ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF REACTION-DIFFUSION SYSTEMS OF LOTKA-VOLTERRA TYPE

Kyû́ya Masuda
Department of Mathematics, Rikkyo University, Tokyo, 171
Katsuo Takahashi
Department of Mathematical Sciences, University of Tokyo, Tokyo, 153
Dedicated to the memory of Professor P. Hess

1. Introduction. As a mathematical model for the population dynamics of N species in biology, Lotka [12] and Volterra [17] proposed the ordinary differential system of the form:

$$
\begin{equation*}
d v_{j} / d t=\left(-e_{j}+b_{j}^{-1} \sum_{k=1}^{N} a_{j k} v_{k}\right) v_{j}, \quad j=1, \ldots, N \tag{LV}
\end{equation*}
$$

where $e_{j}, b_{j}(>0), a_{j k}$ are given constants; and v_{j} denotes the biomass of the j species; and investigated the asymptotic behavior of v_{1}, \ldots, v_{N} for large time t.

For $N=2$, there are extensive literatures on (LV) (or (RD) below), e.g., Copell [5], Henry [7], Rothe [16]. However, for $N \geq 3$, little seems to have been known; see Amann [2, 3], Krikorian [11], Fife-Mimura [6], Friedmann-Tzavars [8], Oshime [14] and others.

In the present paper we consider the reaction-diffusion's version of (LV) of the form:

$$
\begin{align*}
& \frac{\partial}{\partial t} u_{j}=d_{j} \Delta u_{j}+u_{j} f_{j}(u) \quad(x \in \Omega, t>0) \\
& \left.\frac{\partial}{\partial \nu} u_{j}\right|_{\partial \Omega}=0, \quad(t>0) ;\left.\quad u_{j}\right|_{t=0}=\phi_{j} \quad(j=1, \ldots, N), \tag{RD}
\end{align*}
$$

where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, d_{j}$ is a positive constant, $\partial / \partial \nu$ denotes the outer normal derivative to $\partial \Omega$, and ϕ_{j} given smooth nonnegative, and not identically zero function satisfying the compatibility condition: $\partial \phi_{j} / \partial \nu=0$ on $\partial \Omega$. The purpose of the present paper is to study the asymptotic behavior of solutions of (RD) for large t under some assumptions on f_{j}.

We suppose that $f_{j}, j=1, \ldots, N$, satisfies the following assumptions.

Assumption 1.1. $f_{j}(\xi)$ is a smooth function of $\xi \in \mathbb{R}_{+}^{N}$ such that there is a positive constant b_{j} with

$$
\begin{equation*}
\sum_{j=1}^{N} b_{j} \xi_{j} f_{j}(\xi) \leq 0, \quad \xi=\left(\xi_{1}, \ldots, \xi_{N}\right) \in \mathbb{R}_{+}^{N} \tag{1}
\end{equation*}
$$

$\left(\mathbb{R}_{+}^{N}=\left\{\xi \in \mathbb{R}^{N} ; \xi_{j} \geq 0,(j=1, \ldots, N)\right\}\right)$.
To state the theorem, we decompose the index set $\Lambda \equiv\{1, \ldots, N\}$ into three disjoint sets $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}: \Lambda=\Lambda_{1} \cup \Lambda_{2} \cup \Lambda_{3}$ (disjoint). We define the set $\Lambda_{1, s}$ inductively. $\Lambda_{1,1}$ is the set of all j such that

$$
\begin{equation*}
\sum_{k=1}^{N} b_{k} \xi_{k} f_{k}(\xi) \leq-\delta_{1} \xi_{j}, \quad\left(\xi \in \mathbb{R}_{+}^{N}\right) \tag{2}
\end{equation*}
$$

for some positive constant δ_{1}. If $\Lambda_{1, s}$ is defined, then by definition $j \in \Lambda_{1, s+1}$ if and only if either $j \in \Lambda_{1, s}$ or there is an $i(1 \leq i \leq N)$ such that

$$
\begin{equation*}
f_{i}(\xi) \geq-\delta_{2} \xi_{j}-\rho(|\xi|) \sum_{k \in \Lambda_{1, s}} \xi_{k},\left(\xi \in \mathbb{R}_{+}^{N}\right) \tag{3}
\end{equation*}
$$

where δ_{2} is some positive constant, and $\rho(s)$ some positive increasing function of s : if an index set Λ_{0} is empty, we understand $\sum_{j \in \Lambda_{0}} a_{j}=0$. We set

$$
\Lambda_{1}=\bigcup_{s} \Lambda_{1, s}
$$

Λ_{2} is the set of all $j \in \Lambda \backslash \Lambda_{1}$ such that

$$
\begin{equation*}
\left|f_{j}(\xi)\right| \leq \rho(|\xi|) \sum_{k \in \Lambda_{1}} \xi_{k}, \quad\left(\xi \in \mathbb{R}_{+}^{N}\right) \tag{4}
\end{equation*}
$$

Here and in what follows, $\rho(s)$ denotes a positive increasing function of s. Finally we set

$$
\begin{equation*}
\Lambda_{3}=\Lambda-\Lambda_{1}-\Lambda_{2} \tag{5}
\end{equation*}
$$

Let C be the set of all positive vectors $c=\left(c_{i}\right)_{i \in \Lambda_{3}}$ (Λ_{3} is naturally ordered) such that

$$
\begin{equation*}
\left|\sum_{i \in \Lambda_{3}} c_{i} f_{i}(\xi)\right| \leq \rho(|\xi|) \sum_{j \in \Lambda_{1}} \xi_{j}, \quad\left(\xi \in \mathbb{R}_{+}^{N}\right) \tag{6}
\end{equation*}
$$

Assumption 1.2. If Λ_{3} is non-empty, there is a vector in C.
We denote by r the number of the linearly independent vectors in C, and independent vectors by $c^{(j)}=\left(c_{i}^{(j)}\right)_{\Lambda_{3}}, j=1, \ldots, r$, where a positive vector c means that all the component c_{i} is positive.

For vector $\gamma=\left(\gamma_{k}\right)_{k \in \Lambda_{2}} \geq 0$, non-negative real μ_{0}, and vector $\mu=\left(\mu_{j}\right)_{j=0}^{r}$, we define $\Theta(\gamma, \mu)$ by the set of all $\xi \in \mathbb{R}_{+}^{N}$ such that

$$
\begin{align*}
& \xi_{j}=0\left(j \in \Lambda_{1}\right) ; \xi_{j}=\gamma_{j}\left(\text { for } j \in \Lambda_{2}\right) \\
& \sum_{j=1}^{N} b_{j} \xi_{j}=\mu_{0} ; \quad \text { and } \quad \sum_{k \in \Lambda_{3}} c_{k}^{(j)} \log \xi_{k}=\mu_{j}, \quad(j=1, \ldots, r) \tag{7}
\end{align*}
$$

where we understand that if Λ_{3} is empty set, then $\mu=\mu_{0}$.
Remark 1.1. Suppose that $\Lambda_{3}=\Lambda$, and $r=N-2$. Suppose also that

$$
\begin{align*}
& \sum_{j=1}^{N} b_{j} \xi_{j} f_{j}(\xi)=0 \\
& \sum_{j=1}^{N} c_{j}^{(k)} f_{j}(\xi)=0, \quad(k=1, \ldots, N-2)
\end{align*}
$$

Then the set

$$
\Theta=\left\{\xi \in \mathbb{R}_{+}^{N} ; \sum_{j=1}^{N} b_{j} \xi_{j}=\mu_{0}, \sum_{j \in \Lambda_{3}} c_{j}^{(k)} \log \xi_{j}=\mu_{j}, \quad(1 \leq k \leq r)\right\}
$$

is a bounded closed orbit, and so it is a periodic orbit for (RD).
Then our main theorem reads as follows:
Theorem 1.1. Let the above assumptions 1.1 and 1.2 hold. Then any bounded solution u of (RD) converges to $a \Theta(\gamma, \mu)$ as $t \rightarrow \infty$, uniformly on $\bar{\Omega}$ for some $\gamma=\left(\gamma_{j}\right)_{j \in \Lambda_{2}}$ and $\mu=\left(\mu_{j}\right)_{j=0}^{r}$:

$$
\operatorname{dist}(u(x, t), \theta(\gamma, \mu)) \rightarrow 0 \quad \text { as } t \rightarrow \infty, \quad \text { uniformly on } \bar{\Omega},
$$

where

$$
\begin{aligned}
& \gamma_{j}>0\left(\text { if } \Lambda_{2} \text { is not empty }\right) \\
& \mu_{0}>0\left(\text { if } \Lambda_{2} \cap \Lambda_{3} \text { is not empty }\right) \\
& \mu_{j}=0\left(\text { if } \Lambda_{3} \text { is empty }\right) .
\end{aligned}
$$

Corollary 1.1. In addition to the assumptions 1.1 and 1.2 , assume that $\Lambda_{3}=\Lambda$, and $r=N-2$, and that (1^{\prime}), and (2^{\prime}) hold. Then any bounded solution u converges to a periodic orbit for (RD).

The proof is a direct consequence of Theorem 1.1 and Remark 1.1.

We now consider the reaction-diffusion system of the form considered originally by Lotka and Volterra, which is a special case of (RD):

$$
\begin{align*}
& \frac{\partial}{\partial t} u_{j}=d_{j} \Delta u_{j}+\left(-e_{j}+b_{j}^{-1} \sum_{k=1}^{N} a_{j k} u_{k}\right) u_{j}, \quad(x \in \Omega, t>0) \tag{8}\\
& \frac{\partial}{\partial \nu} u_{j}=0, \quad(x \in \partial \Omega, t>0) ; u_{j}=\phi_{j}, \quad(x \in \Omega, t=0) .
\end{align*}
$$

In this case it is easy to see that assumption 1.1 in Theorem 1.1 implies that $e_{j} \geq 0$, $(j=1, \ldots, N)$ and that the matrix $\left(a_{j k}+a_{k j}\right)$ is non-positive definite. Let us see the construction of $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ more concretely. $j \in \Lambda_{1,1}$ if

$$
\begin{equation*}
\sum_{i=1}^{N} b_{i}\left(-e_{i}+b_{i}^{-1} \sum_{k=1}^{N} a_{i k} \xi_{k}\right) \xi_{i} \leq-\delta_{1} \xi_{j}, \quad\left(\xi \in \mathbb{R}_{+}^{N}\right) \tag{9}
\end{equation*}
$$

with some $\delta_{1}>0$. The above condition is equivalent to the one that $e_{j}>0$ and the matrix $\left(a_{j k}+a_{k j}\right)$ is non-positive definite.

If $\Lambda_{1, s}$ is constructed, then $\Lambda_{1, s+1}=\Lambda_{1, s} \cup \Lambda_{1, s+1}^{\prime}$. Here $j \in \Lambda_{1, s+1}^{\prime}$ if and only if there is an $i \in \Lambda$ with $a_{i k} \geq 0$ (for $k \in \Lambda-\Lambda_{1, s}$) and with $a_{i j}>0$. Then we set $\Lambda_{1}=\bigcup_{s} \Lambda_{1, s}$ and $\Lambda_{3}=\Lambda-\Lambda_{1}-\Lambda_{2}$. Suppose that there is a positive vector $c=\left(c_{j}\right)_{j \in \Lambda_{3}}$ with

$$
\begin{equation*}
\sum_{i \in \Lambda_{3}} c_{i} b_{i}^{-1} a_{i k}=0, \quad\left(k \in \Lambda_{2} \cup \Lambda_{3}\right) \tag{10}
\end{equation*}
$$

Then the number of the linearly independent vectors in C is the dimension of the kernel of the matrix $\left(a_{j k}\right)_{j \in \Lambda_{3}, k \in \Lambda_{2} \cup \Lambda_{3}}^{*}$, ${ }^{*}$ denotes adjoint matrix). We can now state Theorem 1.1 in a more concrete form.

Theorem 1.2. Assume that $e_{j} \geq 0,(j=1,2, \ldots, N)$ and that the matrix $\left(a_{j k}+a_{k j}\right)$ is non-positive definite. Assume also that if Λ_{3} is non-empty, then there is a c in C satisfying (10). Then any bounded solution of (8) converges to some $\theta(\gamma, \mu)$, uniformly on $\bar{\Omega}$ as $t \rightarrow \infty$, uniformly on $\bar{\Omega}$.

Remark 1.2. Let the assumptions in Theorem 1.2 hold. If $n=1$, $(n$: space dimension), then it can be shown that any solution is bounded, and so converges to some $\theta(\gamma, \mu)$ as $t \rightarrow \infty$, uniformly on $\bar{\Omega}$.

Corollary 1.2. In addition to the assumptions in Theorem 1.2, assume that $a_{j k}=$ $-a_{k j}, r=N-2$, and $\Lambda_{3}=\Lambda(\equiv\{1, \ldots, N\})$. Then any bounded solution of (8) converges to some periodic orbit as $t \rightarrow \infty$, uniformly in $\bar{\Omega}$.

Example 1.1. Consider the reaction-diffusion system

$$
\begin{gather*}
\frac{\partial}{\partial t} u_{j}=d_{j} \partial_{x}^{2} u_{j}+\left(u_{j+1}-u_{j-1}\right) u_{j}, x \in \Omega, \quad t>0 \\
\frac{\partial}{\partial \nu} u_{j}=0 \quad(x \in \partial \Omega, t>0) ; u_{j}(x, 0)=\phi_{j}(x), \quad(x \in \Omega) \tag{11}\\
\left(j=1,2,3 ; \quad u_{4}=u_{1}, u_{0}=u_{3}\right)
\end{gather*}
$$

$\left(\partial_{x}^{2}=\partial^{2} / \partial x^{2}\right)$. It is easy to verify that Assumption 1.1 is satisfied, that $\Lambda_{1}=\Lambda_{2}=$ empty set and $\Lambda_{3}=\{1,2,3\}$, and that the kernel of $\left(a_{j k}\right)^{*}$ is spanned by the positive vector $(1,1,1)$. Thus any bounded solution of (11) tends to the set

$$
\Theta=\left\{\xi \in \mathbb{R}_{+}^{3} ; \xi_{1}+\xi_{2}+\xi_{3}=\gamma_{0}, \quad \xi_{1} \xi_{2} \xi_{3}=\gamma_{1}\right\}
$$

for some positive γ_{0}, γ_{1}. Clearly Θ is a periodic orbit. Hence any bounded solution of (11) with positive initial data converges to some periodic orbit as $t \rightarrow \infty$, uniformly on $\bar{\Omega}$.

Example 1.2. Consider the reaction-diffusion system:

$$
\begin{align*}
& \frac{\partial}{\partial t} u_{j}=d_{j} \partial_{x}^{2} u_{j}-e_{j} u_{j}+\left(u_{j+1}-u_{j-1}\right) u_{j} \\
& \frac{\partial}{\partial \nu} u_{j}=0(x \in \partial \Omega, t>0), u_{j}(x, 0)=\phi_{j}(x)(>0) \tag{12}\\
& \quad\left(j=1, \ldots, N ; \quad u_{0}=u_{N}, u_{N+1}=u_{1}\right)
\end{align*}
$$

where $e_{k}=1(k=1, \ldots, L) ; e_{k}=(k=L+1, \ldots, N)$. Then we can see that

$$
\begin{aligned}
& \Lambda_{1}=\left\{1, \ldots, L, L+2, \ldots, 2\left[\frac{N-L}{2}\right]\right\} \\
& \Lambda_{2}=\left\{L+1, \ldots, 2\left[\frac{N-L+1}{2}\right]+L-1\right\} ; \quad \Lambda_{3}=\text { empty set }
\end{aligned}
$$

where [] denotes Causs symbol; thus any bounded solution u of (12) converges to a constant vector $\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ where $\gamma_{j}=0,\left(j \in \Lambda_{1}\right)$ and $\gamma_{j}>0,\left(j \in \Lambda_{2}\right)$.
2. Some estimates. In this section we give some estimates to be used later. We begin by introducing some notations. $\left\|\|_{p}\right.$ denotes the usual L^{p}-norm over Ω; we simply write $\|\|$ for $\| \|_{2} . H^{p, 2}$ denotes the L^{p}-Sobolev space of order 2 with the norm $\left\|\|_{p, 2}\right.$. We define the operator P by

$$
P w=\frac{1}{|\Omega|} \int_{\Omega} w(x) d x
$$

In what follows, M denotes various constant independent of t; and set

$$
\begin{align*}
& g_{j}(\xi)=\xi_{j} f_{j}(\xi) \\
& K=\sup \left|u_{j}(x, t)\right| \quad(x \in \bar{\Omega}, t \geq 0, j=1, \ldots, N) \tag{13}\\
& K_{1}=\sup _{|\xi| \leq K, j}\left|f_{j}(\xi)\right|, \quad K_{2}=\sup _{|\xi| \leq K, j}\left|\nabla_{\xi} g_{j}(\xi)\right|
\end{align*}
$$

Since the initial function is non-negative and not identically zero, it follows from the elementary property of parabolic equations that

$$
\begin{equation*}
u_{j}(x, t)>0, \quad(x \in \bar{\Omega}, t>0), \quad j=1, \ldots, N \tag{14}
\end{equation*}
$$

Since we are concerned with behavior of solution for large t, we may assume that (14) hold for $x \in \bar{\Omega}$ and $t \geq 0$.

Lemma 2.1. Let u be a solution of (RD). Then

$$
\begin{align*}
& \left\|u_{j}(t)\right\|_{1} \leq M, \quad(j \in \Lambda) \tag{15}\\
& \int_{0}^{t}\left\|u_{j}(s)\right\|_{1} d s \leq M, \quad\left(j \in \Lambda_{1,1}\right) \tag{16}
\end{align*}
$$

where M is a constant.
(Here and in what follows we shall simply write $u_{j}(t)$ for $\left.u_{j}(x, t)\right)$
Proof. Integrating the j-th equation in (RD) in x and t over $\Omega \times(0, t)$, multiplying b_{j}, and taking the summation in j, we get by (2)

$$
\begin{equation*}
\int_{\Omega}\langle b, u(x, t)\rangle d x+\delta_{1} \sum_{j \in \Lambda_{1,1}} \int_{0}^{t} \int_{\Omega} b_{j} u_{j}(x, s) d x d s \leq \int_{\Omega}\langle b, \phi(x)\rangle d x \tag{17}
\end{equation*}
$$

$\left(\langle\right.$,$\left.\rangle : the inner product in \mathbb{R}^{N}\right)$ from which (15) and (16) follow immediately in view of (14).

Lemma 2.2. Let u be a bounded solution of (RD). Then

$$
\begin{align*}
& \int_{0}^{t}\left\|\nabla u_{j}(s)\right\|^{2} d s \leq M, \quad j \in \Lambda \tag{18}\\
& \int_{0}^{t}\left\|u_{j}(s)\right\|_{1} d s \leq M, \quad j \in \Lambda_{1} \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{t}\left\|g_{k}(u)\right\|_{1} d s \leq M, \quad k \in \Lambda_{1} \cup \Lambda_{2} \tag{20}
\end{equation*}
$$

where M is independent of t.
Proof. By the assumption

$$
\begin{equation*}
\sup |u(x, t)|(\equiv K)<\infty, \quad(x \in \bar{\Omega}, t \geq 0) \tag{21}
\end{equation*}
$$

If $j \in \Lambda_{1,1}$, then (16) implies (19). Let $j \in \Lambda_{1,2}-\Lambda_{1,1}$. Then for some $i \in \Lambda$,

$$
f_{i}(u) \geq \delta_{2} u_{j}-\rho(K) \sum_{k \in \Lambda_{1,1}} u_{k}
$$

Integration of the i-th equation (divided by u_{i}) in (RD) over $\Omega \times(0, t)$ gives

$$
\begin{align*}
& d_{i} \int_{0}^{t}\left\|\left(\nabla u_{i}(s)\right) / u_{i}(s)\right\|^{2} d s+\delta_{2} \int_{0}^{t}\left\|u_{j}(s)\right\|_{1} d s \\
& \leq \int_{\Omega} \log u_{i}(x, t) d x-\int_{\Omega} \log \phi_{i}(x) d x+\rho(K) \sum_{k \in \Lambda_{1,1}} \int_{0}^{t}\left\|u_{k}(s)\right\|_{1} d s \tag{22}
\end{align*}
$$

The first term on the right hand side of (22) is, by (21), bounded, since $\log u_{i}(x, t) \leq$ $\log _{+} u_{i}(x, t) \leq\left|u_{i}(x, t)\right|$. The second term is, by (14), bounded. The third term is, by (16), bounded. Hence the right-side is bounded, and so is the left hand side. Thus (19) holds for $j \in \Lambda_{1,2}$. Inductively we can show (19) holds for $j \in \Lambda_{1}$. Clearly (20) holds for $j \in \Lambda_{1}$ in view of (21) and (19). For $j \in \Lambda_{2}$ we have, by (4) and (21),

$$
\left\|g_{j}(u)\right\|_{1} \leq \rho(K) \sum_{i \in \Lambda_{1}}\left\|u_{i}\right\|_{1}
$$

which together with (19) gives (20) with $j \in \Lambda_{2}$. Taking the inner product of the j-th equation in (RD) with u_{j}, and then integrating the result in t, we see

$$
\begin{align*}
& \left\|u_{j}(t)\right\|^{2}+2 d_{j} \int_{0}^{t}\left\|\nabla u_{j}(s)\right\|^{2} d s \tag{23}\\
= & \left\|\phi_{j}\right\|^{2}+2 \int_{0}^{t}\left(g_{j}(u(s)), u_{j}(s)\right) d s, \quad\left(j \in \Lambda_{1} \cup \Lambda_{2}\right)
\end{align*}
$$

((,) : L^{2}-inner product). The right hand side is, by (20), bounded, in view of the boundedness of u. This shows that (18) holds for $j \in \Lambda_{1} \cup \Lambda_{2}$. Finally let $j \in \Lambda_{3}$. Similarly to (22), integrating the i-th equation (multiplied by c_{i} / u_{i}), and taking the sum in i one finds that

$$
\begin{align*}
\sum_{i} c_{i} \int_{0}^{t}\left\|\left(\nabla u_{i}\right) / u_{i}\right\|^{2} d s & =\sum c_{i}\left[\int_{\Omega} \log u_{i}(x, t) d x-\int_{\Omega} \log \phi_{i}(x) d x\right] \\
& -\sum_{i} c_{i} \int_{0}^{t} \int_{\Omega} f_{i}(u) d x d s \tag{24}
\end{align*}
$$

By Assumption 1.2 the right-hand side of (24) is bounded by

$$
\left(\left\|u_{i}(t)\right\|_{1}+\left\|\log \phi_{i}\right\|_{1}\right)+\rho(K) \sum_{k \in \Lambda_{1}} \int_{0}^{t}\left\|u_{k}\right\|_{1} d s
$$

which is, by (15) and (19), bounded. Hence the left hand side of (24) is also bounded. Consequently, by the positivity of c_{i},

$$
\int_{0}^{t}\left\|\nabla u_{j}\right\|^{2} d s \leq K^{2} \int_{0}^{t}\left\|\left(\nabla u_{j}\right) / u_{j}\right\|^{2} d s \leq M
$$

showing that (18) holds for $j \in \Lambda_{3}$. This proves Lemma 2.2.
To get the L^{∞}-bounds for solutions u of (RD), we introduce an operator $A_{j, p}$ in $L^{p}(\Omega)$:

$$
\begin{aligned}
& D\left(A_{j, p}\right)=\left\{v \in H^{p, 2}(\Omega) ;(\partial / \partial v) v=0 \quad(\text { on } \partial \Omega)\right\} \\
& A_{j, p} v=-d_{j} \Delta v+\delta_{1} v \quad\left(j \in \Lambda_{1,1}\right) ;=-d_{j} \Delta v \text { (otherwise). }
\end{aligned}
$$

We first note that $A_{j, 2}$ is a non-negative self-adjoint operator in $L^{2}(\Omega)$. Let us fix p so that $p>n$, and write A_{j} for $A_{j, p}$ for simplicity. Then A_{j} has the following properties:
i) the spectral set of A_{j} consists only of isolated eigenvalues $\left\{\lambda_{j}\right\}$ with $0 \leq$ $\lambda_{1}<\lambda_{2} \leq \ldots$, and with finite multiplicities;
ii) the first eigenvalue λ_{1} is positive if and only if $j \in \Lambda_{1,1}$;
iii) the estimate holds:

$$
\begin{equation*}
\|v\|_{p, 2} \leq M\left\{\left\|A_{j} v\right\|_{p}+\|v\|_{p}\right\}, \quad v \in D\left(A_{j}\right) ; \tag{25}
\end{equation*}
$$

iv) if we define the operator Q by $Q=I$, (if $\lambda_{1}>0$); $Q=I-P$, (if $\lambda_{1}=0$) ($I=$ identity operator), then $Q e^{-t A_{j}}=Q e^{-t A_{i}} Q$;
v) A_{j} generates the holomorphic semigroups $\left\{e^{-t A_{j}}\right\}$ in $L^{p}(\Omega)$ so that

$$
\begin{equation*}
\left\|e^{-t A_{j}}\right\| \leq M ;\left\|Q e^{-t A_{j}}\right\| \leq M e^{-\beta t} ;\left\|A_{j} e^{-t A_{j}}\right\| \leq M e^{-\beta t} / t \tag{26}
\end{equation*}
$$

with some positive β;
vi) the solution u of (RD) can be written as

$$
\begin{equation*}
u_{j}(t)=e^{-t A_{j}} \phi_{j}+\int_{0}^{t} e^{-(t-s) A_{j}} g_{j}^{*}(u(s)) d s \tag{27}
\end{equation*}
$$

where $g_{j}^{*}(u)=g_{j}(u)+\delta_{1} u_{j},\left(j \in \Lambda_{1,1}\right) ;=g_{j}(u)$ (otherwise)
(see Agmon-Douglis-Nirenberg [1], Friedmann [7]).
Lemma 2.3. We have

$$
\begin{equation*}
\|v\|_{\infty} \leq M\left\|A_{j} v\right\|_{p}+M|P v|, \quad\left(v \in D\left(A_{j}\right)\right) \tag{28}
\end{equation*}
$$

(| | : absolute value)
Proof. Using the a priori estimate (25) for solutions of elliptic equations, $\|Q v\|_{p} \leq$ $M\left\|A_{j} v\right\|_{p}$, and the Sobolev inequality, we get

$$
\|v\|_{\infty} \leq M\left(\left\|A_{j} v\right\|_{p}+\|P v\|_{p}\right),
$$

showing (28); note $\|P v\|_{p} \leq|P v||\Omega|^{1 / p}$.
Lemma 2.4. Let u be a bounded solution of (RD). Then

$$
\begin{equation*}
\int_{0}^{\infty}\left|Q g_{j}(u(s))\right|_{p}^{p} d s<\infty, \quad(j=1, \ldots, N) \tag{29}
\end{equation*}
$$

Proof. If $j \in \Lambda_{1,1}$, then (29) is clear from (16). Suppose $j \in \Lambda-\Lambda_{1,1}$. By integration by parts, $\left(-\Delta u_{j}, u_{j}\right)=\left|\nabla u_{j}\right|^{2}$, which is integrable by (18). Since

$$
\left\|Q u_{j}\right\|^{2} \leq M\left\|A_{j, 2}^{1 / 2} u_{j}\right\|^{2}=M\left(A_{j, 2} u_{j}, u_{j}\right)=M d_{j}\left(-\Delta u_{j}, u_{j}\right)=M d_{j}\left\|\nabla u_{j}\right\|^{2}
$$

which is integrable by (18) and since $\left\|Q u_{j}(t)\right\|_{p}^{p} \leq 2^{p-2} K^{p-2}\left\|Q u_{j}(t)\right\|^{2}$, we see that $\left\|Q u_{j}(t)\right\|_{p}^{p}$ is integrable on $[0, \infty)$. By the mean-value theorem,

$$
\begin{align*}
\left\|Q g_{j}(u(t))\right\|_{p} & =\left\|Q\left[g_{j}(u)-g_{j}(P u)\right]\right\|_{p} \\
& \leq \sum_{i=1}^{N} \int_{0}^{1}\left\|Q\left[\partial_{\xi_{i}} g_{j}(u+s(P u-u)) \cdot\left(P u_{i}-u_{i}\right)\right]\right\|_{p} d s \tag{30}\\
& \leq K_{2} M \sum_{i=1}^{N}\left\|P u_{i}-u_{i}\right\|_{p} \leq K_{2} M \sum_{1=1}^{N}\left\|Q u_{i}\right\|_{p}
\end{align*}
$$

from which (29) follows. This proves Lemma 2.4.
Lemma 2.5. Let u be a bounded solution of (RD). Then

$$
\begin{align*}
& \left\|A_{j} u_{j}(t)\right\|_{p} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{31}\\
& \left\|Q u_{j}(t)\right\|_{p} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{32}\\
& \left\|Q u_{j}(t)\right\|_{\infty} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{33}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\left\|u_{j}(t)\right\|_{\infty} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \quad\left(j \in \Lambda_{1,1}\right) . \tag{34}
\end{equation*}
$$

Proof. We first show (32). Applying the Q to both sides of (27), and using (26) and iv), we find that

$$
\left\|Q u_{j}(t)\right\|_{p} \leq M e^{-t \beta}\left\|\phi_{j}\right\|_{p}+M \int_{0}^{t} e^{-(t-s) \beta}\left\|Q g_{j}(u(s))\right\|_{p} d s
$$

Letting $t \rightarrow \infty$ in the above inequality, we have, by (29), (32). We next show (31). To this end we express $A_{j} u_{j}$ in the form:

$$
\begin{aligned}
A_{j} u_{j}(t)= & A_{j} e^{-t A_{j}} \phi_{j}+\int_{t / 2}^{t} A_{j} e^{-(t-s) A_{j}}\left(Q g_{j}(u(s))-Q g_{j}(u(t)) d s\right. \\
& +\int_{0}^{t / 2} A_{j} e^{-(t-s) A_{j}} Q g_{j}(u(s)) d s+\left(I-e^{-(t / 2) A_{j}}\right) Q g_{j}(u(t)) \\
& \left(\equiv J_{1}+J_{2}+J_{3}+J_{4}\right)
\end{aligned}
$$

Clearly, $J_{1} \rightarrow 0$ as $t \rightarrow \infty$ (in L^{p}). By(26) and (32), $J_{4} \rightarrow 0$ as $t \rightarrow \infty$. From (25) it is easy to see that

$$
\left\|J_{3}\right\|_{p} \leq M K \int_{0}^{t / 2}(t-s)^{-1} e^{-(t-s) \beta}\left\|Q g_{j}(u(s))\right\|_{p} d s
$$

from which it follows that $J_{3} \rightarrow 0$. It remains only to show $J_{2} \rightarrow 0$. Similarly to (30),

$$
\begin{equation*}
\left\|Q g_{j}(u(t))-Q g_{j}(u(s))\right\|_{p} \leq M K_{2}\|u(t)-u(s)\|_{p} \tag{35}
\end{equation*}
$$

On the other hand, by standard arguments in the theory of (linear) evolution operators, we can show:

$$
\begin{equation*}
\left\|u_{j}(t)-u_{j}(s)\right\|_{p} \leq M K_{1}\left(|t-s|+|t-s|^{1 / 2}\right) \tag{36}
\end{equation*}
$$

(For the proof see the appendix). Thus it follows from (26), (30), (23) and (36) that

$$
\left\|J_{2}\right\|_{p} \leq \rho(K) \int_{t / 2}^{t}\left(|t-s|^{-1 / 2}+|t-s|^{-3 / 4}\right) e^{-(t-s) \beta} d s \omega(t)^{1 / 2}
$$

where $\omega(t)=\sup _{t / 2 \leq s \leq t}\|Q u(s)\|_{p}$. Since $\omega(t) \rightarrow 0$, it follows that $J_{2} \rightarrow 0$. This shows (31). (33) and (34) are immediate consequences of (28), (31) and the Sobolev inequality.

Lemma 2.6. Let $j \in \Lambda_{3}$. Then there is $a \delta>0$ such that

$$
\begin{equation*}
\left|P u_{j}(t)\right| \geq \delta>0 \quad(t>0) \tag{37}
\end{equation*}
$$

Proof. By (24) and (2),

$$
\begin{aligned}
& \sum_{j \in \Lambda_{3}} c_{j}\left(P\left(\log u_{j}(t)\right)-P\left(\log \phi_{j}\right)\right) \\
& \quad \geq \int_{0}^{t} \int_{\Omega} \sum_{j \in \Lambda_{3}} c_{j} f_{j}(u) d x d s \\
& \quad \geq-\rho(K) \sum_{j \in \Lambda_{1}} \int_{0}^{t}\left\|u_{j}(s)\right\|_{1} d s \quad[\text { by (6) }] \\
& \\
& \quad \geq-M, \quad(>-\infty) \quad[\text { by (19)]. }
\end{aligned}
$$

Consequently, by the positivity of c_{j},

$$
\begin{equation*}
P \log u_{j}(t) \geq-M_{0}, \quad(t>0) \tag{38}
\end{equation*}
$$

with some constant M_{0}. By Jenssen's inequality, (37) follows from (38).
3. Proof of Theorem 1.1. We first show that $u_{j}(t)\left(j \in \Lambda_{1} \cup \Lambda_{2}\right)$ converges to some constant γ_{j} as $t \rightarrow \infty$, uniformly on Ω. We decompose u_{j} in the form:

$$
\begin{equation*}
u_{j}(t)=P u_{j}(t)+Q u_{j}(t), \quad\left(=I_{1}(t)+I_{2}(t)\right) \tag{39}
\end{equation*}
$$

Then by (33)

$$
\begin{equation*}
I_{2}(t) \rightarrow 0, \quad \text { uniformly on } \Omega \tag{40}
\end{equation*}
$$

Applying P to both side of (RD), integrating in x and t and noting $P \Delta u_{j}=0$, we see

$$
\begin{equation*}
I_{1}(t)-I_{1}(s)=\frac{1}{|\Omega|} \int_{s}^{t}\left(\int_{\Omega} g(u) d x\right) d s \tag{41}
\end{equation*}
$$

Since $\left\|g_{j}(u)\right\|_{1},\left(j \in \Lambda_{1} \cup \Lambda_{2}\right)$ is, by (20), integrable on [0, ∞), it follows that $\left\{I_{1}(t)\right\}$ is a Cauchy sequence. Hence there is a constant γ_{j} with

$$
I_{1}(t) \rightarrow \gamma_{j}
$$

which together with (40) shows that $u_{j}(t)$ converges to γ_{j} as $t \rightarrow \infty$, uniformly on $\bar{\Omega}$. Clearly $\gamma_{j} \geq 0$ since $u_{j} \geq 0$. Since $\left\|u_{j}(t)\right\|_{1},\left(j \in \Lambda_{1}\right)$ is integrable on $(0, \infty)$ by (19), it follows that

$$
\gamma_{j}=0, \quad\left(j \in \Lambda_{1}\right)
$$

Let $j \in \Lambda_{2}$. Similarly to (24) we get

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega} f_{j}(u) d x d s+\int_{\Omega} \log \phi_{j}(x) d x \leq \int_{\Omega} \log u_{j}(x, t) d x \tag{42}
\end{equation*}
$$

The first term on the left hand side is bounded from below, and so

$$
-M_{1} \leq \text { the left hand side of (42) }
$$

M_{1} being some positive constant independent of t, since $\left\|f_{j}(u)\right\|_{1}$ is integrable on $[0, \infty)$ in view of (4) and (19). Hence letting $t \rightarrow \infty$ in (42) we see that the limit of the right hand side is bounded by $-M_{1}$ from below. Since the limit of the right side is $|\Omega| \log \gamma_{j}$, it follows that

$$
\begin{equation*}
\gamma_{j}>0 \quad\left(j \in \Lambda_{2}\right) \tag{43}
\end{equation*}
$$

Set

$$
h(t)=\sum_{k=1}^{N} b_{k} P u_{k}(t)
$$

for simplicity. Then by (1)

$$
(d / d t) h(t)=P\left(\sum_{k=1}^{n} b_{k} g_{k}(u)\right) \leq 0
$$

since $P \Delta u_{j}=0$. Hence $h(t)$ is monotone decreasing in $t . h(t)$ is non-negative, since $u_{j}(t)$ is non-negative. Thus the limit of $h(t)$ exists, and we denote it by μ_{0}. If $\Lambda_{1} \neq \Lambda$, then $\mu_{0}>0$ in view of (37), and (43). Finally we show

$$
\begin{equation*}
J \equiv \sum_{k \in \Lambda_{3}} c_{k}^{(j)} \log u_{k}(t) \rightarrow \mu_{j} \quad(t \rightarrow \infty), \text { uniformly on } \Omega \tag{44}
\end{equation*}
$$

Put

$$
J_{1}=P J, \quad J_{2}=Q J, \quad c_{k}=c_{k}^{(j)}
$$

Then

$$
\begin{aligned}
J_{2} & =\sum_{k} c_{k} Q\left[\log \left(P u_{k}(t)+Q u_{k}(t)\right)-\log P u_{k}(t)\right] \\
& =\sum_{k} c_{k} Q \log \left(1+Q u_{k}(t) / P u_{k}(t)\right)
\end{aligned}
$$

which tends to zero as $t \rightarrow \infty$, uniformly on $\bar{\Omega}$, in view of (33) and (37). Simple calculation gives

$$
\begin{equation*}
J_{1}(t)-J_{2}(s)=\sum_{k} c_{k} \int_{s}^{t}\left[\int_{\Omega}\left(d_{k}\left|\nabla u_{k}\right| /\left.u_{k}\right|^{2}+f_{k}(u)\right) d x\right] d s \tag{45}
\end{equation*}
$$

By (24), $\left|\left(\nabla u_{k}\right) / u_{k}\right|$ is square integrable on $\Omega \times(0, \infty)$. Also the absolute value of the integral of $\sum_{k} c_{k} f_{k}(u)$ on the right hand side of (44) is, by (6), dominated by the integrable function

$$
\rho(K) \sum_{k \in \Lambda_{1}} \int_{s}^{t}\left\|u_{k}(\tau)\right\|_{L^{1}} d \tau
$$

Hence the right hand side of (45) tends to zero as $s, t \rightarrow \infty$. Thus $\left\{J_{1}(t)\right\}$ is a Cauchy sequence, and so is $J(t)$. This shows (44). This completes the proof of Theorem 1.1.

Appendix. Proof of (36). Here we shall give the proof of (36). Set $A_{j}=A$, $g_{j}=g$, etc. for simplicity. To show (36), we estimate each term on the right-hand side of the equation

$$
\begin{aligned}
& u(t)-u(s)=\left(e^{-t A}-e^{-s A}\right) \phi+\int_{s}^{t} e^{-(t-\tau) A} g(u(\tau)) d \tau \\
& +\int_{0}^{s}\left(e^{-(t-\tau) A}-e^{-(s-\tau) A}\right) f(u(\tau)) d \tau\left(\equiv J_{1}+J_{2}+J_{3}\right)
\end{aligned}
$$

From the elementary properties in semigroup theory it follows that

$$
\begin{aligned}
\left\|\left(e^{-t A}-e^{-s A}\right)\right\| & \leq(t-s)\left\|\left(e^{-(t-s) A}-I\right) /((t-s) A)\right\|\left\|A e^{-s A}\right\| \\
& \leq M(t-s) s^{-1} e^{-s \beta} ; \text { and } \\
\left\|e^{-t A}-e^{-s A}\right\| & \leq M e^{-s \beta}
\end{aligned}
$$

Hence by the interpolation theorem,

$$
\begin{equation*}
\left\|e^{-t A}-e^{-s A}\right\| \leq M(t-s)^{\theta} s^{-\theta} e^{-s \beta} \quad(0<\theta<1 ; 0<s<t) \tag{A1}
\end{equation*}
$$

Similarly,

$$
\left\|\left(e^{-t A}-e^{-s A}\right) \phi\right\|_{p} \leq M(t-s) e^{-s \beta}\|A \phi\|_{p}
$$

Thus by (26)

$$
\left\|J_{1}\right\|_{p} \leq M(t-s), \quad\left\|J_{2}\right\|_{p} \leq M K_{3}(t-s)
$$

where $K_{3}=\sup |g(\xi)|,(|\xi| \leq K)$. Also by (A1) with $\theta=1 / 2$,

$$
\left\|J_{3}\right\| \leq M(t-s)^{1 / 2}
$$

Collecting all the estimates above we get (36).
Acknowledgment: The authors express their gratitude to the referee for useful comments, e.g., on the definition of Λ_{1}.

REFERENCES

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12 (1959), 623-727.
[2] H. Amann, Existence and stability of solutions for semilinear parabolic systems and applications to some diffusion-reaction equations, Proc. Roy. Soc. Edinburgh, Sect A, 81 (1978), 35-42.
[3] H. Amann, "Ordinary Differential Equations," Walter de Gruyter, Berlin, New York, 1990.
[4] K.J. Brown and P. Hess, Positive periodic solutions of predator-prey reaction-diffusion systems, Nonlinear Anal., 16 (1991), 1147-1158.
[5] W.A. Coppell, A survey of quadratic systems, J. Differential Equations, 2 (1966), 293-304.
[6] P. Fife and M. Mimura, A 3 component system of competition and diffusion, preprint.
[7] A. Friedman, "Partial Differential Equations," Holt, Rinehart and Winston, INC., New York, 1969.
[8] A. Friedman and A. Tzavaras, A quasilinear parabolic system arising in modelling of catalytic reactors, J. Differential Equations, 70 (1987), 167-196.
[9] D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Math. 840, Springer-Verlag, New York, 1981.
[10] A.N. Kolmogorov, Sulla teoria di Volterra della lotta per l'esistenza, Giorn. Instituto Ital. Attuari, 7 (1936), 74-80.
[11] N. Krikorian, The Volterra model for three species predator-prey systems: boundedness and stability, J. Math. Biol., 7 (1979), 117-132.
[12] P Hess and Alan C. Lazer, On an abstract competition model and applications, Nonlinear Anal., 16 (1991), 917-940.
[13] A. Lotka, "Elements of Mathematical Biology," Dover, New York, 1956.
[14] Y. Oshime, Global boundedness of cyclic predator-prey systems with self-limiting terms, preprint.
[15] Y. Oshime, Global boundedness of cyclic predator-prey systems with self-limiting terms, Japan J. Appl. Math., 5 (1988), 153-172.
[16] F. Rothe, "Global Solutions of Reaction-Diffusion Systems," Lecture Notes in Math. 1072, Springer-Verlag, New York, 1984.
[17] Y. Takeuchi, N. Adachi and H. Tokumaru, Global stability of ecosystems of the generalized Volterra type, Math., Biosci., 42 (1978), 119-136.

