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ASYMPTOTIC BEHAVIOR OF STOCHASTIC WAVE

EQUATIONS WITH CRITICAL EXPONENTS ON R
3

BIXIANG WANG

Abstract. The existence of a random attractor in H1(R3)×L2(R3) is proved
for the damped semilinear stochastic wave equation defined on the entire space
R
3. The nonlinearity is allowed to have a cubic growth rate which is referred

to as the critical exponent. The uniform pullback estimates on the tails of
solutions for large space variables are established. The pullback asymptotic
compactness of the random dynamical system is proved by using these tail
estimates and the energy equation method.

1. Introduction

This paper deals with the existence of a random attractor for the stochastic wave
equation defined on R

3:

(1.1) utt + αut −Δu+ λu+ f(x, u) = g(x) + h(x)
dw

dt
,

with the initial conditions

(1.2) u(x, τ ) = u0(x), ut(x, τ ) = u1(x),

where x ∈ R
3, t > τ with τ ∈ R, α and λ are positive numbers, g and h are given

in L2(R3) and H1(R3), respectively, f is a nonlinear function with cubic growth
rate (called the critical exponent), and w is an independent two-sided real-valued
Wiener process on a probability space.

The global attractors of the deterministic wave equation (i.e. h = 0) have
been studied extensively in the literature; see, e.g., [3, 4, 20, 30, 34] and the
references therein. Particularly, the existence of these attractors was proved in
[2, 3, 4, 11, 18, 22, 32, 33] for the deterministic equation defined in bounded do-
mains with critical exponents, and in [16, 17, 27, 28, 29] for the equation defined
on unbounded domains with critical or supercritical exponents. In this paper, we
will investigate the asymptotic behavior of the stochastic wave equation (1.1) with
critical exponents defined on the entire space R

3.
The interesting features of problem (1.1)-(1.2) lie in: (i) The equation is sto-

chastic. In this case, problem (1.1)-(1.2) determines a random dynamical system
instead of a deterministic semigroup; (ii) The nonlinearity f is critical. The dif-
ficulty caused by the noncompactness of embedding H1 ↪→ L6 must be overcome
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in order to deal with the asymptotic compactness of solutions with such a criti-
cal nonlinearity; (iii) The domain R

3 of problem (1.1)-(1.2) is unbounded. In this
case, the embeddings H1(R3) ↪→ Lp(R3) are not compact even for p < 6. This is
essentially different from the case of bounded domains.

To study the long term behavior of solutions of stochastic differential equations,
the concept of random attractor should be used instead of global attractor, which
was introduced in [14, 19] for random dynamical systems. Since the nonlinearity f
of equation (1.1) has a critical growth rate, the mapping f from H1(Q) to L2(Q)
is continuous, but not compact, even for a bounded domain Q in R

3. To circum-
vent the difficulty and prove the asymptotic compactness of the deterministic wave
equation on a bounded domain Q, an energy equation approach was developed by
Ball in [4]. This method is quite effective for a variety of applications; see, e.g.,
[5, 24, 25, 26, 40]. Notice that the compactness of the embeddings H1(Q) ↪→ Lp(Q)
with p < 6 was crucial and frequently used in [4] when Q is bounded. In our case,
the domain R

3 is unbounded, and hence the embeddings H1(R3) ↪→ Lp(R3) are
not compact for any p. This means that Ball’s method [4] alone is not sufficient
for proving the asymptotic compactness of the equation on R

3. We must overcome
the difficulty caused by the noncompactness of the embeddings H1(R3) ↪→ Lp(R3)
for p < 6. In this paper, we will solve the problem by using uniform estimates on
the tails of solutions. We will first show that the solutions of problem (1.1)-(1.2)
uniformly approach zero, in a sense, as x and t go to infinity, and then apply these
estimates and the energy equation method [4] to prove the asymptotic compactness
of the stochastic wave equations on R

3.
The random attractors of stochastic partial differential equations defined in

bounded domains have been extensively investigated by many authors in [9, 10,
12, 13, 14, 19, 23, 41] and the references therein. However, when the domains are
unbounded, the existence of such attractors is not well understood. Recently, the
existence and upper semicontinuity of random attractors for some equations on un-
bounded domains have been established in [7, 36, 37, 38] and [39], respectively. The
asymptotic compactness of the stochastic Navier-Stokes equations on unbounded
domains was proved in [8]. In this paper, we will investigate the existence of a
random attractor for the stochastic wave equation with critical nonlinearity on R

3.
This paper is organized as follows. In the next section, we recall the random

attractors theory for random dynamical systems. In Section 3, we define a contin-
uous random dynamical system for problem (1.1)-(1.2). The uniform estimates of
solutions are contained in Section 4, which include uniform estimates on the tails
of solutions. In Section 5, we prove the pullback asymptotic compactness and the
existence of random attractors for the stochastic wave equation on R

3.
In the sequel, we adopt the following notation. We denote by ‖ · ‖ and (·, ·) the

norm and the inner product of L2(R3), respectively. The norm of a given Banach
space X is written as ‖ · ‖X . We also use ‖ · ‖p to denote the norm of Lp(R3). The
letters c and ci (i = 1, 2, . . .) are generic positive constants which may change their
values from line to line or even in the same line.

2. Preliminaries

In this section, we recall some basic concepts related to random attractors for
stochastic dynamical systems. The reader is referred to [1, 6, 13, 19] for more
details.
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Let (X, ‖ · ‖X) be a separable Hilbert space with Borel σ-algebra B(X), and let
(Ω,F , P ) be a probability space.

Definition 2.1. (Ω,F , P, (θt)t∈R) is called a metric dynamical system if θ : R ×
Ω → Ω is (B(R)× F ,F)-measurable, θ0 is the identity on Ω, θs+t = θt ◦ θs for all
s, t ∈ R and θtP = P for all t ∈ R.

Definition 2.2. A continuous random dynamical system (RDS) onX over a metric
dynamical system (Ω,F , P, (θt)t∈R) is a mapping

Φ : R+ × Ω×X → X, (t, ω, x) �→ Φ(t, ω, x),

which is (B(R+)×F × B(X),B(X))-measurable and satisfies, for P -a.e. ω ∈ Ω,
(i) Φ(0, ω, ·) is the identity on X;
(ii) Φ(t+ s, ω, ·) = Φ(t, θsω, ·) ◦ Φ(s, ω, ·) for all t, s ∈ R

+;
(iii) Φ(t, ω, ·) : X → X is continuous for all t ∈ R

+.

Hereafter, we always assume that Φ is a continuous RDS on X over (Ω,F , P,
(θt)t∈R).

Definition 2.3. A random bounded set {B(ω)}ω∈Ω of X is called tempered with
respect to (θt)t∈R if for P -a.e. ω ∈ Ω,

lim
t→∞

e−βtd(B(θ−tω)) = 0 for all β > 0,

where d(B) = supx∈B ‖x‖X .

Definition 2.4. A random function r(ω) is called tempered with respect to (θt)t∈R

if for P -a.e. ω ∈ Ω,

lim
t→∞

e−βtr(θ−tω) = 0 for all β > 0.

Definition 2.5. Let D be a collection of random subsets of X. Then D is called
inclusion-closed if D = {D(ω)}ω∈Ω ∈ D and D̃ = {D̃(ω) ⊆ X : ω ∈ Ω} with

D̃(ω) ⊆ D(ω) for all ω ∈ Ω imply that D̃ ∈ D.

Definition 2.6. Let D be a collection of random subsets ofX and {K(ω)}ω∈Ω ∈ D.
Then {K(ω)}ω∈Ω is called an absorbing set of Φ in D if for every B ∈ D and P -a.e.
ω ∈ Ω, there exists tB(ω) > 0 such that

Φ(t, θ−tω,B(θ−tω)) ⊆ K(ω) for all t ≥ tB(ω).

Definition 2.7. Let D be a collection of random subsets of X. Then Φ is said to be
D-pullback asymptotically compact in X if for P -a.e. ω ∈ Ω, {Φ(tn, θ−tnω, xn)}∞n=1

has a convergent subsequence in X whenever tn → ∞, and xn ∈ B(θ−tnω) with
{B(ω)}ω∈Ω ∈ D.

Definition 2.8. Let D be a collection of random subsets of X and {A(ω)}ω∈Ω ∈ D.
Then {A(ω)}ω∈Ω is called a D-random attractor (or D-pullback attractor) for Φ if
the following conditions are satisfied, for P -a.e. ω ∈ Ω:

(i) A(ω) is compact, and ω �→ d(x,A(ω)) is measurable for every x ∈ X;
(ii) {A(ω)}ω∈Ω is invariant, that is,

Φ(t, ω,A(ω)) = A(θtω), ∀ t ≥ 0;

(iii) {A(ω)}ω∈Ω attracts every set in D, that is, for every B = {B(ω)}ω∈Ω ∈ D,

lim
t→∞

d(Φ(t, θ−tω,B(θ−tω)),A(ω)) = 0,
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where d is the Hausdorff semi-metric given by d(Y, Z) = supy∈Y infz∈Z ‖y − z‖X
for any Y ⊆ X and Z ⊆ X.

The following existence result on a random attractor for a continuous RDS can
be found in [6, 19].

Proposition 2.9. Let D be an inclusion-closed collection of random subsets of X
and Φ a continuous RDS on X over (Ω,F , P, (θt)t∈R). Suppose that {K(ω)}ω∈K

is a closed absorbing set of Φ in D and Φ is D-pullback asymptotically compact in
X. Then Φ has a unique D-random attractor {A(ω)}ω∈Ω which is given by

A(ω) =
⋂

τ≥0

⋃

t≥τ

Φ(t, θ−tω,K(θ−tω)).

In this paper, we will denote by D the collection of all tempered random sets of
H1(R3)× L2(R3) and prove that problem (1.1)-(1.2) has a D-random attractor.

3. Random dynamical systems

In this section, we define a continuous random dynamical system for problem
(1.1)-(1.2). Denote by z = ut + δu, where δ is a small positive number to be
determined later. Substituting ut = z − δu into (1.1) we find that

du

dt
+ δu = z,(3.1)

dz

dt
+ (α− δ)z + (λ+ δ2 − αδ)u−Δu+ f(x, u) = g(x) + h(x)

dw

dt
,(3.2)

with the initial conditions

(3.3) u(x, τ ) = u0(x), z(x, τ ) = z0(x),

where z0(x) = u1(x) + δu0(x), x ∈ R
3, t > τ with τ ∈ R, α and λ are positive

numbers, g ∈ L2(R3) and h ∈ H1(R3) are given, and w is an independent two-sided
real-valued Wiener process on a complete probability space (Ω,F , P ) with path ω(·)
in C(R,R) satisfying ω(0) = 0. The reader is referred to [15] for more details on
the theory of Wiener processes. Let (θt)t∈R be a family of measure-preserving shift
operators given by

θtω(·) = ω(·+ t)− ω(t), ∀ ω ∈ Ω and t ∈ R.

Then (Ω,F , P, (θt)t∈R) forms a metric dynamical system. Let F (x, u)=
∫ u

0
f(x, s)ds

for x ∈ R
3 and u ∈ R. We assume the following conditions on the the nonlinearity

f , for every x ∈ R
3 and u ∈ R:

|f(x, u)| ≤ c1|u|γ + φ1(x), φ1 ∈ L2(R3),(3.4)

f(x, u)u− c2F (x, u) ≥ φ2(x), φ2 ∈ L1(R3),(3.5)

F (x, u) ≥ c3|u|γ+1 − φ3, φ3 ∈ L1(R3),(3.6)

|fu(x, u)| ≤ c4|u|γ−1 + φ4, φ4 ∈ H1(R3),(3.7)

where 1 ≤ γ ≤ 3. As a special case, γ = 3 is referred to as the critical exponent.
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Notice that (3.4) and (3.5) imply

(3.8) F (x, u) ≤ c(|u|2 + |u|γ+1 + φ2
1 + φ2),

which is useful when deriving uniform estimates of solutions.
A pair (u, z) is called a solution of problem (3.1)-(3.3) on the interval [τ, τ + T ]

if (u, z) ∈ L2(Ω;C([τ, τ +T ];H1(R3)×L2(R3))) such that, for almost every ω ∈ Ω,
(3.3) is satisfied and (3.1)-(3.2) hold in the sense of distributions over R3×(τ, τ+T ).
In order to study the dynamical behavior of problem (3.1)-(3.3), we need to convert
the stochastic system into a deterministic one with a random parameter. To this
end, we set v(t, τ, ω) = z(t, τ, ω)− hω(t). Then it follows from (3.1)-(3.3) that

du

dt
+ δu− v = hω(t),(3.9)

dv

dt
+ (α− δ)v + (λ+ δ2 − αδ)u−Δu+ f(x, u) = g + (δ − α)hω(t),(3.10)

with the initial conditions

(3.11) u(x, τ ) = u0(x), v(x, τ ) = v0(x),

where v0(x) = z0(x)− hω(τ ).
The existence, uniqueness and regularity of solutions for deterministic wave equa-

tions have been studied by many authors; see, e.g., [21] for the case of bounded
domains and [27, 31] for unbounded domains. Similarly, it can be proved that
problem (3.9)-(3.11) with (3.4)-(3.7) is well-posed in H1(R3)× L2(R3); that is, for
P -a.e. ω ∈ Ω, for every τ ∈ R and (u0, v0) ∈ H1(R3) × L2(R3), problem (3.9)-
(3.11) has a unique solution (u(·, τ, ω), v(·, τ, ω)) ∈ C([τ,∞), H1(R3) × L2(R3))
with (u(τ, τ, ω), v(τ, τ, ω)) = (u0, v0). Further, the solution is continuous with re-
spect to (u0, v0) in H1(R3) × L2(R3). Sometimes, we also write the solution as
(u(t, τ, ω, u0), v(t, τ, ω, v0)) to indicate the dependence of (u, v) on the initial data
(u0, v0). Notice that if (u, v) is the solution of problem (3.9)-(3.11), then (u, z) is
the solution of problem (3.1)-(3.3) with z(t, τ, ω) = v(t, τ, ω) + hω(t).

The following weak continuity of solutions on initial data is useful when proving
the asymptotic compactness of solutions in the last section.

Lemma 3.1. Assume that g ∈ L2(R3), h ∈ H1(R3) and (3.4)-(3.7) hold. Then
the solution (u, v) of problem (3.9)-(3.11) is weakly continuous with respect to the
initial data (u0, v0) in H1(R3)×L2(R3). That is, for P -a.e. ω ∈ Ω, τ ∈ R and t ≥
τ , (u(t, τ, ω, u0,n), v(t, τ, ω, v0,n)) weakly converges to (u(t, τ, ω, u0), v(t, τ, ω, v0)) in
H1(R3) × L2(R3) provided (u0,n, v0,n) weakly converges to (u0, v0) in H1(R3) ×
L2(R3).

Proof. The proof is quite standard (see, e.g., [4]) and hence is omitted here. �

We now define a random dynamical system for the stochastic wave equation. Let
Φ be a mapping, Φ: R+ × Ω×H1(R3)× L2(R3) → H1(R3)× L2(R3) given by
(3.12)
Φ(t, ω, (u0, z0)) = (u(t, 0, ω, u0), z(t, 0, ω, z0)) = (u(t, 0, ω, u0), v(t, 0, ω, v0)+hω(t)),
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for every (t, ω, (u0, z0)) ∈ R
+ × Ω×H1(R3)× L2(R3), where v0 = z0. Then Φ is a

continuous random dynamical system over (Ω,F , P, (θt)t∈R) on H1(R3)× L2(R3).
It is easy to verify that Φ satisfies the following identity, for P -a.e. ω ∈ Ω and
t ≥ 0:

Φ(t, θ−tω, (u0, z0)) = (u(t, 0, θ−tω, u0), z(t, 0, θ−tω, z0))

= (u(0,−t, ω, u0), z(0,−t, ω, z0)) = (u(0,−t, ω, u0), v(0,−t, ω, z0)).(3.13)

By the last equality of (3.13), we immediately see that the pullback asymptotic
compactness for problem (3.9)-(3.11) is equivalent to the pullback asymptotic com-
pactness for problem (3.1)-(3.3). This enables us to prove the pullback asymptotic
compactness for problem (3.1)-(3.3) based on the uniform pathwise estimates on
the solutions of problem (3.9)-(3.11).

Throughout this paper, we always denote by D the collection of all tempered
random subsets of H1(R3) × L2(R3), and we will prove that Φ has a D-random
attractor.

4. Uniform estimates

In this section, we derive uniform estimates on solutions of problem (3.9)-(3.11).
These estimates are needed for proving the existence of random absorbing sets and
the pullback asymptotic compactness of the random dynamical system Φ.

Let δ > 0 be small enough such that

(4.1) α− δ > 0, λ+ δ2 − αδ > 0,

and denote by

(4.2) σ =
1

2
min{α− δ, δ, δc2},

where c2 is the positive constant in (3.5).

Lemma 4.1. Assume that g ∈ L2(R3), h ∈ H1(R3) and (3.4)-(3.7) hold. Let
B = {B(ω)}ω∈Ω ∈ D. Then for P -a.e. ω ∈ Ω, there is T = T (B,ω) < 0 such that
for all τ ≤ T , the solution (u(·, τ, ω, u0), v(·, τ, ω, v0)) of problem (3.9)-(3.11) with
(u0, v0) ∈ B(θτω) satisfies, for every t ∈ [τ, 0],

(4.3) ‖u(t, τ, ω, u0)‖2H1(R3) + ‖v(t, τ, ω, v0)‖2 ≤ e−σtR(ω)

and

(4.4)

∫ t

τ

eσξ
(
‖u(ξ, τ, ω, u0)‖2H1(R3) + ‖v(ξ, τ, ω, v0)‖2dξ

)
≤ R(ω),

where R(ω) is a positive tempered random function.

Proof. Taking the inner product of (3.10) with v in L2(R3), we get

1

2

d

dt
‖v‖2 + (α− δ)‖v‖2 + (λ+ δ2 − αδ)(u, v)− (Δu, v) + (f(x, u), v)

= (g, v) + (δ − α)(h, v)ω(t).(4.5)
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By (3.9) we have

(4.6) (u, v) =
1

2

d

dt
‖u‖2 + δ‖u‖2 − (u, h)ω(t),

(4.7) −(Δu, v) =
1

2

d

dt
‖∇u‖2 + δ‖∇u‖2 − (∇u,∇h)ω(t),

and

(4.8) (f(x, u), v) =
d

dt

∫

R3

F (x, u)dx+ δ(f(x, u), u)− (f(x, u), h)ω(t).

It follows from (4.5)-(4.8) that

d

dt

(
‖v‖2 + (λ+ δ2 − αδ)‖u‖2 + ‖∇u‖2 + 2

∫

R3

F (x, u)dx

)

+2(α− δ)‖v‖2 + 2δ(λ+ δ2 − αδ)‖u‖2 + 2δ‖∇u‖2 + 2δ(f(x, u), u)

= 2(λ+ δ2 − αδ)(h, u)ω(t) + 2(∇u,∇h)ω(t) + 2(f(x, u), h)ω(t)

+2(g, v) + 2(δ − α)(h, v)ω(t).(4.9)

We now estimate every term on the right-hand side of (4.9). For the first term, by
(4.1) we have

(4.10) 2(λ+ δ2 − αδ)(h, u)ω(t) ≤ (λ+ δ2 − αδ)‖u‖2 + c‖h‖2|ω(t)|2.
The second term on the right-hand side of (4.9) satisfies

(4.11) 2(∇u,∇h)ω(t) ≤ δ‖∇u‖2 + c‖∇h‖2|ω(t)|2.
For the third term on the right-hand side of (4.9), by (3.4) and (3.6), we obtain

2(f(x, u), h)ω(t) ≤ 2‖φ1‖‖h‖|ω(t)|+ c

(∫

R3

|u|γ+1

) γ
γ+1

‖h‖γ+1|ω(t)|

≤ 2‖φ1‖‖h‖|ω(t)|+ c

(∫

R3

(F (x, u) + φ3)

) γ
γ+1

‖h‖γ+1|ω(t)|(4.12)

≤ 2‖φ1‖‖h‖|ω(t)|+ δc2

∫

R3

F (x, u)dx+ δc2

∫

R3

φ3(x)dx+ c‖h‖γ+1
H1 |ω(t)|γ+1.

Similarly, by Young’s inequality, the last two terms on the right-hand side of (4.9)
are bounded by

(4.13) 2|(g, v)|+ 2|(δ − α)(h, v)ω(t)| ≤ (α− δ)‖v‖2 + c‖h‖2|ω(t)|2 + c‖g‖2.
By (3.5) we also have

(4.14) (f(x, u), u) ≥ c2

∫

R3

F (x, u)dx+

∫

R3

φ2(x)dx.

By (4.9)-(4.14), we find that

d

dt

(
‖v‖2 + (λ+ δ2 − αδ)‖u‖2 + ‖∇u‖2 + 2

∫

R3

F (x, u)dx

)

+(α− δ)‖v‖2 + δ(λ+ δ2 − αδ)‖u‖2 + δ‖∇u‖2 + δc2

∫

R3

F (x, u)dx

≤ c
(
1 + |ω(t)|2 + |ω(t)|γ+1

)
.(4.15)
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By (3.6) and (4.2) we have

δc2

∫

R3

F (x, u)dx ≥ 2σ

∫

R3

F (x, u)dx+ (2σ − δc2)

∫

R3

φ3(x)dx,

which along with (4.15) implies that

d

dt

(
‖v‖2 + (λ+ δ2 − αδ)‖u‖2 + ‖∇u‖2 + 2

∫

R3

F (x, u)dx

)

+ σ

(
‖v‖2 + (λ+ δ2 − αδ)‖u‖2 + ‖∇u‖2 + 2

∫

R3

F (x, u)dx

)

+ σ
(
‖v‖2 + (λ+ δ2 − αδ)‖u‖2 + ‖∇u‖2

)
≤ c

(
1 + |ω(t)|2 + |ω(t)|γ+1

)
.(4.16)

Integrating (4.16) on (τ, t) with t ≤ 0, we get

eσt
(
‖v(t, τ, ω)‖2 + (λ+ δ2 − αδ)‖u(t, τ, ω)‖2 + ‖∇u(t, τ, ω)‖2 + 2

∫

R3

F (x, u)dx

)

+ σ

∫ t

τ

eσξ
(
‖v‖2 + (λ+ δ2 − αδ)‖u‖2 + ‖∇u‖2

)
dξ

≤ eστ
(
‖v0‖2 + (λ+ δ2 − αδ)‖u0‖2 + ‖∇u0‖2 + 2

∫

R3

F (x, u0)dx

)

+ c

∫ t

τ

eσξ
(
1 + |ω(ξ)|2 + |ω(ξ)|γ+1

)
dξ.(4.17)

By (3.8) we have
∫

R3

F (x, u0)dx ≤ c
(
1 + ‖u0‖2 + ‖u0‖γ+1

H1

)
,

which along with (u0, v0) ∈ B(θτω) implies that

eστ
(
‖v0‖2 + (λ+ δ2 − αδ)‖u0‖2 + ‖∇u0‖2 + 2

∫

R3

F (x, u0)dx

)

≤ ceστ
(
1 + ‖v0‖2 + ‖u0‖2H1 + ‖u0‖γ+1

H1

)
→ 0 as τ → −∞.(4.18)

Therefore, there exists T = T (B,ω) < 0 such that for all τ ≤ T ,

(4.19) eστ
(
‖v0‖2 + (λ+ δ2 − αδ)‖u0‖2 + ‖∇u0‖2 + 2

∫

R3

F (x, u0)dx

)
≤ r(ω),

where

r(ω) =

∫ 0

−∞
eσξ

(
1 + |ω(ξ)|2 + |ω(ξ)|γ+1

)
dξ.

Notice that r(ω) is well defined since ω(ξ) has at most linear growth rate as |ξ| → ∞.
By (4.17) and (4.19) we obtain that, for all τ ≤ T and t ∈ [τ, 0],

eσt
(
‖v(t, τ, ω)‖2 + (λ+ δ2 − αδ)‖u(t, τ, ω)‖2 + ‖∇u(t, τ, ω)‖2 + 2

∫

R3

F (x, u)dx

)

+

∫ t

τ

eσξ
(
‖v‖2 + (λ+ δ2 − αδ)‖u‖2 + ‖∇u‖2

)
dξ ≤ c(1 + r(ω)).(4.20)
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By (3.6), we find that, for all t ≤ 0,

(4.21) −2eσt
∫

R3

F (x, u)dx ≤ 2eσt
∫

R3

φ3(x)dx ≤ 2

∫

R3

|φ3(x)|dx.

By (4.20) and (4.21) we have that, for all τ ≤ T and t ∈ [τ, 0],

eσt
(
‖v(t, τ, ω)‖2 + (λ+ δ2 − αδ)‖u(t, τ, ω)‖2 + ‖∇u(t, τ, ω)‖2

)

+

∫ t

τ

eσξ
(
‖v‖2 + (λ+ δ2 − αδ)‖u‖2 + ‖∇u‖2

)
dξ ≤ c(1 + r(ω)),

which implies (4.3) and (4.4) with R(ω) = c(1 + r(ω)). Next we show that R(ω) is
tempered; that is, for every β > 0, we want to prove

(4.22) eβτR(θτω) → 0 as τ → −∞.

Without loss of generality, we now assume β ≤ σ. Then we have

eβτR(θτω) = ceβτ + ceβτ
∫ 0

−∞
eσξ

(
|(θτω)(ξ)|2 + |(θτω)(ξ)|γ+1

)
dξ

≤ ceβτ + ceβτ
∫ 0

−∞
eβξ

(
|(θτω)(ξ)|2 + |(θτω)(ξ)|γ+1

)
dξ

≤ ceβτ + ceβτ
∫ 0

−∞
eβξ

(
|ω(τ )|2 + |ω(τ )|γ+1

)
dξ

+ ceβτ
∫ 0

−∞
eβξ

(
|ω(τ + ξ)|2 + |ω(τ + ξ)|γ+1

)
dξ

≤ceβτ+
c

β
eβτ

(
|ω(τ )|2+|ω(τ )|γ+1

)
+c

∫ τ

−∞
eβs

(
|ω(s)|2 + |ω(s)|γ+1

)
ds.(4.23)

Then (4.22) follows from (4.23) since ω has at most linear growth rate at infinity.
This completes the proof. �

We now derive an energy equation for problem (3.9)-(3.11). To this end, denote
by, for (u, v) ∈ H1(R3)× L2(R3),

(4.24) E(u, v) = ‖v‖2 + (λ+ δ2 − αδ)‖u‖2 + ‖∇u‖2 + 2

∫

R3

F (x, u)dx,

and

Ψ(u(t, τ, ω, u0), v(t, τ, ω, v0))

(4.25)

= −2(α− δ − 2σ)‖v‖2 − 2(δ − 2σ)(λ+ δ2 − αδ)‖u‖2 − 2(δ − 2σ)‖∇u‖2

+ 8σ

∫

R3

F (x, u)dx− 2δ

∫

R3

f(x, u)udx+ 2(λ+ δ2 − αδ)(u, h)ω(t)

+ 2(∇u,∇h)ω(t) + 2ω(t)

∫

R3

f(x, u)h(x)dx+ 2(g, v) + 2(δ − α)(v, h)ω(t).
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Then it follows from (4.9) that

(4.26)
d

dt
E + 4σE = Ψ.

Integrating (4.26) on (τ, t) we get

E(u(t, τ, ω, u0), v(t, τ, ω, v0))(4.27)

= e−4σ(t−τ)E(u0, v0) +

∫ t

τ

e4σ(ξ−t)Ψ(u(ξ, τ, ω, u0), v(ξ, τ, ω, v0))dξ.

The energy equation (4.27) will be used to prove the pullback asymptotic compact-
ness of solutions in the last section.

In what follows, we derive uniform estimates on the tails of solutions when x and
t approach infinity. These estimates will be used to overcome the difficulty caused
by the noncompactness of embeddings H1(R3) ↪→ Lp(R3) for p ≤ 6 and are crucial
for proving the pullback asymptotic compactness of the random dynamical system.
Given k ≥ 1, denote by Qk ={x ∈ R

3: |x| < k} and R
3\Qk the complement of Qk.

Lemma 4.2. Assume that g ∈ L2(R3), h ∈ H1(R3) and (3.4)-(3.7) hold. Let
B = {B(ω)}ω∈Ω ∈ D. Then for every ε > 0 and P -a.e. ω ∈ Ω, there exist
T = T (B,ω, ε) < 0 and k0 = k0(ω, ε) > 0 such that for all τ ≤ T and k ≥ k0, the
solution (u(·, τ, ω, u0), v(·, τ, ω, v0)) of problem (3.9)-(3.11) with (u0, v0) ∈ B(θτω)
satisfies, for any t ∈ [τ, 0],

(4.28)

∫

R3\Qk

(
|u(t, τ, ω, u0)|2 + |∇u(t, τ, ω, u0)|2 + |v(t, τ, ω, v0)|2

)
dx ≤ εe−σt.

Proof. We will use a cutoff technique as in [35] for deterministic parabolic equations.
Take a smooth function ρ such that 0 ≤ ρ ≤ 1 for all s ∈ R and

(4.29) ρ(s) =

{
0, if |s| < 1,
1, if |s| > 2.

Then there is a positive constant c such that |ρ′(s)| ≤ c for all s ∈ R.

Taking the inner product of (3.10) with ρ
(

|x|2
k2

)
v in L2(R3), we get

1

2

d

dt

∫

R3

ρ

(
|x|2
k2

)
|v|2dx+ (α− δ)

∫

R3

ρ

(
|x|2
k2

)
|v|2dx

+ (λ+ δ2 − αδ)

∫

R3

ρ

(
|x|2
k2

)
uvdx−

∫

R3

ρ

(
|x|2
k2

)
vΔudx

+

∫

R3

ρ

(
|x|2
k2

)
f(x, u)vdx =

∫

R3

ρ

(
|x|2
k2

)
(gv + (δ − α)vhω(t))dx.(4.30)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASYMPTOTIC BEHAVIOR OF STOCHASTIC WAVE EQUATIONS 3649

By (3.9) we find that

∫

R3

ρ

(
|x|2
k2

)
uvdx =

1

2

d

dt

∫

R3

ρ

(
|x|2
k2

)
|u|2dx(4.31)

+ δ

∫

R3

ρ

(
|x|2
k2

)
|u|2dx−

∫

R3

ρ

(
|x|2
k2

)
uhω(t)dx,

−
∫

R3

ρ

(
|x|2
k2

)
vΔudx =

∫

R3

∇u
2x

k2
ρ′
(
|x|2
k2

)
vdx+

1

2

d

dt

∫

R3

ρ

(
|x|2
k2

)
|∇u|2dx

+ δ

∫

R3

ρ

(
|x|2
k2

)
|∇u|2dx−

∫

R3

ρ

(
|x|2
k2

)
∇u∇hω(t)dx,(4.32)

and

∫

R3

ρ

(
|x|2
k2

)
f(x, u)vdx =

d

dt

∫

R3

ρ

(
|x|2
k2

)
F (x, u)dx

+ δ

∫

R3

ρ

(
|x|2
k2

)
f(x, u)udx−

∫

R3

ρ

(
|x|2
k2

)
f(x, u)hω(t)dx.(4.33)

It follows from (4.30)-(4.33) that

d

dt

∫

R3

ρ

(
|x|2
k2

)(
|v|2 + (λ+ δ2 − αδ)|u|2 + |∇u|2 + 2F (x, u)

)
dx

+

∫

R3

ρ

(
|x|2
k2

)(
2(α− δ)|v|2 + 2δ(λ+ δ2 − αδ)|u|2 + 2δ|∇u|2 + 2δf(x, u)u

)
dx

= 2(λ+ δ2 − αδ)

∫

R3

ρ

(
|x|2
k2

)
huω(t)dx− 4

∫

R3

ρ′
(
|x|2
k2

)
v∇u

x

k2
dx

+ 2

∫

R3

ρ

(
|x|2
k2

)
f(x, u)hω(t)dx+ 2

∫

R3

ρ

(
|x|2
k2

)
∇u∇hω(t)dx

+ 2

∫

R3

ρ

(
|x|2
k2

)
(gv + (δ − α)hvω(t)) dx.(4.34)

By (3.5) we have
(4.35)∫

R3

ρ

(
|x|2
k2

)
f(x, u)udx ≥ c2

∫

R3

ρ

(
|x|2
k2

)
F (x, u)dx+

∫

R3

ρ

(
|x|2
k2

)
φ2(x)dx.

By (3.4) and (3.6) as in (4.12), we also have

(4.36) 2

∫

R3

ρ

(
|x|2
k2

)
f(x, u)hω(t)dx ≤

∫

R3

ρ

(
|x|2
k2

)
|φ1|2dx

+ c

∫

R3

ρ

(
|x|2
k2

)
|h|2|ω(t)|2dx

+ δc2

∫

R3

ρ

(
|x|2
k2

)
(F (x, u) + φ3(x)) dx+ c

∫

R3

ρ

(
|x|2
k2

)
|h|γ+1|ω(t)|γ+1dx.
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By the definition of ρ in (4.29) we have
(4.37)∫

R3

|ρ′
(
|x|2
k2

)
v∇u

x

k2
|dx ≤

∫

k≤|x|≤
√
2k

|ρ′||v||∇u| |x|
k2

dx ≤ c

k

(
‖∇u‖2 + ‖v‖2

)
.

Using Young’s inequality to estimate the remaining terms on on the right-hand side
of (4.34), by (4.35)-(4.37), we find that

d

dt

∫

R3

ρ

(
|x|2
k2

)(
|v|2 + (λ+ δ2 − αδ)|u|2 + |∇u|2 + 2F (x, u)

)
dx

+

∫

R3

ρ

(
|x|2
k2

)(
(α− δ)|v|2 + δ(λ+ δ2 − αδ)|u|2 + δ|∇u|2 + δc2F (x, u)

)
dx

≤ c

k
(‖∇u‖2 + ‖v‖2) + c|ω(t)|2

∫

R3

ρ

(
|x|2
k2

)
(|h|2 + |∇h|2)dx

+ c

∫

R3

ρ

(
|x|2
k2

)
(|φ1|2 + |φ2|+ |φ3|+ |g|2 + |ω(t)|γ+1|h|γ+1)dx.(4.38)

For the last two terms on the right-hand side of (4.38), we find that there exists
k1 = k1(ε) ≥ 1 such that for all k ≥ k1,

c|ω(t)|2
∫

R3

ρ

(
|x|2
k2

)
(|h|2 + |∇h|2)dx

+ c

∫

R3

ρ

(
|x|2
k2

)
(|φ1|2 + |φ2|+ |φ3|+ |g|2 + |ω(t)|γ+1|h|γ+1)dx

= c|ω(t)|2
∫

|x|≥k

ρ

(
|x|2
k2

)
(|h|2 + |∇h|2)dx

+ c

∫

|x|≥k

ρ

(
|x|2
k2

)
(|φ1|2 + |φ2|+ |φ3|+ |g|2 + |ω(t)|γ+1|h|γ+1)dx

≤ c|ω(t)|2
∫

|x|≥k

(|h|2 + |∇h|2)dx

+ c

∫

|x|≥k

(|φ1|2 + |φ2|+ |φ3|+ |g|2 + |ω(t)|γ+1|h|γ+1)dx

≤ cε(1 + |ω(t)|2 + |ω(t)|γ+1),(4.39)

where we have used the fact that φ1, g ∈ L2(Rn), φ2, φ3 ∈ L1(Rn), h ∈ H1(Rn),
and the embedding H1(R3) ↪→ Lγ+1(R3) with γ ≤ 3. It follows from (4.38)-(4.39)
that, for all k ≥ k1,

d

dt

∫

R3

ρ

(
|x|2
k2

)(
|v|2 + (λ+ δ2 − αδ)|u|2 + |∇u|2 + 2F (x, u)

)
dx

+

∫

R3

ρ

(
|x|2
k2

)(
(α− δ)|v|2 + δ(λ+ δ2 − αδ)|u|2 + δ|∇u|2 + δc2F (x, u)

)
dx

≤ c

k
(‖∇u‖2 + ‖v‖2) + cε(1 + |ω(t)|2 + |ω(t)|γ+1).(4.40)
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By (3.6), (4.2) and (4.40) we find that for all k ≥ k1,

d

dt

∫

R3

ρ

(
|x|2
k2

)(
|v|2 + (λ+ δ2 − αδ)|u|2 + |∇u|2 + 2F (x, u)

)
dx]

+σ

∫

R3

ρ

(
|x|2
k2

)(
|v|2 + (λ+ δ2 − αδ)|u|2 + |∇u|2 + 2F (x, u)

)
dx

≤ c

k
(‖∇u‖2 + ‖v‖2) + cε(1 + |ω(t)|2 + |ω(t)|γ+1).(4.41)

Integrating (4.41) on (τ, t) with t ≤ 0, by Lemma 4.1 we find that, for all k ≥ k1,

eσt
∫

R3

ρ(
|x|2
k2

)
(
|v(t, τ, ω)|2 + (λ+ δ2 − αδ)|u(t, τ, ω)|2 + |∇u(t, τ, ω)|2 + 2F (x, u)

)

≤ eστ
∫

R3

ρ(
|x|2
k2

)
(
|v0|2 + (λ+ δ2 − αδ)|u0|2 + |∇u0|2 + 2F (x, u0)

)
dx

+
c

k

∫ t

τ

eσξ(‖∇u(ξ)‖2 + ‖v(ξ)‖2)dξ + cε

∫ t

τ

eσξ(|ω(ξ)|2 + |ω(ξ)|γ+1)dξ + cε

≤ eστ
∫

R3

ρ(
|x|2
k2

)
(
|v0|2 + (λ+ δ2 − αδ)|u0|2 + |∇u0|2 + 2F (x, u0)

)
dx

+
c

k
R(ω) + cε

∫ 0

−∞
eσξ(|ω(ξ)|2 + |ω(ξ)|γ+1)dξ + cε,(4.42)

where R(ω) is the positive tempered random function in Lemma 4.1. As in (4.18),
the first term on the right-hand side of (4.42) goes to zero as τ → −∞. Hence,
there exists T = T (B,ω, ε) < 0 such that for all τ ≤ T ,

(4.43) eστ
∫

R3

ρ(
|x|2
k2

)
(
|v0|2 + (λ+ δ2 − αδ)|u0|2 + |∇u0|2 + 2F (x, u0)

)
dx ≤ ε.

By (4.42)-(4.43), there exists k2(ε) ≥ k1(ε) such that for all τ ≤ T and k ≥ k2,

(4.44) eσt
∫

R3

ρ(
|x|2
k2

)
(
|v(t, τ, ω)|2 + (λ+ δ2 − αδ)|u(t, τ, ω)|2

+|∇u(t, τ, ω)|2 + 2F (x, u)
)
dx ≤ εc r(ω),

where r(ω) = 1 + R(ω) +
∫ 0

−∞ eσξ(|ω(ξ)|2 + |ω(ξ)|γ+1)dξ. By (3.6) we have, for
t ≤ 0,

−2eσt
∫

R3

ρ(
|x|2
k2

)F (x, u)dx ≤ 2eσt
∫

R3

ρ(
|x|2
k2

)φ3(x)dx ≤ 2

∫

|x|≥k

ρ(
|x|2
k2

)φ3(x)dx

≤ 2

∫

|x|≥k

|φ3(x)|dx.

Since φ3 ∈ L1(R3), there is k3 = k3(ε) ≥ k2 such that for all k ≥ k3, the right-hand
side of the above is bounded by ε. Hence we have, for all k ≥ k3 and t ≤ 0,

(4.45) −2eσt
∫

R3

ρ(
|x|2
k2

)F (x, u)dx ≤ ε.
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By (4.44)-(4.45) we get that, for all τ ≤ T , t ∈ [τ, 0] and k ≥ k3,

eσt
∫

R3

(
|v(t, τ, ω)|2 + (λ+ δ2 − αδ)|u(t, τ, ω)|2 + |∇u(t, τ, ω)|2

)
dx ≤ ε+ cε r(ω).

By the definition of ρ in (4.29), we finally obtain that, for all τ ≤ T , t ∈ [τ, 0] and
k ≥ k3,

eσt
∫

|x|≥
√
2k

(
|v(t, τ, ω)|2 + (λ+ δ2 − αδ)|u(t, τ, ω)|2 + |∇u(t, τ, ω)|2

)
dx

≤ eσt
∫

R3

ρ(
|x|2
k2

)
(
|v(t, τ, ω)|2 + (λ+ δ2 − αδ)|u(t, τ, ω)|2 + |∇u(t, τ, ω)|2

)
dx

≤ ε+ cε r(ω),

which completes the proof. �

5. Random attractors

In this section, we prove existence of a D-random attractor for the stochastic
wave equation on R

3. We first show that the random dynamical system Φ has a
closed random absorbing set in D, and then prove that Φ is D-pullback asymptot-
ically compact.

By Lemma 4.1 we find that for every B = {B(ω)}ω∈Ω ∈ D, and P -a.e. ω ∈ Ω,
there is T = T (B,ω) < 0 such that for all τ ≤ T , the solution (u, v) of problem
(3.9)-(3.11) with (u0, v0) ∈ B(θτω) satisfies

(5.1) ‖u(0, τ, ω, u0)‖2H1(R3) + ‖v(0, τ, ω, v0)‖2 ≤ R(ω),

where R(ω) is the positive tempered random function in Lemma 4.1. Since
z(t, τ, ω, z0) = v(t, τ, ω, v0) + hω(t) with z0 = v0 + hω(τ ), it follows from (5.1)
that (u(t, τ, ω, u0), z(t, τ, ω, z0)) with (u0, z0) ∈ B(θτω) satisfies, for all τ ≤ T ,

‖u(0, τ, ω, u0)‖2H1 + ‖z(0, τ, ω, z0)‖2 = ‖u(0, τ, ω, u0)‖2H1 + ‖v(0, τ, ω, v0)‖2 ≤ R(ω),

which along with (3.13) implies that, for all t ≥ −T ,
(5.2)

‖Φ(t, θ−tω, (u0, z0))‖2H1×L2 = ‖u(0,−t, ω, u0)‖2H1 + ‖v(0,−t, ω, v0)‖2 ≤ R(ω).

Denote by

(5.3) B̃(ω) = {(u, z) ∈ H1(R3)× L2(R3) : ‖u‖2H1 + ‖z‖2 ≤ R(ω)}.

Then (5.2) shows that B̃ = {B̃(ω)}ω∈Ω is a closed random absorbing set for Φ in
D. Next, we show the pullback asymptotic compactness of (u, v), which is needed
to prove the asymptotic compactness of Φ.

Lemma 5.1. Assume that g ∈ L2(R3), h ∈ H1(R3) and (3.4)-(3.7) hold. Then , for
P -a.e. ω ∈ Ω, the sequence {(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n))} has a convergent
subsequence in H1(R3)×L2(R3) provided tn → ∞ and (u0,n, v0,n) ∈ B(θ−tnω) with
B = {B(ω)}ω∈Ω ∈ D.

Proof. Since tn → ∞, it follows from (5.1) that there exists N1 = N1(B,ω) > 0
such that for all n ≥ N1,

(5.4) ‖u(0,−tn, ω, u0,n)‖2H1 + ‖v(0,−tn, ω, v0,n)‖2 ≤ R(ω).
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Notice that (5.4) implies that there exists (ũ, ṽ) ∈ H1(R3)× L2(R3) such that, up
to a subsequence,

(5.5) (u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n)) → (ũ, ṽ) weakly in H1(R3)× L2(R3).

By (5.5) we find that

(5.6) lim inf
n→∞

‖(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n))‖H1×L2 ≥ ‖(ũ, ṽ)‖H1×L2 .

Next we prove that (5.5) is actually a strong convergence. To this end, taking (5.6)
into account, we only need to show that

(5.7) lim sup
n→∞

‖(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n))‖H1×L2 ≤ ‖(ũ, ṽ)‖H1×L2 .

We now prove (5.7) by the energy equation (4.27). It follows from Lemma 4.1 that
there exists N2 = N2(B,ω) > 0 such that for all n ≥ N2,

(5.8) ‖u(t,−tn, ω, u0,n)‖2H1(R3) + ‖v(t,−tn, ω, v0,n)‖2 ≤ e−σtR(ω),

where −tn ≤ t ≤ 0. Given m > 0, let N3 = N3(m) > 0 be large enough such that
tn ≥ m for all n ≥ N3. Denote by N4 = max{N2, N3}. Then by (5.8) we get that,
for all n ≥ N4,

(5.9) ‖u(−m,−tn, ω, u0,n)‖2H1(R3) + ‖v(−m,−tn, ω, v0,n)‖2 ≤ eσmR(ω).

By a diagonal procedure, we conclude from (5.9) that there exist a sequence
{ũm, ṽm}∞m=1 in H1(R3) × L2(R3) and a subsequence of {(tn, u0,n, v0,n)}∞n=1 (not
relabeled) such that for every positive integer m, when n → ∞,
(5.10)
(u(−m,−tn, ω, u0,n), v(−m,−tn, ω, v0,n)) → (ũm, ṽm) weakly in H1(R3)× L2(R3).

Notice that

(5.11) (u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n))

= (u(0,−m,ω, u(−m,−tn, ω, u0,n)), v(0,−m,ω, v(−m,−tn, ω, v0,n))),

which along with (5.10) and Lemma 3.1 implies that, for every positive integer m,
when n → ∞,

(5.12) u(0,−tn, ω, u0,n) → u(0,−m,ω, ũm) weakly in H1(R3)

and

(5.13) v(0,−tn, ω, v0,n) → v(0,−m,ω, ṽm) weakly in L2(R3).

By (5.5) and (5.12)-(5.13) we find that

(5.14) ũ = u(0,−m,ω, ũm) and ṽ = v(0,−m,ω, ṽm).

Applying (4.27) to (u(0,−m,ω, ũm), v(0,−m,ω, ṽm)), by (5.14) we get
(5.15)

E(ũ, ṽ) = e−4σmE(ũm, ṽm) +

∫ 0

−m

e4σξΨ(u(ξ,−m,ω, ũm), v(ξ,−m,ω, ṽm))dξ.
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Applying (4.27) to (u(0,−m,ω, u(−m,−tn, ω, u0,n)), v(0,−m,ω, v(−m,−tn, ω, v0,n))),
by (5.11) and (4.25) we have

E(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n))

= e−4σmE(u(−m,−tn, ω, u0,n), v(−m,−tn, ω, v0,n))

+

∫ 0

−m

e4σξΨ(u(ξ,−m,ω, u(−m,−tn, ω, u0,n)), v(ξ,−m,ω, v(−m,−tn, ω, v0,n)))dξ

= e−4σmE(u(−m,−tn, ω, u0,n), v(−m,−tn, ω, v0,n))

− 2(α− δ − 2σ)

∫ 0

−m

e4σξ‖v(ξ,−m,ω, v(−m,−tn, ω, v0,n))‖2dξ

− 2(δ − 2σ)(λ+ δ2 − αδ)

∫ 0

−m

e4σξ‖u(ξ,−m,ω, u(−m,−tn, ω, u0,n))‖2dξ

− 2(δ − 2σ)

∫ 0

−m

e4σξ‖∇u(ξ,−m,ω, u(−m,−tn, ω, u0,n))‖2dξ

+ 8σ

∫ 0

−m

e4σξ
∫

R3

F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))dxdξ

− 2δ

∫ 0

−m

e4σξ
∫

R3

u(ξ,−m,ω, u(−m,−tn, ω, u0,n))

×f(x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))dxdξ

+ 2(λ+ δ2 − αδ)

∫ 0

−m

e4σξ
∫

R3

h(x)u(ξ,−m,ω, u(−m,−tn, ω, u0,n))ω(ξ)dxdξ

+ 2

∫ 0

−m

e4σξ
∫

R3

∇h(x) · ∇u(ξ,−m,ω, u(−m,−tn, ω, u0,n))ω(ξ)dxdξ

+ 2

∫ 0

−m

e4σξ
∫

R3

h(x)f(x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))ω(ξ)dxdξ

+ 2

∫ 0

−m

e4σξ
∫

R3

g(x)v(ξ,−m,ω, v(−m,−tn, ω, v0,n))dxdξ

+ 2(δ − α)

∫ 0

−m

e4σξ
∫

R3

h(x)v(ξ,−m,ω, v(−m,−tn, ω, v0,n))ω(ξ)dxdξ.(5.16)

Now, we need to deal with every term on the right-hand side of (5.16). For the
first term, by (4.24) we have

e−4σmE(u(−m,−tn, ω, u0,n), v(−m,−tn, ω, v0,n))

= e−4σm
(
‖v(−m,−tn, ω, v0,n)‖2 + (λ+ δ2 − αδ)‖u(−m,−tn, ω, u0,n)‖2

)

+ e−4σm

(
‖∇u(−m,−tn, ω, u0,n)‖2 + 2

∫

R3

F (x, u(−m,−tn, ω, u0,n))dx

)
,

which along with (5.9) shows that for all n ≥ N4,

e−4σmE(u(−m,−tn, ω, u0,n), v(−m,−tn, ω, v0,n))

≤ ce−3σmR(ω) + 2e−4σm

∫

R3

F (x, u(−m,−tn, ω, u0,n))dx.(5.17)
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Using (3.8) to estimate the last term on the right-hand side of the above, since
γ ≤ 3 we get for all n ≥ N4,

∫

R3

F (x, u(−m,−tn, ω, u0,n))dx

≤ c
(
‖u(−m,−tn, ω, u0,n)‖2 + ‖u(−m,−tn, ω, u0,n)‖γ+1

γ+1 + 1
)

≤ c
(
‖u(−m,−tn, ω, u0,n)‖2 + ‖u(−m,−tn, ω, u0,n)‖γ+1

H1 + 1
)
,

which along with (5.9) implies that for all n ≥ N4,

(5.18)

∫

R3

F (x, u(−m,−tn, ω, u0,n))dx ≤ c
(
eσmR(ω) + e2σmR2(ω) + 1

)
.

By (5.17)-(5.18) we get that, for all n ≥ N4,

(5.19) e−4σmE(u(−m,−tn, ω, u0,n), v(−m,−tn, ω, v0,n)) ≤ ce−2σm(1 +R2(ω)).

Next, we deal with the second term on the right-hand side of (5.16). By (5.10) and
Lemma 3.1 we find that for every ξ ∈ [−m, 0], when n → ∞,

v(ξ,−m,ω, v(−m,−tn, ω, v0,n)) → v(ξ,−m,ω, ṽm) in L2(R3),

which implies that, for all ξ ∈ [−m, 0],

(5.20) lim inf
n→∞

‖v(ξ,−m,ω, v(−m,−tn, ω, v0,n))‖2 ≥ ‖v(ξ,−m,ω, ṽm)‖2.

By (5.20) and Fatou’s lemma we obtain

lim inf
n→∞

∫ 0

−m

e4σξ‖v(ξ,−m,ω, v(−m,−tn, ω, v0,n))‖2dξ

≥
∫ 0

−m

e4σξ lim inf
n→∞

‖v(ξ,−m,ω, v(−m,−tn, ω, v0,n))‖2dξ

≥
∫ 0

−m

e4σξ‖v(ξ,−m,ω, ṽm)‖2dξ.

Therefore, by (4.2) we have

lim sup
n→∞

−2(α− δ − 2σ)

∫ 0

−m

e4σξ‖v(ξ,−m,ω, v(−m,−tn, ω, v0,n))‖2dξ

= −2(α− δ − 2σ) lim inf
n→∞

∫ 0

−m

e4σξ‖v(ξ,−m,ω, v(−m,−tn, ω, v0,n))‖2dξ

≤ −2(α− δ − 2σ)

∫ 0

−m

e4σξ‖v(ξ,−m,ω, ṽm)‖2dξ.(5.21)

Similarly, by (4.1), (4.2), (5.10) and Fatou’s lemma, we can also prove that

lim sup
n→∞

−2(δ − 2σ)(λ+ δ2 − αδ)

∫ 0

−m

e4σξ‖u(ξ,−m,ω, u(−m,−tn, ω, u0,n))‖2dξ

≤ −2(δ − 2σ)(λ+ δ2 − αδ)

∫ 0

−m

e4σξ‖u(ξ,−m,ω, ũm)‖2dξ(5.22)
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and

lim sup
n→∞

−2(δ − 2σ)

∫ 0

−m

e4σξ‖∇u(ξ,−m,ω, u(−m,−tn, ω, u0,n))‖2dξ

≤ −2(δ − 2σ)

∫ 0

−m

e4σξ‖∇u(ξ,−m,ω, ũm)‖2dξ.(5.23)

Next, we prove the convergence of the fifth term on the right-hand side of (5.16),
which is a nonlinear term. We claim

lim
n→∞

∫ 0

−m

e4σξ
∫

R3

F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))dxdξ

=

∫ 0

−m

e4σξ
∫

R3

F (x, u(ξ,−m,ω, ũm))dxdξ.(5.24)

To prove (5.24) we write

|
∫ 0

−m

e4σξ
∫

R3

(F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))−F (x, u(ξ,−m,ω, ũm))) dxdξ|

≤
∫ 0

−m

e4σξ
∫

|x|>k

|F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))

−F (x, u(ξ,−m,ω, ũm))|dxdξ

+|
∫ 0

−m

e4σξ
∫

|x|<k

F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))

−F (x, u(ξ,−m,ω, ũm))dxdξ|.(5.25)

Given ε > 0, by Lemma 4.2 we find that there are k1 = k1(ω, ε) > 0 and N5 =
N5(B,ω, ε) ≥ N4 such that for all k ≥ k1 and n ≥ N5,

(5.26)

∫

|x|>k

|u(ξ,−tn, ω, u0,n)|2dx ≤ εe−σξ,

where ξ ∈ [−tn, 0]. Hence, by (3.8) we obtain that for all k ≥ k1 and n ≥ N5,
∫

|x|>k

|F (x, u(ξ,−tn, ω, u0,n))|dx

≤
∫

|x|>k

(
|u(ξ,−tn, ω, u0,n)|2 + |u(ξ,−tn, ω, u0,n)|γ+1 + φ2

1 + φ2

)
dx

≤
∫

|x|>k

(φ2
1 + φ2)dx+

∫

|x|>k

|u(ξ,−tn, ω, u0,n)|2dx

+

(∫

|x|>k

|u(ξ,−tn, ω, u0,n)|2γdx
) 1

2
(∫

|x|>k

|u(ξ,−tn, ω, u0,n)|2dx
) 1

2

≤
∫

|x|>k

(φ2
1 + φ2)dx+ εe−σξ +

√
εe−

σ
2 ξ

(∫

R3

|u(ξ,−tn, ω, u0,n)|2γdx
) 1

2

≤
∫

|x|>k

(φ2
1 + φ2)dx+ εe−σξ +

√
εe−

σ
2 ξ‖u(ξ,−tn, ω, u0,n)‖γH1 ,
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which along with the fact γ ≤ 3 and (5.8) implies that

(5.27)

∫

|x|>k

|F (x, u(ξ,−tn, ω, u0,n))|dx

≤
∫

|x|>k

(φ2
1 + φ2)dx+ εe−σξ + c

√
εe−

σ
2 ξ(1 + e−

3σ
2 ξR

3
2 (ω)).

Notice that there is k2 = k2(ε) > 0 such that for all k ≥ k2, the first term on the
right-hand side of (5.27) is bounded by ε. Therefore, for all ξ ≤ 0, n ≥ N5 and
k ≥ k3 = max{k1, k2},

(5.28)

∫

|x|>k

|F (x, u(ξ,−tn, ω, u0,n))|dx ≤ ε+ e−2σξ
(
ε+

√
εc+

√
ε c R

3
2 (ω)

)
.

On the other hand, there exists k4 = k4(m,ω, ε) ≥ k3 such that for all k ≥ k4,

(5.29)

∫ 0

−m

e4σξ
∫

|x|>k

|F (x, u(ξ,−m,ω, ũm))|dxdξ ≤ ε.

By (5.28)-(5.29), the first term on the right-hand side of (5.25) satisfies, for all
n ≥ N5 and k ≥ k4,

∫ 0

−m

e4σξ
∫

|x|>k

|F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))−F (x, u(ξ,−m,ω, ũm))|dxdξ

=

∫ 0

−m

e4σξ
∫

|x|>k

|F (x, u(ξ,−tn, ω, u0,n))− F (x, u(ξ,−m,ω, ũm))|dxdξ

≤
∫ 0

−m

e4σξ
∫

|x|>k

|F (x, u(ξ,−tn, ω, u0,n))|dxdξ

+

∫ 0

−m

e4σξ
∫

|x|>k

|F (x, u(ξ,−m,ω, ũm))|dxdξ

≤ ε+ ε

∫ 0

−m

e4σξdξ + (ε+
√
εc+

√
ε c R

3
2 (ω))

∫ 0

−m

e2σξdξ

≤
√
ε c(1 + R

3
2 (ω)) for all ε ≤ 1.(5.30)

To deal with the second term on the right-hand side of (5.25), we notice that, by
(5.10) and Lemma 3.1, when n → ∞,

(5.31) u(ξ,−m,ω, u(−m,−tn, ω, u0,n)) → u(ξ,−m,ω, ũm) weakly in H1(R3),

for ξ ∈ [−m, 0]. By (5.31) and the compactness of embedding H1(Qk) ↪→ L2(Qk),
we find that, for ξ ∈ [−m, 0],

(5.32) u(ξ,−m,ω, u(−m,−tn, ω, u0,n)) → u(ξ,−m,ω, ũm) strongly in L2(Qk).
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We also have

|
∫

|x|<k

(F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))− F (x, u(ξ,−m,ω, ũm)))dx|(5.33)

= |
∫

|x|<k

∂F

∂u
(x, ū) (u(ξ,−m,ω, u(−m,−tn, ω, u0,n))− u(ξ,−m,ω, ũm))dx|

= |
∫

|x|<k

f(x, ū) (u(ξ,−m,ω, u(−m,−tn, ω, u0,n))− u(ξ,−m,ω, ũm))dx|

≤
(∫

R3

|f(x, ū)|2dx
)1

2

‖u(ξ,−m,ω, u(−m,−tn, ω, u0,n))−u(ξ,−m,ω, ũm))‖L2(Qk).

By (3.4) and (5.8) we get

(∫

R3

|f(x, ū)|2dx
) 1

2

(5.34)

≤ c
(
‖u(ξ,−m,ω, u(−m,−tn, ω, u0,n))‖γH1 + ‖u(ξ,−m,ω, ũm)‖γ + ‖φ1‖2

)

≤ c
(
‖u(ξ,−tn, ω, u0,n)‖γH1 + ‖u(ξ,−m,ω, ũm)‖γ + ‖φ1‖2

)

≤ c
(
e−

σγ
2 ξR

γ
2 (ω) + ‖u(ξ,−m,ω, ũm)‖γ + ‖φ1‖2

)
,

which along with (5.32) and (5.33) implies that, as n → ∞,
(5.35)∫

|x|<k

F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))dx →
∫

|x|<k

F (x, u(ξ,−m,ω, ũm))dx.

It follows from (5.8), (5.35) and the dominated convergence theorem that, when
n → ∞,

∫ 0

−m

e4σξ
∫

|x|<k

F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))dxdξ

→
∫ 0

−m

e4σξ
∫

|x|<k

F (x, u(ξ,−m,ω, ũm))dxdξ.(5.36)

Therefore, there exists N6 ≥ N5 such that for all n ≥ N6,

|
∫ 0

−m

e4σξ
∫

|x|<k

(F (x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))

−F (x, u(ξ,−m,ω, ũm))) dxdξ| ≤ ε,

which along with (5.25) and (5.30) implies (5.24). By an argument similar to the
proof of (5.24), we can also show the convergence of the sixth term on the right-hand
side of (5.16) (details are omitted). That is, we have that, as n → ∞,

(5.37)

∫ 0

−m

e4σξ
∫

R3

u(ξ,−m,ω, u(−m,−tn, ω, u0,n))

× f(x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))dxdξ

→
∫ 0

−m

e4σξ
∫

R3

u(ξ,−m,ω, ũm)× f(x, u(ξ,−m,ω, ũm))dxdξ.
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The convergence of the remaining terms on the right-hand side of (5.16) is given
below, which can be proved by a similar (actually simpler) procedure.

∫ 0

−m

e4σξ
∫

R3

h(x)u(ξ,−m,ω, u(−m,−tn, ω, u0,n))ω(ξ)dxdξ

→
∫ 0

−m

e4σξ
∫

R3

h(x)u(ξ,−m,ω, ũm)ω(ξ)dxdξ.(5.38)

∫ 0

−m

e4σξ
∫

R3

∇h(x) · ∇u(ξ,−m,ω, u(−m,−tn, ω, u0,n))ω(ξ)dxdξ

→
∫ 0

−m

e4σξ
∫

R3

∇h(x) · ∇u(ξ,−m,ω, ũm)ω(ξ)dxdξ.(5.39)

∫ 0

−m

e4σξ
∫

R3

h(x)f(x, u(ξ,−m,ω, u(−m,−tn, ω, u0,n)))ω(ξ)dxdξ

→
∫ 0

−m

e4σξ
∫

R3

h(x)f(x, u(ξ,−m,ω, ũm))ω(ξ)dxdξ.(5.40)

∫ 0

−m

e4σξ
∫

R3

g(x)v(ξ,−m,ω, v(−m,−tn, ω, v0,n))dxdξ

→
∫ 0

−m

e4σξ
∫

R3

g(x)v(ξ,−m,ω, ṽm)dxdξ.(5.41)

∫ 0

−m

e4σξ
∫

R3

h(x)v(ξ,−m,ω, v(−m,−tn, ω, v0,n))ω(ξ)dxdξ

→
∫ 0

−m

e4σξ
∫

R3

h(x)v(ξ,−m,ω, ṽm)ω(ξ)dxdξ.(5.42)

Now, taking the limit of (5.16) as n → ∞, by (5.19), (5.21)-(5.24) and (5.37)-(5.42)
we find that

lim sup
n→∞

E(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n))

≤ ce−2σm(1 +R2(ω))− 2(α− δ − 2σ)

∫ 0

−m

e4σξ‖v(ξ,−m,ω, ṽm)‖2dξ

− 2(δ − 2σ)(λ+ δ2 − αδ)

∫ 0

−m

e4σξ‖u(ξ,−m,ω, ũm)‖2dξ

− 2(δ − 2σ)

∫ 0

−m

e4σξ‖∇u(ξ,−m,ω, ũm)‖2dξ

+ 8σ

∫ 0

−m

e4σξ
∫

R3

F (x, u(ξ,−m,ω, ũm))dxdξ

− 2δ

∫ 0

−m

e4σξ
∫

R3

u(ξ,−m,ω, ũm)× f(x, u(ξ,−m,ω, ũm))dxdξ

+ 2(λ+ δ2 − αδ)

∫ 0

−m

e4σξ
∫

R3

h(x)u(ξ,−m,ω, ũm)ω(ξ)dxdξ

+ 2

∫ 0

−m

e4σξ
∫

R3

∇h(x) · ∇u(ξ,−m,ω, ũm)ω(ξ)dxdξ
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+ 2

∫ 0

−m

e4σξ
∫

R3

h(x)f(x, u(ξ,−m,ω, ũm))ω(ξ)dxdξ

+ 2

∫ 0

−m

e4σξ
∫

R3

g(x)v(ξ,−m,ω, ṽm)dxdξ

+ 2(δ − α)

∫ 0

−m

e4σξ
∫

R3

h(x)v(ξ,−m,ω, ṽm)ω(ξ)dxdξ.(5.43)

It follows from (4.25) and (5.43) that

lim sup
n→∞

E(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n))

≤ ce−2σm(1 +R2(ω)) +

∫ 0

−m

e4σξΨ(u(ξ,−m,ω, ũm), v(ξ,−m,ω, ṽm))dξ.(5.44)

By (5.15) and (5.44) we find that

lim sup
n→∞

E(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n))

≤ ce−2σm(1 +R2(ω))− e−4σmE(ũm, ṽm) + E(ũ, ṽ).(5.45)

For the second term on the right-hand side of (5.45), by (4.24) and (3.6) we have

(5.46) −e−4σmE(ũm, ṽm) ≤ 2e−4σm

∫

R3

φ3(x)dx.

It follows from (5.45)-(5.46) that

lim sup
n→∞

E(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n))

≤ ce−2σm(1 +R2(ω)) + 2e−4σm

∫

R3

φ3(x)dx+ E(ũ, ṽ).(5.47)

Let m → ∞. Then we get that

(5.48) lim sup
n→∞

E(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n)) ≤ E(ũ, ṽ).

On the other hand, it follows from (5.28) and (5.35) with ξ = 0 that, as n → ∞,
∫

R3

F (x, u(0,−tn, ω, u0,n))dx →
∫

R3

F (x, ũ)dx,

which along with (4.24) shows that

lim sup
n→∞

E(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n)) = 2

∫

R3

F (x, ũ)dx

+ lim sup
n→∞

(
‖v(0,−tn, ω, v0,n)‖2 + (λ+ δ2 − αδ)‖u(0,−tn, ω, u0,n)‖2

+‖∇u(0,−tn, ω, u0,n)‖2
)
.

Substituting the above equality into (5.48), by (4.24) we obtain that

(5.49) lim sup
n→∞

(
‖v(0,−tn, ω, v0,n)‖2 + (λ+ δ2 − αδ)‖u(0,−tn, ω, u0,n)‖2

+‖∇u(0,−tn, ω, u0,n)‖2
)

≤ ‖ṽ‖2 + (λ+ δ2 − αδ)‖ũ‖2 + ‖∇ũ‖2.
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Notice that the left and right expressions are equivalent norms of H1(R3)×L2(R3).
Therefore, by (4.1) and (5.49) we find that

lim sup
n→∞

(
‖u(0,−tn, ω, u0,n)‖2H1 + ‖v(0,−tn, ω, v0,n)‖2

)
≤ ‖ũ‖2H1 + ‖ṽ‖2,

which implies (5.7). Finally, we get the following strong convergence by (5.5)-(5.7):

(u(0,−tn, ω, u0,n), v(0,−tn, ω, v0,n)) → (ũ, ṽ) strongly in H1(R3)× L2(R3).

This completes the proof. �

As an immediate consequence of Lemma 5.1, we see that the random dynamical
system Φ is pullback asymptotically compact in H1(R3)× L2(R3).

Lemma 5.2. Assume that g ∈ L2(R3), h ∈ H1(R3) and (3.4)-(3.7) hold. Then
the random dynamical system Φ is D-pullback asymptotically compact in H1(R3)×
L2(R3); that is, for P -a.e. ω ∈ Ω, the sequence {Φ(tn, θ−tnω, (u0,n, z0,n))} has a
convergent subsequence in H1(R3) × L2(R3) provided tn → ∞ and (u0,n, z0,n) ∈
B(θ−tnω) with B = {B(ω)}ω∈Ω ∈ D.

We are now in a position to prove the existence of a random attractor for the
stochastic wave equation.

Theorem 5.3. Assume that g ∈ L2(R3), h ∈ H1(R3) and (3.4)-(3.7) hold. Then
the random dynamical system Φ has a unique D-random attractor {A(ω)}ω∈Ω in
H1(R3)× L2(R3).

Proof. Notice that Φ has a closed absorbing set B̃ = {B̃(ω)}ω∈Ω in D by (5.2)-
(5.3), and is D-pullback asymptotically compact in H1(R3) × L2(R3) by Lemma
5.2. Hence the existence of a unique D-random attractor immediately follows from
Proposition 2.9. �
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