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A S Y M P T O T I C B E H A V I O R O F S O L U T I O N S T O A 
V O L T E R R A I N T E G R O - D I F F E R E N T I A L E Q U A T I O N 

Z. JACKIEWICZ, M. KLAUS AND C. O'CINNEIDE 

1. In troduct ion . It is the purpose of this paper to investigate the 
asymptotic behavior of the solution to the Volterra integro-differential 
equation (VIDE) 

n i J y'{t) = 72/(0 + Jo (A + & + »*) y(s) ds^ * ^ °> 
1 } U(o) = i, 
where 7, A, \i and v are real parameters, and ß + u ^ 0. Our approach is 
to derive asymptotic results for a related ordinary differential equation 
(ODE), and to deduce from these the desired results for the VIDE. 
Equation (1) is of interest in testing the stability properties of numerical 
methods for VIDEs (see [3] for work along these lines). We have chosen 
in (1) the familiar nonconvolution kernel suggested, for example, in [1, 
Equation (1.5)]. 

Bakke and Jackiewicz [3] used an extension of the theory of difference 
equations of Poincaré type, developed in [2], to derive conditions under 
which approximate solutions to the test equation (1), resulting from 
applying reducible linear multistep methods and modified multilag 
methods, are bounded. To judge the quality of numerical methods 
based on this information, we should compare the behavior of the 
exact solution of (1) with the behavior of the corresponding numerical 
solution. In this paper we derive sufficient conditions for boundedness 
of the exact solution which allow this comparison to be made. 

That (1) has a unique solution is a straightforward consequence of 
the smoothness of the kernel. Repeated differentiation shows that this 
solution also satisfies the differential equation with variable coefficients 

(2) y'" = 7 2 / " + (A + (M + u)t)y' + (2/x + v)y. 

In §2 and §3 we find three solutions to (2) in the form of contour 
integrals parametrized by t. An extension of Laplace's method for 
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contour integrals is then used, in which the effect of a dominant factor 
of the integrand is shown to be governed by a saddle point, to derive the 
asymptotic behavior of these solutions. We refer the reader to Olver 
[7, Sections 4.6 and 9.2] for a discussion of these methods (Bender and 
Orzag [4] provide a more elementary treatment; see also Henrici [6]). 
The three contour integrals display distinct asymptotic behaviors and 
hence are linearly independent. Thus, the solution of (1) is a linear 
combination of these. Unfortunately, we cannot find the coefficients 
of the linear combination explicitly in general, and so we cannot 
establish the asymptotic properties of (1) directly from those of (2). 
In spite of this, we can show that all solutions of (2) are bounded once 
7 < 0 , / i + ^ < 0 and 2ß -f v < 0. It follows that under these conditions 
the solution of (1) is also bounded. This fact is a strengthened form 
of a conjecture in [3] and is sufficient for the needs of the numerical 
investigation. 

We note that the asymptotic analysis of (2) is related to that of Airy's 
equation (Olver [7]) and more closely to that of the generalized Airy 
functions considered by Drazin and Reid [5] in their appendix. When 
/i/(/i + v) is a nonnegative integer, two linearly independent solutions 
of (2) may be expressed as finite linear combinations of Drazin and 
Reid's integrals. 

In §4 we compare two numerical methods having different stability 
regions with respect to equation (1). One of the stability regions 
contains the stability region of (1) itself, while the other does not. 
We demonstrate that the method with the larger stability region can 
successfully integrate an inhomogenous VIDE with homogenous part 
as in (1) for a large selection of parameter values. 

2. Integral representation of solutions. We now seek solutions 
of (2) in the form 

(3) y(t) = J e'HiO dÇ, t > 0, 

where T is a contour in the complex plane and ip is an analytic function 
to be determined. Substituting (3) into (2) and using integration by 
parts we obtain 
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J(Ü3 - 1? -K- (2M + v))e*il>{0 di 

-{ß + v)Jett±mO)dC. 
Here dT stands for the "boundary" of F. If we assume that 

(4) e t « ^ ( C ) | a r = 0 , 

we are led to consider an ip that satisfies the differential equation 

(/* + v)W(0 + (Ç3 - 7^2 - AC - /i)V(0 = 0. 

Since we are assuming that \i -f v ^ 0, the unique solution of this 
equation, up to a constant factor, is given by 

(5) ^(0 = ^expj^l + £*| +C£}, 

where A = - l / ( / /+ i / ) , B = i/bt+v), C = A/(/i+z/) and ß = /x/(/i+i/). 
It follows that (3) gives a solution of (2) with this choice of ip and any 
contour T satisfying (4) for which the integrand is integrable. In the 
next section we give several choices for the contour F which lead to 
three linearly independent solutions of (2) and we use the ideas of the 
method of steepest descent and Laplace's method to determine the 
asymptotic behavior of (3) for these choices. 

3. Asymptotic behavior of solutions. Before we embark on the 
asymptotic analysis, a few remarks on Laplace's method are in order. 
In studying the asymptotic behavior of the integral 

the main challenge is to account for cancellation that occurs due to 
the rapidly changing argument of the integrand as t increases. A 
paradigm of such cancellations is the Riemann-Lebesgue lemma (Olver 
[7]). The idea behind the method of steepest descent is that, when 
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g and h are analytic, the contour T may be deformed with the aid 
of Cauchy's theorem into a contour T* on which the imaginary part 
of g is constant, thus eliminating the problem of cancellations. Now, 
and this is the key idea in Laplace's method, the integral is typically 
dominated by the integral along any nonempty subset of T* of the Form 
{LU G r* : Reg(cu) > constant}. Unfortunately, these methods do not 
apply directly here. However, by staying on a steepest descent pa th 
for a dominant part of the exponent, the same ideas may be exploited; 
Olver [7, §9.2], gives the details of this approach. 

Returning to the integral (3), with ip as in (5), let us make the change 

of variables UJ = \A\zC and set s = t\A\~z, y*(s) = y(t), b = B\A\~^, 

and c = C\A\~~3. As a result we get 

(6) y*(s) = | A | - ( / 3 + 1 ) / 3 / e ^ ^ e x p { s i g n ( A ) ^ 3 + b^ + cw} du, 

where T now denotes a new contour. It is clear that we must consider 
separately the two cases determined by the sign of A. In the following, 
for notational convenience, D denotes a nonzero complex constant, but 
not necessarily the same one even on a given line. To denote a small 
positive number we use e. The notation a(t) ~ b(t) is used to mean 
that a(t)/b(t) —» 1 as t —• oo. 

Case 1. A < 0. In this case, formula (6) may be written 

(7) y*(s) = DJujßexp{fs(u;)}dLü, 

where 

fs(u) = su-- + 6 - +cu;. 

For s sufficiently large the saddle points of fs are real and are given by 

u± = -± yjc + s + ò2/4 - ± v ^ -

The expansions of fs about each of these points are given succinctly by 

(8) 

/„M = /„(w±)-u4 - - 0 , + Ï ( - - ' 
u± ) 3 \ ^ ± 

WZ->)' 

file:///A/zC
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Routine algebraic manipulation leads to the useful result that 

(9) f.{u±) = ±2-s^ ± (c + ? y * + \s + A(6 2 + 6c) + o(l), 

where o(l) is a function that goes to zero as s —• oc. 

F I G U R E 1. 

We consider three types of contour, which are illustrated in Figure 
1. A contour of type T\ is asymptotically parallel to a ray of angle 



506 Z. JACKIEWICZ, M. KLAUS AND C. O'CINNEIDE 

between — 7r/6 and +7r/6 on one side and asymptotically parallel to 
a ray of angle between TT/2 and 57r/6 on the other. A contour of 
type T2 is the reflection of one of type T\ in the rc-axis. A contour 
of type r 3 is asymptotically parallel to a ray of angle between TT/2 
and 57r/6 in the upper half-plane and is symmetric in the x-axis. We 
assume that these contours bear the relation to the origin indicated in 
Figure 1 and tha t the integrand of (7) is integrable along each. There 
exist such contours since the term — u 3 / 3 has a large negative real 
part tha t strongly dominates the exponent along all the asymptotes 
allowed. From Cauchy's Theorem, and from the dominance of —u;3/3, 
we see that the integral (7) is the same along any two contours of the 
same type. Thus, in writing integrals below, we need not specify a 
choice of contour and may simply say "the contour Ti ." Condition (4) 
is satisfied for each type of contour and so (7) does represent a solution 
of (1) for each type. 

Consider first the integral over T\. Let us substi tute 77 = UJ/UJ+, set 
r = uo\, and apply (8) to get this solution of (2) 

yî(s) = Dtüß
+

+lexp{fs(u;+)} 

( 1 0 ) l / e x p l - r ^ - l f + ^ - l ) 3 

• exp^T 2 / 3 ^- ! ) 2 } .^ . 

Note tha t a scale change of a contour of any of the three types yields 
a contour of the same type. By following the steepest descent paths of 
the function — (77 — l ) 2 — ^(T? — l ) 3 , we can find a contour of type Ti 
which contains [1/2, 00) on which this function is maximal at 77 = 1 and 
only approaches this maximum at 77 = 1. This contour is represented 
by the dotted line in Figure 1. Using it as our choice of T\ we have 
the following calculation, in which the method of Olver's [7, Theorem 
9.2.1] allows us to ignore the r 2 / / 3 term in the exponent of the integrand 
and Laplace's method for contour integrals (Olver [7, Theorem 4.6.1] 
may be used to justify the final result: 
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jT ^ e x p j - r ^ - l ) 2
 + ì ( ^ - l )3 ]} . e X p{È r 2 /3 ( 7 ? _ 1 ) 2 j dv 

fo-!)* + - ( , , -1)3 / r 
/ r/^exp^ 

Jl/2 l 

/
+ 00 

exp{—r(7/ — l ) 2 } c?77 = y/ix/r 
-oc 

}*? 

From this and (10) we see tha t 

yt(s) ~ D sW+WexpiMu+ïï/y/ï ~ D s ^ - ^ e x p l / . ^ ) } . 

The asymptotic result (9) may now be used to deduce 

2 Q /o . / . 0 \ i io . O 
(11) y\{a) ~ D ^ " ^ e x p ^ 2 + (c + J ) ^ 2 + *-*}. 

No new asymptotic behavior is found by considering Y2 since, as for 
Ti , the saddle point o;+ dominates. However, the integral along TiU T2 

is different asymptotically, due to cancellation of the leading effects. A 
contour of type Ti U T2 may be deformed into the pa th C given in 
Figure 2. This consists of a clockwise circle of radius e, a finite interval 
(-K, —e) of the negative real axis traversed in both directions, with two 
branches having the ±27r/3-rays as asymptotes. Consider the integral 
(7) over this contour, for ß not a nonnegative integer, denoting it by y2. 
The integral over the two branches is seen to be exponentially small in s. 
Applying Watson's lemma for loop integrals (Olver [7, Theorem 4.5.1]) 
to the integral on the remainder of the path, the following calculation 
may be justified, thus giving a second solution of (7) satisfying 

f ft f ^'^ ^ 2 Ì 
y2(s) ~ / urexp< su: — — + b— -f cu; > duo 

Jc 1 3 2 J 

L -ß-i = Ds -ß-i 
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F I G U R E 2. 

If ß is a nonnegative integer the integrand of (7) is analytic and 
so, by Cauchy's theorem, the integrals (7) over Ti , r2 and T^ are 
linearly dependent. In this case, the dotted contour of Figure 3 satisfies 
condition (4), and a standard application of Laplace's method shows 
again that the solution of (2) which arises in this way satisfies 

Î/5(«) 
J —CK 

or Uw = Ds-e-\ 
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We have found a solution of (2) with the behavior 

(12) y*2{s) ~ Ds-ß~l 

for every value of ß. 

F I G U R E 3. 

Now consider the integral (7) along the contour T3. Using the 
expansion (8), and setting 77 = —LÜ/LÜ- and r = —a;?., we obtain a 
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solution 

y*3(s) = Dcoß_+1 exp{fs(^)} J V»exp {r[fo + l ) 2 - ~(V+ l)3] } 

• e x p l ^ - r ^ r z + l ) 2 } ^ . 

We may choose for T3 the path of steepest descent of (77 +1)2 — |(77 + 1)3 

which goes vertically through the point — 1. This function is real-valued 
on this path and attains its maximum at —1. Arguing as we did when 
considering Ti, we find that 

/

—l+ioo 

e x p j r ^ + l ) 2 } ^ 

~ D s ^ - ^ e x p j - Is3'2 - (c+^y/2 + \s), 

from (9), the integral here being iy/ir/r. We have found solutions with 
three distinct asymptotic behaviors. These solutions must clearly be 
linearly independent. So the case A < 0 is complete. 

Case 2. A > 0. In this case formula (6) may be written as 

(14) y*(s) = D[<JiexP{fs((j)}<L>, 

where 
a;3 a;2 

f3(v) = SCJ+ - + 6 - +OJ. 

The saddle points of / s are 

^± = - - ± \ / 6 2 / 4 - c - s , 

and the expansions of fs about both points may again be given simul
taneously: 

(15) 
\üü± 7 3 \uj± 7 

Î4(£- ' ) ' -



ASYMPTOTIC ANALYSIS OF A VIDE 511 

As before, routine algebra leads to the asymptotic formula 

(16) fs(w±) = ±i il'"2 + (<-iy 5«+ ^«>2-«<•) +0(1) 

where o(l) is a function tha t goes to zero as s —» oo. It is important 
to note that u± are complex now for s sufficiently large and their 
imaginary parts are large compared to their real parts . In fact, 

(17) u± = ± z V / c T ^ - b2/{Sy/s) - b/2 + o ( s _ 1 ) , 

where s • o(s~l) —> 0 as s —> oo. 

Let T4 and T^ represent the families of contours formed by reflecting 
contours of type I \ and I"2 in the y-axis, respectively. These are 
illustrated in Figure 3. On such contours, the dominance of the LJ3/3 
term in the exponent of the integrand in (14) will ensure integrability, 
and tha t (4) holds. Thus (14) gives a solution of (2) for each of r 4 and 
TO, which we denote by yl(s) and 2/5(5), respectively. Consider first Y4. 
On substituting 77 = ÌLU/LJ+ and setting r :, (14) and (15) lead to 

Vl(s) 

(18) 

D ^ + 1 e x p { / 8 ( a ; + ) } 

• / / e x p { r [ z ( 7 / - i ) 2 + - ( r / - i ) 3 ] } 

• e x p { - r 2 / 3 ( r y - i ) 2 } ^ . 

Note that , for s sufficiently large, the image of a contour of type T4 or 
r 5 under the mapping 77 = iuj/uu+ is again of the same type, by (17). 
The function i(j} — i)2 4- \(r] — i)3 has a path of steepest descent of type 
r 4 through 77 = i, on which this function is real-valued and rj = i is its 
only saddle point. The function takes on its maximum over the path 
at this point. Arguing as we did when considering Ti , we can show 
that the integral of (18) ~ D/y/r. Now (16) and (18) together give the 
desired result: 

(19) y*4{8) ~ DsW-Wexi>{i[l<t/2+ (c- \ Y12] - \s). 

The same kind of analysis may be repeated for contours of type Ts, 
but it is more convenient to observe that , since the coefficients of (2) 
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are real, the conjugate of (19) must represent the asymptotic behavior 
of a different solution. Thus there is another solution satisfying 

(20) y;(s)~DsW-WeXp{-i[ls^+(c-^)s^]-b-s}. 

Finally, the methods leading to (12) may be repeated here to yield a 
third solution y^ for which 

(21) l/e'W-Ds-"-1. 

This completes the case A > 0. If we now return to the notation of 
equation (5), we have found solutions with the following asymptotic 
behavior: 

Case 1. A < 0. 

V\ 
/2 (t) ~ Dt^-1^4 exp {^r1/2*3/2 + \A\~l/2{C + B2\A\-ll±)tl 

y3(t) ~ DtW-1"4 exp { - \\A\-ll2^'2 _ |^|-i/2(C- + B2\A\~l/ï)t1'2 

+ fm-.}. 
Case 2. A > 0. 

»4(t) ~ DtW-1"4 exp {i [^r1/2*3/2 + \A\-l'2{C - B2\A\-l/4)t1'2 

fi*-«}; 
1/5 (0 ~Dt<20-1>/4exp{ - ^ l A r 1 / 2 ^ / 2 

v Lo 

+ \A\-l'2{C-B2\A\-l/4)tl /2 ß W"1*}; 
j/eW-or"-1. 

We may deduce the following from these results: 
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1. I f 7 < 0 , / i + z / < 0 and 2/i + v < 0, then all solutions of (2), and 
also the solution of (1), tend to zero as t —» oc. 

2. I f 7 < 0 o r / i - h ^ > 0 o r 2 / x + i / > 0 , then there exists an unbounded 
solution of (2). 

Statement 1 may be justified as follows. If \i -f v then A > 0 and 
Case 2 above applies. If further we have 7 < 0 then B > 0 and 2/4(£) 
and z/5 (t) tend to zero as t —> 00. The condition 2/i + v < 0 ensures 
that /3 -f 1 > 0 so that ye(t) also tends to zero as t —> 00. To justify 
statement 2, one may verify the following: if /1 + v > 0 then Case 1 
applies and it follows that y\ is unbounded; if \i + v < 0 and 7 > 0 
then Case 2 applies and B < 0 so that 2/4 and y$ are unbounded; if 
/i -f v < 0 and 2// + z/ > 0 then Case 2 applies and ye is unbounded. 

4. Numerical examples. In this section we will compare two 
simple numerical methods for VIDEs of the form 

im ly,{t) = f{t,y{t),SoHt,s,y{»))d8), t>o, 
{ ] U(0) = 2/o, 
on the basis of their behavior with respect to the test equation (1) and 
a related equation. For method 1 consider the Backward Euler method 

(23) yi+^yi + hffayuzt), 

I — 0 ,1 ,2 , . . . , where zi+\ is the approximation to 
rti + i 

fc(^+i,s,2/(s))ds 
/o 

given by the composite rectangular rule of the form 

z+i 
zi+\ = h^2k{ti+utj,y:j). 

3=1 

Here t\ — hi, I = 0,1, 2 , . . . , and y\ is the approximation to the solution 
y of (22) at the point t\. For method 2 we take the Backward Euler 
method (23) with 2/+1 given by the composite trapezoid rule 

1 l 

zi+i = h^-k(ti^i,to,yo) + ^2,k{ti+i,tj,yj) 

/ ' 
Jo 

+ 2fc(*Hi»^+i»2//+i)}-
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It follows from the results of Bakke and Jackiewicz [3] tha t the stability 
region of method 1 is 

Si = {(/17, /i2A, h3 / i , hòv) : (2/1 + v < 0 and \i + v < 0) 

or (2/i + ^ > 0 and \x + v > 0)}, 

and the stability region for method 2 is 

S2 = {(/17, /^2A, /i3/i, ft3*/) : (2/i + v < 0 and /i + v < 0 

and h3v < 8 - 4/17) 

or (2/i + nu> 0 and /i + z/ > 0 

and /i3z^ > 8 - 4/17)}, 

To test these results experimentally, these methods were applied to the 
equation 

y'(t) = iv(f) + Jo(A + M* + »s) y(s) ds + ^(t), t > 0, 
2/(0) = 1, 

where the function g was chosen in such a way that y(t) = cos(t) is the 
exact solution to this problem. This equation was then integrated on 
the interval [0, 128], with a fixed stepsize /i, for various choices of the 
parameters /17, h2\1 /i3/i and h?v. For h = 1/8, /17 = —1, h2X — —1, 
and for various choices of /i3/i and h3v, we have listed in Tables 1 and 
2 the number of significant digits, defined by 

NSD(/i3 / i , / rV, t) — — log10 |relative error in solution at t|, 

for each of the two methods. The negative values of NSD indicate 
unstable behavior of the method for given (/i3/x, hòv). These results 
are in agreement with our prediction about the stability regions of the 
methods under consideration. For example, the points (15, -7.5) and 
(-20, 17.5) belong to the stability region of method 1, but not of 
method 2. This is reflected in the contrasting behavior of these methods 
indicated in columns 3 and 7. These computations seem to indicate also 
that whenever the point (/i3/x, hòv) belongs to the stability region of 
both methods, then method 2 is more accurate than method 1 (compare 
columns 2, 5, 6 and 9). Both methods are unstable for (15, -20) and 
(-20, 30) (see columns 4 and 8). 
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T A B L E 1 

Numerical results for method 1: NSD(/i3/x, h3v, t) 

t 

1 

2 

4 

8 

16 

32 

64 

128 

ft3// 

h3u 

15 

30 

1.03 

0.74 

1.26 

0.36 

1.88 

1.43 

0.84 

1.17 

15 

-7.5 

1.15 

1.03 

1.14 

0.39 

1.70 

1.39 

0.84 

1.17 

15 

-20 

-1.49 

-2.13 

-2.49 

-3.72 

-3.50 

-4.15 

-5.08 

-5.43 

5 

-20 

0.79 

1.51 

1.01 

0.55 

1.60 

1.59 

0.89 

1.20 

-20 

5 

1.07 

0.92 

1.14 

0.37 

1.76 

1.41 

0.84 

1.17 

-20 

17.5 

1.93 

1.60 

1.39 

0.68 

1.44 

1.30 

0.83 

1.19 

-20 

30 

-1.23 

-1.62 

-1.71 

-2.66 

-2.14 

-2.50 

-3.13 

-3.18 

-7.5 

30 

0.72 

2.06 

0.97 

0.59 

1.56 

1.62 

0.90 

1.20 

T A B L E 2 

Numerical results for method 2: NSD(ft3/i, ft3^, t) 

t 

1 

2 

4 

8 

16 

32 

64 

128 

ft3// 

hòv 

15 

30 

2.69 

2.84 

2.58 

2.66 

2.80 

2.95 

2.99 

2.84 

15 

-7.5 

-0.25 

-1.11 

-1.69 

-3.11 

-3.08 

-3.92 

-5.03 

-5.56 

15 

-20 

0.43 

-0.27 

-0.67 

-1.92 

-1.71 

-2.37 

-3.30 

-3.65 

5 

-20 

2.05 

2.28 

2.95 

2.32 

2.97 

2.80 

2.76 

2.93 

-20 

5 

2.91 

3.00 

3.13 

2.87 

2.92 

2.87 

2.87 

2.89 

-20 

17.5 

0.33 

-0.50 

-1.00 

-2.33 

-2.19 

-2.91 

-3.91 

-4.32 

-20 

30 

0.48 

0.07 

-0.04 

-0.99 

-0.47 

-0.84 

-1.46 

-1.52 

-7.5 

30 

2.05 

2.27 

2.97 

2.30 

2.98 

2.79 

2.76 

2.93 
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