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In this paper, we revisit the classical results on the generalized St. Petersburg sums. We determine the limit
distribution of the St. Petersburg sum conditioning on its maximum, and we analyze how the limit depends
on the value of the maximum. As an application, we obtain an infinite sum representation of the distribution
function of the possible semistable limits. In the representation, each term corresponds to a given maximum,
in particular this result explains that the semistable behavior is caused by the typical values of the maximum.
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1. Introduction

Peter offers to let Paul toss a possibly biased coin repeatedly until it lands heads and pays him
rk/α ducats if this happens on the kth toss, where k ∈N= {1,2, . . .}, p ∈ (0,1) is the probability
of heads at each throw, q = 1 − p, r = q−1, while α > 0 is a payoff parameter. This is the so-
called generalized St. Petersburg game with parameter (α,p). The classical St. Petersburg game
corresponds to α = 1 and p = 1/2. If X denotes Paul’s winning in this St. Petersburg(α,p) game,
then P{X = rk/α} = qk−1p, k ∈ N. Put �x� for the lower integer part, �x� for the upper integer
part and {x} for the fractional part of x. Then the distribution function of the gain is

F(x) = P{X ≤ x} =
⎧⎨⎩0, x < r1/α ,

1 − q�α logr x� = 1 − r{α logr x}

xα
, x ≥ r1/α ,

(1)

where logr stands for the logarithm to the base r .
In the following all the functions, constants and random variables depend on the parameters α

and p. For the sake of readability we suppress everywhere the upper index α,p.
We see that the payoff parameter α > 0 is in fact a tail parameter of the distribution. In partic-

ular, E(Xα) = ∞, but E(Xβ) = p/(qβ/α − q) is finite for β ∈ (0, α), so for α > 2 Paul’s gain X

has a finite variance, so Lévy’s central limit theorem holds. As Csörgő pointed out in [5], even
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for α = 2 the St. Petersburg(2,p) distribution is in the domain of attraction of the normal law.
This can be checked by straightforward calculation, using the well-known characterization of
the domain of attraction of the normal law. Hence, the case α ≥ 2 is substantially different from
the more difficult case α < 2. In Section 2, when we are dealing with asymptotic behavior of the
sums as n → ∞ we usually assume that α < 2. We indicate the possible values of α in all of
the statements. Of course, the most interesting case is the classical one, when α = 1, for which
the mean is infinite.

1.1. The sum

Let X,X1,X2, . . . be i.i.d. St. Petersburg(α,p) random variables, let Sn = X1 + · · ·+ Xn denote
their partial sum, and X∗

n = max1≤i≤n Xi their maximum. Since the bounded oscillating function
r{α logr x} in the numerator of the distribution function in (1) is not slowly varying at infinity, by
the classical Doeblin–Gnedenko criterion (cf. [11]) the underlying St. Petersburg distribution is
not in the domain of attraction of any stable law. That is there is no asymptotic distribution for
(Sn −cn)/an, in the usual sense, whatever the centering and norming constants are. This is where
the main difficulty lies in analyzing the St. Petersburg games.

However, asymptotic distributions do exist along subsequences of the natural numbers. In
the classical case, when α = 1, p = 1/2, Martin-Löf [17] “clarified the St. Petersburg para-
dox,” showing that S2k /2k − k converges in distribution, as k → ∞. Csörgő and Dodunekova [7]
showed that there are continuum of different types of asymptotic distributions of Sn/n − log2 n

along different subsequences of N.
In order to state the necessary and sufficient condition for the existence of the limit, we intro-

duce the positional parameter

γn = n

r�logr n� ∈ (q,1], (2)

which shows the position of n between two consecutive powers of r . Put

μn =

⎧⎪⎪⎨⎪⎪⎩
n1−α−1 p

q1/α − q
, for α �= 1,

p

q
logr n, for α = 1.

(3)

In Theorem 1 in [5], Csörgő showed that the following merging theorem holds (in fact a sharp
estimate for the rate is also provided):

sup
x∈R

∣∣∣∣P{
Sn

n1/α
− μn ≤ x

}
− Gγn(x)

∣∣∣∣ → 0 as n → ∞, (4)

where Gγ is the distribution function of the infinitely divisible random variable Wγ , γ ∈ (q,1]
with characteristic function

E
(
eitWγ

) = eyγ (t) = exp

(
it[sγ + uγ ] +

∫ ∞

0

(
eitx − 1 − itx

1 + x2

)
dRγ (x)

)
(5)
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with

sγ =

⎧⎪⎪⎨⎪⎪⎩
p

q − q1/α

1

γ (1−α)/α
, α �= 1,

p

q
logr

1

γ
, α = 1,

uγ = p

q
γ (α+1)/α

∞∑
k=1

r((1−α)/α)k

γ 2/α + r2k/α
− p

q
γ (α−1)/α

∞∑
k=0

1

γ 2/αr((3−α)/α)k + r((1−α)/α)k
,

and Lévy function

Rγ (x) = −γ q�logr (γ xα)� = − r{logr (γ xα)}

xα
, x > 0. (6)

From this form, it is clear that Wγ is a semistable random variable with characteristic exponent α.
For the precise rate of the convergence in (4) see Csörgő [6], where short merging asymptotic ex-
pansions are provided, and also additional historical background and references are given. Merg-
ing asymptotic expansions are proved by Pap [21], where the length of the expansion depends
on the parameter α: the closer α is to 0, the longer expansion is possible. Pap [21] also shows
non-uniform asymptotic expansions. The natural framework of the merging theorems is the class
of semistable distributions, see Csörgő and Megyesi [8]. In Section 2.3, we briefly collect the
definition and basic properties of semistable distributions.

1.2. The maximum

It turns out that the maximum X∗
n has similar asymptotic behavior as the sum. Let us consider the

classical case again, that is, α = 1,p = 1/2. For γ ∈ (1/2,1], introduce the distribution function

Hγ (x) =
{

0, for x ≤ 0,
exp

(−γ 2−�log2(γ x)�), for x > 0.

Berkes, Csáki and Csörgő [2] showed that although there is no limit theorem for the normed
maximum through the whole sequence, the following merging theorem holds:

sup
x∈R

∣∣∣∣P{
X∗

n

n
≤ x

}
− Hγn(x)

∣∣∣∣ = O
(
n−1) as n → ∞, (7)

with the positional parameter γn defined in (2). Note that even though the “limiting” distribution
function is not continuous, merging holds in uniform distance. A more general setup is treated
by Megyesi [20], see in particular Theorem 4 in [20].

The merging theorems (4) and (7) immediately imply that in the classical case Sn/n − log2 n

and X∗
n/n converges along the subsequence {nk} if and only if γnk

→ γ , as k → ∞, for some γ ∈
[1/2,1], or {γnk

} has exactly two limit points, 1/2 and 1. The latter is called circular convergence,
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Figure 1. The histograms of log2 Sn for n = 26 and for n = 27.

as it can be seen as convergence on the interval [1/2,1], 1/2 and 1 identified. See [5] and [6].
Similar statement holds in the general case.

Having seen these similarities it is tempting to investigate the maximum and the sum together.
In Figures 1 and 2 (all the figures correspond to the classical case), one can see that the his-
tograms of log2 Sn are mixtures of unimodal densities such that the first lobe is a mixture of
overlapping densities, while the side lobes have disjoint support. For doubling n, in Figure 1 the

Figure 2. The histograms of log2 Sn for n = 26+η , η = 0,0.25,0.5,0.75,1.
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pairs of corresponding side lobes are almost identical, which suggests an oscillating behavior
governed by the parameter γn in (2). Figure 2 shows the histograms of log2 Sn for n = �26+η�,
η = 0,0.25,0.5,0.75,1, that is for different values of γn.

We mention that investigating the joint behavior of the sum and the maximum goes back to
Chow and Teugels [4]. Let Y,Y1, Y2, . . . be i.i.d. random variables, Zn and Y ∗

n their partial sum
and partial maximum, respectively. In [4], Chow and Teugels show that for some deterministic
sequences an > 0, cn > 0, bn, dn, (Zn/an − bn,Y

∗
n /cn − dn) converges in distribution to (U,V ),

where neither U nor V is degenerate, if and only if Y belongs to the domain of attraction of a
stable law, and also belongs to the maximum domain of attraction of some extreme value distri-
bution. Moreover, they also characterize when U and V are independent. The key technique in
their proof is the “hybrid” function: characteristic function of the sum, and distribution function
of the maximum. The same results using point process methods were proved by Kasahara [15]
and by Resnick [22]. Arov and Bobrov [1] consider the maximum modulus term instead of the
maximum. The joint convergence is also studied in case of non-independent random variables,
we only mention a recent paper by Silvestrov and Teugels [24]. Without the proof, we mention
that the method of Chow and Teugels can be used to obtain subsequential joint limit theorems
for the sum and for the maximum in our setup.

In the present paper, we investigate together the maximum and the sum of the St. Petersburg
random variables. In Section 2, we determine the asymptotic distribution of Sn conditioning
on the maximum value, and we demonstrate how the limit depends on the maximum. Figure 3
shows the different blocks of the smoothed histogram of log2 Sn, n = 27, such that in each block
the maximum is the same, that is each lobe is the smoothed conditional histogram for Sn given
that X∗

n = 2k , for k = 5,6, . . . ,14. Comparing it with Figure 1 it is visible that the lobes are
determined by the behavior of the maximum term. As (7) states, the typical value for k is log2 n.
The first lobes correspond to smaller values of X∗

n, and so it is natural to expect a Gaussian

Figure 3. The conditional histograms for log2 Sn, n = 27.
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limit; Proposition 3 deals with this case. The typical values of the maximum make the important
contribution, and this is where the limiting semistable law appears. The middle lobes are the
density functions of infinitely divisible distribution functions, each of these has finite expectation.
This conditional limit theorem is stated in Proposition 6. Finally, as the maximum becomes larger
and larger it dominates the whole sum Sn. The conditional limit for large maximum is contained
in Proposition 7.

In Section 3, we consider an application of this approach. As a consequence of Proposition 6,
in Theorem 1 we show that

Gγ (x) =
∞∑

j=−∞
G̃j,γ (x)pj,γ ,

where Gγ is the merging distribution function appearing in (4). Here G̃j,γn corresponds to the
distribution function of the sum conditioned on X∗

n = r(�logr n�+j)/α , and pj,γn is the approximate
probability of this event. The decomposition shows that the merging property is caused by the
asymptotic properties of the maximum.

Finally, we note that recently Gut and Martin-Löf [13] investigated the so-called max-trimmed
St. Petersburg games in the classical case, where from the sum all the maximal observations are
discarded. They obtained the asymptotic behavior of the trimmed sum along subsequences of the
form (�γ 2n�)n∈N.

2. Conditioning on the maximum

In this section, first we revisit the limit properties of X∗
n, and then conditioning on different values

of the maximum, we determine the limit distribution of the sums.

2.1. Asymptotics of the maximum

For j ∈ Z and γ ∈ [q,1] introduce the notation

pj,γ = e−γ qj (
1 − e−γ (r−1)qj )

.

The following lemma is a reformulation of (7) in the general case. We give the short proof for
completeness. Recall the definition of γn in (2).

Lemma 1. For any α > 0 we have that

sup
j∈Z

∣∣P{
X∗

n = r(�logr n�+j)/α
} − pj,γn

∣∣ = O
(
n−1). (8)

In particular for any j ∈ Z, as n → ∞

P
{
X∗

n = r(�logr n�+j)/α
} ∼ e−γnqj (

1 − e−γn(r−1)qj )
.
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Proof. For any k = 1,2, . . . we have P{X∗
n ≤ rk/α} = (1 − qk)n, and so∣∣P{

X∗
n ≤ r(�logr n�+j)/α

} − e−γnqj ∣∣ = ∣∣(1 − q�logr n�+j
)n − e−γnqj ∣∣

=
∣∣∣∣(1 − γnq

j

n

)n

− e−γnqj

∣∣∣∣
= O

(
n−1).

Since the latter holds uniformly, that is,

sup
0≤y≤nq

∣∣∣∣(1 − y

n

)n

− e−y

∣∣∣∣ = O
(
n−1),

and

P
{
X∗

n = rk/α
} = P

{
X∗

n ≤ rk/α
} − P

{
X∗

n ≤ r(k−1)/α
}
,

the proof is complete. �

Remark 1. The random variables α logr X∗
n − �logr n� have a limit distribution along subse-

quences {nk = �γ rk�}k∈N, with q < γ ≤ 1, since using Lemma 1 above, as k → ∞

P
{
α logr X∗

nk
− �logr nk� = j

} → e−γ qj (
1 − e−γ (r−1)qj ) = pj,γ . (9)

Table 1 contains the few largest values of pj,1. This is the main part of the limit distribution,
as

∑5
j=−2 pj,1 ≈ 0.943.

The asymptotic distribution (8) implies that infn Var(logr X∗
n) > 0, while in the classical case

Györfi and Kevei (Remark 2 in [14]) showed that Var(log2 Sn) = O(1/ log2 n).

Remark 2. Consider again the classical case. We note that the merging theorem (9) already
appears in Földes [10]. Let μ(n) be the longest tail-run after tossing a fair coin n times. Then
Theorem 4 in [10] states that for any integer j

P
{
μ(n) − �log2 n� < j

} = e−2−(j+1−{log2 n}) + o(1).

Since each single St. Petersburg game lasts till to the first heads, in our setup we are tossing the
coin until a random time, until heads appears n times. Thus, the number of tosses has a negative
binomial distribution with parameter n. Moreover, the values (log2 Xk) − 1, k = 1,2, . . . , n, are

Table 1. Limit distribution of log2 X∗
nk

− �log2 nk� in the classical case with γ = 1

j −2 −1 0 1 2 3 4 5

pj,1 0.018 0.117 0.233 0.239 0.172 0.104 0.057 0.03
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the number of tails between two consecutive heads, therefore the quantity log2 X∗
n − 1 can be

thought as the longest tail-run in this coin tossing sequence.

We investigate the conditional distribution of Sn given that X∗
n = rk/α . The following lemma

determines this conditional distribution. The statement for continuous random variables is much
simpler, as in that case the maximum value is almost surely unique, and so Mn = 1 a.s. (see the
definition below). For the continuous version, see Lemma 2.1 in [9].

Lemma 2. Let Y,Y1, . . . , Yn be discrete i.i.d. random variables with possible values {y1, y2, . . .},
y1 < y2 < · · · . Put

Gk(y) = P{Y ≤ y|Y ≤ yk}.
Put Zn = Y1 + · · ·+Yn for the partial sum, Y ∗

n = max{Y1, . . . , Yn} for the partial maximum, and
Mn = |{k: 1 ≤ k ≤ n,Yk = Y ∗

n }| for the multiplicity of the maximum. Then given that Y ∗
n = yk

and Mn = m

Zn
D= myk + Z

(k−1)
n−m ,

where Z
(k−1)
n = Y

(k−1)
1 + · · · + Y

(k−1)
n , with Y

(k−1)
1 , . . . , Y

(k−1)
n are i.i.d. with distribution func-

tion Gk−1.

Proof. We have

P
{
Zn ≤ y|Y ∗

n = yk,Mn = m
}

= P{Zn ≤ y,Y ∗
n = yk,Mn = m}

P{Y ∗
n = yk,Mn = m}

= 1

P{Y ∗
n = yk,Mn = m}

(
n

m

)

× P

{
Y1 = · · · = Ym = yk,

n∑
j=m+1

Yj ≤ y − myk,max{Ym+1, . . . , Yn} < yk

}

=
(
n
m

)
P{Y = yk}mP{Y ≤ yk−1}n−m

P{Y ∗
n = yk,Mn = m}

× P

{
n∑

j=m+1

Yj ≤ y − myk|max{Yj , j = m + 1, . . . , n} ≤ yk−1

}

= G
∗(n−m)
k−1 (y − myk),

as stated. �

Put

Nn = ∣∣{k: 1 ≤ k ≤ n,Xk = X∗
n

}∣∣.
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According to the previous lemma in order to analyze the conditional behavior of Sn, we first have
to understand the behavior of Nn.

Lemma 3. The conditional generating function of Nn given X∗
n is

gk,n(s) = E
[
sNn |X∗

n = rk/α
] = (1 − qk−1(1 − ps))n − (1 − qk−1)n

(1 − qk)n − (1 − qk−1)n
, (10)

and the generating function of Nn is

gn(s) = E
[
sNn

] =
∞∑

k=1

[(
1 − qk−1(1 − ps)

)n − (
1 − qk−1)n]

.

Proof. Simply

P
{
Nn = m|X∗

n = rk/α
} = P{Nn = m,X∗

n = rk/α}
P{X∗

n = rk/α}
(11)

=
(
n
m

)
(qk−1p)m(1 − qk−1)n−m

(1 − qk)n − (1 − qk−1)n
.

Therefore, by the binomial theorem the conditional generating function is

gk,n(s) =
n∑

m=1

sm

(
n
m

)
(qk−1p)m(1 − qk−1)n−m

(1 − qk)n − (1 − qk−1)n

= 1

(1 − qk)n − (1 − qk−1)n

[(
sqk−1p + 1 − qk−1)n − (

1 − qk−1)n]
.

The unconditional version follows from the law of total probability. �

The distribution of Nn in the classical case is calculated by Gut and Martin-Löf, in particular
formula (11) is formula (4.1) in [13]. Moreover, in (4.3) in [13] they determine the asymptotic
behavior of Nn conditioned on typical maximum along geometric subsequences. This is for-
mula (13) in the next proposition in the general merging framework.

Now we can determine the asymptotic behavior of Nn.

Proposition 1. Conditionally on X∗
n = rkn/α , where logr n − kn → ∞

Nn −E[Nn|X∗
n = rkn/α]√

Var(Nn|X∗
n = rkn/α)

D−→ N(0,1) as n → ∞. (12)

Conditionally on X∗
n = r(�logr n�+j)/α , j ∈ Z,

lim
n→∞

∣∣g�logr n�+j,n(s) − hj,γn(s)
∣∣ = 0, s ∈ [0,1], (13)
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where

hj,γ (s) = e−(1−ps)γ qj−1 − e−γ qj−1

e−γ qj − e−γ qj−1 , (14)

is the generating function of a Poisson(pqj−1γ ) random variable conditioned on not being zero.
While, if kn − logr n → ∞ then conditionally on X∗

n = rkn/α

Nn
P−→ 1 as n → ∞. (15)

That is, we have three different regimes. In the typical range, there are several random variables
equal to the maximal value and the number of these observations is distributed according to hj,γn .
When the maximum is smaller than it should be, then there are a lot of maximum values, while
for too big values there is a single maximal observation.

Proof of Proposition 1. Differentiating gk,n in (10), we obtain

E
[
Nn|X∗

n = rk/α
] = nqk−1p(1 − qk)−1

1 − (1 − ((pqk−1)/(1 − qk)))n
. (16)

First, we consider the case logr n − kn → ∞. Then(
1 − pqkn−1

1 − qkn

)n

→ 0, (17)

therefore

E
[
Nn|X∗

n = rkn/α
] ∼ nqkn−1p

1 − qkn
=: μn,kn . (18)

(Note that we do not assume that kn → ∞ only that logr n− kn → ∞.) Using the simple identity
that Var(Nn|X∗

n = rk/α) = g′′
k,n(1) + g′

k,n(1) − (g′
k,n(1))2, similar computation gives

Var
(
Nn|X∗

n = rkn/α
) ∼ npqkn−1

1 − qkn

(
1 − pqkn−1

1 − qkn

)
=: σ 2

n,kn
. (19)

Substituting into formula (10), we have

E
[
eit (Nn−μn,kn )/σn,kn |X∗

n = rkn/α
]

= e−itμn,kn /σn,kn
(1 − qkn−1(1 − peit/σn,kn ))n − (1 − qkn−1)n

(1 − qkn)n − (1 − qkn−1)n

= e−itμn,kn /σn,kn
(1 − (pqkn−1(1 − eit/σn,kn )/(1 − qkn)))n − (1 − (pqkn−1/(1 − qkn)))n

1 − (1 − ((pqkn−1)/(1 − qkn)))n
.
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By (17), we have to determine the limit of

e−itμn,kn /σn,kn

(
1 − pqkn−1(1 − eit/σn,kn )

1 − qkn

)n

. (20)

Notice that

1 − pqkn−1(1 − eit )

1 − qkn

is the characteristic function of a 0/1 Bernoulli(pqkn−1/(1 − qkn)) random variable, and from
(18) and (19) we see that μn,kn and σ 2

n,kn
is the mean and the variance of the sum, and so (20)

is exactly the characteristic function of a properly centered and normed sum of i.i.d. random
variables. Since σn,kn → ∞, a simple application of the Lindeberg–Feller theorem shows that the

limit is e−t2/2, the characteristic function of the standard normal distribution. This proves (12).
We turn to the case of typical maximum. For any j ∈ Z

(
1 − q�logr n�+j−1(1 − ps)

)n =
(

1 − γnq
j−1(1 − ps)

n

)n

∼ e−(1−ps)γnqj−1
,

and (13) follows.
For (15), it is easy to check that the expectation in (16) tends to 1, whenever kn − logr n → ∞.

Since Nn ≥ 1, the statement follows. �

For j ∈ Z and m ≥ 1, let denote

rj,γ (m) = (pqj−1γ )m

m!
(
epqj−1γ − 1

)−1
.

Then

hj,γ (s) =
∞∑

m=1

rj,γ (m)sm.

From (13), we obtain that

lim
n→∞ max

1≤m≤n

∣∣P{
Nn = m|X∗

n = r(�logr n�+j)/α
} − rj,γn(m)

∣∣ = 0. (21)

As a consequence of Proposition 1 and Lemma 1, we obtain the unconditional asymptotic
behavior of Nn, which also can be described through a merging phenomenon.

Corollary 1. Let us denote

hγ (s) =
∞∑

j=−∞

(
e−(1−ps)γ qj−1 − e−γ qj−1)

.
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Then for the generating function of Nn we have

lim
n→∞

∣∣gn(s) − hγn(s)
∣∣ = 0, s ∈ [0,1].

Given that X ≤ rk/α for i ≤ k we have P{X = ri/α|X ≤ rk/α} = pqi−1/(1 − qk). Introduce
the corresponding distribution function

Fk(x) = P
{
X ≤ x|X ≤ rk/α

} =

⎧⎪⎨⎪⎩
1

1 − qk

[
1 − r{α logr x}

xα

]
, for x ∈ [

r1/α, rk/α
]
,

1, for x > rk/α .

(22)

In the following X(k),X
(k)
1 , . . . , are i.i.d. random variables with distribution function Fk , and

S(k)
n = X

(k)
1 + · · · + X(k)

n (23)

stands for their partial sums. By Lemma 2, conditioning on X∗
n = rk/α , Nn = m

Sn
D= mrk/α +

n−m∑
i=1

X
(k−1)
i = mrk/α + S

(k−1)
n−m . (24)

Calculating the moments we obtain

E
(
X(k)

)� = 1

1 − qk

k∑
i=1

r(i�)/αqi−1p

⎧⎪⎪⎨⎪⎪⎩
pr�/α

1 − qk

r(�/α−1)k − 1

r�/α−1 − 1
, for � �= α,

pr

1 − qk
k, for � = α.

(25)

Note that for α > � the truncated �th moment converges to EX� as k → ∞, while in other cases
the series diverges.

According to Lemma 1, the typical values for X∗
n = rkn/α are of the form r(�logr n�+j)/α , for

some j ∈ Z. Therefore, the case rkn/n → 0 corresponds to small maximum, and rkn/n → ∞
corresponds to large one. In what follows, we determine the asymptotic behavior of the sum
conditioned on small, typical and large maximum.

2.2. Conditioning on small maximum

From (24), we see that conditioning on the maximum value Sn is a sum of random number
of i.i.d. random variables. Moreover, (12) says that conditioning on a small maximum Nn is
asymptotically normal. To obtain limit distribution for random number of i.i.d. random variables,
first we have to determine the behavior of the sum of n i.i.d. random variables.

The following proposition is the conditional counterpart of Theorem 4 in [14] (there only the
classical case is treated), which states that for the sum of truncated variables at cn the central limit
theorem holds if and only if cn/n → 0. The proof is also similar, therefore we only sketch it.
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If we condition on X∗
n = r1/α , then all the variables are degenerate, so we exclude this case in

the following statement. Recall definitions (22), (23) and the notation after it.

Proposition 2. For α ∈ (0,2), kn ≥ 2

S
(kn)
n −ES

(kn)
n√

Var(S(kn)
n )

D−→ N(0,1) (26)

if and only if logr n − kn → ∞.

Proof. We may assume that kn → ∞. From equation (25), we have that for any α ∈ (0,2)(
EX(k)

)2 = o
(
E

(
X(k)

)2) as k → ∞, (27)

therefore

VarX(kn) ∼ pr2/α

r2/α−1 − 1
r(2/α−1)kn .

Thus for the variance of the sum

s2
n = VarS(kn)

n = nVarX(kn) ∼ n
pr2/α

r2/α−1 − 1
r(2/α−1)kn . (28)

By the Lindeberg–Feller central limit theorem

S
(kn)
n −ES

(kn)
n

sn

D−→ N(0,1)

holds if and only if for every ε > 0

Ln(ε) = n

s2
n

∫
{|X(kn)−EX(kn)|>εsn}

(
X(kn) −EX(kn)

)2 dP → 0.

By (27), it is easy to show that

Ln(ε) ∼ n

s2
n

∫
{X(kn)>εsn}

(
X(kn)

)2 dP.

If rkn/n → 0, then by (28) the domain of integration in Ln(ε) is empty for large n, therefore
Lindeberg’s condition holds.

While if rkn/n > ε for some ε > 0 and n, then by (28) we have rkn/α − EX(kn) > ε′sn for
some ε′, thus the last jump of X(kn) belongs to the domain of integration. Therefore,

Ln

(
ε′) ≥ n

s2
n

r2kn/αqkn−1p >
1

2

r2/α−1 − 1

r2/α−1
.

The proof is complete. �



St. Petersburg sum conditioned on its maximum 1039

Therefore CLT holds for the random index Nn (see (12)) and also for the corresponding de-
terministic term sums (previous proposition). Combining these two results the general theory for
random sums (Theorem 4.1.1 in Gnedenko and Korolev [12]) implies the following.

Proposition 3. Let α ∈ (0,2). Given that X∗
n = rkn/α , kn ≥ 2, such that logr n − kn → ∞

Sn −E[Sn|X∗
n = rkn/α]√

Var(Sn|X∗
n = rkn/α)

D−→ N(0,1). (29)

Proof. By (24) given that X∗
n = rk/α we may write

Sn
D= Nnr

k/α + S
(k−1)
n−Nn

= nrk/α +
n−Nn∑
i=1

(
X

(k−1)
i − rk/α

)
.

We apply Theorem 4.1.1 in [12] to the triangular array{
X

(kn−1)
1 − rkn/α√

VarS(kn−1)
n

, . . . ,
X

(kn−1)
n − rkn/α√

VarS(kn−1)
n

}
n≥1

.

By Proposition 2

n∑
i=1

X
(kn−1)
i − rkn/α√

VarS(kn−1)
n

− n(EX(kn−1) − rkn/α)√
VarS(kn−1)

n

D−→ N(0,1),

that is condition (1.1) on page 93 in [12] holds. First assume that either kn → k for some k ∈ N,

or kn → ∞. Put u = 1 − limn→∞ qkn−1p

1−qkn
. Using (19)

lim
n→∞

rkn/α −EX(kn−1)√
VarS(kn−1)

n

√
Var

(
Nn|X∗

n = rkn/α
)

(30)

= lim
n→∞

rkn/α −EX(kn−1)

√
VarX(kn−1)

√
pqkn−1

1 − qkn

(
1 − pqkn−1

1 − qkn

)
=: v,

and the latter limit exists both for kn ≡ k and for kn → ∞. Using (12)(
n − Nn

n
,
n(EX(kn−1) − rkn/α)√

VarS(kn−1)
n

n − Nn

n
− cn

)
D−→ (u, vZ),

where Z is a standard normal random variable and

cn = −(
n −E

[
Nn|X∗

n = rkn/α
]) rkn/α −EX(kn−1)√

VarS(kn−1)
n

.
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That is, condition (1.9) on page 96 in [12] holds, so Theorem 4.1.1 applies, and we obtain that
given X∗

n = rkn/α ∑n−Nn

i=1 (X
(kn−1)
i − rkn/α)√

VarS(kn−1)
n

− cn
D−→ N

(
0, v2 + u

)
.

Using (24), standard calculation gives that

E
[
Sn|X∗

n = rk/α
] = nEX(k−1) +E

[
Nn|X∗

n = rk/α
](

rk/α −EX(k−1)
)
,

and

Var
(
Sn|X∗

n = rk/α
) = Var

(
Nn|X∗

n = rk/α
)(

rk/α −EX(k−1)
)2

+ (
n −E

[
Nn|X∗

n = rk/α
])

VarX(k−1).

Substituting back the asymptotics (18) and using (30) we get that

lim
n→∞

VarS(kn−1)
n

Var(Sn|X∗
n = rkn/α)

= 1

v2 + u
.

Summarizing, we obtain (29).
Now let kn be an arbitrary sequence. From any subsequence {n′}, one can choose a further

subsequence {n′′}, such that either kn′′ → k ∈ N or kn′′ → ∞ holds, and so on this subsequence
the convergence takes place. This is equivalent to (29). �

Remark 3. Without proof, we note that convergence of moments also hold both in (29) and
in (26). In view of the distributional convergence, it is enough (in fact equivalent) to show the
uniform integrability of arbitrary powers of the corresponding random variables.

Using Chernoff’s bounding technique, one can prove exponential bounds for the tail probabil-
ities

P
{
S(k)

n −ES(k)
n > n1/αx

}
,

from which uniform integrability follows. These bounds and a detailed proof of the statement
will be published elsewhere, as a continuation of the present paper.

For α > 2, the variance is finite thus usual central limit theorem holds without conditioning. As
it was pointed out in the introduction, for α = 2 the generalized St. Petersburg(2,p) distribution
has infinite variance, but it is still in the domain of attraction of the normal law. However, the
normalizing sequence is

√
prn logr n, therefore it is meaningful to ask what is the necessary and

sufficient condition for (26).

Proposition 4. Let α = 2. Then (26) holds if and only if

lim inf
n→∞

logr n

kn

≥ 1. (31)



St. Petersburg sum conditioned on its maximum 1041

Note that the condition is much weaker than the condition for α ∈ (0,2). In particular, it also
covers the typical case kn ∼ logr n, and part of the large maximum case.

Proof of Proposition 4. The proof is exactly the same as in the α < 2 case, the only difference
is the variance asymptotic.

We again assume that kn → ∞. From equation (25), we have for the variance of the sum

s2
n = VarS(kn)

n = nVarX(kn) ∼ p

q
nkn. (32)

By the Lindeberg–Feller theorem, CLT holds if and only if Ln(ε) → 0 for any ε > 0. We have

Ln(ε) ∼ n

s2
n

∫
{X(kn)>εsn}

(
X(kn)

)2 dP

= 1

kn

∣∣{k: rk/2 > εsn; k ≤ kn

}∣∣ = 1

kn

(
kn −

⌊
logr

ε2pnkn

q

⌋)
+
,

and the latter goes to 0 if and only if

lim inf
n→∞

logr (nkn)

kn

≥ 1.

Since (logr kn)/kn → 0 this is equivalent to (31). �

2.3. Conditioning on typical maximum

According to Lemma 1, the typical value for X∗
n is r(�logr n�+j)/α , j ∈ Z. In the following, we

investigate this case. Since semistability appears, first we briefly define the semistable distribu-
tions, and summarize their most important properties. For background, we refer to Meerschaert
and Scheffler [18] and Megyesi [19] and the references therein.

Let Y be an infinitely divisible random variable with characteristic function φ(t) = E(eitY ) in
its Lévy form ([11], page 70), given for each t ∈R by

φ(t) = exp

{
itθ − σ 2

2
t2 +

∫ 0

−∞
βt (x)dL(x) +

∫ ∞

0
βt (x)dR(x)

}
,

where

βt (x) = eitx − 1 − itx

1 + x2
.

We describe semistable laws in the present framework as follows: an infinitely divisible law
is semistable if and only if either it is normal (as a semistable distribution of exponent 2), or
there exist nonnegative bounded functions ML(·) on (−∞,0) and MR(·) on (0,∞), one of
which has strictly positive infimum and the other one either has strictly positive infimum or is
identically zero, such that L(x) = ML(x)/|x|α , x < 0, is left-continuous and non-decreasing on
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(−∞,0) and R(x) = −MR(x)/xα , x > 0, is right-continuous and non-decreasing on (0,∞) and
ML(c1/αx) = ML(x) for all x < 0 and MR(c1/αx) = MR(x) for all x > 0, with the same period
c > 1.

The following theorem of Kruglov [16] highlights the importance of semistability. Let
Y1, Y2, . . . be independent and identically distributed random variables with the common dis-
tribution function G. If for some centering and norming constants cnk

∈ R and ank
> 0 the con-

vergence in distribution

1

ank

(
nk∑

j=1

Yj − cnk

)
D−→ W (33)

holds along a subsequence {nk}∞n=1 ⊂N satisfying

lim
k→∞

nk+1

nk

= c for some c ∈ [1,∞), (34)

then the non-degenerate limit W is necessarily semistable. When the exponent α < 2, the c in
the common multiplicative period of ML(·) and MR(·) is the c from the latter growth condition
on {nk}. Conversely, for an arbitrary semistable distribution there exists a distribution function
G for which (33) holds along some {nk} ⊂N satisfying (34).

Now we turn to the asymptotic behavior of S
(�logr n�+j)
n defined in (23). Recall the definition

of μn in (3).

Proposition 5. Let α ∈ (0,2), j ∈ Z. The centered and normed sum

S
(�logr n�+j)
nk

n
1/α
k

− μnk

converges in distribution if and only if γnk
→ γ , for some γ ∈ [q,1]. In this case the limit Wj,γ

has characteristic function

ϕj,γ (t) = EeitWj,γ = exp

[
ituj,γ +

∫ ∞

0

(
eitx − 1 − itx

)
dLj,γ (x)

]
, (35)

with

Lj,γ (x) =
⎧⎨⎩γ qj − r{logr (γ xα)}

xα
, for x < rj/αγ −1/α ,

0, for x ≥ rj/αγ −1/α ,
(36)

and

uj,γ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pr1/α

r1/α−1 − 1
rj (α−1−1)γ 1−α−1

, α �= 1,

pr logr

rj

γ
, α = 1.

(37)
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Note that the random variables Wj,q and Wj+1,1 have the same distribution. This implies that
when the set of limit points of the sequence {γnk

}k∈N is {q,1} then convergence in distribution
does not hold, contrary to the unconditional case described after (7).

Proof of Proposition 5. Recall the notation in (22). According to Theorem 25.1 in Gnedenko

and Kolmogorov [11] the centered and normalized sum S
(�logr n�+j)
n /n1/α − An converges in

distribution with some An along the subsequence {nk} if and only if

nk

[
1 − F�logr nk�+j

(
n

1/α
k x

)]
converges (38)

and

nkF�logr nk�+j

(−n
1/α
k x

)
converges, (39)

for any x > 0, which is a continuity point of the corresponding limit function, and

lim
ε→0

lim sup
k→∞

nk

∫
|x|≤ε

x2 dF�logr nk�+j

(
n

1/α
k x

)
(40)

= lim
ε→0

lim inf
k→∞ nk

∫
|x|≤ε

x2 dF�logr nk�+j

(
n

1/α
k x

) = σ 2.

Condition (39) holds for any subsequence with 0 as the limit function. Using (22) for x <

rj/α/γ
1/α
nk

nk

[
1 − F�logr nk�+j

(
n

1/α
k x

)] = −nkq
�logr nk�+j

1 − q�logr nk�+j
+ r{logr (nkx

α)}x−α

1 − q�logr nk�+j

= −qjγnk
+ r{logr (nkx

α)}x−α

1 − q�logr nk�+j
,

thus condition (38) reduces to the convergence of

−γnk

rj
+ r{logr (nkx

α)}

xα

for x < rj/α/γ
1/α
nk

, which is a continuity point of the limit. This holds if and only if γnk
converges

to some γ ∈ [q,1], in which case the limit function is Lj,γ in (36), as stated.
Finally, for condition (40) assume that ε < rj/α . Then

n

∫
|x|≤ε

x2 dF�logr n�+j

(
n1/αx

) = n1−2/α

∫
|y|≤εn1/α

y2 dF�logr n�+j (y)

= n1−2/α
∑

k: rk/α≤εn1/α

r2k/α pqk−1

1 − q�logr n�+j

≤ ε2−α

q − q2/α
,
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for n large enough, which shows that (40) holds along the whole sequence with σ 2 = 0.
Theorem 25.1 in [11] states that the centering sequence An,j can be chosen as

An,j = n

∫
|x|≤τ

x dF�logr n�+j

(
n1/αx

)
,

for arbitrary τ > 0. Let us choose τ > r(j+1)/α . Then by (25)

An,j = n1−α−1
∫ τn1/α

0
x dF�logr n�+j (x) = n1−α−1

EX(�logr n�+j)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pr1/α

r1/α−1 − 1
rj (α−1−1)γ 1−α−1

n + o(1), α < 1,

pr
(�logr n� + j

) + o(1), α = 1,

n1−α−1
EX − pr1/α

1 − r1/α−1
rj (α−1−1)γ 1−α−1

n + o(1), α > 1,

where o(1) → 0 as n → ∞. We obtain that whenever γnk
→ γ

S
(�logr nk�+j)
nk

n
1/α
k

− An,j
D−→ W̃j,γ ,

where

EeitW̃j,γ = exp

[∫ ∞

0

(
eitx − 1 − itx

)
dLj,γ (x)

]
.

Recall the definition of μn in (3). We have

μn − An,j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− pr1/α

r1/α−1 − 1
rj (α−1−1)γ 1−α−1

n + o(1), α < 1,

−pr
(
j + logr γ −1

n

) + o(1), α = 1,

pr1/α

1 − r1/α−1
rj (α−1−1)γ 1−α−1

n + o(1), α > 1.

Therefore,

S
(�logr nk�+j)
nk

n
1/α
k

− μnk

D−→ W̃j,γ + uj,γ ,

with the constant uj,γ in (37), as stated. �

The Lévy function Lj,γ is a pure jump function with jumps at rk/αγ −1/α , k ≤ j , such that
Lj,γ (rk/αγ −1/α) − Lj,γ (rk/αγ −1/α−) = γpqk−1, for k ≤ j . Introduce the notation

Gj,γ (x) = P{Wj,γ ≤ x}.
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The form of the Lévy function Lj,γ in (36) implies that for any j ∈ Z, γ ∈ [q,1], the support of
Wj,γ is R for α ≥ 1, while for α < 1 the support of Wj,γ is [0,∞), since

uj,γ −
∫ ∞

0
x dLj,γ (x) = 0,

is the drift of the corresponding Lévy process. Moreover, the exponential moments EeλWj,γ are
finite for any λ > 0, α ∈ (0,2) and j ∈ Z, γ ∈ [q,1], see, for example, Sato [23], Chapter 5.

The logarithm of the characteristic function of Wj,γ can be written as

logϕj,γ (t) = ituj,γ +
j∑

k=−∞

(
eitr

k/α/γ 1/α − 1 − it
rk/α

γ 1/α

)
γpqk−1.

Thus,

Re logϕj,γ (t) =
j∑

k=−∞

(
cos

trk/α

γ 1/α
− 1

)
γpqk−1.

Put

κγ (t) =
⌊
α logr

γ 1/απ

2|t |
⌋
.

The same way as in the proof of Lemma 3 in [5] one has that

Re logϕj,γ (t) = −
j∑

k=−∞

(
1 − cos

trk/α

γ 1/α

)
γpqk−1

≤ −4pt2

qπ2
γ 1−2/α

j∧κγ (t)∑
k=−∞

r(2/α−1)k

≤ − 4pγ 1−2/α

qπ2(1 − q2/α−1)
t2r(2/α−1)(j∧κγ (t))

≤
{−cγ ;1|t |α, |t | > Tγ r−j/α ,

−cγ ;2rj (2/α−1)t2, |t | ≤ Tγ r−j/α ,

where

cγ ;1 = 2αp

qπα(r2/α−1 − 1)
, cγ ;2 = 4pγ 1−2/α

qπ2(1 − q2/α−1)
,

Tγ = γ 1/απ

2
.
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By standard Fourier analysis, this implies that Gj,γ is infinitely many times differentiable. In
particular, by the density inversion formula we obtain for gj,γ (x) = (Gj,γ (x))′

gj,γ (x) ≤ 1

2π

∫ ∞

−∞
∣∣ϕj,γ (t)

∣∣dt

≤ 1

π

(∫ Tγ qj/α

0
e−cγ ;2rj (2/α−1)t2

dt +
∫ ∞

Tγ qj/α

e−cγ ;1tα dt

)

≤ r−j (1/α−1/2)

2
√

πcγ ;2
+ �(α−1)

απ(cγ ;1)1/α
.

Differentiating the characteristic function, we can compute the first two moments of the variable
Wj,γ . A little calculation gives that

EWj,γ = uj,γ and E(Wj,γ )2 = (EWj,γ )2 + p

q − q2/α
γ 1−2/αr(2/α−1)j (41)

and so

VarWj,γ = p

q − q2/α
γ 1−2/αr(2/α−1)j .

As a simple corollary we obtain the following merging theorem.

Corollary 2. On the whole sequence of natural numbers

sup
x∈R

∣∣∣∣P{
S

(�logr n�+j)
n

n1/α
− μn ≤ x

}
− Gj,γn(x)

∣∣∣∣ → 0 as n → ∞. (42)

Proof. The simple proof relies upon the same compactness reasoning as the proof of Theorem 2
in [8]. We show that any subsequence {n′} contains a further subsequence on which (42) holds.

Let {n′} be an arbitrary subsequence. The Bolzano–Weierstrass theorem allows us to choose
a further subsequence {n′′} such that γn′′ → γ , for some γ ∈ [q,1]. As ϕj,γn′′ (t) → ϕj,γ (t), by
the continuity of Gj,γ for any j and γ we have that Gj,γn′′ (x) → Gj,γ (x) for any x. Using
Proposition 5 the statement follows. �

Now we turn to the conditional limit theorem.

Proposition 6. For α ∈ (0,2), j ∈ Z we have

sup
x∈R

∣∣∣∣P{
Sn

n1/α
− μn ≤ x

∣∣∣X∗
n = r(�logr n�+j)/α

}
− G̃j,γn(x)

∣∣∣∣ → 0, (43)

where

G̃j,γ (x) =
∞∑

m=1

Gj−1,γ

(
x − m

rj/α

γ 1/α

)
rj,γ (m). (44)
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Remark 4. For any j ∈ Z let (Wj−1,γ )γ∈[q,1] be random variables with characteristic function
ϕj−1,γ defined in (35), and independently let (Mj,γ )γ∈[q,1] be positive integer valued random
variables with generating function hj,γ in (14). Then conditioning on X∗

n = r(�logr n�+j)/α the
sum Sn

n1/α − μn is close in distribution to

Uj,γ = Wj−1,γ + Mj,γ rj/α/γ 1/α. (45)

In fact

P
{
Wj−1,γ + Mj,γ rj/α/γ 1/α ≤ x

} = P{Uj,γ ≤ x} = G̃j,γ (x).

By (14) Mj,γ is a Poisson random variable conditioned on being nonzero, thus it has finite
exponential moments for any j ∈ Z and γ ∈ [q,1]. Moreover, Wj−1,γ and Mj,γ are independent,
Wj−1,γ has finite exponential moments, therefore Uj,γ also has finite exponential moments. We
can easily determine the moments of Uj,γ . We have

EMj,γ =
∞∑

m=1

mrj,γ (m) = pqj−1γ epqj−1γ

epqj−1γ − 1
,

and

VarMj,γ = EM2
j,γ − (EMj,γ )2 = pqj−1γ epqj−1γ

epqj−1γ − 1
− (pqj−1γ )2epqj−1γ

(epqj−1γ − 1)2
.

Therefore, by (45)

EUj,γ = EWj−1,γ +EMj,γ

rj/α

γ 1/α
,

(46)

VarUj,γ = VarWj−1,γ + r2j/α

γ 2/α
VarMj,γ .

Proof of Proposition 6. According to (24) conditioning on X∗
n = r(�logr n�+j)/α,Nn = m

Sn
D= mr(�logr n�+j)/α + S

(�logr n�+j−1)
n−m ,

and by Corollary 2 we know the behavior of the latter sum, as for each fixed m ≥ 1

sup
x∈R

∣∣∣∣P{
S

(�logr n�+j−1)
n−m

n1/α
− μn ≤ x

}
− Gj,γ (x)

∣∣∣∣ → 0.

By the law of total probability

P

{
Sn

n1/α
− μn ≤ x

∣∣∣X∗
n = r(�logr n�+j)/α

}
(47)

=
n∑

m=1

P

{
S

(�logr n�+j−1)
n−m

n1/α
− μn + mrj/α

γ
1/α
n

≤ x

}
P
{
Nn = m|X∗

n = r(�logr n�+j)/α
}
.
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Figure 4. The histogram of Sn for n = 27 (α = 1, p = 1/2) conditioned on X∗
n = 210 (solid) and a fitted

Gaussian density (dashed).

Combining (21) with (47) it is routine to obtain (43). �

Figure 4 illustrates the histogram of Sn for n = 27 (α = 1, p = 1/2) conditioned on X∗
n = 210

and a fitted Gaussian density. The histogram has the property of positive skewness, which means
that the right-hand side tail is larger than the left-hand side one. The scaled and translated version
of the histogram corresponds to the density function of U3,1.

2.4. Conditioning on large maximum

As we mentioned in the Introduction, the side lobes in Figures 1 and 2 correspond to the con-
ditional histograms of log2 Sn conditioning the large values of X∗

n, such that they have disjoint
support contained in an interval of length 1. It means that log2 X∗

n < log2 Sn < log2 X∗
n + 1,

or equivalently X∗
n < Sn < 2X∗

n, if X∗
n is large enough. In the next proposition, we make this

observation precise.
In the following we investigate the case when X∗

n = rkn/α is large, that is, what happens for
kn > logr n. We restrict ourselves to the α ∈ (0,2) case, since for α ≥ 2 CLT holds, and thus the
corresponding statements are not interesting.

Proposition 7. Let α ∈ (0,2). Assume that kn − logr n → ∞. Given that X∗
n = rkn/α

Sn

X∗
n

− An
P−→ 1,
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where

An =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, α < 1,
p

q

nkn

rkn
, α = 1,

n

rkn/α

p

q1/α − q
, α > 1.

Proof. As kn − logr n → ∞ by Proposition 1 we have that P{Nn = 1|X∗
n = rkn/α} → 1. There-

fore, we may condition on the event {X∗
n = rkn/α,Nn = 1}, and given this event by Lemma 2

Sn
D= rkn/α + S

(kn−1)
n−1 .

Proceeding as in the proof of Proposition 5, one can see that in order to obtain a non-degenerate
limit the normalization for S

(kn−1)
n−1 should be n1/α , but rkn/α/n1/α → ∞, so the maximum alone

is too large. That is in this case there is no non-degenerate limit distribution.
We shall determine the limit behavior of the sum S

(kn−1)
n−1 /rkn/α −An, with some centering An.

Using Theorem 25.1 in [11], one can check as in the proof of Proposition 5 that condition (40)
holds, and also (38) and (39) hold with constant 0 as the limit function. Choosing τ > 2, we get
the centering sequence

An = n

∫
|x|≤τ

x dFkn−1
(
rkn/αx

) ∼ n

rkn/α
EX(kn−1).

For α < 1, using formula (25) we see that An → 0, while for α = 1,

An ∼ p

q

nkn

rkn
.

Finally, for α > 1 the expectation EX = p/(q1/α − q) < ∞, therefore

An ∼ n

rkn/α

p

q1/α − q
.

In all cases the limit distribution is degenerate at 0, so we obtain that

S
(kn−1)
n−1

rkn/α
− An → 0, (48)

in distribution, and so in probability. Adding the maximum term we obtain the statement. �

Remark 5. Note that contrary to the case α ≥ 1 for α < 1 there is no need for centering for any
kn which satisfies n/rkn → ∞. That is, given that X∗

n = rkn/α

Sn

X∗
n

P−→ 1,
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so the maximum term alone dominates the whole sum. This is not surprising given the results
of Darling [9] and Breiman [3]. In Theorem 5.1 in [9] Darling shows that if Y,Y1, Y2, . . . are
nonnegative i.i.d. random variables from the domain of attraction of an α-stable law, α ∈ (0,1),
then

max{Y1, . . . , Yn}∑n
i=1 Yi

converges in distribution to a non-degenerate random variable. On the other hand, Breiman in
Theorem 4 [3] proves that this property characterizes the domain of attraction. Intuitively, when
the tail of the distribution function behaves as x−α , α ∈ (0,1), the maximum term is about the
same order as the whole sum. In Proposition 7, we assume that the maximum is larger than it
should be, so it is reasonable to expect that it dominates the whole sum.

For α = 1, let us consider the classical case. For kn = �log2 n + log2 log2 n� + j , j ∈ Z, given
that X∗

n = 2kn we again obtain a precise oscillatory behavior

Sn

X∗
n

− 2−j 2{log2 n+log2 log2 n} P−→ 1.

In fact, (48) states more. For kn = �log2 n + a log2 log2 n�, with some a ∈ (0,1), given X∗
n = 2kn

Sn

X∗
n

− (log2 n)1−a2{log2 n+a log2 log2 n} P−→ 1.

Note the interesting phenomenon that although the maximum does not dominate the sum, it is
large enough to cause a deterministic growth rate.

For α > 1 consider the case when kn = �β logr n�, for some β > 1. For β > α the centering
goes to 0, and so conditioning on X∗

n = rkn

Sn

X∗
n

P−→ 1,

thus the maximum dominates the whole sum. For α = β we obtain again the oscillatory behavior,
as

Sn

X∗
n

− p

q1/α − q
r{α logr n}/α P−→ 1,

while for 1 < β < α the ratio grows as n1−β/αp/(q1/α − q)r{β logr n}/α .

Remark 6. When An = o(1), Proposition 7 says that Sn/X∗
n

P→ 1, given X∗
n = rkn/α . By Cheby-

shev’s inequality one can get the following bound for the rate of convergence

P
{
Sn > (1 + ε)X∗

n|X∗
n = rkn/α

} ≤ 4pr2/α

ε2(r2/α−1)

n

rkn
.
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3. A series representation of the semistable limit

In this section, α ∈ (0,2). The next theorem gives a representation of the semistable distribution
function Gγ introduced in (4). Recall the notation G̃j,γ in (44). The interesting feature of the
statement is that the distribution functions G̃j,γ in the representation are distribution functions
of infinitely divisible random variables with finite exponential moments. The expectation and
variance is calculated in (46).

Theorem 1. Let α ∈ (0,2). For any γ ∈ [q,1]

Gγ (x) =
∞∑

j=−∞
G̃j,γ (x)pj,γ .

Remark 7. Before the proof we continue Remark 4. Let (Wj,γ )j∈Z,γ∈[q,1] be random variables
with characteristic function ϕj,γ in (35), independently let (Mj,γ )j∈Z,γ∈[q,1] be positive integer
valued random variables with generating function hj,γ in (14), and independently let (Yγ )γ∈[q,1]
be integer valued random variable with probability distribution pj,γ . Then

P

{
WYγ −1,γ + MYγ ,γ

rYγ /α

γ 1/α
≤ x

}
= Gγ (x),

or equivalently the semistable random variable Wγ has the representation

Wγ
D= WYγ −1,γ + MYγ ,γ

rYγ /α

γ 1/α
.

We note that this probabilistic representation in the classical case is basically given in Section 8
in [13].

Proof of Theorem 1. We show that for any fixed x, one has∣∣∣∣∣P
{

Sn

n1/α
− μn ≤ x

}
−

∞∑
j=−∞

G̃j,γn(x)pj,γn

∣∣∣∣∣ → 0,

which together with formula (4) implies the statement.
To ease the notation, introduce

Fn,j (x) = P

{
Sn

n1/α
− μn ≤ x

∣∣∣X∗
n = r(�logr n�+j)/α

}
and

qn,j = P
{
X∗

n = r(�logr n�+j)/α
}
. (49)
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By the law of total probability,

P

{
Sn

n1/α
− μn ≤ x

}

=
∞∑

j=1−�logr n�
P

{
Sn

n1/α
− μn ≤ x

∣∣∣X∗
n = r(�logr n�+j)/α

}
P
{
X∗

n = r(�logr n�+j)/α
}

=
∞∑

j=1−�logr n�
Fn,j (x)qn,j .

For ε > 0 choose jmin < 0 < jmax such that for all n ≥ 1

jmin∑
j=−�logr n�+1

qn,j < ε/4,

jmin∑
j=−∞

pj,γn < ε/4

and

∞∑
j=jmax+1

qn,j < ε/4,

∞∑
j=jmax+1

pj,γn < ε/4.

By (7) and Lemma 1, this is possible. Thus,∣∣∣∣∣P
{

Sn

n1/α
− μn ≤ x

}
−

∞∑
j=−∞

G̃j,γn(x)pj,γn

∣∣∣∣∣
≤

jmin∑
j=−�logr n�+1

qn,j +
jmin∑

j=−∞
pj,γn +

∞∑
j=jmax+1

qn,j +
∞∑

j=jmax+1

pj,γn

+
∣∣∣∣∣

jmax∑
j=jmin+1

Fn,j (x)qn,j −
jmax∑

j=jmin+1

G̃j,γn(x)pj,γn

∣∣∣∣∣
≤ ε +

jmax∑
j=jmin+1

∣∣Fn,j (x) − G̃j,γn(x)
∣∣ +

jmax∑
j=jmin+1

|qn,j − pj,γn | → ε,

where in the last step we applied Lemma 1 and Proposition 6. �

As a consequence of Theorem 1, using simply Chebyshev’s inequality combined with the
asymptotics of the first and second moments of Wj,γ in (41) one can obtain sharp bounds on the
tail of Gγ .
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Corollary 3. For any γ ∈ [q,1] for large enough x we have

1 − Gγ (x) ≤ const · x−α.

However, the exact asymptotic behavior of the semistable tail is known. It follows from a
general recent result by Watanabe and Yamamuro [25]. Recall that Rγ is the Lévy function of
the semistable limit Wγ defined in (6). In Theorem 3 in [25], they show that

lim inf
x→∞ xα

[
1 − Gγ (x)

] = inf
1≤x≤r1/α

xα
(−Rγ (x)

) = 1

and

lim sup
x→∞

xα
[
1 − Gγ (x)

] = sup
1≤x≤r1/α

xα
(−Rγ (x−)

) = r.
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