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Asymptotic behavior of the Coulomb three-body scattered wave
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Asymptotic forms of the scattered wave for a system of three arbitrary charged particles valid in all domains
relevant to breakup are derived. The derivations are based on the relationship between the total wave function
of a breakup process in a three-body system with Coulomb interactions and the wave function of the process
of scattering of all three particles of the system in the continuum. The results are free from amplitude-phase
ambiguity problems associated with previously known forms. A similar technique is used to obtain asymptotic
forms of the three-body Coulomb Green’s function.
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I. INTRODUCTION electron-electron correlation. In EJ&], T-matrix [2], and
R-matrix with T-matrix [11] methods, an integral representa-
With the progress in high-performance computing, the di-tion of the ionization amplitude is used but again the three-
rect numerical solution of the Sclhiimger equation(see  body continuum states are approximated, this time by a prod-
Refs.[1-5] and references thergihas emerged as a power- uct of two fixed-charge Coulomb waves for the two free
ful method to analyze the scattering processes with threelectrons. This yields an ionization amplitude with divergent
charged particles. Such methods, in principle, require th@hase as a function of matching radius although the magni-
knowledge of the asymptotic behavior of the scattered wavéude of the amplitude converges. Thus, due to the necessity
function in all asymptotic regions of the configuration spaceto eventually calculate the flux at infinity, none of these
This is because asymptotic wave functions are used directlynethods can really avoid the asymptotic form of the scat-
as boundary conditions in solving the differential equationtered wave, rather they approximate it.
mentioned above, or for extracting the scattering amplitudes Despite the success of these practical approaches in pro-
from integral expressions involving the full scattering waveviding accurate cross sections, formal theory of breakup with
function. Below the three-body breakup threshold when onlycharged particles remains incomplete. The formal theory
two-cluster channels are open, there is no difficulty with thegiven over 30 years agd3—15 is still considered state of
application of the aforementioned approaches in combinatiothe art. Within the framework of this theory, there is no, and
with some additional, but reasonable, approximationcannot be, exact algorithm, e.g., similar to PogTsbelow
schemes. However, we emphasize that attempts to followhe breakup threshold, for solution of the Satinger equa-
exact algorithms have thus far limited these approaches ttion with correct boundary conditions above the breakup
essentially model probleni§—9]. threshold. The first and the only attempt to solve the Schro
Above the breakup threshold, the situation is different.dinger equation for electron-impact ionization of hydrogen
Here, a required unique solution is obtained by imposing thdy directly matching with exact ionization boundary condi-
boundary conditions in the regions where all three particlesions is limited to the Swave model[16]. Though an
are asymptotically free. The most studied system is that oasymptotic form of the scattered wave for electron-impact
electron-hydrogen scattering. Lack of knowledge of the comionization of hydrogen for the case when all interparticle
plete asymptotic behavior of the scattered wave function hadistances are large was obtained by Peterkop1§ four
led to different approaches, aimed at “avoiding” the true decades ago, it has not been successfully implemented in the
three-body asymptotic state, including exterior complex scalaforementioned approaches. One reason is that the direct nu-
ing (ECY [1], convergent close couplingCCC) [10], merical solution of the Schdinger equation for the full
T-matrix [2], and R-matrix [3,11] methods. These methods hydrogen-ionization problem requires partial-wave analysis
provide an accurate three-body scattering wave function iof the asymptotic wave function and a suitable partial-wave
an “internal” region in coordinate space and the ionizationdecomposition of the Peterkop wave function does not exist.
amplitude is extracted by matching to ionization boundaryThe problem with the partial-wave decomposition is that Pe-
conditions in the asymptotic region. In each method, the exterkop’s asymptotic wave function is invalid when two elec-
traction process relies oapproximateionization boundary trons are close to each other. Thus, for full-scale numerical
conditions. For example, in the CCC method, the ionizatiorncalculations, a representation of the wave function, describ-
flux is initially obtained by discretizing the target continuum. ing ionization in this region as well, is necessary.
The ionization amplitude is then constructed by means of a Peterkop used six-dimensional hyperspherical coordinates
renormalization of the square-integrable positive-energy tarwhich effectively transform the Schidinger equation de-
get states with the true target continu{ib2]. Implicit in this  scribing the development of the system into the Hamilton-
approach is the representation of the three-body continuuacobi—type equation as the asymptotic motion of the par-
states as a product of plane and Coulomb waves withouicles becomes classical. For this reason, the Peterkop
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asymptotic wave suffers from an amplitude-phase ambiguityrocess in two-cluster collisions taking place in an arbitrary
problem, since some part of the hyperspherical ionizatiorfCoulomb three-body system and the wave function of the
amplitude can be moved to the phase factor and the resultingrocess of scattering of all three particles of the system in the
wave function is still a solution to the original Hamilton- continuum. Calculations of asymptotic forms of the scattered
Jacobi equatiofi15]. Accordingly, the remaining amplitude Wave based on this relationship are presented in Sec. IIl.
can equally be called an ionization amplitude. Thus, generAsymptotic forms of the three-body Green’s function are

ally speaking, the hyperspherical approach is not capable &iven in Sec. IV. Finally, in Sec. V, we summarize the results
uniquely identifying the ionization amplitude. This of the present work and discuss their possible applications.

amplitude-phase ambiguity has caused problems in the for-
mal theory of breakup at a very fundamental level. As a [l. RELATIONSHIP BETWEEN 2 —3 AND 3—3
result, the present formal scattering theory cannot provide PROCESSES IN A COULOMB THREE-BODY SYSTEM

full information about the breakup amplitude. . .
. . . Let us consider a system of three particles of nmassnd
Finally, full knowledge of the asymptotic behavior of the chargez,, a=1,2,3. We use a system of Jacobi variabtes:

scattered wave forms the basis for the Kohn variational ap:

. is the relative coordinate, arg, is the relative momentum,
proach to breakup scatteriigd—21. Due to the ahsence of between particle® and y; p, is the relative coordinate of

the asymptot_ic wave fu.nction for brgakup scattering of thre%he center of mass of the paiB{y) and particlee, with q
charged patrticles, validity of the variational approach to sucl’being the canonically conjugate relative mon’mentumfy The

processes was shoW@2] only in the region where distances )

between all particles are large. For the case of protongiorrespc;ndmg reducedd mN? ss_es are de?oted by
deuteron breakup, for example, validity of the variational_mﬁmV'_|(mﬁ+'T(;V)h anh ‘ﬁ._ m“(mﬁ+Ti)2(g]”+mﬁ
principle when in the final state all three particles are in the“L m,). Here an throughout this papes, y=1,2,3, a#
continuum but the neutron is close to one of the protons and ?: W€ Use units such that=c=1.

the other proton is far away is yet to be proven. Therefore, For further reference, we note that

for the recent Kohn variational proton-deuteron scattering

calculations[21] to b_e extended to cz_ilculations of the_ deu- rp=— %ra_eﬁapa! ps= 6ﬁa$ra_%pa )
teron breakup amplitude, an unambiguous asymptotic form Y a Y
of the total scattered wave is necessary. In this case, it ign d

expected that the proton, which is far away, distorts the rela-
tive motion of the other proton and neutron due to the long- P M “

range Coulomb interaction between the protons. Thus, the kﬁ:——'gka—eﬂa—“qa, QBZEﬁaka——aqa, (2)

; ; _ m M m
knowledge of the asymptotic behavior of the three-body Y B Y
scattered wave in all regions of the configuration space iic‘/vheree — ¢ . is the antisymmetric svmbol. witla
crucial in calculations of atomic and nuclear breakup pro- Ba o ntsy C Sy ’ Ba
cesses =1 for (Ba) being a cyclic permutation ofl, 2, 3, and
' €,0=0.

In the preceding papgi23], a relationship between the Consider the scattering of particle with incident mo-

total wave function describing ionization in the electron- i # a bound pai in initial stat f
hydrogen system and the one representing scattering of thrd&Entuma; off a bound pair §,7) in initial state ¢, (r,) 0

particles of the system in the continuum was established. OBNergyEy . Assume that the energy of the projectjg2M,,

the basis of this relationship, forms of the scattered wave fois enough to break up the target. The total three-body wave
ionization valid in all asymptotic domains relevant to ioniza- function describing this process satisfies the Sdimger

tion were obtained and the amplitude-phase ambiguity of thequation

Peterkop wave function was resolved. This removed the

above-mentioned problems in practical calculations and (E—H)¢>Za,qa(ra,pa)=0, (3
made the correct extraction of observables possible. In the
present paper, these results are generalized to an arbitrashere H=—A; 2u,—A, 12M ,+V (1) + V(1)

system of three charged particles and allowance is made fap V,(r,) is the three-body Hamiltonian an&=E,

inclusion of short-range potentials as well as their Coulomb, , 2 2 .
tails. We also go into some more detail of the derivation+qi/ZM“_ka/2““+q“/2M” is the total energy of the sys-

which was beyond the limits of the preceding brief report. Intem- Here

addition, we use a similar technique to obtain asymptotic 77

forms of the three-body Coulomb Green’s function. The lat- Va(fa):Vg(ra)+V§(fa), Vg(ra)=ﬂ, (4
ter are important in the formulation of the three-body prob- i

lem [24,25. Asymptotic forms of the three-particle Green’s C oS _ .
function also play a central role, for instance, when calculatwhereva (V) is the Coulomb(short-rangginteraction be-

ing the optical potential§26—29 and doing the nonpertur- WEen particless andy.

bative calculations of dynamical dipole polarization terms '€ wave functiond ™ consists of the incoming initial-
[29]. channel waveb () and outgoing scattered wave(s9":

The paper is set out as follows. In Sec. Il, we give a + _ 2 (i) (sO)+
relationship between the total wave function of a breakup q)ka'qa(ra’pa)_q)ni -qi(ra’pqu)ka’qa(r“’pa)’ 5)

022703-2



ASYMPTOTIC BEHAVIOR OF THE COULOMB THREE-. .. PHSICAL REVIEW A 68, 022703 (2003

where®() is separable and given by started from. Second, only by usin~, we are able to
0 introduce the breakup amplitude in a standard form.
Pn’ 0 (Fa1Pa) = Xq (Pa) b, (Ta)- (6) Thus, making use of the spectral decomposition for the

o _ . three-body Green’s functio®* in Eqg. (12) in terms of the
The initial-channel tWO'bOdy bound state is determined fromhree-body Scattering wave functimf, we arrive at

!

dk, dq,
q’(kiC,)J(ra,pa):f dr,dp, .

B0 (1) =0. (@)
- “T2m? (2m)®

1
(2_MAra_Va(ra)+Eni

The wave function describing the relative motion of two B . o,
clusters satisfies the following equation: Vi (T P) Wy (T Pg)

a

X 2 2 H
E—K'2/2u,—q'2/2M ,+i0

(1A Uup)t 2 |xaton=0,  ®

p, “a P EIVER Xqi Po) =Y, _ .

2M, 2M,, Xvaq)gi)‘qi(r; P (13
whereU ,(p,) describes the interaction of the incident par-

ticle o with the c.m. of the bound subsystens,f) and is where the dots indicate all possible two- and three-body

written as bound states of the Hamiltonidth.
Let us define an amplitude
u a(pa) = Vﬁ(pa) + V'y(pa) . (9)
Taking into account Eq7) and (8), Eq. (3) can be re- f(kalqa):f dfadpa‘l’[:,qa(fa,Pa)vaq)ﬂi),qi(fa,l)a),
written as (14

(E=H)DEY (14.p0) =V @Y 4 (1.po), (100 and rewrite Eq(13) in the form

where

q)(SC)Jr (r ): dka dqa
J— K, 10y a1Pa (277)3 (271_)3
Vazvﬁ( rﬁ) +V'y(r'y) - Ua(pa)l (11)
with Vg(rg) +V,(r,) term being the interaction of the pro- f(k;aq;)q’;;,q;(ra*pa)
jectile particle with the individual target particles. Then, ap- X 2/ 2 —+---
plying the three-body Green’s functiorG*=(E—H E=K'G/21,=0",/2M,+10
+i0)~? to both sides of Eq(10), we get (15)
‘I’ﬁzc,);a(fmpa) We shall show in the sequel that E(L4) is the desired
breakup amplitude. Equatiofl5) establishes a relationship
_ r oy el between the total wave function of any-23 breakup pro-
= * + ; )
f dredpeG (FaPuila Pa i EHI0) cess in a Coulomb three-body system and wave function of
o) the 3—3 process of scattering of all three particles of the
XV @p/ 0 (N Pa)- (12 system in the continuum through the corresponding breakup

N amplitude.

Next we apply a spectral decomposition for the Green's | et us call(), the asymptotic domain, where all interpar-
function. To this end, we consider another scattering procesgcle distances are large, i®e,—, p,—, so thatr,/p, is
within the same three-body system, but one where in th@onzero. In addition, we call), the asymptotic regime,
initial channel all three particles are in the continugso-  \yhere p.—, howeverr, satisfies the constraint,/p,,
called 3—3 scattering as opposed to-23 breakup scatter- _,0. We also introduce the following notations for
ing in two-cluster collisions We take the boundary condi- asymptotic forms ofb9* and ¥~ in Q,,r=0,a:
tion for the wave functionV ~ describing this process in the

form of a Coulomb-distorted three-body plane wave and in- Q,

coming scattered wave. This wave function, of course, is also DN (1, pa) =P L (N uPa), (16)
an eigenstate of the same Hamiltoniad, i.e., (E

—H)¥, 4 (re,p.)=0. Therefore, it is well suited to our Q,

purpose. As it will become clear below, the reason for choos- Yy g, (Ta ,Pa)ﬂ‘l’(k?,aa(fa Pa)- (17)

ing this form of the total wave function as the basis for

decomposition rather thaif *, which consists of Coulomb- We find it convenient to denote b¥ (¥~ only that part of
distorted three-body plane wave and outgoing scatterethe total wave functio = in the domain(), which corre-
wave, is twofold. First, using? * would eventually lead to sponds to the case of all the particles in continuum. Possible
incoming scattered wavé® (9~ instead of outgoingb 39+ two-fragment channel contributions will be singled out and
which is inconsistent with the boundary conditi¢h) we  dealt with separately.
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Since in the(); domain all components oF ~ involving =0,a, to denote the leading-order terms of the relevant wave
two-body and three-body bound states have an exponentialfgnctions.
decreasing contribution, all the contribution®§*9" comes To this end, we need leading-order asymptotic terms of
from the continuum part o —. Therefore, we get from Eq. ¥~ For Q,, in nonsingular directions %.fﬂ& -1
(15), a fundamental asymptotic relationship =a,f3,7), this term was given by Redmoh@0] and has the
form of the three-body plane wave distorted by the long-
CIJ(OH ( )= f dk, ddq, rgngg Coulomb interaction between all three pairs of par-
arFa (277)3 (271_)3 ticles:
f(k;,q;)‘lf(kz);;(ra.pa) WO (1, p)=eeatiters T i nie,n),
X 12 12 N (18) Ty
E-K'4/2u,—q'%/2M ,+i0 (20

Let us turn now to the case when particeandy remain ~ Where
close to each other. All components¥f involving three-
) . . = = +Kkyry.
partlcle bound states decrease exponenually m&tlgedo— Ta=2gZytar §(KaiTa) =Kal ot Ko T (2Y)
tion from all two cluster channels containing bound states o Mukhamedzhano|§27] (AM):
pair (8,y) which singles out from the total wave function

¥~ in two-fragment asymptotic channel. Thus, one can \If(a)a (Fy,p,) =€ e T % Payy (k. 1)
write from Eq.(15) another asymptotic relationship “
dk,  dd, X l_g e ik, Ing(k, 1) (22)
=By

(a>+
P’ (FarPa) = f(zw)3(2w)3

The wave functiony,(k, ,r,) satisfies the following equa-
f(k;,qa)‘lf(a) (T Pa) tion:

X
E—k’i/Z,ua—q’iIZMa+|0 1. ~
gAraﬂM—ka-Vra—Va(ra) Pa(Ka ) =0 (23)

3 > —, with the incoming-wave boundary condition and describes
(2m)° E-E, —Q'5/2M,+i0 the relative motion of particleg and y, interacting via the
(19) potential given by the sum of the Coulomb and short-range
potentialsV,=VS$+ VS . If the potentialV,, is pure Coulom-
wheref, is the amplitude for excitation of the two-fragment bic, V,=V¢, theny,(k,.r,) is given by

channel staten,. In the second term, the integral ovief

became a sum over all energetically possible two-particlela(Ka 1) =T(1—=in, /K, exp —m9,/2Kk,) 1F 17, /K, 1;
discrete states. The wave function of the two-fragment chan- .

nel stateQD(“)q is determined from Eq$6)—(8) with n; and —i¢(kyra)), (24)

q replaced byn, andq, , respectively. where ;F, is the confluent hypergeometric function. The
Asymptotic relationship¢18) and (19) were used to cal- relative local momenturk,, of particlesg andy in the Cou-

culate forms of the scattered wave for electron- hydroge lomb field of the third part|c|e is given by

scattering[23] valid in all asymptotic domains relevant to
ionization. We note that the second term of Etp) is famil- K
iar in the theory of potential scattering and leads to a known k =k + E g -
scattered wave. Different approximate relationships resem- vShy Mptm, K, 14k,
bling Eqg. (19) have been in use, e.g., in the close-coupling

formalism for a long time. However, we emphasize that Equhus the relative motion of particlgd and vy is correlated
(18) and (19) are exact. by particle @ at infinity due to the long-range nature of the

Coulomb interaction. The importance of this three-body ef-
fect was first demonstrated practicall23] in the case of
electron-impact ionization. The effect provided consistency
of the underlying scattering theory, for instance, when two
In this section, we investigate the asymptotic behavior ofelectrons are close to each other.

the scattered wave® (9" for a system of three arbitrary =~ WhenQ ,—Q,, the AM function smoothly transforms to
charged particles and calculate its leading-order ternf3gn the Redmond function as the local corrections in momentum
and (), based on the relationshig$8) and (19). Below we  k, become negligible. All second-order termsBf in Q,,
refer to asymptotic wave function®™* and ¥(* »  have been found by Mukhamedzhanov and Lief@t].

f do, (0P o (ra.pa)

(25

IIl. ASYMPTOTIC FORMS OF THE SCATTERED WAVE
FOR BREAKUP
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However, as we are interested in this work, in the maina g,y is the breakup amplitude. For brevity of representation,
leading-order terms of the scattered wave, the AM wave, Eq. (29), we introduced additional hyperangles,, »

function is sufficient for our purpose. . =pB,y. These are defined similar tp, [see Eq.(28)] and
Let us proceed now to the asymptotic behavior of therg|ated tog,, according to

scattered waveb (9", The standard procedure due to Pe-
terkop[17,1§ is to write Eq.(1) in terms of six-dimensional _
hyperspherical coordinates. Then, @, the Schrdinger Sing,=
equation(1) transforms into the Hamilton-Jacobi—type equa-

® Hola .
M CoSe,+—>"sire,
m

@ Y

tion as the motion of the particles becomes classical. The 112 172

Peterkop wave function was originally given for the case of + Emﬁ<&> sin2¢,f, pa| » v=pB7.
two light particles in the Coulomb field of the infinitely m, Mg

heavy third particle. For further reference, here we give a (30)

similar wave function for the case of three arbitrary Coulomb
particles. Thus, following Peterkop’s procedure, we get, to Equation(29) explicitly shows that the generalized Pe-
leading order, terkop wave function given by Ed26) is not valid in the
regions wherep,—0, v=a,B,7y, i.e., when any two par-
CID(kO)’E (T Po) =Aw)R 5% FR-NIN2R) = (26) ticles of the system are close to each other and far from the
o third one. The main drawback of the Peterkop asymptotic
where form, however, lies in an amplitude-phase ambiguity prob-

lem, when some part oA(») can be moved to the phase
172 factor and the resulting wave function is still a solution to the
(27)  original Hamilton-Jacobi equatioil5]. Accordingly, re-
mainderA’ (o) can equally well be called a breakup ampli-
is a hyperradiusm is an arbitrary mass constant introducedtude. Thus, generally speaking, the hyperspherical approach
for convenience so that the hyper-radius has units of lengtls not capable of uniquely identifying the breakup amplitude.
[35], w=(T,,p.,¢,) is a five-dimensional hyperangle, with Our approach will enable us to fix this problem, unambigu-
ously relating the “hyperspherical” definition of the breakup

Mo o Ma

— 2
R ety Pa

1/2 . . . .
<pa=arcta+ M_a) ;_a} 0=, <ml2, (28 Zg].p(hltztlj)(.je to its standard quantum-mechanical one given by
oo Let us now calculate the same wave functibf)* using
xk=(2mE)*?, and the Coulomb parametky, is given by the relationshig18) and noting the leading-order asymptotic
1 12 terms given in Eqs(20)—(25). Using the asymptotic forms
No=— 2 (m) _’7v _ (29) makes it possible to evaluate Ed.8). To this end, we con-
K v=apy \My/ SIN@, sider first the integral ovek,, :

) dk/, f(k;,qg)e‘ké'rae—inalk; In (K., .1 ) i7,IN(—w,/m K,—€,,u,/M,Q,.T,)
Ika,qa(ra!pavqa): exp — .

(2m)®  E-K'22u,~q'22M,+i0 vZ5.y | = o My K= €pata MO
(3D)

We take advantage of the fact that{y domainr ,—o and use an asymptotic form of the plane wave

r—oo

ekt — ST (R-P)el— a(k+ e k] (32
ikr '

which can be obtained from the asymptotic form of the partial wave expansion of the plandssaye.g., Ref.32]). Then
we get(in the leading order

1 (e k;f(kfja ’q;)eik;rae—ina/k; I ¢(k) Ty o)
!

2m2ire = E—KZ2u,—q'2/2M +i0

Ika,qa(ra P ’q(,y):

i Vln - V/m k(/yi;a_eva a//MV ;lrv)
xHexp[—” {(—p,Im, #alMiGa 1) | (33

v=py |_ﬂv/myk;Fa_6va/*La/qu:x|

022703-5



KADYROV et al. PHYSICAL REVIEW A 68, 022703 (2003

The integrand has two simple poles and apart from that it is an analytic function on the complex energy plane. Therefore, we
can calculate this integral by closing the integration contour, e.g., in the upper half of the completsplai@rcle complex

contour of infinite radius does not contribute to the integral due taethée facton, and using the Cauchy theorem to take
residue at the pole singularips):

ik (PS)
N iky Tq

" - i 1Sy (1 (PSE
lkayqa(raipavq:x): - 2 r f(k(apS)ra!q;z)e Inalka n g(k" Fo ol
o

[ Ny In g(_MV/m kgypS)Fa_ eva/u‘a/M Vq; lrv)
x [1 exp{ - z

= (34
v=RBy |_lu’V/mykEypS)ra_Evalu'a/Mun
This brings the energy conservation into play and the magnitud€, & now fixed at
L 1/2
k&f’5>=(2uaE— M—q'i) : (35
Thus, we have
dg, .,
O (T4, a>=f €% Pl g (1P O)
kzx‘qa p (277)3 ka’qa p q
Mo 1 fevmEM Cin PO (kPSR K ig’ N
— a ! oKy M LK, Ty Ta)] @iy Tatid,py (ps) ’
(277)3 irapafo dqaqae e f(ka ra’qapa)
i — (ps)p _ >
% 1—[ ext — 17, |n£( ILLV/m’}/ka/A o eva/u‘a/M Vc!\apa ’rV) —eik&ps)rafiqupaf(k(ps)i:a , _q, ﬁa)
v=pBy |_/'LvlmykﬁypS)ra_evalu’a/Mngzpa| “ “
i 7,10 20—, Im KPP+ €, IMLQLP, T,
X H exg — U ~ r e ’ qA p . (36)
=3y |_MV/m}’k(a’p5)ra+6Val('l’a/MVq(/1p0(|
|
At this stage, we have no information about the individual @m)Y? (u, k M,k
. . PO+ — Pz, @
physical moment&, andg, but, as we will presently show, k. .q,(Fa Pa) 2m)® | m R 'm RPe
their values will become apparent upon evaluating the inte- (2m
gral using asymptotic techniques. &, wherer, andp, (u M )32 (32
are asymptotically large, the integrand is extremely oscilla- % ?ZeiKR
tory. For this reason, one should expect any significant con- m R
tribution to the integral only from neighborhood of inmR (2
stationary-phasésp) points if there are any. One can verify x 11 ex;{ _ |n(ﬁ frﬁ) _
that the first term of the integrand in E(6) has a single v=a,B,y HyKT, m R
stationary-phase point at (39)
M, k In Eq. (38), we used the fact that at the stationary-phase
q&spéﬁ RPa (37 point, Eq.(35) is written as
. . (sm— e € (39
while the second one does not have any. This is why, a con- @ m chw )

tribution to the integral from the second term in curly brack-
ets is negligibly small. Evaluating the remaining integral by
means of the stationary-phase mettad], we obtain and consequently
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_Pvpsy o Ma (spy M K _ o da,,
m ka ra évaM qa Pa= m RrV’ V_B17' (D(k )’; (raapa)NE j 3
’ V 4 2w
. , ") @l Pa 70 10, 10 (), p,)
We also note that the physical momekiaandq, are given ana(qa)e Pl ? ¢na(ra)
by E— Ena—q’i/ZMaHO
(47)
K, =t X M. x 41
a m Rra! qa_ m Rpa' ( )

The calculation of the integral in Eq47) for large p,, is
In terms of hyperangleg,, v=a,8,y, we finally have trivial and leads to well-known outgoing scattered waves in
two-cluster channels. However, we keep this term for com-

o)+ (27)" (o kM, & pleteness of the final result.
(I)(k)q (ra!pa): f — Sl 7/ 5P i i niti
aa 2m?® \mR*“mR Consider now the first term of Eq19). By definition,
herer , is limited as compared tp,. Therefore, it cannot,
(u M )2 k32 strictly speaking, be used as an asymptotic parameter along-
XT RT/Z side p,. However, the other two pairs of Jacobi variables
(r,,p,), v=PB,v, constitute suitable pairs of asymptotically
XexgikR—iNgIN(2xkR) —iayg], large parameters, should we represent the integral in terms of
(42 relevant canonical conjugate momentum space variables
(k,,q,). Below we use K;z,q;5) space. Then, for the first
with the additional phase term of Eq.(19), we have

1/2 H
m) mln(sm%). 43

2
Op=— i T
K v=a,B,y /‘LV SanDV
Thus, the asymptotic form o9 in O, comes as a

result of the fundamental relationship between the total wave
functions describing two different scattering processes within

dky  daj
(2m)* (2m)®

R (RS J

f(K.,,qL) e s 5 1% Py (K, T o)

the same three-body system. Most importantly, our deriva- E—k’f;/Z,uB—q%IZMBJriO

tion leads to an unambiguous amplitude-phase form, which

allows us to uniquely express the hyperspherical breakup x H e imlk, Ik, .r,) (48)
amplitudeA(&;) in terms of the standard definition of the =By

breakup amplitudé (k, ,q,) given by Eq.(14):

-~ (a2 (u M,)%? In the above equation,, p,, k/,, andq,, v=y,a, are kept
Alw)= (2m)3 m2 as short-hand notations. As functions @fspace variables,
they are given by Eqgl) and(2). Taking into account that
aop e K Ma K i
X k2f mRra’m Rpae . (44)
Having completed the derivation of the asymptotic form Bp 2 Mg 5 Ha o Ma ,
of &% (r,.p,) In Qo, it remains to proceed t6), and m A mPE m e T P
evaluate the integrals contained in E§9). To start with, we
consider the second term of E¢L9). The leading-order
terms of the wave functions in the two-fragment channels, as
L—, are given b m m m m
P gven by K+ —— = — k2t 2, (49)
. S | MB M B Mo M a
‘I’Ef;),qa(ra,Pa)ﬂe'q“'p“_m“/q“ n {(dy ,pa)¢na(ra), (45)
with we can calculate the above integral in analogy with the pro-
o cedure we used ify. We therefore omit the details. Evalu-
Na=24,(25+2,)M,. (46)  ating the integrals and transforming the answer back to the
conventional for(}, variablesr, and p,, and also adding
Consequently, for the second term of Ef9), we have the outcome from Eq47), we arrive at

022703-7



KADYROV et al.

22 (p, k M, k
(a)+ :(— PaZ, @
D0 (FarPa) 2m® \m Rlem RPe

X(MaM )3/2 K3/2

T R_5/21;ba( Ka vra)

X ei kR—iN,In(2kR) —io,

e'Qn Pa
Ef (On po)—
Xefina/qna |n(2‘1napa)¢n (I’a), (50)
where
1 m\¥2 o,
L
K v=8y \ My SInSDV
and
2 12 5 In(sin
b2 (_) 7 In(sing,) (52
K v5B,y \ [y sine,

The new local momentum entering in the scattered wW&0g
is given by

m, N

——r

_Ha K
Kuz_ m Rra+ E

vE By Mt My gy g3 "

(53

The momentum of the scattered partielerelative to the
bound pair 8,7) is given by

Ao, =[2M ((E—E, )2 (54)

The second term withbna(ra) in Eq. (50) disappears as

r,—°. In addition, if we take into account that as grows
large the second term in E(53) becomes negligible, so that

o™ | m 1/2 7]
r,) ~ ex
Kol SiN@,

Po(Ke,

In(2xRsirfe,)|.

(59
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All this means that Eq(50) smoothly transforms to E¢42)
whenQ ,— Q.

It is now also not difficult to verify that the final results
for the scattered wave are independent of the complementary
mass constarnn which we introduced earlier.

Thus, the generalized asymptotic scattered wave valid in
all the asymptotic regions relevant to breakup can be written
as

R—

1 Mo K M, «
a!pa) - (27T)5 2

m R m RPe
(,LL M )3/2 K3/2
T Re

(sc)+(r

ikR+i7/4

S | A ()
v=a,B,y

M fi
277_]) QZB y E qn pl/)
e|QnVPV —
X— e !/, NP (1),
14

(507

In Q, Eq.(50") reduces to Eq50), while in Q it is equiva-
lent to Eq.(42).

IV. ASYMPTOTIC FORMS OF THE COULOMB THREE-
BODY GREEN'S FUNCTION

In this section, we state our results for the asymptotic
forms of the Green’s function for a system of three charged
particles. Because the methods used earlier form the basis of
the derivations, we will omit technical details of the calcula-
tions. Asymptotic forms of the three-body Green’s function
are important in the formulation of the three-body problem
[24,25 when calculating the optical potentidla6—28 and
doing the nonperturbational calculations of dynamical dipole
polarization term$29].

Thus, using a similar technique, we can get leading-order
terms of the three-body Green’s function in asymptotic do-
mainsQ, and Q,. When ,,p,) € Qq, from the spectral
decomposition, we can write

‘l’k,);;(ra,pa)‘lfk_;

(re pa) €
G (ry,puirl,p.;E+i0) f

Calculating the integrals, we get

G (ro.Pail P, E+i0)

dk, dq, q(FaPa) 6
(2m)® (2m)° E—K'212u,—q'%/2M ,+i0
(rg pa) € (27Ti)1/2(/.La )3/2 3/2 [ (r )
(2m)° m2 R52 (o M (KIRYT, (M, /m)(k/R)p,, w P
XexgikR—iNgIN(2xkR)—iay]. (57)

More interesting is the case when both, (p,) and (,,,p.) € Qo. Then we have
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(rg.pa) € Qo
(rl .p.)eQ .
+ ! ’. H ’ ° (277-')1/2 (lu’aMa)glz K3/2 . . 1 (i . rS [ 1
G (ra:pavralpa!E+lo) (2 )3 m2 RT/zeXF{IKR_IKR (SInQDaSIn(Pa ra.ra—’—COS()DaCOS(Papa'pa)]
a
i 12
i m 2r
Xex - 2 (_) '77]} In '\V ~ ) (58)

Kv=agy \My/ SIN@, r!(14r,-1)

with the condition thaR’ <R, otherwise the boundary condition f&* is violated. TheR’' >R case define& .
When (,,p,) € Q,, We can write

(Tapa) €Qy dk’ dq. \If(k‘f)’;,(ra PV ’q,(rfy Py)
+ L ’ . . a [’ a'la a'la
G (rg,pa;it, .p,;E+i0) ——

(2m)% (2m)% E—K'%2u,—q'%/2M ,+i0

10, po—imqlal, InL(d),, ()%
@iy Pa—17414,In ¢(q, p“)qbna(ra)q)na,q'(ré’pé)

da,
+2 J S ~ : (59)
ne J (2) E-E, —0'./2M,+i0
Calculating the integrals, we arrive at
(rg pa) €Qy (27Ti)1/2( M )32 ;302
. oM o)™ K
G (rg,pa:rl,pl;E+i0) —
p p (277)3 m2 R5/2
X\P@*a/mK/R)ra,(Ma/m K/R)pa(r; D) UKy rpexdikR—ik In(2«kR)—io,]
Ma eiQnaPa —
- 5= e 17/, N2 P D% (1 pl) by (1) (60)

2 Ng Pa na'qnapa

If both (r,,p,) and . ,p.) e Q,, we have
(rg pa) ey,

(rl.pr)eQ, 172 32 32
@t (27i1) ™ (oM )" K -
(277)3 m2 RS/ZwZ(Ka’rQ)l/la(KQ!rQ)

G (g :Pails Po;EFI0)
X exp[i kR—i kR’ (sing, SiN@.f - T’ +C0Sp, COS¢., pu- p) ]

xex;{—i— > (m)m 7 2, 1

I . I ~ ~
Kv=gy \My/ SIN@y, 1/ (1+r,-1))

2 eiqnapafiqnapiy';’a';’; |; 2p
_ exg — —In—————{ % (r )¢, (r,). (61)
27 % P On, " Pt | PP Pl

From Eq.(61) one can get an asymptotic Green’s functionarbitrary charged particles has been investigated. Leading-
for the case whenr(,,p,) € Qo but (r.,,p!) €Q,. Clearly, order terms of the scattered wave are given for asymptotic
in this case, bound states do not contribute. The leadinglomains where all three particles are widely separated and
order asymptotic terms of the Green’s function for three-when any two are close to each other but far from the third

particles interacting via short-range potentials were giverParticle. The derivations are based on the relationship be-
by [34]. tween the total wave function of a breakup process in a Cou-

lomb three-body system and wave function of the process of
scattering of all three particles of the system in the con-
tinuum. A consequence of the relationship is that the forms
presented in the present work are free from the phase ambi-
Summarizing, asymptotic behavior of the scattered waveyuities that are a feature of the previously known form. A
function describing breakup processes in a system of thresimilar technique is used to obtain asymptotic forms of the

V. CONCLUSION

022703-9
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three-body Coulomb Green'’s function. in the present work. More sophisticated methods of extrac-
The derived wave functions are suitable for use in calcution of breakup amplitudes are being currently investigated.

lations of ionization in electron/positron-atom and ion-atom

collisions, double-phpt0|on|zat|on of .hellum a}nd similar ACKNOWLEDGMENTS

breakup processes in nuclear physics. For instance, the
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