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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS

M. RAMA MOHAN A RAO AND P. SRINIVAS

ABSTRACT. The asymptotic behavior of solutions of Volterra integro-

differential equations of the form

f*
x'(t) = A(t)x(t) +       K(t,s)x(s)ds + F(t)

Jo

is discussed in which A is not necessarily a stable matrix. An equivalent

equation which involves an arbitrary function is derived and a proper choice of

this function would pave a way for the new coefficient matrix B (corresponding

A) to be stable.

1. Introduction. The objective of this paper is to investigate the asymptotic

behavior of solutions of the Volterra integro-differential equation (VIDE)

(1.1) x'(t) = A(t)x(t)+      K(t,s)x(s)ds + F(t)
Jo

where A(t) and K(t,s) are nxn matrices defined and continuous on 0 < t < oo and

0 < s < t < oo, respectively, and x(i) and F(t) are n-vectors with F(t) continuous

on 0 < t < oo, when the matrix A is not necessarily stable. Our main approach here

is by way of deriving an equivalence theorem (Lemma 2.1) which has the potential

to supply us a stable matrix B corresponding to A.

It is well known that the linear autonomous ordinary differential system is asymp-

totically stable if all the characteristic roots of the coefficient matrix have negative

real parts [12, Chapter 3]. For nonautonomous systems, with an addition of the

Lipschitz condition on the coefficient matrix, similar results have been expounded

in [4 and 5]. Thus while studying VIDE (1.1), be it through Liapunov second

method [1, 2, 14, 15] or from perturbation theory [8, 10, 13], it has invariably

been assumed that the coefficient matrix is stable. Notable exceptions that have

dispensed with the stability condition on the coefficient matrix have been the works

of Levin [9], Grossman and Miller [7], Grimmer and Seifert [6], Burton [3], among

others. In [9] this has been done by defining a suitable energy function while in

[7] the integrability of the resolvent function of VIDE (1.1) has been characterized

by a transformation condition similar to that given in [11] for Volterra integral

equations. In [6] the same has been achieved by studying the rsolvent of a trans-

formed equation. Quite recently in [3], the conditions involving the anti-derivatives

of the kernel are assumed. Motivated by the interesting nature of this problem, an

attempt has been made in §2 to study the asymptotic behavior of solutions of (1.1)
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when the coefficient matrix A in (1.1) is not necessarily stable. Our approach here

has been to develop an equivalent equation which involves an arbitrary function.

A proper choice of this function would pave a way for the new coefficient matrix

(corresponding to equivalent VIDE) to be stable.

2. Main results.  The following lemmas are useful in our subsequent discussion.

LEMMA 2.1.   Let $(t, s) be annxn continuously differentiable matrix function

onO<s<t<oo.  Then the equation (1.1) is equivalent to

(2.1) y'{t) = B(t)y{t) + f L(t, s)y(s)ds + H(t),        y(0) = x0,
Jo

where

(2.2) B(t) = A(t) - *(t,t),

L{t, s) = K(t, s) + $3 (i, s) + $(i, s)A{s) + /  $(i, u)K(u, s) du,

and

H(t) = F(t) + $(t,0)xo+ f $(t,s)F(s)ds.
Jo

PROOF. Let x(t) with x(0) = xo be any solution of (1.1) existing on the interval

0 < t < oo. Consider the identity

ct ft

j   <S>3{t,s)x{s)ds = ${t,t)x(t)-${t,0)xo- /   $(t,s)x'(s)ds.
Jo Jo

Substituting for x'{t) from (1.1) and using Fubini's theorem, we get

(2.3) /   $s(t,s)x(s)ds = $(t,t)x(t) - $(t,0)x0 - /   ${t,s)F(s)ds
Jo Jo

- /   $(t,s)A(s)x{s)ds- /     /   $(i, s)K(s, t) ds  x(r)dT.
Jo Jo    Ut

Then it follows from (1.1) and (2.1)-(2.3) that

/   L{t,s)x{s)ds —   /   K(t,s)x(s)ds+      $a(t,s)x{s)ds
Jo Jo Jo

+ f $(t,s)A(s)x(s)ds
Jo

x(s)ds+ fo[fa *{t,u)K{u,s)du

= x'{t) - A(t)x(t) - F(t) + $(i, i)x(f)

-$(i,0)xo- / $(t,s)F(s)ds
Jo

= x'{t)-B(t)x(t) + H{t).

Thus every solution of (1.1) is also a solution of (2.1).   Conversely, let y(t) be a

solution of (2.1) with y{0) = xn. Define

z(t) = y'(t) - F{t) - A{t)y{t) - [ K{t, s)y(s) ds.
Jo
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From (2.1), (2.2) and the definition of z(t) we obtain

z{t)= -$(t,t)y(t)+ j   Us{t,s) + $(t,s)A(s)+ j   <f>(t,u)K{u,s)du  y(s)ds

+ $(t,0)xo+ j $(t,s)F{s)ds.
Jo

Substituting for F(s) from the definition of z(t) and changing the order of integra-

tion, we get

rt

z(t) =

From the identity

$(t,t)y(t) - $(t,0)xo - f ${t,s)y'(s)
Jo

/   $s{t,s)y(s)ds-       $(t,s)z(s)ds.
Jo Jo

ds

í $(t,s)y'{s)ds = $(t,t)y(t)-$(t,0)xo- [ $s(t,s)y(s)ds
Jo Jo

it is clear that

z(t) = - f\(t,s)
Jo

z(s)ds.

Since $(i, s) is continuous, it follows from the uniqueness of solutions of Volterra

integral equations that z(t) = 0. Hence y(t) solves (1.1).

REMARK 2.2. It is to be noted that if $(i, s) is the differentiable resolvent

corresponding to the kernel K(t,s), then the equation (2.1) together with (2.2)

gives the usual variation of constants formula (see Grossman and Miller [8]).

LEMMA 2.3. Let B(t) be an n x n continuous matrix which commutes with its

integral and let M and a be positive numbers. Suppose the inequality

rt

(2.4) exp L«í>dr <Me-a{t-a),        0<s<t<oc,

holds. Then every solution x{t) of (2.1) with x(0) = Xn satisfies

r*
(2.5) |x(i)| < M|x0|e-Qt + M      e~a{t-T)\H(T)\ dr

Jo

+ M
JO    Us

-a(t-r)
\L(r,s)\dT \x{s)\ ds.

PROOF.  Multiplying both sides of (2.1) by exp(-/0 B(r)dr) and rearranging

the terms, we obtain

H(t)+ /   L(t,s)x(s)ds
Jo

Í B(t) dr] x(t) = xo + f exp ( - /  B{r)dr] H(s) ds

+      expi-/   B{r)dTj (       L(s,u)x(u)du

expi-/  B(r)dT ) x(i) j   =expi-/   B(r)dT

Integrating from 0 to t, we get

exp
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By changing the order of integration on the right side and using (2.4), we obtain

(2.5).
REMARK 2.4. If B is a constant matrix, then it commutes with its integral.

Further, the condition (2.4) holds if, in addition, all the characteristic roots of B

have negative real parts (cf. [12, Chapter 2]).

THEOREM 2.5. Let $(i, s) be a continuously differentiable nxn matrix function

such that, for 0 < s < t < oo,

(i) the hypotheses of Lemma 2.3 holds,

(ii) |$(i,S)|<L0e-^-^,

(iii) sup0<s<t<oo/ateQ(r-s)|L(r,s)|dr < o0,

where Lo,7 (> a), an are positive real numbers. Suppose further

(iv) F(t) ee 0,

where F(t) is defined in (1.1).  If a — Mao > 0, then every solution x{t) of (1.1)

tends to zero exponentially as t —> +oo.

PROOF. In view of Lemma 2.1 and the function $(£, s) satisfying the conditions

(i), (ii) and (iii), it is enough to show that every solution of (2.1) tends to zero

exponentially as t —► +oo. Since F(t) = 0, the equation (2.2) and (2.5) and the

condition (ii) imply that

eQt|x(i)| <M\x0\ + MLo\x0\ f e'^'^dr
Jo

x(s)\ds.+ML lfaeaTMT>^dT
Using (iii), we get

eat|x(i)| < M|x0| + ^ß°M + / Ma0eas\x(s)\ds.
(1 - a)      Jo

The application of Gronwall inequality yields that

„a*U^M ^  1WU..I ( 1 j_r5_ ) JVf<*oteQt|x(t.)| ^Mlxo]^

|x(i)|<M|x0|(l + I^)Ê-(—)..

This implies that

Thus in view of a — Mao > 0, the result follows.

COROLLARY 2.6.   In addition to the assumptions (i), (ii) and (iv) of Theorem

2.5, suppose the following conditions hold:

(a) \K(t,s)\ < /C~0e_/3(t-s) for 0 < s < t < oo,

(b) |<MM)| < Noe-W-") for 0 < s < t < oo,
(c) |A(i)| < A0 for0< t < oo

where Ao,No,K0,ß,6 are positive real numbers, and

(d) 7 > ß > a, 6 > a and a - Mâo > 0
where

„     def
a0  = K°    +   N°    f L°A° 4 K°L°

_ß-a     6-a     7-o      (ß-a){~1-ß)_

Then every solution x(t) of (1.1) tends to zero exponentially as t —> +oo.
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PROOF. Following the proof of Theorem 2.5, we obtain

Lo    ^
(2.6)    eat|x(t)| <M|x0|    1 +

(7 -a)

t r  rt

+ M I   \f eaT\K(T,s) + $a(T,s)-r$(T,s)A(s)

+   /   $(T,u)K(u,s)du
J s

dr \x(s)\ds.

Using conditions (i), (a), (b), (c) and estimating each integral on the right side of

(2.6), we get

eat |x(i)|<M|xo|(l + I7Z^)

/ Mâ0eaa\x(s)\ds.
Jo

Thus, in view of condition (d), the application of Gronwall's inequality yields the

desired result.

REMARK 2.7. If F{t) = 0 in equation (1.1), then the Theorem 2.5 asserts that

the zero solution of (1.1) is exponentially asymptotically stable.

REMARK 2.8. If F{t) is not zero in Theorem 2.5, still the solutions of (1.1) tends

to zero as t —> +00 provided f0°° \F(s)\ds < 00. This is an immediate consequences

of variation of constants formula (see [8]) and Theorem 2.5.

REMARK 2.9. It is possible to select a matrix function $(i,s) satisfying the

conditions (i) and (ii) of Theorem 2.5 and condition (b) of Corollary 2.6. For

example, if $(t, s) = Loe^^^I, then Nq = Lo7 and 6 = 7. $(i, t) being a

constant matrix in this case, the estimate (2.4) is guaranteed if A(t) is a constant

matrix and B is negative definite.

REMARK 2.10. Basically it is the condition "Mâ0 < a" in Corollary 2.6

which controls the asymptotic nature of the solution x(t) of (1.1). A look at the

composition of âo reveals that while so choosing 7 and 6 much away from ß and

a, respectively, we can nullify the effect of the last three terms in âo, the first term

Ko/{ß — a) being the essential term which we have to reckon with. Therefore, if ß

is so large as to exceed (a2 + MKo)/a, then Mao would be less than a. Thus we

see that the attenuation required on the kernel K(t, s) is linked with the constant

a in (2.4). This conclusion implicity assumed the estimate (2.4). Such an estimate

would be possible when the transformed matrix B is constant and negative definite.

REMARK 2.11. In [3], a condition of the type (2.4) has been used for the matrix

Q = (A{t) - G(t, t)), where G(t, s) is the anti-derivative of the kernel K(t, s) (i.e.

dG(t, s)/dt — K(t, s)). As such the matrix B in our study allows more flexibility

due to the arbitrary character of the function 4>(f, s). Further, our approach is

entirely different and the analysis in [3] can be applied to equation (2.1) in order

to obtain sharper estimates. Thus our Theorem 2.5 is in addition to the Theorem

2 of [3] rather than a substitute for it.

EXAMPLE 2.12. In (1.1) (scalar case), let A(t) = aie_M - a2, K(t,s) =

e-b2(t,s) gjrá pt^  = q where ax,a2,bx,b2 are positive real numbers.    Choose
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$(i,s) = axe blt. Then M = l,a — a2,Ao = ax + a2,Lo = ax,Ko = l,ß =

62,7 = S = bx and No = 0. Thus the condition (d) of Corollary 2.6 holds if

01 = Ka2, bx = (4K2 + 4K + 1)03,63 = (4 + a\)/a2 and o2 > 2/[K(4K + 3)]1/2

where K (1 < K < 00) is an arbitrary real number. For example, if K — 2, a2 = 1,

then Meto — 0.53 and a — 1.

The authors wish to thank the referee for suggesting a proof for the converse

part of Lemma 2.1.
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