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ASYMPTOTIC BEHAVIOR OF SOLUTIONS

TO THE HELMHOLTZ EQUATIONS

WITH SIGN CHANGING COEFFICIENTS

HOAI-MINH NGUYEN

Abstract. This paper is devoted to the study of the behavior of the unique
solution uδ ∈ H1

0 (Ω), as δ → 0, to the equation

div(sδA∇uδ) + k2s0Σuδ = s0f in Ω,

where Ω is a smooth connected bounded open subset of R
d with d = 2 or

3, f ∈ L2(Ω), k is a non-negative constant, A is a uniformly elliptic matrix-
valued function, Σ is a real function bounded above and below by positive
constants, and sδ is a complex function whose real part takes the values
1 and −1 and whose imaginary part is positive and converges to 0 as δ goes
to 0. This is motivated from a result of Nicorovici, McPhedran, and Milton;
another motivation is the concept of complementary media. After introduc-
ing the reflecting complementary media, complementary media generated by

reflections, we characterize f for which ‖uδ‖H1(Ω) remains bounded as δ goes

to 0. For such an f , we also show that uδ converges weakly in H1(Ω) and

provide a formula to compute the limit.

1. Introduction

Negative index materials (NIMs) were first investigated theoretically by Veselago
in [22] and were innovated by Pendry in [15]. The existence of such materials was
confirmed by Shelby, Smith, and Schultz in [20] (see also [21]). Cloaking space
and illusion optics using NIMs were discussed in [7, 8] (see also [14]) based on the
concept of complementary and in [2,3,5,6,11–14] based on the anomalous localized
resonance. Perfect lens using NIMs was studied in [13, 14, 16, 19].

The first motivation for this work comes from the following two-dimensional
result of Nicorovici et al. in [14]. Let 0 < r1 < r2 < R, and f ∈ L2(BR). Here
and in what follows, for r > 0, Br denotes the ball centered at 0 of radius r. Set
r3 = r22/r1. Assume that R > r3 and supp f ∩ {x |x| < r3} = ∅. Let uδ ∈ H1

0 (BR)
be the unique solution to the equation

(1.1) div(εδ∇uδ) = f in BR.

Here
εδ = ε+ i1r1<|x|<r2 ,

where

ε(x) =

{
−1 if r1 < |x| < r2,

1 otherwise.
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Physically, the imaginary part of εδ is the loss of the medium. It is shown in [14]
by separation of variables that

(1.2) uδ → U for |x| > r3,

where U ∈ H1
0 (BR) is the unique solution to the equation

ΔU = f in BR.

The surprising fact in this result is that (1.2) holds for any f with supp f∩Br3 = ∅.
From (1.2), one might say that the region {r2 < |x| < r3} is canceled by the one in
{r1 < |x| < r2} and the total system is effectively equal to the free space; invisibility
is achieved.

The following questions naturally arise:

• What happens if supp f ∩Br3 �= ∅?
• Is the radial symmetry necessary? If not, what are conditions on ε?
• What happens in the finite frequency regime?
• Do similar phenomena hold in three dimensions? If yes, under which con-
ditions?

Another motivation for this work is the concept of complementary media which
was suggested in [7,18,19] (see also [14,15]). This concept has played an important
role in the study of NIMs and its applications such as cloaking, perfect lens, and
illusion optics (see [7,8,12,15,19]). Although many examples have been suggested,
this concept has not been defined in a precise manner. A common point in examples
studied is

(1.3) F∗a = −b in D2,

for some diffeomorphism F : D1 → D2 if a matrix a defined in a region D1 is
complementary to a matrix b defined in a region D2. Here

F∗a(y) =
DF (x)a(x)DFT (x)

J(x)
, where x = F−1(y) and J(x) = | detDF (x)|.

It is easy to verify in two dimensions that if F : {r1 < |x| < r2} → {r2 < |x| < r3}
with r3 = r22/r1 defined by F (x) = r22x/|x|2, then F is a diffeomorphism and

F ∗ (−I) = −I in {r2 < |x| < r3}.
In other words, the medium −I in {r1 < |x| < r2} is complementary to the medium
I in {r2 < |x| < r3}: complementary media appears in the setting of Nocorovici
et al.

In this paper, we address the above questions. To this end, we first introduce
the notion of reflecting complementary media. Similar phenomena as in (1.2) take
place for media that inherits this property in the quasistatic and the finite frequency
regimes. Two media (two matrices in two regions in the quasistatic regime) are
called reflecting complementary if they are complementary and the complementary
is generated by a reflection which satisfies some mild conditions. The motivation for
the definition of this notion comes from the reflection technique used in a heuristic
argument for (1.2) in Section 2.1. We then establish results in the spirit of (1.2) for
media of this property. The analysis again has roots in the heuristic argument. The
key to the analysis is the derivation of two Cauchy problems for elliptic equations by
the reflection technique using the reflecting complementary property. Concerning
the analysis, we characterize f (based on the compatibility condition in Definition 2)
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for which ‖uδ‖H1 remains bounded as δ → 0+; moreover, we show that for such
a function f , the limit of uδ exists as δ → 0+ (Theorem 1). We also provide a
formula to compute the limit which involves only the solutions of standard elliptic
equations (no sign changing coefficients), and show that the limit has properties
in the spirit of (1.2) (Theorem 2). To our knowledge, the results presented in this
paper are new even in the 2d-quasistatic regime.

The use of reflections to study NIMs has been considered previously in [12].
However, there is a big difference between the use of reflections in [12] and in this
paper. In [12], the authors used reflections as a change of variables to obtain a new
simple setting from an old more complicated one and hence the analysis of the old
problem becomes simpler. In this paper, we use reflections to derive the two Cauchy
problems. This derivation essentially makes use of the complementary property of
media. The global or non-global existence of the solutions to these Cauchy problems
will determine the boundedness or unboundedness of the H1-norm of the solutions.

The goals and the setting of this paper are different from Ammari et al.’s in
[2] and Kohn et al.’s in [6]. In this paper, we introduce the concept of reflecting
complementary media and we study the boundedness of ‖uδ‖H1 and the limit of uδ

in the whole domain as δ → 0 in the quasistatic and the finite frequency regimes.
In [2, 6], the authors investigate the unboundedness of δ1/2‖uδ‖H1 for piecewise
constant media (up to a diffeomorphism in [6]) in the quasistatic case. It is clear
that the boundedness of ‖uδ‖H1 implies the boundedness of δ1/2‖uδ‖H1 and the
unboundedness of δ1/2‖uδ‖H1 implies the unboundedness of ‖uδ‖H1 . The media
considered in [6] are of the reflecting complementary property; however the ones in
[2] are, in general, not (the radial setting considered in [2, Section 5] is an exclusion).
In [2], the authors also deal with the boundedness of uδ in some region. To make
use of their results mentioned above, one needs detailed information on the spectral
properties of certain boundary integral operators. This information is difficult to
come by in general. The method in this paper is different from and more elementary
than the spectral one in [2] and the variational one in [6].

The method in this paper is used in [9] and developed in [10]. In [9] the au-
thors study the complete resonance and localized resonance in plasmonic structures
whereas in [10] the author investigates the cloaking via complementary media.

Our paper is organized as follows. Section 2 contains two subsections devoted to
the concept of reflecting complementary media. In the first subsection, we present
the heuristic argument to obtain (1.2) and to motivate the definition of this concept.
The second subsection is devoted to the definition. In Section 3, we state and prove
properties on the reflecting complementary media. More precisely, we state and
prove Theorems 1 and 2 and present their two corollaries.

2. Reflecting complementary media

In this section, we introduce the notion of reflecting complementary media. To
motivate the definition, we first present a heuristic argument, in Section 2.1, to
obtain (1.2) based on the reflecting technique. The definition of reflecting comple-
mentary media is introduced in Section 2.

2.1. Motivation - a heuristic argument for (1.2). In this section, we present a
heuristic (elementary) argument to obtain (1.2). This argument motivates not only
the notion of the reflecting complementary media but also the analysis in Section 3.
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In this section, we assume that uδ → u ∈ H1(BR). It follows that u ∈ H1
0 (BR) is

a solution to the equation

div(ε∇u) = f in BR.

Let F defined in {|x| < r2} be the Kelvin transform w.r.t. ∂Br2 , i.e.,

F (x) =
r22
|x|2 x for |x| < r2.

Let u1 defined in {|x| > r2} be the Kelvin transform F of u, i.e.,

(2.1) u1(x) = u ◦ F−1(x) for |x| > r2.

Then, by the transmission condition on ∂Br2 , we have

(2.2) u1 = u and ∂ru1

∣∣∣
r→r2+

= ∂ru
∣∣∣
r→r2+

for |x| = r2.

Since F is a Kelvin transform and supp f ∩ {|x| < r3} = ∅, it follows that

(2.3) div(ε̂∇u1) = 0 for |x| > r2,

where

(2.4) ε̂(x) =

{
1 if r2 < |x| < r3,

−1 if |x| > r3.

(Note that F transforms ∂Br1 into ∂Br3 .) By the unique continuation principle,
we have

(2.5) u1 = u in {r2 < |x| < r3}.
Let G defined in {|x| > r3} be the Kelvin transform w.r.t. ∂Br3 , i.e.,

G(x) =
r23
|x|2 x for |x| > r3.

Define u2 in {|x| < r3}, the Kelvin transform G of u1, as

(2.6) u2(x) = u1 ◦G−1(x) for |x| < r3.

Similar to (2.2), we have

(2.7) u2 = u1 and ∂ru2

∣∣∣
r→r3−

= ∂ru1

∣∣∣
r→r3−

for |x| = r3.

It follows from (2.5) that

(2.8) u2 = u and ∂ru2

∣∣∣
r→r3−

= ∂ru for |x| = r3.

We also have

(2.9) Δu2 = 0 in |x| < r3,

by the property of the Kelvin transforms. Define U by

(2.10) U(x) =
{

u(x) if |x| > r3,

u2(x) if |x| < r3.

Since Δu = f for |x| > r3, it follows from (2.8) and (2.9) that

ΔU = f in BR.

Therefore, we obtain (1.2).
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2.2. Reflecting complementary media. In this section, we introduce the notion
of reflecting complementary media. Let Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω be smooth
connected bounded open subsets of Rd (d = 2, 3).

Let A be a measurable matrix function and let Σ be a measurable real function
defined in Ω such that

(2.11)
1

Λ
|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 ∀ ξ ∈ R

d,

for a.e. x ∈ Ω and for some 0 < Λ < +∞, and

(2.12) 0 < ess inf
Ω

Σ ≤ ess sup
Ω

Σ < +∞.

Set

(2.13) sδ(x) =

{
−1 + iδ if x ∈ Ω2 \ Ω1,

1 otherwise.

We are later interested in the behavior of the unique solution uδ ∈ H1
0 (Ω) to the

equation

(2.14) div(sδA∇uδ) + k2s0Σuδ = s0f in Ω,

as δ → 0.
We are ready to give

Definition 1 (Reflecting complementary media). The media (A,Σ) in Ω3 \ Ω2

and (−A,−Σ) in Ω2 \ Ω1 are said to be reflecting complementary if there exists a
diffeomorphism F : Ω2 \ Ω̄1 → Ω3 \ Ω̄2 such that

(2.15) F∗A(x) = A(x), F∗Σ(x) = Σ(x) for x ∈ Ω3 \ Ω̄2,

(2.16) F (x) = x on ∂Ω2,

and the following two conditions hold:

1) There exists a diffeomorphism extension of F , which is still denoted by F ,
from Ω2 \ {x1} → Ω4 \ Ω̄2 for some x1 ∈ Ω1 and some smooth open subset
Ω4 of Rd with Ω3 ⊂ Ω4.

2) There exists a diffeomorphism G : Ω4 \ Ω̄3 → Ω3 \x2 for some x2 ∈ Ω3 such
that1

(2.17) G(x) = x on ∂Ω3

and

(2.18) G ◦ F : Ω1 → Ω3 is a diffeomorphism if one sets G ◦ F (x1) = x2.

Here and in what follows, we use the standard notation:

(2.19) F∗A(y) =
DF(x)A(x)DFT (x)

J(x)
, F∗Σ (y) =

Σ (x)

J(x)
, and F∗f(y) =

f(x)

J(x)
,

where x = F−1(y) and J(x) = | detDF(x)|.
Some comments on the definition are:

i) If k = 0, then the condition on Σ is irrelevant in Definition 1.

1In (2.16) and (2.17), F and G denote some diffeomorphism extensions of F and G in a
neighborhood of ∂Ω2 and of ∂Ω3.
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ii) Condition (2.15) implies that (A,Σ) in Ω3 \Ω2 and (−A,−Σ) in Ω2 \Ω1 are
complementary in the usual sense. The term “reflecting” in the definition
comes from (2.16) and the assumption Ω1 ⊂ Ω2 ⊂ Ω3. Conditions (2.15)
and (2.16) are the main assumptions in the definition.

iii) Condition (2.15) makes sure that u (the “solution” for δ = 0) and u1 := u◦F
satisfy the same equation in Ω3 \ Ω2; hence the reflecting technique in
Section 2.1 can be used. Conditions (2.16) and (2.17) assure that u = u1

on ∂Ω2 and u2 = u1 on ∂Ω3 where u2 = u1 ◦ G−1. Condition (2.18) is a
technical one which is required by the proof.

iv) Conditions 1) and 2) in the definition are mild assumptions. Introducing G
in the definition makes the analysis more accessible as in Section 2.1 (see
the paragraph below (3.14) for other comments on G).

v) In general, it is difficult to verify whether (2.15) holds for some F . In
practice, to obtain the reflecting complementary in Ω2 \ Ω1 for (A,Σ) in
Ω3 \ Ω2, it suffices to choose a diffeomorphism F : Ω2 \ {x1} → Ω4 \ Ω̄2

for some x1 ∈ Ω1 and for some smooth bounded open subset Ω4 containing
Ω3, and define (−A,−Σ) in Ω2 \ Ω1 by (−F−1

∗ A,−F−1
∗ Σ).

It is clear that the medium ε given in (2.4) has the reflecting complementary
property with Ωi = Bri (for i = 1, 2, 3) and Ω = BR where r4 := +∞, and F and
G are the Kelvin transforms w.r.t. ∂Br2 and ∂Br3 , resp.

Remark 1. Concerning reflecting complementary media, the 2d-quasistatic case is
quite special in the sense that two constant media (two constant matrices) can
be complementary (see the example in the introduction). In fact, in the 2d-finite
frequency case, it seems that there do not exist two constant media (two constant
matrices and two constant functions) which are complementary and in the 3d case
there do not exist two constant media (two constant matrices) which are comple-
mentary.

3. Properties related to reflecting complementary media

3.1. Statement of the results. Let Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω be smooth con-
nected bounded open subsets of R

d (d = 2, 3). Let A be a measurable matrix
function and let Σ be a measurable real function defined in Ω such that

(3.1)
1

Λ
|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 ∀ ξ ∈ R

d,

for a.e. x ∈ Ω and for some 0 < Λ < +∞, and

(3.2) 0 < ess inf
Ω

Σ ≤ ess sup
Ω

Σ < +∞.

We will assume that A is piecewise differentiable in Ω in three dimensions.2

Set

(3.3) sδ(x) =

{
−1 + iδ if x ∈ Ω2 \ Ω1,

1 otherwise.

We are interested in the behavior of the unique solution uδ ∈ H1
0 (Ω) to the equation

(3.4) div(sδA∇uδ) + k2s0Σuδ = s0f in Ω,

as δ → 0.

2This condition is necessary to obtain the uniqueness for the Cauchy problems.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SOLUTIONS TO THE HELMHOLTZ EQUATIONS 6587

Throughout this section, we will assume that:
(3.5)
systems (3.6) and (3.7) have only zero solutions in H1(Ω \ Ω̄2) and H1(Ω), resp.,

where

(3.6)

{
div(A∇v) + k2Σv = 0 in Ω \ Ω̄2,

v = 0 on ∂Ω ∪ ∂Ω2,

and

(3.7)

{
div(Â∇U) + k2Σ̂U = 0 in Ω,

U = 0 on ∂Ω.

Here Â and Σ̂ are defined as

(3.8) Â :=

{
A if x ∈ Ω \ Ω3,

G∗F∗A if x ∈ Ω3,
and Σ̂ :=

{
Σ if x ∈ Ω \ Ω3,

G∗F∗Σ if x ∈ Ω3.

We also define

(3.9) f̂ :=

{
f if x ∈ Ω \ Ω3,

G∗F∗f if x ∈ Ω3.

Remark 2. The well-posedness of (3.6) and (3.7) always holds for k = 0. In the case
k > 0, if one is interested the corresponding problem on the whole space in which
outgoing solutions are considered, the well-posedness assumption is not necessary.

In what follows we assume that k > 0. The case k = 0 is similar and even easier
to obtain. The first main result in this section is

Theorem 1. Let d = 2, 3, δ > 0, f ∈ L2(Ω) and let uδ ∈ H1
0 (Ω) be the unique

solution to equation (2.14):

div(sδA∇uδ) + k2s0Σuδ = s0f in Ω.

Assume that the media (A,Σ) in Ω3 \ Ω2 and (−A,−Σ) in Ω2 \ Ω1 are reflecting
complementary. We have

a) Case 1: f is compatible with the medium. Then (uδ) converges weakly in
H1(Ω) and strongly in L2(Ω) to u0 ∈ H1

0 (Ω), the unique solution to the
equation

(3.10) div(s0∇u0) + k2s0Σu0 = s0f in Ω,

as δ → 0.
b) Case 2: f is not compatible with the medium. We have

(3.11) lim
δ→0

‖uδ‖H1(Ω) = +∞.

In the statement of Theorem 1, we use the following

Definition 2 (Compatibility condition). Assume that the media (A,Σ) in Ω3 \Ω2

and (−A,−Σ) in Ω2 \ Ω1 are reflecting complementary. Then f ∈ L2(Ω) is said
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to be compatible with the system if and only if there exist U ∈ H1(Ω3 \ Ω2) and
V ∈ H1(Ω3 \ Ω2) such that

(3.12)

⎧⎪⎪⎨
⎪⎪⎩

div(A∇U) + k2ΣU = F∗f − f in Ω3 \ Ω̄2,

U = 0 on ∂Ω2,

A∇U · η = 0 on ∂Ω2,

and

(3.13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div(A∇V ) + k2ΣV = f in Ω3 \ Ω̄2,

V = W
∣∣∣
ext

on ∂Ω3,

A∇V · η = A∇W · η
∣∣∣
ext

on ∂Ω3.

Here W ∈ H1(Ω \ ∂Ω3) is the unique solution to the system

(3.14)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

div(Â∇W ) + k2Σ̂W = f̂ in Ω \ ∂Ω3,

W = 0 on ∂Ω,

[W ] = −U on ∂Ω3,

[Â∇W · η] = −A∇U · η on ∂Ω3.

The compatibility condition is an intrinsic one, i.e., it does not depend on the
choice of F and G. In fact, it is equivalent to the boundedness of ‖uδ‖H1(Ω) as
δ → 0. Given F , there are infinitely many choices of G. A choice of G that would
make the compatibility condition more accessible is preferred. Problems (3.12) and
(3.13) are the two Cauchy problems obtained from the reflecting technique. The
reflecting complementary condition is necessary so that (‖uδ‖H1(Ω)) explodes for
some f (see [6]).

The uniqueness of U and V follow from the unique continuation principle (see,
e.g., [1, 17]). The existence and uniqueness of W are standard and follow from
Fredholm’s theory (see, e.g., [4]) since system (3.7) is well-posed.

The next result is in the spirit of (1.2).

Theorem 2. Let d = 2, 3, δ > 0, f ∈ L2(Ω) and let uδ ∈ H1
0 (Ω) be the unique

solution to equation (2.14):

div(sδA∇uδ) + k2s0Σuδ = s0f in Ω.

Assume that the media (A,Σ) in Ω3 \ Ω2 and (−A,−Σ) in Ω2 \ Ω1 are reflecting
complementary and f is compatible with the system. Then (uδ) converges weakly
to NI(f) in H1(Ω), where

(3.15) NI(f) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W if x ∈ Ω \ Ω3,

V if x ∈ Ω3 \ Ω2,

(U + V ) ◦ F if x ∈ Ω2 \ Ω1,

W ◦G ◦ F if x ∈ Ω1.

Here U, V , and W are given in Definition 2.
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If f = 0 in Ω3, then U = 0. In this case, the compatibility condition is equivalent
to the existence of V ∈ H1(Ω3 \ Ω̄2) to the Cauchy problem

(3.16)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div(A∇V ) + k2ΣV = 0 in Ω3 \ Ω̄2,

V = W
∣∣∣
ext

on ∂Ω3,

A∇V · η = A∇W · η
∣∣∣
ext

on ∂Ω3,

where W ∈ H1
0 (Ω) is the unique solution to

div(Â∇W ) + k2Σ̂W = f in Ω.

We have

Corollary 1. Let d = 2, 3 and f ∈ L2(Ω) with supp f ∩ Ω3 = ∅. Assume that
the media (A,Σ) in Ω3 \Ω2 and (−A,−Σ) in Ω2 \Ω1 are reflecting complementary
and there exists a solution V ∈ H1(Ω3 \ Ω̄2) to (3.16). Then f is compatible to the
system.

It follows from Corollary 1 that if supp f ∩Ω3 = ∅ and if G∗F∗A(x) = A(x) and
G∗F∗Σ(x) = Σ(x) for x ∈ Ω3 \ Ω̄2, then V = W . We obtain

Corollary 2. Let d = 2, 3 and f ∈ L2(Ω) with supp f ∩Ω3 = ∅. Assume that the
media (A,Σ) in Ω3 \Ω2 and (−A,−Σ) in Ω2 \Ω1 are reflecting complementary and

(3.17) G∗F∗A(x) = A(x) and G∗F∗Σ(x) = Σ(x) for x ∈ Ω3 \ Ω̄2.

Then f is compatible to the system.

Remark 3. It is easy to verify that the 2d setting considered in the introduction
satisfies the assumptions of Corollary 2.

Remark 4. In this paper, we characterize the behavior of uδ as δ → 0 for compatible
f . The paper [10] develops the method introduced here to deal with this problem
without the assumption on the compatibility in the cloaking setting.

3.2. Proofs of Theorems 1 and 2. This section containing two subsections is
devoted to the proof of Theorems 1 and 2. In the first subsection, we establish
basic properties of solutions to equation (2.14) such as existence, uniqueness, and
stability, and establish a result on the change of variables concerning reflections.
The proofs of Theorems 1 and 2 are given in the second subsection.

3.2.1. Preliminaries. This section contains two lemmas. The first one is on the
well-posedness of (2.14).

Lemma 1. Let d = 2, 3, k > 0, 0 < δ < 1, g ∈ H−1(Ω) (the duality of H1
0 (Ω))

and let sδ be defined in (2.13). Assume that A and Σ satisfy (2.11) and (2.12), and
(3.5) holds. Then there exists a unique solution vδ ∈ H1

0 (Ω) to the equation

(3.18) div(sδA∇vδ) + k2s0Σvδ = g in Ω.

Moreover,

(3.19) ‖vδ‖H1(Ω) ≤ C
(1
δ
‖g‖H−1(Ω) + ‖g‖L2(Ω1) + ‖g‖L2(Ω2\Ω̄1) + ‖g‖L2(Ω\Ω̄2)

)
,

for some positive constant C independent of g and δ, as δ is small.
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Proof. The existence of vδ follows from the uniqueness of vδ by Fredholm’s theorem
(see, e.g., [4]). We now establish the uniqueness of vδ by showing that vδ = 0 if
vδ ∈ H1

0 (Ω) is a solution to the equation

div(sδA∇vδ) + k2s0Σvδ = 0 in Ω.

Multiplying the above equation by v̄δ (the conjugate of vδ) and integrating the
obtained expression on Ω, we have∫

Ω

sδ〈A∇vδ,∇vδ〉 dx−
∫
Ω

k2s0Σ|vδ|2 dx = 0.

This implies, by considering the imaginary part,∫
Ω2\Ω1

〈A∇vδ,∇vδ〉 dx = 0.

It follows from (2.11) that vδ is constant in Ω2 \ Ω1. Thus vδ = 0 in Ω2 \ Ω1 since
div(sδA∇vδ) + k2s0Σvδ = 0 in Ω2 \ Ω1. This implies vδ = 0 in Ω \ Ω2 and in Ω1

by (3.5). Here to establish vδ = 0 in Ω1, we considered the function Vδ defined in
Ω as Vδ = vδ ◦ F−1 ◦G−1 in Ω3 and Vδ = 0 in Ω \ Ω3 and used the well-posedness
of (3.7). The proof of the uniqueness is complete.

We next establish (3.19) by a contradiction argument. Assume that (3.19) is not
true. Then there exists (gδ) ⊂ H−1(Ω) such that
(3.20)

‖vδ‖H1(Ω) = 1 and
1

δ
‖gδ‖H−1 + ‖gδ‖L2(Ω1) + ‖gδ‖L2(Ω2\Ω̄1) + ‖g‖L2(Ω\Ω̄2) → 0,

as δ → 0, where vδ ∈ H1
0 (Ω) is the unique solution to the equation

(3.21) div(sδA∇vδ) + k2s0Σvδ = gδ in Ω.

Multiplying this equation by v̄δ and integrating the obtained expression on Ω, we
have ∫

Ω

sδ〈A∇vδ,∇vδ〉 dx−
∫
Ω

k2s0Σ|vδ|2 dx = −
∫
Ω

gδ v̄δ dx.

Considering the imaginary part and using the fact that

1

δ

∣∣∣ ∫
Ω

gδ v̄δ

∣∣∣ ≤ 1

δ
‖gδ‖H−1‖vδ‖H1(Ω) → 0 as δ → 0 by (3.20),

we obtain, by (2.11),

(3.22) ‖∇vδ‖L2(Ω2\Ω1) → 0 as δ → 0.

Since div(A∇vδ) + k2Σvδ = gδ in Ω2 \ Ω̄1, it follows from (3.20) and a standard
compactness argument that

(3.23) ‖vδ‖L2(Ω2\Ω1) → 0 as δ → 0.

A combination of (3.22) and (3.23) yields

(3.24) ‖vδ‖H1(Ω2\Ω1) → 0 as δ → 0.

In particular,

‖vδ‖H1/2(∂Ω2) + ‖vδ‖H1/2(∂Ω1) → 0 as δ → 0.

We derive from the well-posedness of (3.6) and (3.7) that

(3.25) ‖vδ‖H1(Ω\Ω2) → 0
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and

(3.26) ‖vδ‖H1(Ω\Ω1) → 0.

A combination of (3.24), (3.25), and (3.26) yields

‖vδ‖H1(Ω) → 0.

We have a contradiction by (3.20). The proof of (3.19) is complete. �

The second lemma is on the change of variables for reflections.

Lemma 2. Let k ≥ 0, let D1 and D2 be two smooth open subsets of Rd, let T be a
diffeomorphism from D1 onto D2, let a ∈ [L∞(D1)]

d×d be a matrix function, and
let σ ∈ L∞(D1) be a complex function. Fix u ∈ H1(D1) and set v = u ◦T−1. Then

div(a∇u) + k2σu = f in D1

iff

div(T∗a∇v) + k2T∗σv = T∗f in D2.

Assume that Γ1 and Γ2 are open subsets of ∂D1 and ∂D2 such that Γ1 and Γ2 are

smooth, Γ2 = T (Γ1), and T := T
∣∣∣
Γ1

Γ1 → Γ2 is a diffeomorphism.3 We have

a∇u · η1 = g1 on Γ1

iff

T∗a∇v · η2 = g2 on Γ2,

where4

g2(y) = g1(x)/| det∇T(x)| with x = T−1(y).

Here η1 and η2 are the normal unit vectors on Γ1 and Γ2 directed to the exterior
of D1 and D2. In particular, if Γ1 = Γ2, T(x) = x on Γ1, D2 ∩D1 = ∅, then we
have

(3.27) T∗a∇v · η1 = −a∇u · η1 on Γ1 = Γ2.

Proof. Lemma 2 is a consequence of the change of variables. The first equivalence
relation is known and can be proved by using the weak formula for u and v. The
second equivalence follows similarly. The details are left to the reader. �

3.2.2. Proof of the first statement of Theorem 1 and Theorem 2. In this section, f
is compatible. The proof is derived from the following steps:

Step 1. Let v ∈ H1
0 (Ω) be a solution to the equation

(3.28) div(s0A∇v) + k2s0Σv = s0f in Ω.

We prove that v = NI(f).

Step 2. Define u0 := NI(f). We prove that u0 ∈ H1
0 (Ω) is a solution to the

equation

div(s0A∇u0) + k2s0Σu0 = s0f in Ω.

Step 3. We prove that (uδ)0<δ<1 is bounded in H1(Ω).

3We assume here that there is an extension of T in a neighborhood of ∂D1 (which is also called
T ) such that it is a diffeomorphism.

4In the identity below, ∇T stands for the gradient of a transformation from a (d−1)-manifold
into a (d− 1)-manifold, and det∇T denotes the determinant of a (d− 1)× (d− 1)-matrix.
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Step 4. We prove that (uδ) converges weakly in H1(Ω) and strongly in L2(Ω) to
u0 as δ goes to 0.

It is clear that the proof of the first statement of Theorem 1 and Theorem 2 is
complete after these four steps. We now process these steps.

Step 1. Assume that v ∈ H1
0 (Ω) is a solution to the equation

div(s0A∇v) + k2s0Σv = s0f in Ω.

Set

(3.29) v1 = v ◦ F−1 in Ω4 \ Ω̄2

and

(3.30) ŝ0 =

{
1 if x ∈ Ω3 \ Ω2,

−1 if x ∈ Ω4 \ Ω3.

Then v1 ∈ H1(Ω3 \ Ω̄2)∩H1
loc

(Ω4 \ Ω̄2) and, by Lemma 2, v1 satisfies the equation

(3.31) div(ŝ0F∗A∇v1) + k2ŝ0F∗Σv1 = ŝ0F∗f in Ω4 \ Ω̄2,

and
v1 = v on ∂Ω2 and F∗A∇v1 · η = A∇v·η

∣∣∣
ext

on ∂Ω2.

In the last identity, we use the facts that F∗A∇v1 · η = −A∇v · η
∣∣∣
int

on ∂Ω2 by

(3.27), and that A∇v · η
∣∣∣
ext

= −A∇v · η
∣∣∣
int

on ∂Ω2 by the transmission condition

on ∂Ω2. Define

(3.32) U = v1 − v in Ω3 \ Ω̄2.

Since F∗A = A and F∗Σ = Σ in Ω3 \ Ω̄2, it follows that

(3.33)

⎧⎪⎪⎨
⎪⎪⎩

div(A∇U) + k2ΣU = F∗f − f in Ω3 \ Ω̄2,

U = 0 on ∂Ω2,

A∇U · η = 0 on ∂Ω2.

Applying the unique continuation principle (see, e.g., [1, 17]), from (3.12), we have

(3.34) U = U in Ω3 \ Ω̄2.

Define v2 in Ω as

(3.35) v2(x) =

{
v1 ◦G−1(x) if x ∈ Ω3,

v(x) if x ∈ Ω \ Ω3.

Using (2.18) and applying Lemma 2, we have

(3.36) div(Â∇v2) + k2Σ̂v2 = f̂ in Ω \ ∂Ω3,

and, on ∂Ω3,

Â∇v2 · η
∣∣∣
ext

− Â∇v2 · η
∣∣∣
int

= A∇v · η
∣∣∣
ext

+ F∗A∇v1 · η
∣∣∣
ext

(by (3.27))

= A∇v · η
∣∣∣
ext

− F∗A∇v1 · η
∣∣∣
int

(by (3.31))

= A∇v · η
∣∣∣
ext

− F∗A∇(v +U) · η
∣∣∣
int

(by (3.32)).
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Since F∗A = A in Ω3 \ Ω̄2, it follows from (3.34) that

(3.37) Â∇v2 · η
∣∣∣
ext

− Â∇v2 · η
∣∣∣
int

= −A∇U · η
∣∣∣
int

on ∂Ω3.

Since G(x) = x on ∂Ω3, we obtain, on ∂Ω3,

(3.38) v2

∣∣∣
ext

− v2

∣∣∣
int

= v
∣∣∣
ext

− v1

∣∣∣
ext

= v
∣∣∣
ext

− v1

∣∣∣
int

= v
∣∣∣
ext

− (U+ v)
∣∣∣
int

= −U,

by (3.34). Combining (3.36), (3.37), (3.38), and (3.14), and applying the unique
continuation principle, we have

(3.39) v2 = W in Ω.

Since div(A∇v) + k2Σv = f in Ω3 \ Ω̄2, it follows from (3.35) and (3.39) that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div(A∇v) + k2Σv = f in Ω3 \ Ω̄2,

v = W
∣∣∣
ext

on ∂Ω3,

A∇v · η
∣∣∣
int

= A∇W · η
∣∣∣
ext

on ∂Ω3.

By the unique continuation principle, it follows from (3.13) that

(3.40) v = V in Ω3 \ Ω̄2.

We claim that

v =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W in Ω \ Ω3,

V in Ω3 \ Ω2,

(V + U) ◦ F in Ω2 \ Ω1,

W ◦G ◦ F in Ω1.

In fact, the statement v = W in Ω \ Ω3 is a consequence of (3.35) and (3.39); the
statement v = V in Ω3 \ Ω2 follows from (3.40); the statement v = (V + U) ◦ F
in Ω2 \ Ω1 is a consequence of the fact v1 = v + U = V + U in Ω3 \ Ω2, and the
statement v = v1 ◦ F in Ω2 \ Ω1; v = W ◦ G ◦ F in Ω1 is a consequence of the
definition of v1 and v2, and v2 = W in Ω3. The claim is proved. Therefore,

v = NI(f) in Ω.

The proof of Step 1 is complete.

Step 2. We claim that

(3.41) div(A∇u0) + k2Σu0 = f in Ω \ (∂Ω3 ∪ ∂Ω2 ∪ ∂Ω1),

where u0 := NI(f). Indeed, it is just a consequence of the definition of U, V and
W and the facts that F∗A = A and F∗Σ = Σ in Ω3 \ Ω2.

It remains to verify

(3.42) [A∇u0] = [u0] = 0 on ∂Ω3, [s0A∇u0] = [u0] = 0 on ∂Ω2,

and

(3.43) [A∇u0] = [u0] = 0 on ∂Ω1.

From the definitions of V in (3.13) and NI(f) in (3.15), we have

[A∇u0] = [u0] = 0 on ∂Ω3.
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Since U = 0 and A∇U · η = 0 on ∂Ω2, it follows from (3.27) that

[s0A∇u0] = [u0] = 0 on ∂Ω2.

From (3.14) and (3.27), we have

[s0A∇u0] = [u0] = 0 on ∂Ω1.

The proof of Step 2 is complete.

Step 3. Set

vδ = uδ − u0 in Ω.

We have, in Ω,

div(sδA∇vδ) + k2s0Σvδ =div(sδA∇uδ)− div(sδA∇u0) + k2s0Σuδ − k2s0Σu0.

This implies

div(sδA∇vδ) + k2s0Σvδ = div
[
(s0 − sδ)A∇u0

]
in Ω.

By Lemma 1, we have

‖∇vδ‖L2(Ω) ≤ C‖∇u0‖L2(Ω),

which yields, since uδ = vδ + u0,

‖∇uδ‖L2(Ω) ≤ C‖∇u0‖L2(Ω).

Since uδ ∈ H1
0 (Ω), by Poincaré’s inequality, it follows that

‖uδ‖H1(Ω) ≤ C‖∇u0‖L2(Ω).

Step 3 is complete.

Step 4. The conclusion of Step 4 follows from Step 3 and the facts that the limit of
uδ (up to a subsequence) satisfies (3.28) and (3.28) has a unique solution in H1

0 (Ω)
by Steps 1 and 2. �

3.2.3. Proof of the second statement of Theorem 1. In this section f is not compat-
ible. We prove the second statement of Theorem 1 by contradiction. Assume that
(3.11) is not true. Without loss of generality, there exists a bounded sequence (uδ)
in H1

0 (Ω) such that uδ is the unique solution to the equation

div(sδA∇uδ) + k2s0Σuδ = s0f in Ω,

and uδ converges weakly to (some) u ∈ H1(Ω) as δ → 0. It follows that u ∈ H1
0 (Ω)

is a solution to the equation

div(s0A∇u) + k2s0u = s0f in Ω.

Define

U = u ◦ F−1 − u in Ω3 \ Ω̄2 and V = u in Ω3 \ Ω̄2.

As in Step 1 of Section 3.2.2, U and V satisfy (3.12) and (3.13) respectively. We
have a contradiction since f is not compatible with the system.
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