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HYPERBOLIC EQUATIONS WITH NONLINEAR DAMPING
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1. Introduction. In this paper we consider the following quasilinear hyperbolic sys-
tem with damping:
vy — (h(v)p)z =0, (1.1)

pt +0(v)e = f(v)p, (1.2)
where ¢’'(v) < 0,h(v) >0, f(v) <0 and v > 0.
The above is a system derived in [23], [24], and describes the propagation of heat wave
for rigid solids at very low temperatures, below about 20° K. The first equation (1.1)
comes from the balance of energy, which in the one-dimensional case takes the form

e(P)e + ¢ =0, (1.3)

where ¥ > 0 is the absolute temperature, ¢ is the internal energy, and ¢ is the one-
dimensional heat flux. Equation (1.2) is the evolution equation for an internal parameter
p, which is introduced to account for memory effects of the heat flux. The effect of
memory may be considered, for example, as a functional of a history of a temperature
gradient,

t
qg= —a(ﬁ)/ e =99 (z,5)ds, a(¥) >0, b>0 (1.4)
by defining
t
p:/ ey (2, 5)ds. (1.5)
—oc
Equation (1.4) can then be equivalently replaced with
q = —a(d)p, (1.6)
pt=—bp+ U, (1.7)
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Equation (1.7), related to (1.4) via (1.5), is, however, lincar and does not fully describe
the properties of heat propagation in solids (cf. [23], {24], and references therecin). To
improve the model oue may generalize the history dependence of ¢ by modifying Eq.
(1.4) or, as was done in [24], by introducing a suitable nonlinear dependence in (1.7),

pr = g1 (9)9, + g2(9)p. (1.8)

The functions «, g;. and gz present in (1.6) and (1.8) are material functions. The second
law of thermodynamics imposes the restrictions that a(d) = 90192g1(¥) and g2(¥) < 0,
where the constant 1o¢ > 0 comes from the Helmholtz frec energy 4 which has the form
Y = ¥1(9) + 2¢200Up?. We additionally make an assumption that g1(d9) > 0 (cf. [24]).
Combining (1.3) with (1.8) gives the following system:

() — (a(¥)p)a =0, (1.9)
pe+G1(¥)e = g2(V)p.  G1(¥) = ~g1(9). (1.10)
In the steady-state case, py = 0, equations (1.9), (1.10) lead to a nonlincar diffusion

equation,
cp(9)9 — (K(9)02)e =0, (1.11)

where K(9) = —ag ﬁszé?) > 0 is the steady-state conductivity measured experimentally,
qg = —K(0)V,, and €'(¥) = ¢, (V) is the specific heat.

System (1.1), (1.2) can be obtained from (1.9), (1.10) by employing the substitution
eW) =v >0witho = Groelf =goel.h =aoe},0'(v) < 0,h(v) > 0, and
flv) <

In terms of the new variable v, the steady-state diffusion equation (1.11) takes the

form

v+ P(v)yr =0, (1.12)

h(v)p = —P(v), (1.13)
or

v — (h(v)p)e =0, (1.14)

h(v)p = —P(v)s, (1.15)
where )

P'(v) = f}((:)) <0, F'(v)=hv)o'(v) <0. (1.16)

When f(v) = —b with b > 0 a constant, and h(v) = 1, the system (1.1), (1.2) reduces
to the isentropic Euler equations in Lagrangian coordinates with an external function —bp
in the momentum equation, modeling compressible flow through porous media, and the
corresponding simplified parabolic equation (1.12) represents Darcy’s law. (As mentioned
above, f(v) = —b is not physical for our application.)

It is known that the damping mechanism is dissipative and can guarantee the regu-
larity of solutions. The investigation of the case of a p-system (h(v) = 1) with linear
damping (f(v) = —b } has been extensively studied. Global existence of smooth solutions
was established by Nishida [18] for sufficiently small initial data. Hsiao and Liu [4, 5]
and Hsiao [3] first investigated asymptotic behavior, where they showed that the so-
lution (v,p) to the hyperbolic p-system with linear damping and data (1.20), (1.21),
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has parabolic structure, i.e., it behaves as (0,p) where ¥ is a self-similar solution to
equation (1.12) and p satisfies equation (1.13) for h(v) = 1. This is called a nounlinear
diffusive phenomenon. Under the restriction of weak diffusive waves and small initial
perturbation, the convergence rates were obtained by Nishihara {19, 20] in Ly and Ly
norms, and by Nishihara, Wang and Yang [22] in optimal L, norms in terms of an ap-
proximate Green’s function and pointwise estimates. Zhao [30] obtained the optimal L,
convergence rates for strong diffusive waves and large initial data, where only the initial
oscillation is required to be small. Based on the resolution of the Riemann problem
by Hsiao and Tang [11, 12], Hsiao and Luo [7] discussed nonlinear diffusive phenomena
for piecewise smooth solution. There arc other related works, such as on the boundary
effects [17, 21, 8, 13], on large initial data [29, 30], on weak solutions and large time
behavior {2, 16, 25|, on wave interactions [15], and on the regularity and formation of
singularities [26, 28|, and references therein.

However, no result has been obtained on the qualitative behavior (particularly, large
time behavior and nonlinear diffusive phenomena) of solutions to a non p-system with
nonlinear damping. The particular properties of f, the function which physically should
provide a damping mechanism, are responsible for the asymptotic behavior of the system
(1.1), (1.2). ( In the case of f(v) = —b, the only condition required for decay is b > 0.)
In the paper we will show that it is sufficient for the nonlinear damping f(v) to satisfy
the following conditions:

flv) <0, (1.17)
f7(v) <0, (1.18)
3(f'(0))* = f(v)f"(v) <0, (1.19)

in order to establish that the solution (v,p) to (1.1), (1.2) ((1.14), (1.15)) with initial
data

v(z,0) = vo(x), p(x,0) = pe(x), (1.20)

(vo. po)(£00) = (v4,0), (1.21)
has the property that a pair (v, h(v)p) approaches time-asymptotically (v, h(?)p), where
(©,P) is the solution of (1.12), (1.13) with the same constant states at z = +oo. v is a
self-similar solution to equation (1.12) and P satisfies equation (1.13). We should point
out that (v, A(v)p) = (v, —¢q), where ¢ is the heat flux (see (1.6)) i.e., (v, q) asymptotically
approaches (v, ). Thus, as t — oo, the difference between the hyperbolic (thermal) wave
and the solution to the corresponding diffusion equation with steady-state conductivity
approaches zero. This means that the solution (v,p) to the hyperbolic system (1.1),
(1.2), with data (1.20), (1.21), eventually has the same parabolic structure as (7, p).

Let us set

Vola) = | " (uo(s) = (s + 20, 0))ds, Vi(x) = pole) — Bl +20.0),  (L22)

—oC

where g is uniquely selected such that

/oo (vp(8) — O(s + x0,0))ds =0 (1.23)

—oC
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and '
Vie.t) = /‘ ‘(’U(S.I‘) — (s + x0.1))ds. (1.24)

The main result in the present paper is the following

THEOREM 1.1. Assume that F' € C®. F' < 0, f € C? with (1.17)-(1.19) hold, and
|vy —v_| < 1. Suppose Vy € H? and V; € H?. Then, there exists a dy > 0 such that if
[IVoils + [IVi]l2 < dp. a unique global solution (v.p) to (1.1) -(1.2) and (1.20) (1.21) exists
and satisfies
3 2

S +OMDEV I+ ) (1 + ) * v o))
k=0 k=0

(L4 Ve O + (4 Vi (O + Ve 01

t 3
/{Z:“”A”lm hﬂW+Z}uﬂWMmeL@W}«

k=0
/ |5V (.. 8)|[*ds

/1+5HWH 5)[1%ds

0

< CUVAIZ + VA3 + o = o 1): (1.25)
In addition for A(v) = 1. if it also holds that V, € L, and V) € Ly, the following optimal
L, (2 < p < oo) decay rates are satisfied:

1) _ k1

10K (0 = B) (. D)1, < Cop(1 + ) 29— (1.26)
105 (0 = B)( DIz, < Coo(1 + 1)~ 2R =5 (1.27)

forany k<2ifp=2and k< 1ifpe (2.x].

This theorem can be proved by energy methods, but with a nonstandard multiplier
due to nonlinear damping and pointwise estimates. However, though it is dissipative,
the nonlincar damping causes the strong interaction of hyperbolic thermal waves and
nonlinear diffusive waves, similar to those in the stability analysis of clementary hyper-
bolic waves (shock profiles and rarefaction waves). It is the hyperbolic character and the
structure of nonlincar damping that control the interaction instead of convexity. How-
ever, because of the strong interaction, one can ounly control the interaction if the two
wave strengths are both weak enough, prove the global existence of smooth nonlinecar
hyperbolic waves starting from the neighborhood of the nonlinear diffusive wave, and
obtain the L, convergence rate to the diffusive wave. It means that the nonlinear dif-
fusive phenomena still occur, no matter how the damping mechanism performs. Using
global existence of smooth solutions and the associated Ly convergence rates to nonlinear
diffusive waves, we may, employing the methods of [22], obtain optimal L, convergence
rates in the case of h(v) = 1. and f(v) nonconstant.

The next section of the paper gives some useful properties of self-similar solutions to

the diffusion equation (1.12). In Sec. 3, we present apriori estimates for the local smooth
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solution to (1.1)-(1.2) in order to prove global existence and obtain time decay rates. In
Sec. 4, we establish optimal L, convergence rates of the solution (v,p) to the nonlinear
diffusive waves (v, p), h{v) = 1. An example of the function f(v) is finally given.

Notation. L, (1 < p < 400} denotes the space of measurable functions g on R with

norm defined by
lglle, = ( / |g<:c>|Pda:) |

H™(R) is the standard Sobolev space normed by
1l = Z 12 L,

2. Diffusive equation. In this section, for the reader’s convenience, we will give
a summary of the results concerning the self-similar solution of the nonlinear parabolic
equation (1.12) (cf. [3, 4, 22]). These are necessary in obtaining the asymptotic properties
of the solution to (1.1), (1.2) with initial data (1.20), (1.21).

The nonlinear parabolic equation,

v+ P(v)ze =0, P'(v) <0 (2.1)
possesses a unique and strictly monotone self-similar solution ¥ (see [27])
A T
oz, t) 2 (), ¢= 2.2
satisfying
P"(@(¢))®'(¢) — 5¢
() + 229'(¢) = 0,
O e Y 23)
(b(j:OO) = V4, (U+ 7é U._).
The following estimate is needed for our analysis (see [3, 4, 22] for details):
Z|dgk O +18(0) = vlcso + 18(Q) = v-lo<o < Cloy —v-[e™", (2.4)
[Be(2,0)] < Clog —v-|(1+6)7", [Ba(z, )] < Clog —v_|(1+1)73, (2.5)
/ |92z, 8))2dz < Clog — v > (1 +8)72, (2.6)
/ (192(@, 1)[* + 9z (2. £)*)dz < Cloy —v-[*(1 +1)72, (2.7)
/ (1D2¢(x,1)% + |Ugae(z, )|2)dz < Clvg —v_[2(1+ )72, (2.8)
| loute0Pde < Cloy — v P40 . (2.9
|t Pdr < Clos —v-Pa+1)72, (2.10)
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/ [Btee (. )P da < Cloy — o |2(1 + 1‘,)_%. (2.11)
-0
for some constant C, ¢ > 0 independent of ¢, and

18!0FT(. )L, < Cluy —v_|(1+6)7"2%% (2.12)

for1 <l+4+k<6andpe[2.]

3. The apriori estimates. In this scction, we prove the global existence of the
smooth solution (v, p) to the hyperbolic system (1.1)-(1.2} with initial data (1.20)-(1.21)
and discuss its parabolic structure. Then, we estimate the decay rates (1.25).

The local existence of smooth solutions to (1.1) and (1.2) can be obtained by the
standard methods (see [14]), and what we do is to obtain uniform apriori estimates in
order to extend the local solution for any 77 > 0.

The differences v — @ and h(v)p — h(9)p satisfy the following system of equations:

(v —1) — (h(v)p — h(T)PD)r = 0. (3.1)

(h(v)p = h(V)p)e + (F(v) = F(9)) — f(0)(h(v)p — h(¥)p)
= (f(v) = FONh@)p = P(v)zr + H(0) P(0)2 (v — ©)t
— [H@){h(v)p — h(0)p) + (H(v) — H(v))h(v)plve — H(0)P(0)2 P(0)zz = 0. (3.2)

v))h
where we used the relation (1.13) for ¢ and i(2)p, and introduce the notation
W (v)
H(v) = . 3.3
o) = G (3.3)
We notice that integration of (3.1) over R gives
(—l - (v —D)(x, t)de =0 (3.4)
il xr tydy = .
which implics, in terms of (1.23), that
/ (v(x,t) — 0(x + x9.t))dx = 0. (3.5)
=0

Let us recall that V oas in (1.24) is

Viz.t) = /T (v(s.t) — (s + wo. t))ds.

By the above, (3.5) and (1.24), we have the property for V' that
V(+o0,t) = V(—20,t) =0, (3.6)
and also that
Vi = h(v)p—h(v)p. Vi=v-—10. (3.7)

Then, the system (3.1), (3.2) can be written as a single second order “wave” equation
for V,

Vi + (F(Ve +0) = F(0))2 = f( P(0)x

o)V, -
—(f(Va +2) = FO)Vi + (f (Ve +7) = £(0) P(0)=
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H(0)[P(9):Vile = H(@)ViVir — (H(Vy +0) — H(9))V, Vit
( Vo +0) — H(9))[P(0)Vi]la = (H(Vz + 0) — H(9))P(0)2 P()ea
H(0)P(9); P(¥)2e = 0, (3.8)
Vi(z,0) = W(z), WVi(z,0)=Vi(z),z e R.
Assume on the existence domain it holds apriori that
3 2
N(T) = Jmax_ {2(1 +Ok1Ev L 0)? + Z(l + t)k+2||a§\4(.,t)||2} < 1. (3.10)
== lk=0 k=0

One can verify that under the apriori assumption (3.10), it holds for two constants v,
v2,
O<v <o+ V, <. (311)

What we do next is to obtain the following lemma.

LEMMA 3.1. Under the assumptions of Theorem 1.1, it holds, for 0 < ¢ < T, that

o0 t 20
/ (V2 4+ V2 4+ VH (2, t)dr +/ / (V2V? + V2 + V?)deds

CUIVoll3 + IVall3 + vy —v-| (3.12)
/ (V2 +VE+V2E)( aida"+// 2 L V24 V2 )dxds
< C(IVoll3 + IVall3 + oy = v-]) (3.13)
/ (V:rga:t + VTQtt + szzz 7: t dr + / / ac;vt + V12tt + Vﬁxx)dl'ds
< OVl +IVill3 + o4 — v-1), (3.14)
and that
3 2
ST+ DFEV (L OI + S+ O D9V o))
k=0 k=0

+ @O Ve COI + (1 5 (Vere (DI + 1 Va1

t 3 2
+/ {Z(l+s)(’“‘”||3§V(~7s)Il2+Z(1+s)"““)II8§Vt(-,s)II2}ds
0

k=1 k=0
+ /Ot(l + 8)%|Vaee (., 5)||2ds
< C(IVoll3 + 1IVAll3 + o4 = v-)), (3.15)
provided that (3.10) holds.
Proof. Multiplying (3.8) with — f(7)V and integrating it over R leads to

& Gy - svivias

+ /OO [F@OVE + 0 f (0)VVe — f(B)F (0)0:V?)dx

— O
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+/°C (F(5 +Vy) = F@)(F(0)Ve + f(2)0,V)dn

—/oc F@VH (0)[P(0): Vs VdT+/ FOVH(0)V; Vyrda

+

/_ SN H (Vs +7) — H@)ViVaeVide

—/OC fOYH WV, +8) — H@D)[P®), V] Vdx

which implies

% _oc(%f(ﬁ)wz_f(fr)VtV)der/; (FOVE + 0.f (0)V Vi]dz

(oo}

- [ @+ f@VIP@d+ [ 150+ V) - FELf @V s

—

+/OC [f(0)H(9)]' P(0), v,V Vidr +/ F(BYH (5)P(v), Ve Vida

—%/j;[f(ﬁ) ()5, VV; dl——/ f(®)H (2)V{?Veda

+/_°° (H(Vy + ) — H(0)) f(0)Vs Ve Vdir — /_x (H(Vy +0) — H(9)) f(9)[P(v). V] Vdz

Z/jo [f(@)f (0)8.V2 = F'(0) f(8)V,E = (f (0)F'(¥) = f(0)f (1) P (0))0.V Valdr

By (2.1), (1.16), and (1.17)-(1.19), the [; can be estimated as

Iy=- /OC [4F' (@) f'(0)0,VV, + f(0)F (0)V,2 + F'(3)(f"(7) +
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< — ¢ /30 (V2 +02V¥dz. (3.18)
Substituting (3.18) into (3.17) yields
G [ Grerv = fwvivids+ [ @2+ (v + o2y
gc/oo vidz + CN(T) /OC (V2 + VP]dx + % /oo 72V 2dx. (3.19)

Multiplying (3.8) with V; and integrating it by parts over R leads to

53 | _we-roviie - [ fovia

+ [ - SOIPEY - Ve

- /_Z(F(ﬁ + V) = F(8) — F'(0)Vy) Vet + % /:; F" (0)v:V2dx

- /: P(0)yVidzx — % : H(0).P(7),Viidx + = / H(0)P(?) .V dx

[ HEOWV e+ [ +5) ~ HEIPELVD. ~ ValVida

[0+ 0 - HEOP@. PO~ [ HEOPE.LPE)L =0, (320
which ;eans )

s | we-rovie - [ rovea
<C /oo (92, + 02)dx + C(N(T) + vy —v_|) /OC (V24 V2)dz. (3.21)

Integrating [(3.1'9) j 2 x (3.21)] over [0,t] leads, in terms of (3.10) and (2.4)-(2.11), to
(3éi2r)x;ilarlv integrating ((3.8))z x [— f(¥)V; +2V}] and ((3.8)) gz X [— [ (D) Vit + 2Viie] over
(=00, +00) x [0,¢], we can prove high order estimates (3 13) and (3.14) in terms of (3.12)
and (3.8). d

Next, we prove the decay rates (3.15) (cf. [19, 20]). Multiplying (3.8) with V; and
integrating it by parts over {—oo, +oc) leads to

;t (1V2+Q)(:rfdx-/ (o + V,)Vidr

_ /m/o “(F'(5 + 6) — F'(¢))5,d6dz

- /_Oc[fwwn @)P <>vtd:r+/°° P(6)Vida

oc
+%/ H(%),P (7). V2d r——/ H(© I,ngr+/ H(Vy + 0)Vy V2dx
-
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—/mUﬂ%+m—H@NHMJmWM+/xHW&HM%hHmmwm
- - (3.22)
where
V.,
Q=- [ (F@+8) - Fo)as
0
which satisfies
QVZI<Q<Q V7 (3.23)

for two constants 0 < Q_ < Q.
Multiplying (3.22) by [1 + ¢] and integrating it by parts over [0,t] yields, in terms of
(2.4)-(2.9), and (3.23), that

o t oc
(1+1) / (V2 + VA (x, t)dr + / / (14 8)V2dads
JO J -

-2

oc t DG
gc/ (V2 + VA (x,0)dr +C / / (V2 + V2 (x, s)dads
— 0 JO J -

t [o'e}
+ C/ / (1 + 8)[V2(|7] + 92) + P(0)2, + 9202 |dxds
0 J—
<C(IVoll3 + IVll3 + lvg —v]). (3.24)

Similarly, in terms of (3.12)-(3.14), we can prove the decay rates (3.15) by considering
((3.8))2 X Vi, ((3.8)) X Vazs ((3.8))r x Vit ((3.8))e x Vi, ((3.8))2 X Viaz, ((3.8))az X Viat,
((3.8))sr x Vi, respectively, integrating over (—oo, +oc), multiplying with (1 + ¢)* for
some integer k& > 0 and integrating over [0. ). a

Applying the local existence result and the continuity argument, we can prove, by
Lemma (3.1), that for ||Vyl|2 + [Vi]|3 + |[v+ — v-| € 8o < 1, there is the global smooth
solution to (3.8) and (3.9), and then to (1.1) and (1.2) with decay rates (1.25).

4. L, convergence rates. In this scction, we will obtain optimal L, decay rates
(1.26) and (1.27) for the smooth solution V, for the case h(v) = 1, which gives F'(v) =
o' (v), cf. (1.16). By (1.16), one can rewrite (3.8), for (y,s) € R x (0,1), as

Valy: 5) = (aly- 9)Vy (0 8Dy = Vsl 8) + 1105 8) + 72058 + 75(y8). (41)

@

where aly,s) = —P/'(5(y, s)) > Ay > 0, and
108) =55l + Vi) = o0) = (0)V, + P(0) L (0-). (42)
1oty ) = = o= 0+ V,) = FOVe (0. (4.3)

’““”:ﬁ%vm+w»—ﬂw—fmwmmm¢%$. (4.4)
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Denote the approximate Green’s function G(z,t;y,s) by (cf. [22])

‘ ! v (z =)
ot = (mmems) o\ matn 49
where A(t,y,s) = —P'(®(n)), and

1+s’ s> %’
7= : st (4.6)
V1+t/2] - 27

Multiplying (4.1) with G(x,t;y,s) and integrating with respect to (y,s) by parts over
R x (0,t), one obtains that the solution to (4.1) can be expressed as

V(1) / Gz, £, 0)Vo(y)dy

// Gr(x,ty,s)V(y, s)dyds

/0 / Glatiy,8) 5y ( Vs (4. 8)dyds
* /0 /_ _Clatiy, )y, s)dyds

t o0
+ / / Gz, t;y, $)ra(y, s)dyds
0 —oc

t [o3e]
+ [ [ Gty sty s)duas, (47)
¢} —0o0
where
Gr(z, 1y, 8) = Gs(z, 5y, 8) + (aly, 8)Gy (2, 9, 5))y. (4.8)
Then, we have for each k < 3 that
ohv(at) = [ 0EG(atiy OVo(u)dy

-0

t o0
+// OFGr(z, t;y,s)V (y, s)dyds

1
kG (x, t;y, Vis(y, s)dyds
// )f() (v, s)dy

+// kG (x,t;y, 8)r1 (y, s)dyds
0 J—-
t o0

+// Ok G(x,t;y, 8)ra(y, s)dyds
0 J—
t o0

+ [ dket sty s)duds
0 J-—x

6
=:)_Jh, (4.9)
i=1
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and for each £ < 2 that

O Vi(z. 1) / 0,05G (1. 0)Vo (y)dy
+0t/ / ORGRr(x, t;y,5)V(y, s)dyds

+3t/ / OEG(x, t;y. s)f(l))Vss(y s)dyds

at/ / OEG(x, t;y. s)ri(y, s)dyds
0 —c

t o
+ 81,/ / 8; Gz, t;y. s)ra(y. s)dyds
0 J—oc

t oC
+ O / / okG(x, t:y, s)rs(y, s)dyds
0 —oc

6
=:> If. (4.10)
=1

First, we introduce the properties of the approximate Green’s function (cf. [22]).

|olohak oG x, tyy, 5)|

s YxYy

=0(1) Z (t— 5)_(k+"11)/2§rn2

my+moe=m
G+ (- 5) E+ (-5 )" Cala - y.t ). (4.11)
where [ <1, h <1, and £ = & + & with

(1+8)_1/2’ 5>t/2,
) 4.12
" {0’ s <12, (4.12)
0, s> t/2,
“o {(1 +1)7V2 s <t/2. (4.13)

The Gg{x,t) is a heat kernel which satisfies

1 2 x2
Gy(z,t) = <47ert> oxp{—A—lt}. (4.14)
where A; > 4max A(t,y,s) + O(1)d, and

1Ga ()|, < Ct 2073, (4.15)
One can verify that
B (x —y) Ogal(z,t)
0,.G = -0,G — <—_4A2( )d VAt Y, s) + Dard) G, (4.16)
_ (x —y)? _ Oa(z.t)
G = —9,G — <—4A2( )(8 A+ 0 ANt y, ) 2a(e.1) G, (4.17)
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and
|8, A| + 00| = O(1)d6€, |9sA| + [0, A| + |8eal = O(1)do€>. (4.18)
Moreover, it holds that for t/2 < s <t

Gr(z, t;y,s) < Coh((1+ )1+ (t —8)"V2(1 +6)7H?)

Cy?
- expq — Gulr—y,t—s), t/2<s<Ht, (4.19)
1+4+s
(010EG R (@, ti, 5)| SCBo(1+ 8) /2 (1 + 1)~ (=)
2
-exp{—lc_it}GH(x—y,t—s), s < t)2 (4.20)
lim |0*Gr(z, t;y,s)| <Co(1+t)" =) exp — Cy* Gulz —y,t/2). (4.21)
smt)24 OGR(Z, LY, =~ 0 9 1+f/2 H Y, . .
Denote .
ELR(t) = (14 )30 p)+bes, (4.22)
and set

Q)= sup ELF(s)|0[0EV (. s)lL, + sup  EyF(s)8105V (., 8)ll L,
2<p.0<s<t, 0<s<t,
+k<2,1<1 I+k=3,1<1

Q1(t) = 6o + vy —v_|Q(t) + Q1) (4.23)

The above terms J¥, I* can be estimated as follows. First of all, we deal with J¢ and
I¥. In terms of Lemma 3.1, (2.12) and (4.22), one has
102853 )z, < €0+ [vx = v-|Q(1) + Q)1 + )7 BN TF R (4.24)
for1 <1, k<2, and
10273, )|z, < CBo + oy = v-|Q() + Q()P) (L +5) *179 47875 (4.95)

A direct calculation together with (4.11) and (4.22) leads to
t/2 oo
198, <C [ [ 05G(tiysirala. syl s
0 —oc
t oC
ve [ 1 ooty sty s, ds
t/2 —oc

t/2 1 1 g
gCQl(t)/ (t—s)"20"5)"3(1 + 5)~2ds
0]

t

+CQ1(t)/ (t —s)7%/2(1 + 5)" 217 3) 24

t/2

ol

<C(5o + vy —v_|Q(t) + Q(1)*)(1 + )" 217)75, (4.26)

for kK <1, and

10, <Cl / Gl tiy. sy, Oyl ds
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t/2 x
w0 [T a6ttty syl ds
0 -

t ac
v [ 1] a6ty sl sdyls,ds
t/2 -0

<CQ ()1 + )" 202

=

t/2 1
+CQ1(t)/O [(t_s)_l +(1+t)_1](f—5)_ (1‘;)(14‘3)_2(13

t

+CQ.(1) [/Q[(t — )R 4 (14 5)7 V(14 5) 72092

<C(do + [vs — v-|Q(t) + Q)1 + 1) 21701, (4.27)

Via (4.16)-(4.18) and (2.4), one can get

_ , (x —y)? . Ora(axt)
83G = — (9£dyG — <m8y14(f, Y, -S) + m) 0.G
+OM&[(t—s) 2+ (14 ) 2)(1+5) "Gy, (4.28)
: Py (x—y)? N )
dtamG = — dsdIG — <m(()qA + atA)(f.Tj. -5) — 2a(;177 1‘) ) EL;G
+OM)d[(t— )72+ (1+ ) 2)(1+ 8)"'CGy. (4.29)

Therefore, the combination of integration by parts, Hausdorff-Young inequality, (4.11)-
(4.21), and (4.28)-(4.29) yields

t/2 o
120, <C [ [ 3G tiwsyralu: vl ds
0 —oC
t gl
+C/ ||/ 0:G(.. tiy. )0y rs3(y. s)dy| L, ds
t/2 —oc
t
+C§0/ [(t—s)"24 (1 +s)" V(1 +8)2
¢/2

W[ Guletiyshray. )y, ds

't/2 —l(1-1y_z 9
<C (t—s)" 2V 79/72(145)""ds
Jo
t

+ CQl(t)/ [(E=5) "2+ (14 8)7 V21 + )7 2073727245
t/2

<C(do + v+ — v-|Q(1) + Q()?)(1 + 1)~ 2~ )=3, (4.30)

and

t/2 G
181, < [0 [ 086t sty iyl d
0 —oC
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+C

ot
|

/ 892G, . 5)3r3(y, 8)dyll ., ds
t/2 —o0

+ Céy /:2[@ —) V21 (145714 8)7!

-|| / Gl tsy. s)ra(y, s)dyll L, ds
el / 0u G t:9,1/2)rs(y, £/2)dy |, ds
t/2 1 1y_ k&
S(750/ [(t =)+ (1487t - 9)HDTE (1 4 5)2ds

t
+C60/ ((t—5)"Y2 + (1 +8)"2)(1 +s) 21~ ») 345
t

/2
<C(do +vr —v-[Q() + QW)L +1)7 30797175, (4.31)
Noticing (4.8), (4.16)-(4.17) and (4.28)—(4.29), one can get, after integration by parts,

that

1 oc
/ / 83G(x,t;y,s)r3(y,s)dyds
t/2J—oc
t " OC
=O(1)/ / [Gr(z, t;y,s) + (1 + s)_%ayG(x,t;y, s))0yrs(y, s)dyds
t/2J—oc
t o0
+O(1)/ / 0yG(z, t;y, s)0sr3(y, s)dyds
t/2J—c
+00) [ Gt yraly )daliceys

+0(1)do Y /t/2 /—oo [(t—8)"% + (14 8)2]

h<l1
1+ s)_(2_h)/QGH(95r3(y, s)dyds

t oC
+0(1)50/ / (1+ 8)"2Gudsrs(y, s)dyds, (4.32)
t/2J—o0
t o0
/ / 002G (x,t;y, 8)ra(y, s)dyds
t/2J—o0
t 0
=O(1)/ / Gr(z, t;y, s)0sr3(y, s)dyds
t/2J -0
t oc
+0() [ [ Gty s)92raty s)ayds
t/2J—o0

+O(1)/ Gz, t;y, 8)0s73(y, 8)dylizs o

- [ @6t st il




310 H. L. LI anp K. SAXTON
+O(1)50/ / [81,G+(1+s)_%G](I.t;y.s)(l+s)_%63r3(y,s)
t/2

1)%2/ [ ot ass

h<1
1+ s)_%+%GH8;]r3(y, s)dyds. (4.33)

Thus, it follows from (4.32)—(4.33) that
t/2
B0, <C [ [ 026 (tinsirato iyl s
e / 1] Gttt ol ds
Jt/2 —oc
t o
+C II/ OyG(., t;y, s)0sr3(y, s)dyl| L, ds
t/2
+C/ (1 +3s) 1/2||/ 0yG (., t:y, s)0yr3(y, s)dy| L, ds
t/2
el / G(.,ti,9),7(y. )yl ool

+C(50Z/ -1/2 (1+s)—1/2](1+s)—1+h/2

h<1

||/ G (.t )3 rs(y, 5)dyl| 1, ds

+cao/ (1+5) 1/2||/ Gl tiy. $)0urs(y. s)dyl 1, ds
¢/2

(M0

t/2 1y_3
§CQ1(1‘,)/ (t—s)” U=3)=2(1 + 5)"%ds
0

+CQ(?) t[(t—S) V2 (145)7Y2)(1 +5) 72070724
Jt/2
<C(60 + |vg — v |Q(t) + Q)L +1) 1= 8)"3 (4.34)

t/2 o

121, < [ [ 0036t tiys)ratu. )iyl ds
0 — o0
t " OC

el / | Gatetiv 0ty sidyll, ds
t/2J—oc
t o0

+C ||/ 0:G(. t;y, 8)0s3(y, s)dyl L, ds
t/2 —oc

fe ]
el / G try.5)0srs (0, 8)dy'y o)l 1, ds
—oC

+C||/ O2G(., t;y,t/2)rs(y, t/2)dyl| L, ds
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t o
v [ 1] 6ty sl
t/2 —oo
t e}
+ Cédy // (1+ s)_1/2||/ OyG(., t;y,8)0s3(y, 8)dy L, ds
t/2 —0

t oC
+ Céo / (1487 / Gty $)0urs(y, $)dylL, ds
t/2 —oc

t
+C5oZ/ [(t—g)—1/2+(1+8)—1/2](1+8)—3+h/2
h<1/t/2

) / G (.t 1, 9)0rs(y, 8)dyl 1, ds

t/2 1 1
gCQl(t)/ [(t—s)" P+ 1+t —s) 2072711 + 5)"2ds
0
+CQu(t) /t (£ —5)"Y2 4 (14 5)" 2] (1 4 5)" 7079~ 3ds
t/2
+CQ(t)(1+¢)"21)2
<C(do + vy — v-|Q() + Q)1 + 1) 7207572, (4.35)

Next, by repeating the same argument above, and in terms of Lemma 3.1, (4.11)-
(4.21), and (2.4)—(2.12), one can estimate J¥, I¥, and, similarly to [22], the other terms
as

1TE]| 2, < OQ)(do + vy — v_|Q(t) + Q(1)2)(1 + ¢) "2 —3) =% (4.36)
1]z, < O(1)(8o + vy — v_|Q(t) + Q1)) (1 + £)"2(1=3)-1-5, (4.37)

fori=1,2,3,4,5.
Combining the above estimates, we have finally

Q(t) < C(do + vy — v-|Q(t) + Q(1)%), (4.38)
which together with the assumption of dp < 1 and a continuity argument leads to

LEMMA 4.1. Under the assumptions of Theorem 1.1, it holds that
L)A%

185V (s B)lln, < Cdo(1+8)~203 (4.39)
105Vl 1)1z, < Cho(1 +)720-3) 55 (4.40)

forany k <2ifp=2and k <1if p € (2,00].
Then, the optimal decay rates (1.26)—(1.27) follow from Lemma 3.1. a

5. A remark on the function f(v). A simple example of a function f which satisfies
conditions (1.17)—(1.19) can be given by

1
fl)y==fov™¢ 0<e<g, fo>0.
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This function, going back to the notation of Sec. 1 where =(#) = v > 0, determines go(¥})
(recall that f = g 0271). Crucial here is then the choice of the internal energy €. If we
use the widely accepted Debye’s law for the heat capacity ¢, at very low temperatures,
(V) = €'(9) = cp?®, then e(¥) = L9*. Taking this into account, we obtain the following
function for g2,

g = —go™t, 0<d<2,

where fp = gg(ci“)“.

The function gg, together with g1, can be chosen to give agreement with experimental
data obtained for heat conductivity K, and thermal wave speed Ug through the relations
(cf. [24])

P2y (V) 2 9?g1(9)
K(9) = =20 () Ug® (V) = vy D)
The second relation allows us to choose the function g; (hence o) based on data for
Ug. It is worth noticing that this would not be possible if the system (1.1) and (1.2)
was a p-system. Using an empirical relation, Ug(d) = (A + B9*)"% (A.B and n are
constitutive constants, 1K < 9 < 20K cf. {1]), with go(v) = —go9~? leads to the heat
conductivity being in qualitative agreement with the data for the ranges of temperature
where Ug and K have been measured.
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