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Abstract. In this paper we investigate a boundary value problem (BVP) derived from

a model of boundary layer flow past a suddenly heated vertical surface in a saturated

porous medium. The surface is heated at a rate proportional to xk where x measures

distance along the wall and k > −1 is constant. Previous results have established the

existence of a continuum of solutions for −1 < k < −1/2. Here we further analyze

this continuum and determine that precisely one solution of this continuum approaches

the boundary condition at infinity exponentially while all others approach algebraically.

Previous results also showed that the solution to the BVP is unique for −1/2 ≤ k < 0.

Here we extend the range of uniqueness to 0 ≤ k ≤ 1. Finally, the physical implications

of the mathematical results are discussed and a comparison is made to the solutions for

the related case of prescribed surface temperature on the surface.

1. Introduction. Convective flows in porous media appear in a wide variety of in-

dustrial processes as well as in many natural circumstances (see [16], pp. 377ff.). Models

of such flows have been investigated for a number of physical configurations, including

that involving a vertical flat surface. Cheng and Minkowycz [2] and Ingham and Brown

[10] considered the free convection boundary layer flow next to a vertical surface in a sat-

urated porous medium where the temperature of the surface was suddenly raised above

ambient. Merkin and Zhang [13] studied a similar problem in which the convective flow

is generated by a prescribed heat flux through the surface being impulsively switched on.

Merkin and Zhang note the need to discuss both the prescribed wall temperature case

and the prescribed wall heat flux case since the nature of the solutions can be different in
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the two cases. Indeed, one purpose of this paper is to compare the nature of the solutions

for the two scenarios.

Merkin and Zhang [13] use a similarity transformation to study the large time steady

state behavior of the flow. They also consider the transition from the initial configuration

to the steady state in the time dependent partial differential equation and find that their

numerical scheme breaks down for certain values of the parameter governing the surface

heat flux. Another goal of this paper is to explain further this numerical instability.

Interest in the problem continues with the more recent paper of Merkin and Pop [12],

who consider the case where there is a relationship between the wall heat flux and the

wall temperature in the form of a power law variation in the temperature. Through a

change of variables they reduce this new case to that considered in [13] and in the present

paper. The problem also appears in [17] (Chapter 5).

The plan of the paper is as follows. Section 2 lists the governing partial differential

equations as well as the ODE boundary value problem derived by Merkin and Zhang

[13] through a similarity transformation. This section also discusses a second physical

situation in fluid dynamics that leads to the same BVP as that derived by Merkin and

Zhang. Previous mathematical results on the BVP, including the existence of a con-

tinuum of solutions for certain parameter values, are also reviewed. Section 3 contains

the asymptotic analysis of the continuum of solutions. Section 4 expands the range of

parameter values for which uniqueness of the solution is valid, and Section 5 discusses

the implications of the results for the physical model as well as open questions.

2. Mathematical model. The non-dimensionalized model considered by Merkin

and Zhang [13] reads as follows:

∂ψ

∂y
= θ, (2.1)

∂θ

∂t
+

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
=

∂2θ

∂y2
, (2.2)

subject to

ψ = 0, θ = 0, for t = 0, x ≥ 0, y ≥ 0, (2.3)

ψ = 0,
∂θ

∂y
= −xk, for y = 0, x ≥ 0, t ≥ 0, (2.4)

∂ψ

∂y
→ 0, θ → 0, as y → ∞, x ≥ 0, t ≥ 0. (2.5)

Here a semi-infinite vertical flat surface which is embedded in a saturated porous medium

is considered. Coordinates (x, y) measure position along the surface and normal to it,

respectively, with the origin at the leading edge, the x-axis directed upward and the y-axis

directed to the right. The velocities in the x- and y- directions are, respectively, u(x, y, t)

and v(x, y, t) with the stream function, ψ(x, y, t), defined by u = ∂ψ/∂y, v = −∂ψ/∂x.

The fluid temperature is given by θ(x, y, t), and the wall heating rate, xk, is switched on

at t = 0.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A BVP FROM FLUID MECHANICS 705

Merkin and Zhang [13] reduce the number of independent variables by one through

the similarity transformation:

ψ = x(k+2)/3f(η, τ ), η = yx(k−1)/3, τ = tx2(k−1)/3. (2.6)

Equations (2.1) and (2.2) thus become

θ = x(2k+1)/3 ∂f

∂η
, (2.7)

(
1− 2(1− k)

3
τ
∂f

∂η

)
∂2f

∂η∂τ
−
[(

k + 2

3

)
f − 2(1− k)

3
τ
∂f

∂τ

]
∂2f

∂η2

+

(
2k + 1

3

)(
∂f

∂η

)2

=
∂3f

∂η3
, (2.8)

with boundary conditions

f = 0, for all η, τ < 0, (2.9)

f = 0,
∂2f

∂η2
= −1, on η = 0, τ ≥ 0, (2.10)

∂f

∂η
→ 0, as η → ∞, τ ≥ 0. (2.11)

Merkin and Zhang [13] note that η and τ are the appropriate variables to use for

studying the final decay to the steady state solution, and by setting ∂/∂τ ≡ 0 in (2.8)

they obtain the steady state boundary layer equation

f ′′′ =

(
2k + 1

3

)
f ′2 −

(
k + 2

3

)
ff ′′, (2.12)

subject to

f(0) = 0, f ′′(0) = −1, f ′(∞) = 0. (2.13)

We now list some known results regarding the BVP (2.12)-(2.13):

Theorem A ([13]). For k ≤ −1, no solution to the BVP (2.12)-(2.13) exists.

In [14] we found it convenient to consider a related family of initial value problems,

namely equation (2.12) subject to

f(0) = 0, f ′(0) = α, f ′′(0) = −1, (2.14)

where α is a free parameter.

Theorem B ([14]). If −1 < k < −1/2, then the BVP (2.12)-(2.13) has uncountably

many solutions given by the solutions f(η;α) to the IVP (2.12, 2.14) where

α ≥
√
3k2 + 16k + 17√

3(k + 1)
. (2.15)

Further, these solutions satisfy f ′ > 0 and f ′′ < 0 for all η > 0.

Theorem C ([14]). If −1/2 ≤ k < 0, then the BVP (2.12)-(2.13) has exactly one

solution. If k ≥ 0, then the BVP (2.12)-(2.13) has at least one solution.
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Theorem B raises the question of which solution(s), if any, are physically relevant. In

the next section we show that for −1 < k < −1/2, the BVP has precisely one solution

whose derivative decays to zero exponentially, while the derivatives of the other solutions

decay to zero algebraically. In fact, this algebraic decay of f ′(η;α) is so slow that f(η;α)

tends to infinity.

Finally we note that the exact same BVP (2.12)-(2.13) was derived and numerically

studied in a series of papers investigating Marangoni convection [3], [4], [5], [19], [20].

3. Asymptotic behavior of the solutions for −1 < k < −1/2. The BVP of

interest reads:

f ′′′ =

(
2k + 1

3

)
f ′2 −

(
k + 2

3

)
ff ′′, (3.1)

f(0) = 0, f ′′(0) = −1, f ′(∞) = 0, (3.2)

for k ∈ (−1,−1/2). As mentioned before, it has been proved that for each −1 < k <

−1/2, the BVP (3.1)-(3.2) admits a continuum of solutions satisfying f ′ > 0 with f ′′ < 0.

In fact it follows from the proof in [14] that the solution of the differential equation (3.1)

with initial conditions

f(0) = 0, f ′(0) = α, f ′′(0) = −1 (3.3)

satisfies (3.2) if and only if α ≥ α(k) > 0, where α(k) is defined by

α(k) = inf{α : (3.1)-(3.3) has a solution f with f ′ > 0 satisfying f ′(∞) = 0}. (3.4)

The goal is to find the asymptotic behavior of these solutions.

Theorem 1. Fix k ∈ (−1,−1/2). Then the BVP (3.1)-(3.2) admits

(i) a unique solution called the “principal solution”, denoted by f̂ , corresponding to

f̂ ′(0) = α(k), satisfying

f̂ ′(η) ∼ c1f̂(η)
− 3(k+1)

k+2 exp

(
−
∫ η

η̃

f̂(s) ds

)

as η → ∞ for some η̃ > 0 sufficiently large, and a constant c > 0 that depends only on

k and η̃, and

(ii) a continuum of solutions {f}, satisfying f ′(η) ∼ cf(η)
2k+1
k+2 as η → ∞ for some

constant c > 0 that depends only on k.

Remark 3.1. (i) The fact that f̂ ′(η) ∼ cf̂(η)−
3(k+1)
k+2 exp(−

∫ η

η̃
f̂) implies that f̂ → f�

as η → ∞, for some 0 < f� < ∞.

(ii) The second class of solutions of (3.1)-(3.2) grow algebraically to infinity, namely

f(η) ∼ cη
k+2
1−k as η → ∞.

To prove Theorem 1, we will need the following result from [8], p. 382:

Lemma 3.1. Let q(t) > 0 be a positive function on t ∈ [0,∞) possessing a continuous

second order derivative and satisfying∫ ∞
q1/2(t) dt = ∞ and

∫ ∞ ∣∣∣∣ 5q
′2

16q3
− q′′

4q2

∣∣∣∣ q1/2 dt < ∞.
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Then u′′ − q(t)u = 0 has a pair of solutions satisfying

u ∼ q−1/4 exp

(
±
∫ t

q1/2(s) ds

)

as t → ∞.

Remark 3.2. Here
∫∞

q(s) ds and
∫ t

q(s) ds are interpreted as
∫∞
t0

q(s) ds and∫ t

t0
q(s) ds for some t0 > 0 respectively.

The rest of this section is devoted to the proof of Theorem 1. The proof is motivated by

the paper [7], which deals with the asymptotic behavior of solutions of the Falkner-Skan

equation. We will use similar arguments in this proof.

Proof of Theorem 1. Let g = (k + 2)f/3. Then the BVP (3.1)-(3.2) transforms to

g′′′ + gg′′ − 2k + 1

k + 2
g′2 = 0, (3.5)

g(0) = 0, g′′(0) = −k + 2

3
, g′(∞) = 0, (3.6)

and we define

g′(0) = γ ≥ γ(k), where γ = (k + 2)α/3 and γ(k) = (k + 2)α(k)/3. (3.7)

It follows from [14] that (3.5)-(3.6) has a continuum of solutions. We will prove that

(3.5)-(3.6) has a unique solution ĝ with ĝ′(0) = γ(k) satisfying

ĝ′(η) ∼ cĝ(η)−
3(k+1)
k+2 exp(−

∫ η

η0

ĝ)

as η → ∞ for some η0 > 0 sufficiently large and for some constant c > 0 that depends

only on k and η0. As a by-product of the proof we will also obtain that the other solutions

{g} of (3.5)-(3.6) satisfying g′(0) = γ, where γ > γ(k), obey g′(η) ∼ cg(η)
2k+1
k+2 as η → ∞

for some constant c > 0 that depends only on k.

Let h = g′. Then h satisfies the equation

h′′ + gh′ −
(
2k + 1

k + 2

)
g′h = 0. (3.8)

We also set

h = xe
− 1

2

∫ η
η0

g ds
, (3.9)

where η0 > 0 will be chosen later. With this transformation, (3.8) can be rewritten as

x′′ − q(η)x = 0, (3.10)

where

q(η) =
1

4
g2(η) +

(
5k + 4

2(k + 2)

)
g′(η). (3.11)

Since g(0) = 0 and g′(η) > 0 for all η ≥ 0, there exists a constant A > 0 such that

g2(η) > A for η > 0 sufficiently large. Using this and the fact that g′(η) → 0 as η → ∞,

it follows from (3.11) that there exists some η�(k) > 0 large enough (to be chosen later)

such that q(η) > 0 for all η ≥ η�.
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We define a new variable t by t = η − η� for η ≥ η� and consider g(t). Then clearly

g(t) > 0, g′(t) > 0 and q(t) > 0 for t ≥ 0. Differentiating (3.11) with respect to t, we

obtain that

q′(t) =
1

2
g(t)g′(t) +

(
5k + 4

2(k + 2)

)
g′′(t) (3.12)

and

q′′(t) =
(11k2 + 17k + 8)

2(k + 2)2
g′2(t)− 2k + 1

k + 2
g(t)g′′(t). (3.13)

Since g′ → 0 as t → ∞ we have from (3.11) that

q(t) >
1

8
g2(t) (3.14)

for t > 0 sufficiently large. Further, since g′′ < 0, we have from (3.12), (3.13) and (3.14)

that for t > 0 sufficiently large, there exists a constant C > 0 such that

q′2

q5/2
≤ C

g5
(g2g′2 + g′′2 + gg′g′′)

≤ C

(
g′2

g3
+

g′′2

g5

)
if − 4

5
≤ k < −1

2
, (3.15)

q′2

q5/2
≤ C

g5
(g2g′2 + g′′2 − gg′g′′)

= C

(
g′2

g3
+

g′′2

g5
− g′g′′

g4

)
if − 1 < k < −4

5
, (3.16)

and

|q′′|
q3/2

≤ C

(
g′2

g3
− gg′′

g3

)
. (3.17)

Let T1 > 0 be large enough such that (3.14), (3.15), (3.16) and (3.17) hold. Then on

integrating (3.15) and (3.16) over [T1,∞) we obtain that∫ ∞

T1

q′2

q5/2
≤ C

(∫ ∞

T1

g′2

g3
+

∫ ∞

T1

g′′2

g5

)
if − 4

5
≤ k < −1

2
(3.18)

and ∫ ∞

T1

q′2

q5/2
≤ C

(∫ ∞

T1

g′2

g3
+

∫ ∞

T1

g′′2

g5
−
∫ ∞

T1

g′g′′

g4

)
if − 1 < k < −4

5
. (3.19)

We will now consider each of the above integrals separately. Note that since g′ and g′′

are bounded with g′′ < 0 and g increasing, there exist constants C1 > 0 and C2 > 0 such

that ∫ ∞

T1

g′2

g3
≤ C1

∫ ∞

T1

g′

g3
< ∞ (3.20)

and

−
∫ ∞

T1

g′g′′

g4
≤ C2

∫ ∞

T1

g′

g4
< ∞. (3.21)
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Similarly an integration by parts to the integral
∫∞
T1

g′′/g5 with u = 1/g5 and dv = −g′′

and an argument similar to (3.20) yield∫ ∞

T1

g′′2

g5
≤ C3

∫ ∞

T1

−g′′

g5
< ∞, (3.22)

for some constant C3 > 0. Hence on combining (3.19), (3.20), (3.21) and (3.22) we obtain

that ∫ ∞

T1

q′2

q5/2
< ∞. (3.23)

Similarly on integrating (3.17) we can prove that∫ ∞

T1

|q′′|
q3/2

< ∞. (3.24)

Since g is increasing, we have from (3.14) that for large t > 0,∫ ∞

T1

q1/2(s) ds = ∞. (3.25)

Hence on combining (3.23), (3.24) and (3.25), we conclude that q(t) satisfies all the

conditions in Lemma 3.1. Rewriting (3.11) yields

q =
1

4
g2

(
1 +

2(5k + 4)

(k + 2)

g′

g2

)
, (3.26)

so that

q1/2 =
g

2

(
1 +

(5k + 4)

(k + 2)

g′

g2
+O

(
g′2

g4

))

=
g

2
+

(5k + 4)

2(k + 2)

g′

g
+O

(
g′2

g3

)

as t → ∞. Hence for all t > T1 sufficiently large, we have∫ t

T1

q1/2(s) ds =
1

2

∫ t

T1

g ds+
(5k + 4)

2(k + 2)
ln g + c0, (3.27)

for some constant c0 that depends only on k and T1. Moreover since g′ → 0, it follows

from (3.26) that

q(t) ∼ 1

4
g2(t),

so that

q−1/4(t) ∼
(
1

2
g(t)

)−1/2

(3.28)

as t → ∞. From (3.27), (3.28) and applying Lemma 3.1, we obtain that (3.10) has a pair

of solutions satisfying

x(t) ∼ ĉ

(
1

2
g(t)

)−1/2

exp

(
±
(
1

2

∫ t

T1

g(s) ds+
(5k + 4)

2(k + 2)
ln g(t)

))

as t → ∞, for some constant ĉ > 0 that depends only on k and T1.
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Let s̃ = s − η�. Define η0 by η0 = T1 + η�. Then from (3.9) it follows that h =

xe
− 1

2

∫ t
T1

g(s) ds̃
. Hence (3.8) has a pair of solutions satisfying

h ∼ cg−
3(k+1)
k+2 exp

(
−
∫ t

T1

g(s) ds

)

and

h ∼ cg
2k+1
k+2

as t → ∞ for some c > 0 that depends only on k and T1. Since g′ = h, (3.5)-(3.6) has

solutions satisfying either

g′ ∼ cg−
3(k+1)
k+2 exp

(
−
∫ t

T1

g ds

)
(3.29)

or

g′ ∼ cg
2k+1
k+2 (3.30)

as t → ∞. (3.29) implies that g → g� for some 0 < g� < ∞, while (3.30) implies that

g(t) ∼ ct
k+2
1−k (3.31)

as t → ∞.

To complete the proof of Theorem 1 we will now prove that (3.5)-(3.6) admits a unique

solution that satisfies (3.29). For this we will need a couple of lemmas stated below.

Lemma 3.2. The BVP (3.5)-(3.6) has a solution ĝ that satisfies (3.29).

Proof. To prove the lemma, we will show that (3.5)-(3.6) has a solution ĝ that is

bounded, i.e. ĝ(t) → g� for some g� < ∞ as t → ∞. Note that a monotonic solution of

(3.5)-(3.6) satisfies (3.29) if and only if it is bounded.

Suppose that for a contradiction, all the monotonic solutions of (3.5)-(3.6) are un-

bounded. Consider a solution g of the differential equation (3.5). Let −z = g′2 and let ·
denote d/dg. Then clearly z < 0 and

g′ =
√
−z, g′′ = − ż

2
, g′′′ = − z̈

2

√
−z. (3.32)

With this transformation, the problem (3.5) can be rewritten as

z̈
√
−z + gż +

2(2k + 1)

k + 2
(−z) = 0, (3.33)

and the boundary conditions (3.6) transform to

ż(0) =
2

3
(k + 2), z(∞) = 0, (3.34)

since we are assuming that g(∞) = ∞. Note that if z(g) is a solution of (3.33) determined

by initial conditions

z(0) = −z0, ż(0) = β, (3.35)

where z0, β > 0, then it can be easily shown that (a) z(g) < 0 for small g > 0 and

ż(g) > 0 as long as −z0 ≤ z < 0 holds and (b) if z(g) exists for all g ≥ 0 and satisfies

−z0 ≤ z < 0, then z(g) → 0 as g → ∞.
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In particular, if z0 = γ2, where γ is defined as in (3.7), β = 2(k+2)/3, and z satisfies

(3.33) and (3.35), then z(g) exists for all g ≥ 0 with ż(g) > 0 and z → 0 as g → ∞.

For a given solution z(g) of (3.33), we define

w = −z(g), r = ẇ/w. (3.36)

Then (3.33) transforms to

√
wẅ + gẇ − 2(2k + 1)

k + 2
w = 0,

and r satisfies

ṙ = −r2 +

(
2(2k + 1)

k + 2
− gr

)
/
√
w.

Consider the Weber differential equation

v̈ + gv̇ − 2(2k + 1)

k + 2
v = 0, where v̇ = dv/dg. (3.37)

Let s = v̇/v. Then s satisfies

ṡ = −s2 +

(
2(2k + 1)

k + 2
− gs

)
. (3.38)

By [8] (page 320, Exercise 17.6), it follows that (3.37) has a solution v(g) satisfying

s = v̇/v ∼ −g as g → ∞.

Let g0 > 0 be so large that

0 < v(g) < 1 and 2(2k + 1)/(k + 2)− gs > 0 for g ≥ g0 > 0. (3.39)

Define 0 < v0 < 1 by v0 = v(g0) and choose β0 > 0 such that β0 < −v̇(g0). Let z(g) be

a solution of (3.33) with z(g0) = −v0 and ż(g0) = β0. Then

w(g0) = v0 = v(g0), ẇ(g0) = −ż(g0) = −β0 > v̇(g0).

In particular, we have r(g0) > s(g0). We will show that

r(g) > s(g) (3.40)

for all g ≥ g0 for which r(g) exists. On any interval go ≤ g ≤ g1, where r(g) ≥ s(g)

holds, then an integration and the fact that w(g0) = v(g0) yield that w(g) ≥ v(g) > 0.

Since z(g) = −w(g), we conclude that −1 < z(g) < 0 for g0 ≤ g ≤ g1.

Suppose, if possible, that there exists a first g = g1 > g0, where (3.40) fails to hold;

then ṡ(g1) ≥ ṙ(g1). However, (3.38) and the last part of (3.39) imply that

ṡ(g1) = −s2(g1) +

(
2(2k + 1)

k + 2
− g1s(g1)

)

< −r2(g1) +

(
2(2k + 1)

k + 2
− g1r(g1)

)
/
√
w(g1) = ṙ(g1).

This contradiction proves that (3.40) holds. Consequently, if z(g) is such that −1 <

z(g0) < 0 and (3.40) holds at g = g0, then z(g) exists for all g ≥ g0, −1 < z(g) < 0 for

g > g0, and by assertion (b), z(g) → 0 as g → ∞.
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We will now show that the solution of (3.5) determined by

g(0) = 0, g′(0) = γ(k), g′′(0) = −k + 2

3
,

which also satisfies (3.6) satisfies (3.29). Let us denote this solution by ĝ(t). Let ẑ(g)

denote the corresponding solution of (3.33), ŵ = −ẑ(g) and r̂(g) = ˙̂w/ŵ. If γ(k) > 1,

we define ḡ ≥ 0 to be the point such that ẑ(ḡ) = −1, and −γ2(k) ≤ ẑ(g) < −1 for all

0 ≤ g < ḡ. Hence ŵ(g) < 1 for g > ḡ. We will prove that if v = v(g) is a fixed solution

of (3.37) satisfying s ∼ −g as g → ∞, (3.39), and v(g0) = ŵ(g0), where g0 > ḡ is chosen

such that (3.39) holds, then

r̂(g) ≤ s(g) for g ≥ g0. (3.41)

Suppose, if possible, that r̂(g̃) > s(g̃) for some g̃ ≥ g0. Then by continuity it follows

that if z(g) is the solution of (3.33) with z(0) = −γ2, ż(0) = 2(k + 2)/3, with γ close

to γ(k) and γ < γ(k), then z(g) exists on the interval [0, g̃], with −1 < z(g̃) < 0 and

that the function r(g) belonging to z(g) satisfies (3.40) at g = g̃. Then by the above

arguments, z(g) exists for g ≥ 0 and the corresponding solution g(t) satisfies (3.5)-(3.6).

But this contradicts the definition of γ(k) (see (3.4) and (3.7)). Hence (3.41) holds.

Since v(g0) = ŵ(g0), integrating (3.41), where r̂ = ˙̂w/ŵ and s = v̇/v yields ŵ(g) ≤ v(g)

for g ≥ g0. This implies that −ẑ(g) ≤ v(g). Since v̇/v ∼ −g as g → ∞, v(g) =

O(exp−(g2/2)) for large g. Since ẑ(g) = −(ĝ′(t))2, at the t-value where ĝ(t) = g, it

follows that (ĝ′(t))2 = O(exp(−(ĝ(t)))2/2) as t → ∞. By our assumption, ĝ(t) → ∞
as t → ∞. This implies that ĝ′ cannot satisfy (3.30) and hence must satisfy (3.29).

However, if ĝ satisfies (3.29), then ĝ must be bounded, which contradicts our assumption

on unboundedness of ĝ.

Thus, we have proved that (3.5)-(3.6) has at least one solution that is bounded and

hence satisfies (3.29). �

Lemma 3.3. The BVP (3.5)-(3.6) has a unique solution that satisfies (3.29).

Proof. If possible, let g1(t) and g2(t) be two solutions of (3.5)-(3.6) satisfying (3.29)

with g′1(0) = γ1 and g′2(0) = γ2. Let g1(t) → g�1 and g2(t) → g�2 as t → ∞. Without

loss of generality, assume that γ1 > γ2. Note that an integration of (3.5) yields that for

i = 1, 2, we have that

g′′i = −k + 2

3
− gig

′
i +

3(k + 1)

k + 2

∫ t

0

g′2i (s) ds.

Since gi is bounded, letting t → ∞, we obtain that the two solutions must satisfy
∫ ∞

0

g′1(s)
2 ds =

∫ ∞

0

g′2(s)
2 ds =

(k + 2)2

9(k + 1)
. (3.42)

Equation (3.42) implies that g′1 and g′2 must intersect at least once, a fact that will be

used later in the proof.

As in the proof of Lemma 3.2, we define −zi = g′2i with zi < 0, i = 1, 2. Then z1 and

z2 satisfy (3.32) and (3.33) with z1(0) = −γ2
1 , z2(0) = −γ2

2 , ż1(0) = ż2(0) = 2(k + 2)/3.
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Let Gi(z) be the function inverse to z = zi(g) and Hi(z) = żi(Gi(z)) for i = 1, 2. Then

dGi

dz
=

1

Hi
, (3.43)

while dHi/dz = z̈idGi/dz = z̈i/Hi, so that (3.33) yields

dHi

dz
= − Giżi

Hi

√
−z

− 2(2k + 1)

k + 2

√
−z

Hi

= − Gi√
−z

− 2(2k + 1)

k + 2

√
−z

Hi
. (3.44)

Note that

H2(−γ2
2) = H1(−γ2

1) =
2

3
(k + 2).

Also since g′′ < 0, it follows from (3.32) that H1, H2 > 0 for all z < 0. Consider all z such

that −γ2
2 ≤ z < 0. There could be two possibilities, namely, (i) H2(−γ2

2) ≥ H1(−γ2
2) or

(ii) H2(−γ2
2) < H1(−γ2

2). We will deal with both cases separately.

(i) We will first consider the case when H2(−γ2
2) ≥ H1(−γ2

2). Note that since zi
increases with g, its inverse Gi also increases with z. This implies that

G2(−γ2
2) = 0 = G1(−γ2

1) < G1(−γ2
2); i.e. (G1 −G2)(−γ2

2) > 0.

If H2(−γ2
2) = H1(−γ2

2), then it follows from (3.44) that (Ḣ2 − Ḣ1)(−γ2
2) > 0. Hence

H2 > H1 for z sufficiently close to −γ2
2 with z > −γ2

2 . Moreover, note that as long as

−γ2
2 ≤ z < 0, we have from (3.43) that

d

dz
(G1 −G2) =

H2 −H1

H1H2
.

Since H1, H2 > 0, as long as H2 − H1 > 0, we have that d(G1 − G2)/dz > 0 and

that (G1 − G2) > 0. If possible, let z0 < 0 be such that H2(z0) − H1(z0) = 0 and

H2(z) − H1(z) > 0 for all −γ2
2 < z < z0. Then we must have Ḣ2(z0) − Ḣ1(z0) ≤ 0.

However (3.44) implies that

d

dz
(H2 −H1)

∣∣∣∣
z=z0

=
G1(z0)−G2(z0)√

−z0
> 0,

a contradiction. Thus, we obtain that for all −γ2
2 < z < 0,

H2(z)−H1(z) > 0; (3.45)

hence

G1(z)−G2(z) > 0 is increasing in z. (3.46)

Note that (3.46) implies that z1 < z2 as long as they exist, i.e. g′1 > g′2 for all t > 0,

contradicting the fact that g′1 and g′2 must intersect at least once (see (3.42)).

(ii) Now we consider the case when H2(−γ2
2) < H1(−γ2

2). We will first prove that

H2(z) < H1(z) for all −γ2
2 ≤ z < 0. If possible, let −γ2

2 < z0 < 0 be such that H2(z0) =

H1(z0) with H2(z) < H1(z) for −γ2
2 ≤ z < z0. Then we must have Ḣ1(z0)− Ḣ2(z0) ≤ 0.

Note that we cannot have G1(z0) = G2(z0) unless G1 = G2 and H1 = H2. Hence, either

G1(z0) < G2(z0) or G1(z0) > G2(z0).
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Let us first assume that G1(z0) < G2(z0). Then (3.44) implies that

d

dz
(H1 −H2)

∣∣∣∣
z=z0

=
G2(z0)−G1(z0)√

−z0
> 0,

a contradiction.

Now suppose that G1(z0) > G2(z0). Recalling the definition of Hi and using the fact

that H2(z) < H1(z) for −γ2
2 ≤ z < z0 and G2(−γ2

2) < G1(−γ2
2), we note that G1 and G2

do not intersect in the interval −γ2
2 ≤ z ≤ z0. Thus, we must have that G2(z) < G1(z)

for −γ2
2 ≤ z < z0. It follows from (3.44) that Ḣ2(z0) − Ḣ1(z0) > 0. By continuity, for

some z1 > z0 sufficiently close to z0, H2(z1) − H1(z1) > 0 and G1(z1) − G2(z1) > 0.

Applying a similar analysis as in case (i) (replacing −γ2
2 by z1 in case (i)), we obtain a

contradiction.

Hence we conclude that H1−H2 does not change sign, i.e. H1−H2 > 0. We will now

show that (G1 − G2)(z) > 0 for all −γ2
2 ≤ z < 0. If possible let −γ2

2 < z̃ < 0 be such

that (G1 −G2)(z̃) = 0 with (G1 −G2)(z) > 0 for −γ2
2 ≤ z < z̃. Since H1 −H2 > 0, we

have from (3.43) that (Ġ1 − Ġ2)(z) < 0 for all z ≥ z̃. Hence by continuity, there exist

δ1 > 0 and ε > 0 such that (G1 −G2)(z) < −δ1 for all 0 > z > z̃ + ε. Consequently we

have from (3.44) that

d

dz
(H2 −H1) =

G1 −G2√
−z

+O

(
G

k−1
k+2

1

)
+O

(
G

k−1
k+2

2

)

< − δ1√
−z

+O

(
g�

k−1
k+2

1

)
+O

(
g�

k−1
k+2

2

)
→ −∞

as z → 0. This in turn implies that H2−H1 → −∞ as z → 0, contradicting that Hi → 0

as z → 0 for i = 1, 2.

Thus, we must have (G1 −G2)(z) > 0 for all −γ2
2 ≤ z < 0, which in turn implies that

g′1 > g′2, a contradiction.

�
Thus we have proved that there is exactly one solution of (3.5)-(3.6) that satisfies

(3.29). Hence the other solutions must satisfy (3.31).

4. Uniqueness for the case 0 ≤ k ≤ 1.

Theorem 2. The BVP (3.1)-(3.2) has exactly one solution if 0 ≤ k ≤ 1.

Proof. The proof of this theorem is a straightforward adaptation of the argument

given in [18] which deals with uniqueness for a similar third order nonlinear differential

equation. As the argument is short, we present it here in its entirety. Following Theorem

3 in [14], we know that for each 0 ≤ k ≤ 1 the BVP admits exactly one solution f that

satisfies f ′ > 0 with f ′′ < 0. Hence if the problem admits a second solution f , then f ′

becomes negative and achieves a minimum. Since f ′ cannot have a maximum, f ′ must

then approach zero from below. Note that since f(0) = 0 and f ′(0) > 0, we have f > 0

initially. In fact we must have f > 0 for all η > 0. To see this, suppose that f were to

decrease through zero (necessarily after f ′ has already become negative); then f must

remain negative thereafter (since f ′ is negative thereafter). Also, since f ′ approaches
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zero from below and cannot have a maximum, we have that f ′′ > 0 for large η. This

then implies from (3.1) that

f ′′′ =

(
2k + 1

3

)
f ′2 −

(
k + 2

3

)
ff ′′ > 0.

Thus f ′′ > 0 and f ′′′ > 0 for η large implies that f ′ → ∞ as η → ∞, contradicting

f ′ → 0.

Let η̃ be the point where f ′ decreases through zero. We will show that f ′ cannot

remain negative for all η > η̃ and thus cannot be a second solution to the BVP. First

of all note that 0 < f(η) ≤ f(η̃) for all η > 0. Next let η̂ be the point where f ′ has its

minimum, i.e. where f ′′(η̂) = 0. For η ≥ η̂ let r(η) = f ′′(η)/f ′(η). Then r(η) satisfies

r′ + r2 +

(
k + 2

3

)
fr −

(
2k + 1

3

)
f ′ = 0 (4.1)

with

r(η̂) = f ′′(η̂)/f ′(η̂) = 0, r′(η̂) =

(
2k + 1

3

)
f ′(η̂) < 0. (4.2)

Differentiating (4.1) we obtain that

r′′ +

(
2r +

k + 2

3
f

)
r′ =

k − 1

3
f ′′ ≤ 0, (4.3)

since 0 ≤ k ≤ 1. Integrating (4.1) we obtain

r′(η) ≤ r′(η̂) exp

(
−
∫ η

η̂

(2r(s) + (k + 2)f(s)/3) ds

)
< 0. (4.4)

Let A = r(∞) and f∞ = f(∞). Note that A < 0 and may be −∞. First suppose

that A < 0 is finite. Since r′ < 0 and r → A as η → ∞ we conclude that r′(∞) = 0.

Thus from (4.1) it follows that A+ (k+ 2)f∞/3 = 0. From this and (4.4) it follows that

r′(η) → −∞, giving a contradiction. Thus, since r(η) cannot tend to a finite limit we

conclude that r(η) → −∞. Since 0 < f(η) < f(η̂) for all η > η̂, it follows from (4.1) that

there exists an η1 > η̂ such that

r′ < −r2/2, (4.5)

for all η > η1. Integrating (4.5) from η > η1 to η2 = η1 − 2/r(η1) we obtain that

r(η) <
2

η − η2
. (4.6)

However as η → η−2 , (4.6) implies that r → −∞ at finite η contradicting the fact that

r = f ′′/f ′ is bounded on each bounded subinterval of [η̂,∞). Thus if 0 ≤ k ≤ 1 the

solution of the BVP is unique. �
In [11] a numerical study of the solutions of the boundary value problem

f ′′′(η) + f(η)f ′′(η)−
(

2n

n+ 1

)
f ′(η)2 = 0, (4.7)

subject to

f(0) = 0, f ′(0) = 1, f ′(∞) = 0, (4.8)
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is conducted. For n ≥ 1 two solutions of (4.7)-(4.8) are found in [11], but the results

of [18] can be used to show that for n = 1 the solution is unique. In fact, n = 1

reduces (4.7)-(4.8) to the original problem studied in [18]. The argument of [18] does not

generalize to n > 1, but does imply uniqueness for 0 < n ≤ 1.

5. Discussion. In this section we discuss the implications of the mathematical results

derived earlier. First, Merkin and Zhang [13] emphasize the need to investigate both

the prescribed surface temperature case and the prescribed surface heat flux case since

the nature of the solutions can be different in the two cases. The prescribed surface

temperature case was first investigated by Cheng and Minkowycz [2], and their similarity

transformation led to the following BVP:

f ′′′ +

(
λ+ 1

2

)
ff ′′ − λf ′2 = 0, (5.1)

subject to

f(0) = 0, f ′(0) = 1, f ′(∞) = 0, (5.2)

where the wall temperature varies according to xλ. The work of Cheng and Minkowycz [2]

included a numerical study of this BVP for −1/3 < λ < 1 for which they found a unique

solution. The analysis was then expanded to the range −1/2 < λ < ∞ by Ingham and

Brown [10]. They showed that no solution to the BVP (5.1)-(5.2) exists for λ < −1/2.

Numerically, they found a unique solution for −1/2 < λ ≤ 1 and dual solutions for λ > 1.

They also listed closed form solutions for λ = −1/3 (f(η) =
√
6 tanh(η/

√
6)) and λ = 0

(f(η) = 1− exp(−η)).

We note here that for −1/3 < λ < 0 the solution of (5.1)-(5.2) is not unique. The

techniques of [1], [14] and [15] can be used to show that for this range of λ an infinite

continuum of solutions exists. Thus the results here bring to light a new similarity

between the prescribed wall temperature case and the prescribed wall heat flux case,

namely the existence of parameter range for which an infinite continuum of solutions

exists. The techniques of the present paper can then be used to show similar asymptotic

behavior. The range −1/2 < λ ≤ −1/3 requires more detailed analysis, but here too we

conjecture the existence of a continuum of solutions. As noted in [10], solutions in this

range of λ necessarily require f ′′(0) ≥ 0, and thus f ′(η) may not be monotonic, which

may complicate the analysis. We wish to explore this problem more in future work.

Next, consider the prescribed wall heat flux case [13] and the case where the wall

temperature and the wall heat flux are related [12]. This latter case can be reduced to

the former by setting N = 3k/(2k + 1) in [12]. For k > −1, numerical investigations

in both papers report a unique solution. But as was the case for the prescribed wall

temperature case, the numerical results are incomplete. For −1 < k < −1/2, uniqueness

does not hold and a continuum of solutions exists.

In [13], Merkin and Zhang also consider the development of the solution in the time

dependent PDEs. For the large time evolution of the solution, equation (2.8) was used.

In describing the transition from the initial behavior to the large time behavior, Merkin

and Zhang note that a numerical instability was encountered for k ≤ −.5. We suggest

that the cause of this numerical instability may involve the continuum of solutions that
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exists for k in this range. It appears that delicate numerical analysis is required for k in

this range, and this also represents another potential line of future research. However,

we do note that Ingham and Brown conducted a similar analysis for the prescribed wall

temperature case and encountered no numerical difficulties, even in the range of λ for

which a continuum of solution exists, a circumstance that raises more questions than it

answers.

Next we note that the argument of Troy et al. [18] used in Section 4 can be used to

prove that the solution of (5.1)-(5.2) is unique for 0 < λ ≤ 1. The techniques used for the

case k = −1/2 in [14] can be used to show uniqueness of a solution of (5.1)-(5.2) when

λ = 0. However, uniqueness or non-uniqueness remains an open question for both the

prescribed surface heat flux case for k > 1 and for the prescribed surface temperature

case for λ > 1. Based on their numerical calculations, Ingham and Brown conjectured

the existence of two solutions for the prescribed surface temperature case when λ > 1.

Finally, we note the similarities between the model analyzed here and the Falkner-Skan

problem. For the Falkner-Skan problem:

f ′′′ + ff ′′ + β(1− f ′2) = 0, (5.3)

subject to

f(0) = 0, f ′(0) = 0, f ′(∞) = 1, (5.4)

there exists a βc < 0 such that for βc < β < 0 a continuum of solutions exists. It

was argued by Hartree [9] that the physically relevant solution would correspond to

that member of the continuum that approached the boundary condition at infinity most

rapidly. Davey [6] argued for a similar condition regarding the solutions of a mathematical

model for flow past a wavy cylinder. Hartman [8] showed that “Hartree’s condition” was

satisfied by the Falkner-Skan problem, and the extension of Hartman’s argument given

here shows that a similar condition is satisfied by (2.12)-(2.13).
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