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ASYMPTOTIC BEHAVIOR OF TEMPERATURE IN A NONLINEAR RADIATING,
LINEAR ABSORBING ROD OF FINITE LENGTH*

By C. V. PAO (North Carolina State University)

1. Introduction. Consider the heat-conduction problem in a solid rod of length I
from which heat is absorbed or radiated along the rod. If the temperature distribution
in the rod is initially known and if at one end of the rod energy absorbs (or radiates)
linearly but radiates nonlinearly proportional to the nth power of the temperature
(n > 1) while at the other end the temperature is kept at zero, then the temperature
distribution u(t, x) is governed by the following initial boundary-value problem:

ut{t, x) = Duxx(t, x) + cu(t, x) (t > 0, 0 < x < I), (1.1)

ux(t, 0) = au(t, 0) - ftu(t, 0) - h(t) ^ > ^ ^ ^

u(t, l) = 0

u(0, x) = u0(x) (0 < x < I), (1.3)

where D, c, a, ft are physical constants and h, u0 are non-negative functions representing
the boundary source and initial temperature, respectively. We assume that u0 satisfies
the boundary condition (1.2) at / = 0 and the constants I), a are positive but allow
c and ft to be either positive or non-positive. Thus positive values of c, ft represent
absorption of energy (heat) along the rod and at x = 0, respectively, while negative
values of c, ft represent radiation at the corresponding location.

The problem (1.1)—(1.3) and its various generalization have been treated by several
authors (cf. [1-8]). The recent work by Keller-Olmstead [5] and Hartka [4] studies the
asymptotic behavior of the temperature in a semi-infinite rod for the case c < 0, u0 = 0.
In view of the zero initial function, the temperature obtained in these papers is due solely
to the boundary source h(t) which is assumed to satisfy the condition Jo" h(t)dt < <*>.
Several estimates for insuring the diminishing property of u as t —* m are given in [3, 5]
for the case c — ft = 0 and in [4] for the case ft2 + c < 0. However, when the rod is
finite, no matter how great its length may be, it is reasonable to expect that the tem-
perature remains diminishing to zero for certain range of values of c, ft even if both
constants are positive. Furthermore, it is interesting to know whether u(t, x) can diminish
to zero if the boundary input accumulates unbounded, that is, if h(t) satisfies the condition
Jo" hit)dt = oo. The purpose of this paper is to study this physical expectation and to
give some explicit estimates for the diminishing property of the solution. We also extend
the above investigation to a heat-conduction problem in a two-dimensional rectangular
region. The consideration of a finite domain instead of a semi-infinite domain makes
it possible to sharpen the results obtained in [3-5] and leads to more information about
the solution. In fact, we obtain explicit estimates for the rate of decay for the solution
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in terms of the physical parameters D, c, a, 13, n, I and the boundary source h(t). The
inclusion of the constant D in (1.1) is to exhibit the dependence of the asymptotic
behavior of the solution on the thermal conductivity of the medium.

In order to investigate the asymptotic behavior of the temperature for a finite rod
we apply a comparison theorem from a recent paper [10] by Pao in which upper and lower
bounds of the temperature are given. The upper bound, called "upper solution", is
required to satisfy only some inequalities in the system so that it gives considerable
flexibility in the choice of such a function. (The lower bound is taken as zero for simplic-
ity.) Hence to insure the asymptotic diminishing property of the solution it suffices to
construct an upper solution having the desired diminishing property. It turns out that,
depending on the values of c, 13 and the asymptotic behavior of h(t), we can construct
explicit upper bounds for the solution of the problem (1.1)—(1.3) and for an immediate
extension of a two-dimensional problem. As a matter of fact, our approach can be used
to treat higher-dimensional domains and space-time dependent physical parameters.
In this paper, however, we limit our discussion to the system (1.1)—(1.3) and its extension
in the form of (3.1)-(3.3) in Sec. 3.

2. Asymptotic behavior of the solution for the rod problem. In this section we
study the asymptotic behavior of the solution for the rod problem (1.1)—(1.3) by a
suitable choice of an upper solution which is defined as follows:

Definition 2.1. A smooth non-negative function u(t, x) is called an upper solution
if it satisfies the following conditions:

u, — Duxx — cu > 0 (t > 0, 0 < x < I),

ux < au" — (3u — h (t > 0, x = 0),

u(t, 0 > 0 (t > 0),

w(0, x) > u0(x) (0 < x < I).

By a smooth function we mean a continuous function on [0, °°) X [0, £] whose first
derivative in t and second derivative in x exist and are continuous in (0, °°) X (0, I).
The above definition shows that every solution of (1.1)—(1.3) is also an upper solution
and the condition u(t, I) > 0 is trivially satisfied since u is non-negative. An important
implication of upper solutions is contained in the following.

Theorem 2.1. Let u be an upper solution. Then there exists a unique non-negative
solution to (1.1)—(1.3). Moreover,

0 < u(t, x) < u(t, x) (t > 0, 0 < x < I).

The proof of the above theorem for a more general system was given in [10] by a
monotone argument. We remark that in the present problem upper solutions do exist.
In fact, if we denote by u0 , h0 the respective least upper bounds of u0(x) and h(t), and
if K0 is a constant satisfying

K0 > max [ 1, M0 , [h + |/3|)/a il/n— 1 l

then the function it = K0 exp (|c| t) is an upper solution. However, our aim is to construct
some other upper solution so that it can be used to determine the diminishing property
of the solution. It is obvious that the choice of it depends on the values of (1, c and the
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asymptotic behavior of hit). Consider, for example, hit) = 0 (exp i—yt)) as t —> °°, where
7 > 0 is a constant. Then we may seek an upper solution in the form of U = exp ( — 8t)<j>ix),
where 5 is a positive constant and </> is a non-negative function on [0,1}. In view of Defini-
tion 2.1, it suffices to find a <t>ix) > 0 such that

D<t>rx + (5 + c)<t> <0 (0 < x < /),

exp (—5^(0) < a exp (— n 8t)(<t>(Q))n — 0 exp (— 8t)4>(()) — hit) it > 0), (2.1)

<t>ix) > Uoix) (0 < x < I).

Assume that c < J9(tt/2£)2. Then a possible choice of 4> and 5 is <f> = K cos iirx/2l) and
0 < 5 < Diw/21)2 — c, where K > 0 is to be determined. Clearly, <f>ix) > 0 on [0, I] and
satisfies the first condition in (2.1). Since <£(0) = K, <£*(0) = 0 the second condition
in (2.1) is equivalent to

aK" exp i — n&t) > 0K exp ( — 8t) + hit) it > 0). (2.2)

Now by the hypothesis hit) = 0(exp (— yt)) as t —> <*>, there exist positive constants
T and K' such that hit) < K' exp (—yt) for t > T. Let h = sup {hit); 0 < t < T\.
Then (2.2) is satisfied if the constant K satisfies the conditions

aK" > pK exp (5(n — 1)<) + h exp (n 8t) (0 < t < T), . .
(2.o)

aK" > fiK exp (6(n — 1 )t) + K' exp ( — (7 — n 8)t) it > T).

Since n > 1 and T is finite, the first inequality in (2.3) can be fulfilled by a sufficiently
large value of K. To establish the second inequality we first consider the case /3 < 0.
Then the second inequality in (2.3) is satisfied by choosing 8 < y/n and K > iK'/a)1/n.
With this choice of 8 and K the function u = K exp (— M) cos (tx/21) is an upper solution
of (1.1)—(1.3) for any initial function u0ix) < K cos iirx/2l). On the other hand, if for
some y > 0, hit) = 0((1 + t)~y) or hit) = 0(t~y) as t —> 00. Then we seek an upper
solution in the form of it = (1 + t)~s<t>ix). In this case, the requirement on <t> becomes

D<f>rx -t- [(1 -|- t) 15 —|— c]ct> <0 (<>0,0<2;<Z),

(1 + <r>*(0) < a(l + tyXtiO))" - 0(1 + 0~V(0) - hit) it > 0), (2.4)
4>(x) > Uoix) (0 < x < I).

If we choose <f> as in the previous case, then <j> > 0 on [0, /] and the first condition in (2.4)
holds. The second condition reduces to

aK"il + t)'nS > 0Ki 1 + t)~5 + hit) it > 0). (2.5)

Now if hit) = 0((1 + t)'y) as t —» then there exist constants T, K' such that

hit) < K'i 1 + t)~y for t > T. (2.6)

The inequality (2.6) also holds (except possibly with some different values of T and K')
if hit) = 0(rT) as t —> co. In any case the condition (2.5) is fulfilled if

aK" > /3K(1 + t)(n-1)5 + hi 1 + t)nl (0 <t< T), (2 ?)

aK" > pKil + <)<n_1>8 + K\l + t)-(y~nSU it > T).
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Clearly, the above inequalities hold for any 5, K satisfying

0 < 5 < y/n, K > max \(h/a)l/n(l + T)s, (K'/a)1/n}

when <3 < 0. With these values of S, K, the function u = K( 1 + t)~s cos (irx/2l) is an
upper solution for any u„ (x) < K cos (ttx/21). Hence for the case (3 < 0 we have the
following conclusion:

Theorem 2.2. Let c < D(ir/2l)2, ft < 0 and let u be the solution of (1.1)—(1.3) with
ua{x) < M0 cos (tx/21) for some constant M0 . Then there exist positive constants
K, T such that

(i) u(t, x) < Ke~s cos (rx/2l) for t > T, 0 < x < I (2.8)

when h(t) = 0 (exp (—yt)) as t —* °° (y > 0), and

(ii) u(t, x) < K( 1 + t)~81 cos (irx/2l) for t > T, 0 < x < I (2.9)

when h(t) = 0((1 + l)~y) or hit) = 0(f) as t —» <», where

8 = min \D(w/2l)2 — c, y/n\. (2.10)

Remark 2.1. It is readily seen that the result in (2.9) remains true if h{t) = 0((a + t)~y)
as t —> =0, where a is any constant. For in this case the relation (2.6) still holds since

hit) < K(a + t)~y = K( 1 + <rT[(l + t)/(a + t)]y, (t > T)

and [(1 + t)/(a + <)]T is bounded on [T, <») for any constant a > —T. In the special
case of h(t) = 0 on [Ty , °°) for some 7\ as assumed in [4], all the conditions on h in
Theorem 3.1 are satisfied for any y > 0. In this situation, the temperature decays to
zero exponentially with a decay rate 5 = I)(t/21)2 — c. On the other hand, the work
in [5] requires that /0" h(t) dt < <*>. However, the class of functions h(t) in the form
Ki(a + t)~y with 0 < y < 1 satisfies the requirement in Theorem 2.2 but J0" hit) dt = °°.
Hence our results show that in a finite rod the temperature can decay to zero even if the
energy input h(t) accumulates unboundedly and linear absorption occurs along the rod.
In other words, the combined energy radiation at the end x = 0 and the "leakage"
(of heat) at x = I dominate the energy absorption due to the simultaneous input h and
the absorption along the surface of the rod. Hence the consideration of a finite rod
instead of a semi-infinite rod leads to sharper results than those obtained in [4, 5].

We next consider the case where linear absorption may occur at the boundary x = 0
(i.e., /3 > 0). Assume, as usual, that c < D(ir/2lY and h(t) = 0(exp (—yt)) (or h{t) =
0((a + t)~y)). Then we seek an upper solution in the same form u — exp (—5t)<j>(x),
where 8 > 0 is to be chosen. The function <f> must be non-negative and satisfy the condi-
tions in (2.1). As a candidate for this function we take

<t>\(x) = if (cos Ax — (/3/X) sin \x), (2.11)

where K, X are some positive constants with X < (tt/21). Then 4>\(x) > 0 if and only if

tan \x < X//3 for 0 < \x < ir/2. (2.12)

Since tan \x is an increasing function of \x for fl < Ax < ir/2, it suffices to choose a X
such that

tan \l < X/j8 = (XQ/G80. (2.13)
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Now if (31 < 1 then there exists a positive number X0 < (tt/21) such that tan \0l =
(\0l)/(l3l). With X = X0 we then have tan \0x < tan \0l = X0//3 for 0 < \0x < ir/2, and
thus the function 0Xo given by (2.11) with X = X0 is non-negative on [0, I]. To show that
</>Xo satisfies the conditions in (2.1), we observe from the non-negative property of
that the first condition is fulfilled for any 5 < D\02 — c. Since <K„(0) = K and (4>\„)x(0) +
i34>x„(0) = 0, the second condition in (2.1) is also satisfied for any 5 < y/n and a suffi-
ciently large K. Hence if we choose

5 = min {/)X02 — c, y/n\, (2.14)

then the function

u = exp (—5<)0\o(-c) = K exp (—5/)(cos X0.x — (,8/X0) sin \0x) (2.15)

is an upper solution of (1.1)—(1.3) for every u0 < • In the case of h{t) = 0(t~a) or,
more generally, h(t) = 0((a + t)~y) as I —» <», the same argument given above leads to
an upper solution in the form of (1 + <)_fyx„(aO> where 5 and X0 are the same as in the
previous case. In conclusion, we obtain the following

Theorem 2.3. Let c < D(tt/2I)2, (3 < T1 and let u be the solution of (1.1)—(1.3) with
u0(x) < <^x„(x), where <p\„(x) is given by (2.11). Then there exists a constant T such that

u(t, x) < exp (— (x) for t > T, 0 < x < I (2.16)

when hit) = 0(exp (—yt)) as t —» and

u(t, x) < (1 + t)~s'4>xJx) for t > T, 0 < x < I (2.17)

when h(t) = 0((a + t)~y) as t -h« oo ( where a is any real number and 5 is the decay constant
given by (2.14).

Remark 2.2. The requirement u0 < in Theorem 2.3 is not very restrictive since
the value of K in (2.11) can be chosen arbitrarily large. Notice that the value of c in
Theorems 2.2 and 2.3 is allowed to be negative or zero. In this case, the requirement on c
in these theorems is automatically satisfied and the value of 5 may be improved.

3. An extension to a two-dimensional problem. The techniques developed in the
previous sections can be extended to some heat-conduction problems in multidimensional
spatial domains. For simplicity, we limit our discussion to a simple two-dimensional
model which is an immediate extension of the rod problem.

Consider the system

Ut = D(ur, + uyy) + cu (t > 0, (X, y) G R), (3.1)

Ux(t, 0, y) = a(u(t, 0, ?/))" - 0u(t, 0, y) - h(t, y) (t > 0, 0 < y < b), ^ ^

u(t, a, y) = u(t, x, 0) = u(t, x, b) = 0 (t > 0, 0 < x < a, 0 < y < b),

u{0, x, y) = u0(x, y) (x, y £ R) (3.3)

where R = {(x, y); 0 < x < a, 0 < y < b} and h, u0 are non-negative continuous func-
tions. We assume that u0 satisfies the boundary condition (3.2) at t = 0. The above
system describes the heat-conduction in a rectangular region with energy being absorbed
(c > 0) or radiated (c < 0) over its lateral surface. Our consideration of this particular
model provides a simple comparison with the one-dimensional rod problem.
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Definition 3.1. A smooth non-negative function u is called an upper solution if
it satisfies

(i) u, > D(uzx + m„„) + cu,

(ii) ujt, 0, y) < a(u(t, 0, y))n - &u(t, 0, y) - h(t, y),

(iii) u(t, a, y) > 0, u(t, x, 0) > 0, u(t, x, b) > 0, ^
(iv) u(0, x, y) > ua(x, y).

It is easily seen that upper solutions exist and can be explicitly given (e.g., see Eqs. (3.7),
(3.13)). By a theorem in [10] the problem (3.1)-(3.3) has a unique non-negative solution
u which satisfies the relation

0 < u(t, x, y) < u(t, x, y) (t > 0, 0 < x < a, 0 < y < b) (3.5)

for any upper solution u. Hence an upper estimate for the asymptotic behavior of the
solution can be obtained from the asymptotic property of a suitable upper solution. A
convenient choice of such a function is given by u = exp ( — 5t)<j>(x, y) when h(t, y) =
0(exp (—yt)), and U = (1 + t)~s<t>(x, y) when hit, y) = 0((a + t)~y). In the form of
exp ( — 5t)<t>, U becomes an upper solution if <j> is non-negative on R and satisfies the
following conditions:

Di<t>„ + (£„„) + (5 + c)<t> < 0,
4>,(0, y) < a exp (-(« - 1) 6t)(<j>i0, y))" - 0<t>iO, y) - exp i&t)hit, y), (3.6)

u0(x, y) < <t>ix, y).

Suppose that c < D[(ir/2a)2 + (7r/46)2]. Then we choose 5 < D[{ir/2aY + {ir/kb)'] — c
and

<t>ix, y) = K cos iirx/2a) sin iir(y + b)/ib). (3.7)

Clearly, <f> is non-negative on R and satisfies the first condition in (3.6) for any constant
K > 0. To insure the second condition it suffices to show that

a[K sin itriy + 6)/46)]" > /3exp ((n — 1)6<)[# sin (tt(«/ + b)/4b)] + exp (nSt)h(t, y) (3.8)
for some positive constants 5 and K. Consider the case where /3 < 0 and h(t, y)
= 0(exp (—yt)) as t —* °° (uniformly in y). Then there exist constants K', T such that
hit, y) < K' exp (—yt) for t > T, 0 < y < b. In view of sin (ir(y + b)/4b) > l/v7'- on
[0, b] the relation (3.8) holds if we choose S < y/n and K such that

a(K/V2)" > max {exp (nST)h, K'\, (3.9)
where h = sup {h(t, y)',0 < t < T, 0 < y < b}. This shows that for any u0(x, y) < <j>(x, y)
the function fl = exp ( — 5t)<t> is an upper solution. The same argument shows that
U = (1 + t)~s<t> is an upper solution when h(t, y) = 0((a[ + t)'s) uniformly in y as t —> »,
where <f> is given by (3.7) except with a possibly different value of K. This observation
leads to the following conclusion:

Theorem 3.1. Let /3 < 0, c < D[(ir/2a)a + (tt/46)2] and let u be the solution of
(3.1)-(3.3) with m0 < <t>, where <j> is given by (3.7). Then there exists a constant T such that

u(t, x, y) < exp (—dt)<l>(x, y) for t > T, (x, y G R), (3.10)
when hit, y) — Oie~yt) uniformly in y as t —> <»; and

u(t, x, y) < (1 + t)~s<t>(x, t) for t > T, (x, y) G R (3.11)
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when h(t, y) = 0((di + t)~y) uniformly in y as t —> <», where

5 = min {y/n, D((ir/2a)2 + (ir/46)2) — c\. (3.12)

In particular, if for some 1\ < «>, h(t, y) = 0 for t > Ti , 0 < y < b then (3.10) holds
with S = D((ir/2a)i + (ir/±b)2) — c.

The result in Theorem 3.1 shows that if h(t, y) = 0(exp (—yt)) for some large y or
if h(t, y) = 0 for sufficiently large t, then the temperature decays exponentially with a
decay constant S = Z)[(?r/2a)2 + (ir/46)"'] — c which is larger than the corresponding-
decay constant in the rod problem by the amount D(ir/46)2. Physically, this is to be
expected since energy leaks through the boundary y = 0 and y — b. Notice that if energy
radiates from the surface of the plate the value of c is negative and thus the temperature
decays even faster.

When linear absorption occurs at the boundary x = 0 (i.e., 0 > 0) we choose the
function <f> in the form

y) = if (cos \x — 03/X) sin X.r) sin (ir(y + 6) /4i»). (3.13)

If we use X = X0 and the same value of K in the rod problem (with I replaced by a), the
same argument as for the one-dimensional rod problem leads to the following:

Theorem 3.2. Let 0 < a~\ c < D[(ir/2a)2 + (x/46)2] and let u be the solution of
(3.1)—(3.3). Then for any initial function u0(x, y) < 0x„(.r, y), where <t>y„ is given by (3.13),
u satisfies the estimates (3.10), (3.11) in Theorem 3.1 except with the decay constant
5 given by

8 = min (Z)(X02 + (tt/46)2 — c), y/n), (3.14)

where X0 is determined from the equation tan \a = X/'/l
Proof. It suffices to show that <£Xo satisfies the second condition in (3.6). But in view

of the choice of K and X0, this condition follows from the same argument as for the rod
problem. We omit the details.
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