatives 3v/dz; and %/3x:dz; will exist for all values of y
with Re y > Xo. Further, upon an integration by parts and upon applying
the initial condiiion in {2.2) and the lemma 1, we find

o

f ult, ze~dt = — uglx) 4 yoly, ).

4]

Hence by multiplying the equations in (2.2) by e~*" and then integrating the
resulting equations from T =0 to Tt =co we get

(2.9) (L —yk*Mw = — Mu, in G, vy, z)=0 on 3G.
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This shows that the Laplace transform w(y, z) of the solution of (2.2) is ne-
cessarily a solution of (2.9) provided Rey > .

We proceed to consider the solutions of (2.2) when y takes on various
complex values. To this end we check that

LeMMA 2. - For all values of y with Rey = — 1, the dijfferential operator
L —yk—M is uniformly and properly elliptic in G, [3, b, 6].
Proor. - Denote by L' and M’ the principal part of L and M respecti-

-

vely. 1f Rey = — 1, then for all real vector £ = (&, .., &) the inequality

| L(@, & — vA—'M'(z, §)| =|[ly(@) + vk~ my()]5E |
= (b — |Bey |k~ 'Ku)|E?
= AlEPP>0

holds for all x in @ in view of the choice of the contants %k in (2.8). This
verifies the uniform ellipticity condition.

Since the roof condition (or the supplemenfary condition or the proper
ellipticity condition) is automatically satisfied if the number of space varia-
bles are greater than two, we need only to check it for the two dimensional
case. To do this we choose a rectangular coordinate system with origin at
the point under consideration such that relative to this particular chosen
coordinate system both the matrix (J;) and the matrix (m;) become diagonal
ones. Indeed, such a choice of the coordinate system is always possible, be-
cause both (I;) and (m,;) are real symmetric positive definite matrices [4, vol. I,
pp. 87-39]. Let Z and & be two unit vectors along the coordinate axes, i.e.,
E=(1,0), and &' =(0,1). Let y=2A -+ 48 and let w be the solution of the
equation

(b + My 4 ifmy) (B + wE)) (T 4 wE) = 0.

Since (I;) and (m;) are now diagonal matrices and since £ and E' are unit
vector along two distinct coordinate axes, we find, upon expanding the left-hand
side of the equation, that

(2.10) w2 + (Gl + ’”‘,‘1)/(03 + Zkg) =0
¢ = by + Amgy y C3 == Smu, k= Ly + Atiga,
k’s == {3%@2 .

Note that the positive definiteness of (m;) ensures that the denominator
s - ¢k; never vanishes. Thus if w, = u; 4 iv: and w2 = uz + 4w, are the two
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solutions of (2.10), then it is necessary that

e - Uy 4 vy + ) = 0.

Henece v, + v2 =0 and we conclude from the ellipticity condition that v; and
vy are non-zero constants equal in magnitude and opposite in sign. This
proves that the supplement condition on L — yk—'M is satisfied for the two
particular orthogonal unit vectors E and Z.

However our justification of the supplement condition is completed by
the observation [3, p. 625] that the root condition holds generally provided it
is satisfied at a particular point for some pair of linearly independent vectors.
This observation was based on the ellipticity condifion and the continuous
dependence of w upon the coefficients /; and m; and the fact that if w is a
solution of (2.10) for given & and E' then - w is also a solution of (2.10)
for — & and E'.

LeMMA 3. - For all values of v with Rey = -1, problem (2.9) always
has a unique solution v(y, z) which is analylic in y.

Proor. - First, we check that if Bey = — 1_ then the uniqueness of so-
lution holds. Indeed, if w is a solution in Cy,(@) of the homogeneous diffe-
rential equation in (2.9) and it vanishes on 9G then

f (L — vk~ Mwwdz = 0.

G

By setting y = A + B, vy, %) = (Y, @) + #(y, ) we fiud, in virtne of the
symmetry of L and M, that

f (oL — M= 13yp + (T — k= M)$}dz =0,

G

[ 1oty + bz =o.

G

Since the operators L and M are assumed to be elliptic and the operator
L — Mk—'M is also elliptic because of the choice of k and the restriotion on
A, the above two relations hold for all values of B only when ¢(y, ) and
d(y, z) vanish identically in G.

Because of Lemwma 2, the existence of a solution to problem (2.9) follows
from its uniqueness, [3, Th. 12.7]. Thus, we are assured of the existence of
the solution u(y, 2) in Ciyi,(G) to (2.9) for all values of y with Rey= — 1.
Consequently, the half-plane Rey = — 1 is contained in the resolvent set of
the operator KM—'L — y.
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The analyticy of v(y, #) in y for REey = — 1 now follows the fact that
the resolvent R(z)= (kML — y)~* is a holomorphic function of y in each
component of the resolvent set of the operator kM—'L — v, [16, Th. 1, p. 211].
So oy, z), as an element in 03+a(é), is analytic in y and so is its value at
any point « in G.

Proor or THEOREM 1. - First, we recall that problem (2.1) always has
a unique solution u(tr, z) in 0;’+a((?) and its Laplace transform ofy, z) is the
unique solution v(y, ) of the problem (2.9). Since u(tr, z) must satisfy the
estimate in LLemma 1, the inversion theorem for Laplace transform [4] ensures
that

y 1
(2.17 u(t, o) = 97

j v(y, z)erdy,

L

where the path L, is the line Rey == A; and A, is a positive constant greater
than A, which appears in Lemma 1. We wish to show that u{z, z) in (2.17)
is also given by

’ 1 Ie

(2.17) ui(t, x) :2—*«”] vy, w)tdy
Ly

where the path L, is defined by Rey = — 1.

For vy 4= 0, we can write (2.9) in the form:
(2.9y y'L—kMwp=—y—*Mu, in G, vy, z) =0 on 2G.
Clearly, for an appropriately given constant %, the operator y—'L — kM
will be in the (s, k’)-neighborhood of the operator — k—~'M for all sufficiently
large |y, [3, p. 687). Also, the DIRICHLET problem,

E*Mu(y, 2)=0 in G, oy, 2)=0 on 34,

has only the solution zero. Hence for all sufficiently large |y|, we have the
estimate, [3, Th, 12.3],

(2.18) loly, “Meyoa = const. | Muo|,/|v|.

where the constant depends only on «, M and G and is independent of .
In particular, it implies that

(2.19) [oly, 2)] = O(1/]v]) as |y]|—co.
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Now it follows from (2.17) and (2.19) and the CavucHY infegral theorem that

f v(y, z)eridt = f u(y, zjertdr.
Ly

Ly

This estanlishes the representation formula (2.17) for u(z, x).

We proceed to derive the desired conclusion in the theorem by combining
the formulas in (2.17) and (2.17). Denote by yi, v» the complex variables
related by

(2.20) Re Y1 = )\] s Re Yo = = 1, Im Y1 = Im Y2 == 3.

Further, let vi(y1, z), va(yz2, 2) be the solutions of (2.9) with y =y; and y =1
respectively. Then we can write (2.17) as

=3

1 . .
ufe, x>=%frv1<h 443, 2+ vs— 1 + 3B, )
w0 18, 7)) B

where (2.17) has been used in deriving the second equality. Accordingly,
et
(2.21) lut, Vera S [0z, )pae 0 o f |02 — w1 oo dB.

On the other hand, in the proof of Lemma 1 we have shown that
(2.22) lutz, *)lera = [Uolerae™.
By combining (2.21) and (2.22) we find

lea(t, )|atn = |Hoagn e HHl—taT L .82:7? f v — 1 fogeu A8

—0

By letting A1 — %, in the above inequality it yields

1 [
(2.23) Juts, Vo = hokogae= + =g [ 00— 01 loyad.
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To complete a proof of the theorem it remains to show that the integral
on the right-hand side of (2.23) exists and is finite. To do this we note that
for fixed y, and y, the function v, — v, satisfies the equations

(2‘24) (L e Y}k— 1.Zu)(’l)g — @1) = (l -+ Al)k—lM'Uz in G, v — vy =0 and SG,

in virtue of the fact that Im y, = Im v, = . By precisely the same reasoning
as that for deriving the estimate in (2.18) we conclude that for all sufficiently
large ||

(2.25) fve — vifopa = C(L + M)k | Mue|o/ |11 ].

where the constant ¢’ depends only on «, G and M and is independent of
Y1 and v;. Thus, (2.25) and (2.18) combined imply that for all sufficiently

large | 1172 |
[ve — V1o = C" | Mito]f] Y172]

with C” being dependent of u,, y1 and y:. For convenience, we state this
estimate in the form: for all large |B| greater than some positive constant B,

(2.26) vz — v1fors = €7 Jutoforof 1 BF
with constant C" depending only on «, Bo, &, L and M and independent of

#o and B. On the other hand, for all |3]| = B, the solution wvy(— 1 iB, 2) of
(2.9) and the solution v, — v1 of (2.24) are subject to the estimates

o2 — v1]ops S V| Mrto s, |02 — vifeta = 0] 02]ta
and so for all |B| =B
(227) " Yy — ’!)1“2+o¢ =b" “ M’Moha = b ” Uo ”2+oc

with the constant b depending only on «, fo, G, L and M. Now from (2.26)
and (2.27) we see that for all values of §

lv2 — vifeta = Crlttofoyq/(1 + 87

where the constant (; depends only on a, G, L and M. Hence

(2.28) ‘2{—1 f Jo: — v1]radB = Ciftt0)ets f I*_%@”B‘z = Coluolpts -

— —c0
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where the constant O, depends only on «, G, L and M. By combining the
estimates in (2.23) and (2.28), we find

(2.29) fu(e, bto = lttofota ™ + Callutohsne™" = Clttolopo e

with the constant C being independent of u,. Replacing © by #/k in (2.29) it
gives
Jutt, lota = Clttoforae™

which is what to be proved.

As we already mentioned, for uyz) in Og—m(é} the solution u(f, z) of (2.1)
is, as an element in C° (G), analytic in ¢ for all values of £ Thus u(f, z) is
the unique solution of the problem

M(u1)g = LM, i]l G >< (-“ C‘\O, C\D)’
u(t, x)=0 on 3G for all time ¢, w0, z) = u 0, 2) in G.

By repeating the same reasoning as was shown in the proof of Theorem I,
we conclude that in the case of more than one space variable u(f, z) decays
expontially as # — oco. Since we can repeat the same argument as many times
as we like it follows that

CorOLLARY 1. - If u(l, «) is the solution of (2.1) in the case of more than
one space variable, then u(t, z) tegether with its lime derivatives of all orders
decoys expontially as t — oco.

To simplify notation, we write E(f) = exp ({M—'L). Since the bounded
operator M—1I, maps the complete space Coi,(@) onto itself. Theorem 1 says
that for a given pair of elliptic operators L and M and for a given smooth
domain G the inequality

" u(ti )HZ-M = HE(t)MO(‘)nzu}«y = GHMO ”2+a e~

holds for all funection udz) in GS+(,_(G) with the constants C and X being in-
dependent of u,. Thus we have

COROLLARY 2, - The group of bounded operators E(t) decays exponentially

as t ~>oo. That is
1By, = o

with the constant C and X depending only on o, G, L and M.
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BEMARK 1. ~ Since the operator L — yk—'M is nof properly elliptic if
the domain G is a set on the real line, we have excluded this special ecase
in Theorem 1. However, we can multiply the first equation in (2.1) by » and
integrate the resulting equation over G to obtain

(2.31) 2 3 f (mywu; + mu’d — f (lymway; -+ lut)dz

The essential feature of this equation is that the value of the right-hand
side is non-negative for all functions . By applying the ellipticity condi-
tion L and M and by applying POINCARWE’s inequality [9] we derive from (2.31)
that

H”’(ty ')}]Méﬂ 0”@{{5, ')M:

SR

(2.32)

where the constant D depends only on L and M apd the domain G and where

(2.33) [, .){ﬁ{.—__: f (myusn; -+ mu?ydz .

upon integrating (2.32) from O to ¢ with ¢ > 0, it gives
hut, u=[u©, *)lue=, t>0.

This inequality together with SOBOLEV’s lemma [8] implies that if u(l, -) is a
strict solution of (2.1) in one space wvariable, then for all 1 >0 the Lg-—norm
of u, |ulo, is subject to the estimate

(2.34) lugt, <)o = const. |u(0, +)]se—,

where the positive constant depends only on o, L, M and G.

ReMARK 2. - Theorem 1 and Lemma 1 furnish upper bounds for
[u(t, )ors for — oo <t << co. For the lower bound for Ju(, )| as ¢t > — oo,
we integrate (2.32) from O to ¢ with £ < 0 te obtain

Jult, uw=|u©, e, t <0, C>0.
This means that if u(f, z) is the solution of (2.1) then for all t < 0,
u(t, )b = const. ju(f, -)|u= const. |u(0, «)|nec!*!,

where the constants depend only on «, L, M and G and where |ul, stands
for the Dirichlet norm of u.
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3. Solution of non-homogencous problem. - By establishing the asym-
ptotic behavior of fhe solutions of homogeneous problems, it is easy now to
extend these results to the general case. In what follows we assume for all
time ¢, f(¢, z) as a map: {— O (G) is strongly continuous in ¢ and A{f, z) as
a map: £-—> Oy ,(@) is strongly continuously differentiable in ¢. Let u(t, z) be
the solufion in sz(é) of the problem:

Mu, — L = f(t, z) in Ga{— co, o)
(8.1) u(t, ) == h(t, z) in 3G for all time ¢,

u(0, z) = wiz) in @,

where uy(x) is a given function in 02_}.“(67}. We wish to show that.

THROREM 2. - Lef u(t, z) be the solution of (3.1} in more than one space
variable. If for some positive constant p

(32) Hf(t; ')l!ae+pt3 ﬂh(t, ')

2-+-c e’-H”: u h‘(t) ’)uz-i-ct e‘H”;
remain wniformly bounded for all t =0, then for all $ =0,

(8.3) ju(t, z)|ota = const. e~ @i Oop) X o= p

lut, )roa = const. fe—™, X =p,

where the constants depend on o, A, p, f, b, L, M and G and X is the same
as in Theorem 1; if for some constant p >0

(3-4) "f(ta ')

by 1248, letss (R, ) oo = O(E)
as t—>co, then
(3.5) g u{l, ')HH—a = O~ as {— oo,

In (3.4) and (3.5) and throughout this section we use the notation that for any
=0t .0+ >0 as t—>oco.

Proor. - First, we consider the case h(, z) =0 identically. For each
fixed ¢, let v(f, ) be the solution of the DIRICHLET problem:

(3.6) Mot, ) = f(@¢, z) in G, o, ) =0 on G,
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Then v(f, x) belongs fo 0§+a((}) for all time {. Further we have the SCHAUDER
estimate,
it Mo+s = comst. I£(t, )

with the constant depending ounly on «, M and the domain G. This estimate
shows that o(f, ) as a map: { — OZO_I.G(G} is strongly continuous in {. Further-
more, if the conditions in (3.2) hold, then for all time ¢

3.7 Joit, *)etrsa = const. e—w

with the constant depending only on «, M, f and @; if the conditions in (3.4)
holds then

(3.8) lott, )ota = Of—+) as £ — co.

Since h(f, x) is assumed to vanish identically, u.(z) must belong to G§+a(@)
so as to be compatible. By principle of superposition or DUBAMEL'S principle,
one sees that the solution (3.1) is given by the formula,

3.9) u(t, z) = B(tu, + f E(t — ww(x, z)dx, —o <t < oo,

where the equality sign holds in the sense of | |y,~norm and E(f)= exp ({M—L).
It follows immediately from (3.9) that

(3.10) Jlty Vo = | Ehttoloss + f LBt — Dol hinds

for all time ¢ = 0. Indeed, the dependence of the operajor E(f) on ¢ is con-
tinuous in the uniform operator topology (7] and wv(tr, ) has been shown to
be strongly continuous in t. Hence the integral on the right-hand side of
(3.10) exists in the RIEMANNIAN sense for all #=0. Also from Corollary 2
we see that for all 1 < 4,

(3.11) |E(t — %oy, = const. e
with the constant depending only on «, L, #/ and the domain G.

If the inequality in (3.7) holds, then it follows from (8.11) that

(3.12) J{iE(t — Dta]v(x, *)|etadt = const. le—w — g
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with the constant depending only on «, A, p, f, L, M and G. Thus the asser-
tion in (3.3) follows from (3.10), Theorem 1 and (3.12),
In case A = p, then instead of (3.12) we have

(3.12y f[]E(t — Dletat(t, *)|tads = const. te—>
0

with the constant depending only on «, f, L, M and G. Thus we have proved
the first part of Theorem 2 under the homogeneous boundary conditions.
Suppose that the hypotheses in (3.8) hold. Then for { =0

lott, )

i, = const. (14 )+

with the constant being independent of f. Hence
(8.13) fﬁE(t — Dletal VT, ) p+adr = const. e*“f(l + 1) vetitdr,
Q ¢

with the constant depending only on «, f, L, M and G. We now assert that
there are positive constants f, and &k such that

(3.14) o(l) = f (1 - Dveirdr < k(1 + tfvetit = Y(t)

g

for all ¢ = ¢ . Indeed, for the functions ¢(f) and ¢(f) so defined we have

d N s gy
a—?((})——»‘p)_(l—}-t) peh {k(k—*l‘{‘t) 11.

If we choose f, so that p/(1 +4) = A/2 and choose k so large that kA =2 then
03 d
(8.15) a-i(q)mcp)go for all t = 14,.

Moreover, it is immediately seen that we can choose the positive constant k
8o large that the inequality in (3.14) holds for f=1{,. But then (3.14) holds
for all ¢ =1, in virtue of the differential inequality in (3.15). By combining
the estimates in (3.10), (3.13) and (3.14) we find

luit, )ora = | E#)ofpra + const. (1 4 8¢
= Const. e~* + eonst. (1 - =,
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with the constants depending only on «, f, L, M and @G. This proves the as-
sertion in (3.5) under the homogeneous boundary conditions.

If h(t, z) does not vanish identically, then uo — h(0, z) belongs to 02, ,(G).
Consider the function w(f, z) = u(f, z) — b{¢, z). It is in 0§+a(6) for all time
t and satisfies the equation,

MW, — Lw = f@, z) — (Mh, — Lh) in G X (— oo, o).

Accordingly, the above proof applies to the function w(f, ) in virtue of the
conditions in (3.2) and (3.4) on the given function Ak({, z). Consequently,
u(t, ) = w(l, ) = h({, z) has the properties as stated in Theorem 2. The proof
is now complete.

‘We proceed to consider the case of one space variable, Let f(¢, ), k({{, 2)
|be given functions as specified at the beginning of this section. Denote by
flo the Ly;-norm of f and by |f|x the DiricHLET norm of f as defined in
(2.33). We wish to show that

THEOREM 2. - Let u(t, ) be the solution in Cor(G) of (8.1). If for some
constant b > 0

(8.16) I7E doet™, [h, et [Ril, )uet™

remains uniformly bounded for all t =0, then, with C given in Remark 1,
(3.17) jut, <)o = const. e—tmin & for qll t =0

with the constant being independent of t; if for some constant b > 0.

(3.18) [Fct, o, (B )by (Rldy )| = O(=)

a8 t—» oo, then

(8.19) lu(t, o= 0"? as ¢ - co.

Proor. - It is now clear that for all time { the solntion of (3.1) has the
representation

wlt, 7) = hit, 7)+ E(two — h(0, 2)) + f Bt — e, @)ds,
0

where v(f, ) belongs to O, ,(G) for all time ¢ and

(3.20 Mv=f(, 2)— (Mh, — Lh) in G.
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Hence for all { =0

(3.21) futt, o =fht, o 4 | E)uo — RO, )|

+ fﬂE(t — vz, +)|dc

we prooceed fo estimate each term on the right of this inequality.
If the hypotheses in (3.16) hold, then SoBOLEV’S lemma ensures that there
are constants independent of ¢ such that

3.22) IB(t, )lo = const. |A(t, -)|ix = const e—%.

Since the function wu, — k{0, z), belongs to 02+,(é), an application of (2.34)
gives

(3.23) | E @)t — B(O, +)|o = const, [uo — kO, +)fue—<.

Also o{f, z) belongs fto 0§+a(f}) for all time £, further application of (2.34)
leads to

(3.24) f[]E(t-—-—‘c)v(t, o ds =fﬂE(t)’U(t, T, Jodt

=< const. e*“f[lv(t——r, e dr,

with the constant being independent of {. By multiplying (3.20) by o{f, ) and
then integrating over G for tixed ¢, we obtain, after integration by parts and
application of ellipticity condition and POINCARE’S inequality,

Lo, v = const. {|f(E, Yo+ 1h(t, )] + |2t -]

= const. e,

M

with the constants being independent of #. By combining this estimate with
(3.24) we find

13

(3‘25> f” E t— ‘C)'U ﬂod’t = const. e f e—tt—7) dlr

0

= const. e~ — e~ %],

Thus, the assertion in (3.17) follows from (3.21)-(3.23) and (3.25).
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If the hypotheses in (3.18) hold, then by the same reasoning as that for
deriving (3.14) we have for all ¢ greater than ¢ > 0.

¢ L

(3.26) f |E{¢— tv(z, +}odr = oconst. f e~ =1 4 t)-dx

0 0

= oonst. (I 4§~

with the constant independent of ¢ Thus, the assertion in (3 19) follows from
(3.21), (3.18) and (3.26).

ReEMARK 3. - Let v(z) be the solution of the DIRICHLET problem:
(3.27) Lyv= —g(z) in G, vix) = Kz) on 34,

with g(z), h(z) being given functions in C,(@) and Oz+a(é) respectively. If the
tunctions f(¢, z) — g(x) and h(f, z) — k() satisfy the hypotheses in (3.2) or
(3.4), then the corresponding solutions u(f, z) — v(z) have the asymptoic beha-
viours as stated in (3.3) or that in (8.5). Similar statements hold for the case
of one space variable. This shows how the solution u(f, z) of (3.1) converges
to the steady solution »(z) of (3.27).
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