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Summary. ~ The asympiotic behavior of the proper nonoscillator solutions of the nonlinear, third
order, ordinary differential equalion (%) u" Li°u"=0, where n>1 and o is an arbitrary
real number, is considered. Cases for o and n are studied and the possible asympiotic
behavior (t— oo) of the solutions of (%) are found and conditions for their ewistence are
demonstrated.

1. — Introduction.

Little is known about the asymptotic properties of the solutions of third order
nonlinear differential equations although there have been several investigations of
third order linear equations. Among these are the papers of AEMAD and LAZER [1],
M. HANNAN [11], LAZER[19], SCHURR [23], and SiNGH[24].

Autonomous third order nonlinear differential equations have been considered
by J.0.C. Ezemro [8], V. Haas[12], R. R. D. KeMpP[14], and B. 8. LALLI[18],
while nonautonomous third order nonlinear equations have been studied by
D. Boerowsk1[3], Bzerio [5}-[7], J. W. HEIDEL [13], KIGURADZE [15]-[16], LEGATOS
and STARKOS [20], Licko and M. Svec[21], J. L. NeLson [22], K. B. Swick [25]-[26],
W. R. Utz [27], and P. WALTMAN [28].

The above mentioned papers on nonlinear differential equations have primarily
discussed oscillation or other asymptotic behavior of equations of a particular form.
This paper follows the same pattern in that it discusses the asymptotic behavior of
nonoscillatory solutions of two particular third order, nonlinear, nonautomous equa-
tions. The equations considered were chosen because of wide interest in the second
order equations of the same form whose asymptotic behavior hag been discussed by
R. BE11MAN in Chapter 7 of his book [2].

A proper solution of a third order differential equation is one which is real and
has a continuous second derivative for ¢>%,. This paper introduces a technique
(Theorem 3.1) whereby the proper solutions of the equation

(1.1) w'—tur =0, n>1, 0ge(— oo, 00)

(*) This paper is part of the author’s dissertation which was prepared under the dirrec-
tion of Professor THoMAs G. Harram at Florida State University. This research was sup-
ported by NSF grant GP 11534.

(**) Entrata in Redazione il 9 maggio 1973.
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can be shown to be bounded by certain powers of ¢. If ¢(f)>0 is bounded below by
a power (possibly negative) of ¢, then the above mentioned technique can be applied
to the equation

" —qt)ur =0

with similar results being obtained.

The asymptotic expansions in this paper are similar to the expansions found in
HArrAm and HEIper [10]. However, when their results are restricted to our situa-
tion, we are able to obtain an additional term in each expansion.

Our discussion is restricted to positive solutions since either u” is not real for
negative values of 4 or (—u)*= -+ u". Thus, in the case of negative solutions of

u”l :F tU'Il/"’ p— 0

the discussion can be reduced to that of positive solutions of the same equation or
of the equation

w4 tun = 0.
2, — Fundamental concepts.
To see if either of the equations
2.1) Whitur =0, n>1

have solutions of the form ct¥ we substitute 4 = ¢t into (2.1). After a simple
calculation we have that if

(2.2) ¢=[= (6 +3)(o+ n+ 2)(c+ 2n+ 1)/(n—1)*]e-D
= [4 w(w —1)(w—2)]""Y

where

(2.3) w=—(o+3)/(n—1)

then ¢t” is an exact solution of (2.1). Since we are concerned only with real solu-
tions, we need to take note of the values of ¢ and n which yield a real value for c.
Before examining the various cases of ¢ and n, we will state lemmas that will be
used often in our study.

LemyA 2.1 — If limu(f) = oo, and if 4'(1)>0 eventually, then o' <™’ for 11,

for any > 0, except perhaps in a set of intervals of finite total length which de-
pends upon e.
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The proof of this lemma may be found on page 97 of [2].

LEmMA 2.2, ~ Let f(t)>0 for t>¢t, If Tf(t)dt = oo then
to
2 t
[0+ oide = (1 + o) [#r) de
to to

LEMMA 2.3. — Let f(t)>0 for t>%,. If [f(f)di< co then
to

(=]

Jf@0+ o)1 dr = [1+ 0@ ff(m)dr .
t

¢

The proofs of Lemmas 2.2 and 2.3 are trivial.

&y
LEMMA 2.4, — Let X = |&,| be a vector in K% Define the matrix
T
6 1 0
A= 0 o0 1},
—y —f —«

where o = 3(w—1), f = 3w?*— 6w 4 2, and y = w(w —1)(w—2) for some real con-
stant w. The characteristic roots of A are —w, 1 —w, and 2—w. Then, for
te[t,, o) and for any negative characteristic root 4 of A there exists a sclution

@(t) of

(2.4) X'(t) = AX(5) + F(X),
where
0
FX)= |01, n>1,
7y
such that
(2.5) @(t) = k exp [A] + o(exp [Af]) ,

where % is some nonzero constant. Conversely, if w=< 0,1, or 2, then any solu-
tion @(f) of (2.4) which tends to zero as ¢ goes to infinity must satisfy (2.5) for some
negative characteristic root of 4.

The proof is a direct consequence of Theorems 4.1, 4.3, and 4.4 in Chapter 13 of [4].
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Lemwa 2.5. ~ If the continuously differentiable function f is oscillatory, then
for any two real numbers «, § the function af' 4 ff is oscillatory.

Proor. — If o« =0, the lemma is frue. If as40, then it is sufficient to prove
the lemma for '+ yf, y = fje. We will assame that y > 0 as the proof for p =0
or y<_0 is analogous to that for y> 0. Let #, y, # be any three consecutive zeros
of §. Then by Rolle’s Theorem there exist ¢ (w, y) and de(y, 2) such that f'{¢) =
={{d)=0. It can be assumed without loss of generality that f(¥)>90, t€ (=, y)
and f(#}< 0, t€(y,2). Then there exist points near ¢ such that f'4- yf is positive
and points near d such that f'-+ pf is negative. Since this procedure can be re-
peated for each triple of consecutive zeros, the function f'- yf is oscillatory.

LA 2.6, —~ Let b(f)>0 for =1, |b(t)di< oo, and p be a positive number.
b

Then, b
i

t““’fs“’b(s) ds

to
approaches zero as ¢ approaches infinity.
Leyma 2.7. — Let b(t) >0 for t>¢, and fs”b(s) ds << oo where p > 0; then
fa

| b(s)ds
¢

approaches zero as ¢ approaches infinity.
The proofs of Lemmas 2.7 and 2.8 are contained in [9].

Lemma 2.8. - If |a|<K, |b|<K, and r>1, then
la"— b\ < Erla—b] .

The proof of the lemma may be found in [10].

Levma 2.9, - If }3}1& f{t) = k, a finite number, and f'(?) exists and ig eventually

nonpositive or nonnegative, then for any &> 0 and for ¢ sufficiently large |f'(f)| << e
except possibly on a set of finite measure.

Proor. ~ Suppose f/(t)>0 for ¢>1,. Then, if there exists an £> 0 such that
f'($)>e on a get A of infinite measure then

T— f(to) = f f8) @t > em(A) = oo.
N
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where m(A4) denotes the meagsure of A. This contradicts the finiteness of k. The
proof for f'(f) eventually nonpositive is analogous.

3. — The equation v" —1t°u* =0, w>2.
THEOREM 3.1. — If %(#) is a solution of Eq.
(3.1) eyt =0, n>1
such that }g}g #{f) = oo then there exist numbers » and A such that for any £> 0

}im w (§)[tr+e=0
and
lim u(f)jtF—2= oo .

f—>rc0
Moreover, A>2 and x<w -+ 3/(n—1).

ProoF. — From lim«’(f) = co we have }lﬁ}“’(t) = oo and lim «(t) = co. From
(3.1) we get that «#”(t)> 0. Choosing &> 0, ¢=1,2,3 smail enough so that for
any 0<<e<n—1, (14 &)1+ &)1+ &)< n~—e¢ we have by applying Lemma 2.1
three successive times

,M”'<u”1+e1< (u’1+sf,)1~v~e1< (u1+€g)(1+63)(1+51)

except possibly on a set A, of finite measure. It follows that for arbitrary 6> 0
w” Ut = 17wt <4
that except possibly on a finite set A;04,. Defining % = — ¢fs implies that
ulf< 8 =68,, t¢A,.

If the set 4, is bounded for all positive ¢ sufficiently small then elearly 33)1013 (u]t*y = 0.

If the set A; is not bounded for all positive § sufficiently small then for a given &
the set A, is a sequence of intervals, {I,};2, whose length tends to zero. Also, there
exists a subsequence {I,};> , of {I,};2,, henceforth noted as {I;};2;, such that there

igliy=
exists t;, t;+ h;eI;, b;> 0 with u(f) = 26,8 and u(f; + hy) = 6,(;+ h)*. From the

i Vi
monotonicity of «{f) we have

04(t; + hg.}k = u(t; + b;) > u(t;) = 261t§? .
1f follows that

(3.2) (&+ Bty >2.
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Since the length of the intervals I; tends to zero as j goes to infinity, }(1_1& h; = 0.
Taking the limit in expression (3.2) as j goes to infinity yields 1>2, an obvious
contradiction. Hence, %ilor.}u(t)/tkz 0. Defining » = inf {k: }Ll,g u(t)/t* = 0} we see
that » does exist and »< —afe. By choosing & arbitraryly close to n —1 we see
that

< —olln—1)y=w+3/(n—1).
From 1'Hospital’s Rule }Hé% w(t)[t* = lim u" () [2) = oo.
Therefore, 4 = sup {k:limu(!)/f" = oo} is well-defined and A>2.

CoROLLARY 3.1. Under the hypothesis of Theorem 3.1 A<w. Therefore, if
w< 2 there are no solutions w(¢) of (3.1) such that tll,’o{} u'(t) = oo.

PRrOOF. — Suppose that the A given by Theorem 3.1 is greater than two and
greater than w. Then there exists a k<A such that k> 2, k> w and }_1}5.} u(®) [t = oo.

For t sufficiently large u(t)> (nk -+ o -~ 1)""#* which implies from (3.1)
w"(@)> (nk -+ o+ )™, 14,
Since k> w and k> 2, it follows that
nk+o>k—3>—1.

By successive integrations we get
u(t) > prhto+s

for ¢ sufficiently large.
Since %> 2, we have k(n —1)> — (¢ + 3), or that there exists a b, > 0 such that

(3.3) w(t) > (b -+ by + 1)YrgEtde

Now substituting (3.3) into (3.1) we get again by successive integrations

u(t) > t(k+bl)”+a+3

for ¢ sufficiently large. We can define b,,, = b, + nb;, i =1, 2, 3, ..., and repeat our
process substituting w(t) > (k- b, + 1)V*#*+% into (3.1) until we obtain after a finite
number of steps

u(t) > 7+t

for ¢ sufficiently large, which contradicts the definition of » in Theorem 3.1 and shows
that A<w.
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If A =2 then clearly A<w whenever w>2. Suppose now that w2 and set
k=1 =2. The inequality w< 2 implies that 2n 4+ ¢+ 1> 0. We can now repeat
the above argument to get A<w. For w< 2 we have 2<li<w< 2, which ig ab-
surd. In particular when w <2 then there are no solutions u(f) of (3.1) such that
tl_igg%u”(t) = co.

THEOREM 3.2. — If 20+ ¢+ 1< 0, (w>>2) then any posiftive, proper solution
#(t) of Hq. (3.1) has one of the asymptotic behaviors given by (3.4)-(3.11) below.
In the following statements a, b, d, and #, are constants.

(3.4) w(t) = ct*(1 + o(1))
(3.5) w(t) = a + b(t—1o) -+ d(t—10) +
d”(t — to) 2n+0+3

M CT s e A )
(3.6) u(t) = a +-b(t —1o) + At —1,)* 4 d [t In (/1) — (t—1,)1(1 + o(1))
(8.7) w(t)= a + (t—t,) + §d(t—1,)2 + §d" In (¢/,)(1 + o(1))
(3.8) w(t) = @+ bl —1t,) + Dt (1+ o(1))

' YTto+tl)(n+to+2)(n+to+3)

(3.9) w(t) = a -+ b(t—1,) + b In(1/4,)(1 + o(1))

an et
(3.10) Ul = 4+ T ) (1 +o(1))

There exists 4, » such that
(3.11) There exists A, » such that 2<4, u<w + 3/(n—1)
such that for any &> 0, t*"*<u(t) <" for ¢ sufficiently large and
lim #7(1) = lim %/ (1) = Hm u(f) = oo} u(t) = ot® .

f<—occ {—co 00

Proor. — Since u(f) is a positive, proper solution of (3.1), #"=¢" 4">0 for
positive 4. It follows then that we have the following three cases:

(@) %im w’(t) == 0;
& }m’l w'(t) = d; > 0;
(e) }im w'(t) = oo .

First, we will consider the case (a). From «’(f) increasing and tending to zero
ag ¢ tends to infinity, we have #”(f) < 0; therefore, «'(f) is a decreasing function.

4 — dnnali di Matematica
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If %LXE (1) = b> 0, then by integrating Eq. (3.1) twice from # to infinity and
then from %, to ¢ we obtain either the asymptotic expansion (3.8) or (3.9).

If Ztlﬁi_}}.} u'(t) = 0, then since «'(f) > 0, we must have glorg #(t) =a>0 or tl}}g u(t) ==oco.

In the case where lim u({t) = o> 0, by integrating (3.1) from 1, to infinity three
successive times, we obtain the asymptotic expansion {(3.10).

To rule out the case where }onx} w'(t) =0 and }L% u(t) = oo, the transformationg

u = ct¥v and t = ¢’ are applied in (3.1). This leads to the equation
{3.12) 0" ot~ B’ - yv = o

where « =3(w—1), f =3w?— 6w+ 2 and y = w{w —1)(w—2). A simple calcula-
tion yields —w, 1 —w, and 2—w as the characteristic roots associated with the
linear part of (3.12),

(3.13) "4 av” L B’ o =0,
4

Our hypothesis w>>2 implies that the three characteristic roots are negative.
Placing (3.12) into system form we get

3.14) X'=AX + F(X)
where
1 0 1 0 0
X=Jae}, 0=0,0,=0,0=10", A== 0 0 1}, (X =1]0
&3 g _"18 — Zh

By Lemma 2.4, it follows that
v(s) = k exp [As] + o(exp [4s])

where k=40 and A is one of the three characteristic roots. Transforming these three
forms to there corresponding forms for Eq. (3.1), we see that

u(t) = ket'** - o(t**7) .

But for none of the three possible values of A, —w, 1 —w, 2 —w, can u(t) satisfy
}ix.g %(t) = oo and }E& w'(t) = 0.

In case (b) we have u(t) = #*(d,/2 + o(1)). Letting d = d,/2 and integrating (3.1)
first from ¢ to infinity and then twice from i, to ¢ we obtain one of the asymptotic
expansions (3.5), (3.6), or (3.7).

Case {c¢) yields the asymptotic expansion (3.4) or by Thecrem 3.1 the asymptotic
behavior described in statement (3.11).
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Now we will show the existence of solutions which possess the asymptotic ex-
pansions (3.5)-(3.10). The method of successive approximations will be used in a
manner similar to that used by HarLoAm and HEIDEL[10]. Let the constants c¢,,
1=0,1 and d;, j=1,2,3 be given as follows:

09:’—%*, =1

di=1, dy=-—1, d=1.

LevmA 3.1. — Let « be one of the integers 0, 1 or 2; suppose that a,, p =0, ..., «
are given real constants. If y(f) is a solution of the integral equations

L>d

y(t) = Z ?72 (t—15)? + z (t—1,) 2‘pf(s—t0)f’s”y"(s)ds
' i
at+l
+ 2 oo p (E—10)* 22| (s — 1)1 *25%y"(s) ds
p=1
to
(3.15)
& a
®)(t) == Tl (At A L
Yol =3 o =)
1—a -
+ 2 (_1)p+l(t___to)2—p—kf(s_to)psayn(s) ds

p=0 :
+1-
Z 1)%te-1(f—1¢ )“—P—kﬂJ-(s-—to)l—“ﬂ’s"y"(s)ds 0<k<a,
o1 ;

and for 0 << k<2 —u
2—~a—k ~
R A N [ e
=0

¢

then y(t) is a solution of (3.1) such that y?(¢) =a;, i=0,1,..., «
The proof follows by direct verification.
Now define for « =0, 1,2 and for given constants a;, 1 =0, ..., «

= > +1, k=0,1,2,
= (j—
B= B

B,= min {lin+ o+ 3, [in + o +2|, lin + o+ 1[},
and
= [Ra/(4:B)]1/[a"+‘7+2+slm(1__¢)] )
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LemMMA 3.2. - For t>t,>T, the following statements are true:

(a) for 0<k<2—u

2—-a—k -
B “2 t2—2a~pfsﬂ+d+ﬂ(a—k)ds<%;
D=0
¢
(b) for 0 <k<a
oo
1—-c
B z tz—y—«fsﬂ+a+m—knds
D=0

[
t

a+l-k
+ B z tl“i’fsl"“+”+”+"“—k"ds<%;
=1
to

and
(¢) for k=0
1—a -
B z lcpltZ—v—meIﬁchmds
p=0

3
1

atl
+ B 2 ldzw_pltl‘“’fsl‘““’“+"°‘ds<% .
p=1

to

The proof of Lemma 3.2 is straightforward and is, therefore, omitted.

TeeorEM 3.3. ~ If an4 043 —ax<0, =0, 1 or 2 and a,, p=0,...,a are
given constants, then for #,> T, there exists a solution y(#) of (3.1) which possesses
the asymptotic behavior (3.10) whenever « = 0; (3.8) and (3.9) whenever o =1;
and (3.5), (3.6) and (3.7) whenever o« = 2. Furthermore, the derivatives of y(f) have
the asymptotic expansions given by

ap

816) 0= 3 T (-t
apfi —ty)m ot -
F Tt emiepniTem),  i=12

provided that when ¢=1, 2n+ o+ 1% —1. In the case where ¢=1 and
2n+o+1=—1

(3.17) YO = a,+ ay(t—1) + afln (¢/i)(1 + o(1)) -
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Because this proof is similar to the existence proof in [10], we will leave out many
of the details.

ProoF. — Define

djg(ti to) = z J(t“to)
v=oP!
& T —1,)v k% k=
@,g(t; ) = z Uy ( 0) ’ 1,00
iz (P—k)!
Pgtk(t; 1)) = t=* E=1,...,2—oa.

Inductively, we define for #=0,1, 2,

Lol

1—a
ool to) = B3 1) + 3 ol )2~ f (5 —La)P57 Y55 to)ds
=0
1
[
o+l
B A e et T

to
oo

DF 1 (t5 1) = Dh(t; 1) +2 1)p+1(t —1,)2- 9% | (s —£,)25°DE(s; to)"ds

i

¢
oat-1— k

-+ 1)etp=1(t —g)* ”—k+1f(s—tu)1"°‘+”s"@’,;(s; t)rds O0< k<o
p=1
to

and for 0<k<2—u

Qj(ch) 15 ty) = Z 1)+t —t,)2-e-- kf(S—to)”8“@°,‘)+k(8; to)rds.
7=0 i
For t>1T, it is easy to see that
(3.18) |Pk(t; 1) | < B t™*, k=0,1,2.

Now, it can be shown by induction that for {>7,
[¢§+1(t;t0)]<Bkt“‘k, k=10,1,2,7n=012,...

In order to establish the existence of a solution (¢;%,) of the integrals (3.15), it
can be shown that

(3.19) |k, 1 (85 1) — P(e; 1) | <*7F[2"+1 for t>T,, k=0,1, ...
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Therefore, for each & =0,1,2 lim ®%(; 1)) = D*(¢; 4,) exists uniformly on com-
’I]—)DO
pact subintervals of [{,, o). Also,

|DF(; 1) | < Bt F, k=0,1,2.

We will now show that ®°¢; t,) has the proper asymptotic behavior. Let us first
note that

tlim [DO(t5 to) [t —1)%] = afa! + d2+af(8—-t0)2_°‘8”¢°(85 to)P sds== 4, .

bo

If aon+ o+ 3 and an + o -+ 2 are negative for a« =2 or if an - o-+ 3 is nega-
tive for o =1, then Lemma 2.6 and 2.7 assure of having the indeterminate form 0/0
in the expression

o0

-z
[ S ealt—10)27 [ (s —10)? 57053 1,)7 ds
p=0 ;
i
cz+1‘
+ D dosaplt— to)“—”ﬂj(s — )78 DO(s; 1) ds
p=1

to

)

+ df (5 — 1) @(s5 to)d (1 — s

3

If these numbers are positive then one may also apply L’Hospital’s Rule. Thus,
in either case we have

1—x
(3.20) gim [ > ot —1)2? f (81,7870 s3 t,)" ds
=0 :
a+1 y
+3 eyl t)1 f (5 —Lo)P5°DO(35; 1) ds
p=2
o

oo

. d1+af(8 — 1) 85D s to)”ds]/(t—to)“"+“+3

t

o]

11—
= tlim [ > (-1)”+1(t~—»t0)1“1’f(s — 1?57 DO(s; to)ds
=00 Lo 00
; [
a+1

+ 3 (— 1}”‘1(t~t0)2"2f(s~t(,}3‘$"s*’@°(s; to)”ds}/{om + 0 4 )t — 1ttt
p=32

23
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( oo
—| s DO(s; to)2ds/[(an + o + 3)(am + o + 2)(E—1t,)r*+o+1]  if a=0 or 1

=limJ °?

t—>o0 t
fs"@o(s; to)*ds/[(om + o+ 3) (e + ¢ - 2)(T—1,)m+o+L  if o =2
L o

= lim 2 @V(t; 1,)"/[(@n + 0 + 3)(om + 0 + 2)(am - & + 1)(t—ty)o+
= 2/[(em + 0 + 3)(am + o + 2) (@0 + 0 + 1)]

This shows the existence of the asymptotic expansions (3.3), (3.6) and (3.8).
If on+ o043 =0 for ¢« =1, then

o] oo

lim [—%(t-to)2fs°(15°(s; to)"ds + (t—to)f(s—~t0)s"¢°(s; to)" ds

{00

1 t

¢
-+ %f(s — o) 287 D(s; to)" ds] fIn (¢ft,)
to

t—co

= lim [—— (t—to)fsc’@“(s; to)" ds —}—f(s—to)s”@"(s; to)"ds] Jt1
£

£

oo

= tll.m 9D (s; o) dsft2= %tlim Do(t; L) = L7 .

t

From the above we have the existence of the asymptotic behavior (3.7). Similarly,
one can establish the desired asymptotic behavior for @°¢; f) when 2n 404 3 =0
or 2n+ o2 =0 for & 1;¢), k=1,2.

THEOREM 3.4. — If k> %, where x is the number given by Theorem 3.1, then any
solution w(t) of Eq. (3.1) such that u(ty)> aty, u'(f;)> akth %, and w"(f,)> ak(k—1)#2,
where o = [k(k—1)(k—2)]¥*Y, has a finite escape time, that is, there exists a T,
t,<< T < oo such that tl—i}II:L u(t) = oo.

Proor. — Suppose that «(t) does not have a finite escape time and hence exists
on [t, c0). Let w(f) =at* and J=1[%, ) be the maximum interval such that
u(f) > p(f). From the definition of wk>x>w implies that o4 nk>k—3. For
ted we have from Eq. (3.1)

(321) um(t) > antﬂ+nk> antk—3 — 1’U(t)”/ )

From #’(t) > 9"(t,) and (3.12) it follows that u’(¢)> "(t), teJ. Similarly, we can
obtain that w'(f) > y'(f), teJ. In order for u(f) and v(f) to intersect at time ¢,,



b6 Pavr, A, OnMu: Asymptotic behavior of the solutions, ete.

there must exist a time ¢, prior to #, such that «'(,) < v/(t,). Therefore, we must
have J ={t,, o). An application of Theorem 3.1 yields that w(f)<t* for ¢ suffi-
ciently large which contradiets u(f) > "> * for e J.

COROLLARY 3.2. — Given u(f,) and #'(f,) to be any two arbitrary positive numbers,
it is possible to choose 4"(f;) in such a way that the corresponding solution «(¢) has a
finite escape time.

Proor. ~ By integrating Eq. (3.1) and using integration by parts we see that

1]
u(t) = ulty) + ' ()t — )+ 00—t + 4 [ (6 —0)%57w(5) ds

fo
11
W) = ' (to) 4 (o)t — 1) +- f (t — $)s° u"(s)ds ,
to
and

|
w'(ty = w'(t,) + | s"us) ds
to

which implies respectively that for f,>1,

2u(ts) [(be—1o)* > %" (%)
w'(t5) [(Be—10) > u'(t)
and
W (ty) > u"(t) .

Given ?,>1,, we choose u'(t,) so that u’(t,) so that w'(t)> ak(k—1)t:™2, where
a and k are as in Theorem 3.4, then by Theorem 3.4 u(f) hag a finite escape time.

COROLLARY 3.3. - If u(t) is a solution of Bq. (3.1) such that () > cty, w'(t,) > cwty !
and u"(t,) >ew(w—1)%;"* which strict inequality holding in at least one of the
three inequalities, then u(f) > ¢t” for > 1,.

Proor. ~ This follows from the proof of Theorem 3.4 by using the properties of ¢
and w from Eq. (2.2) and (2.3).

4. — The equation w”" —fyr=0, w<2.

Now we will consider the remaining cases of ¢ and » for Hq. (3.1).
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THEOREM 4.1. — Any positive, proper solution u(¢) of Eq. (3.1) with w<2 has
the following asymptotic behavior:

o, n w asymptotic behavior

M+ot1=0 w=2 (3.8) (3.9) (3.10) (3.11) (4.2)

/
M+ o+1>0,0+3<0,n+0+2<0 l<w<?2 ; (3.8} (3.9) (3.10)

nt+to+2=0 w=1 {3.10) (4.2)

Mm+o6+1>0,04+3<0, nt+o+2>0 O<w<l (3.4) (3.10) (4.1)

c+3=0 w=0 no positive proper

c+3>0 w< 0 solutions exist

where
(4.1)  the solution u(t) intersects with the function v(¢) = c¢t* infinitely often,

and

(4.2) lim w" (1) = lim «'(t) = 0; lim 4(t) = oco; u(t) #ct® .

f—>co oty >0

In this seetion we have, as in Section 3, 4”(?)> 0 and the three cases

(a) lim %'(t) = 0;

b tl_l}g w(t)=d,>0;
and

{¢) grg w (1) == oo .

Lemma 4.1, If 204 o+ 1>0, (w<?2) then Eq. (3.1) does not have a positive,
proper solution u(f) such that ;i}gg w'(t) = d, >0,

ProOF. — Suppose there exists such a solution. Then u(f) = d¢*(1 4 o(1)), where
d=d,/2. From (3.1) we have

W = dni0+2n<1 + 0(1)) .

Since 2n 4 o> —1, we have by integrating that tl_{)lg.} #'(t) = oo. Thig is a con-
tradiction.

LEMMA 4.2, - If n+ 0 20, (w<1) then the Eq. (3.1) does not have a posi-
tive, proper solution %(¢) such that Z&l_igg w'(t)y="5b>0,
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LEMMA 4.3. - If ¢+ 3>0, (w<0) then the Eq. (3.1) does not have a positive,
proper solution w(f) such that }19.% u(t) =a>0.

The proofs of Lemmas 4.2 and 4.3 are similar to the proof of Lemma 4.1.

For the case 2n 4041 =0 (w=2) we eliminate case (b) by Lemma 4.1 and
apply Theorem 3.1 to case (¢) to get the possible asymptotic behavior (3.11). For
case (a) since #'(f)<< 0 and «(t)>0 we have

(ay) ltlim w(@E)=b>0
or
(@) lim w/(#) = 0 .

By substituting u(¢) = b#(1 + o(1)) into (3.1) and integrating ease (a,) yields either
(3.8) or (3.9). In the case (ap) if limu(f)=a, 0 <a< co, we substitute u(f)=
= a1+ o(1)) into (3.1) and integrate from ¢ to infinity three times to obtain the
asymptotic expansion (3.10). If }1,[5.} u(t) = oo, then we have the possible asymp-
totic behavior (4.2).

At this point we observe that for all remaining cases, as indicated by the chart,
Corollary 3.1 eliminates case (¢) and Lemma 4.1 eliminates case (b).

For 2n4-64+1>0, 0 4+3<0, n-to+2<0 (1<w<2) we note that ¢ is not
a positive number, hence we do not have the behavior (3.4). For the case (#) we have
that }thlg w'(t) =b>0. Setting v = u/t* we obtain by L’Hospital’s Rule lim o(t) =
=%lrg[u’/(wtw“1)] = 0. Performing the transformations »=wu/t* and t=¢ in
Eq. (3.1) we have

(4.3) 0" "4 fo 4+ yv = or
where
(4.4) a=3w—1), pf=3w—6w-+2 and y=ww—1)(w—2).

Changing (4.3) into system form and applying Lemma 2.4 in a manner analogous
to that in the paragraph containing Bq. (3.14) we have

v(s) = kexp[As] -+ o(exp[as])

where k7= 0 and A is one of the negative characteristic roots of thelinear part of (4.3);
—w or 1—w. Transforming these two forms to their corresponding forms for w(t),
we see that

u(t) = Kt - o(#*+7) .

For 2= —w and A =1—w this yields the asymptotic behaviors (3.10) and (3.8)
or (3.9) respectively.



Paur A. OuuME: Asymplotic behavior of the solutions, ete. 59

For n4+0-+2=0 (w=1) we handle case (4) in the same manner as we did
for w =2 in the argument following Lemma 4.3.

For 2n+4-0-+1>0, nt+0+2>0, 6+3<0 (0<w< 1) we have from
tl_i};} w(t) =0

{ay) gim w(t)=0
or
(@) }im w'(t)=a .

Since Lemma 4.2 eliminates case (a,) we have either }E;‘.} u(t)=a or }gg u(t) == oco.
The first limit yields the asymptotic expansion (3.10). The second condition is satis-
fied by the solution u(f) = ¢t¥. To investigate the possibility of other solutions of
this form, we again make the transformations u = ¢t and ¢ ==¢’. We obtain as
in the past

4.5) " av’ 4 fo’ 4 yo = av®,

where o, § and y are defined in (4.4). If ;_1:1;:} k(t) = k, a nonzero finite number, then
it follows from I’Hospital’s Rule, Eq. (3.1), and the definition of w that

(4.6) k= ;ﬁfn uf(ctv) <§n€£ w" [[ow(w — 1) (w — 2) 193]

= Tm turf[ow(w —1) (w0 —2) t+-*] = lim [u/(ct"))]r = k" .

Therefore, we have k>1. Likewise, if limo(¢) = m, not zero or infinity, an anal-

t—o0

ogous argument shows that m«1. From this we see that one of the following cases
must oecur:

() lim w(t) = 1;

(@2) limo(t) = 0;

f—rco

(a1s) lim o(t) = oo;

{>o0

(a4,) v(t) intersects the line » =1 infinity often and has no limit as ¢ tends
to infinity.

In case (ay,) we can proceed as was done in the paragraph containing Eq. (3.14).
This would lead to

o(8) = k exp [— ws] + o(exp[—ws]), k0.

This leads to u(t) = ck(1+ o(1)) which is the asymptotic expansion (3.10).
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To eliminate () tending to infinity as ¢ tends to infinity we note that for our
choice of w

<0, p<0, y>0.

If o(s) is not eventually monotone inereasing, them ¢'(s) is oscillatory. By applying
Lemma 2.5 first to the funection v'{s) and then to the function

f(s) = ulv"(s) + (Blw)v'(s)]
where
p=Ho+ (*—4p)4]

we have that the function

vll/+ dvll+ ﬂ?]l: [Q)”,_i_ (‘B/Iu)ﬂ/l} + [u[,vll_i_ (ﬁ/ﬂ)vl]

is oscillatory. Using Eq. (4.5) ﬁ,‘{.} v(s) = oo implies that this is impossible, hence
»'(s) is eventually positive. It follows that

"4 o' = p{o"— ) —fv'> 0.

By Lemma 2.5 v"(s) does not oscillate for otherwise the function f(s) = 0" (s) -+ v"(s)

would also oscillate. If »"(s) =0 or if ;LIE 2"(8) == 0 we have for all s sufficiently large
"=y —0)—pr'—av" > 0.
With v"(s) eventually positive and 313323 2(s) == oo the following possibilities exist:

lim »"(s) = litn ¢'(s) = lim v(s) = oo,

§—>c0 Fiandvsl s—>o0

or
limo"(s)=k>0, lmv'(s)=limo(s)= oo,
§00 s$—>oo 2

or

Slgg V{8 =k >0, slig v(8) = k>0, slir_g v(8) = oo .

It lim o(s), 4 =1, 2 is finite then we have lim o9(s)/v™(s) = 0 since limo(s) = oo
and from Lemma 2.9 ¢~ 1(s)/v"(s) is arbitrary small except possibly on a finite set.
1f lim p9(8) = o0, 1 =0, 1, 2, then since v“*(s) >0 eventually we have by Lemma 2.1
o< [ol P+ <o~V for an appropriate >0 which implies that v¥(s)/o"(s) is
arbitrarily small except possibly on some finite get. In any ecase

[0" 4 o+ v’ -+ kw]/o"
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can be made arbifrary small except on a finite set. This contradicts equation (4.5).
If gtg 2"(8) 0 but v"(s)<0 then we have }ng v'(s) = k=0 which implies by Lem-
ma 2.9 that for arbitrary ¢>0

—e<<?"(8)<0

except possibly on a set of finite measure. Let {s,};>, be a sequence of points where
v"(s) is maximum. Then for points sufficiently large

(4.7) o™(8;) — po(s) — Po(8:) —ov"(8,) > 0

but by equation (4.5) statement (4.7) is equal to +"(s;) = 0.
Cases (a;) and (a,,) yield the asymptotic behaviors (3.4) and (4.1) respectively.
If 64+3>0 (w<0) Lemma 4.2 rules out %ongu’(t) =b>0 and Lemma 4.3 elim-

inates tlilg u(t) = a>0. The only remaining possibility is for }ng.} u(t) = oo with
}Lrg w'(t) = 0. To eliminate this possibility we first observe that «"(¢)< 0 and «'(¢) >0
which with L’ Hospital’s Rule implies

(4.8) 0<}Tntu’/u<tl—i—n—1[l + ' fu'l<1 .

In equation (3.1) we substitute ¢ = ¢° whenever w = 0 and % = “v, { = ¢* when-
ever w<_0. We get respectively

(4.9) 4" (8) — 3u"(s) 4 2u'(s) = u(s)
and
(4.10) "4 v+ po' 4 o = 0"

where o, f, y are defined by (4.4).
From (4.8) we see that
(4.11) u”— 3u" = un(s) — 2u'(s) = u™(t) — 2¢u'(t)
= w()[1 — 20 () Ju™(t)] >0,
and sinee
0'(8)[o(8) = (fu'— wu)t ¥ /(ut™") = tu' ju —w<1l—w,
(4.12) V'—or' =" —pv— o' > 0.
By Lemma 2.5 statements (4.11) and (4.12) imply respectively that the functions

u"(s) and ¢"(s) do not osecillate, which, in turn, implies that the functions »'(s) and
?'(s) do not oscillate.
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For both w=0 and w<< 0 we can proceed as we did for 0 <w <1 in the above
paragraph. Thus, we are able to conelude that for w< 0, there are no positive, proper
solutions for Hq. (3.1).

Theorem 3.3 shows the existence of the asymptotic expansions (3.5)-(3.10) for
all values of ¢ and » that permit them to exist. Solutions with a finite escape time
can be shown to exist for values of w<2 by methods analogous to Theorem 3.4.

BEXAMPLE. ~ If n = —%, then u(f) = (1 —2/¥/15¢)7% is a solution of the differen-
tial equation #"— 4" = 0 with a finite escape time.

5. — Notes.

i) If in Eq. (3.1) ° is replaced by g(t), we can use the technigues of Theorem 3.1
to show the following.

THEOREM 5.1. — If for i>1,, 0< at”™**<q(t) for some real numbers «, % and for
some e, 0<<e<<un—1, then there exists a constant f >0 such that for any posi-
tive, proper solution u(f) of the equation

y'—gfur=0, n>1
satisfies wu(f)<pt* for ¢ sufficiently large.
ii) Because the discussion of the nonoscillatory solutions of the equation
(5.1) U =0, n>1, oceR
is similar to the work in Sections 3 and 4 we will state our results without proof.

THEOREM 5.2. ~ All proper, positive solutions «(f) of Hq. (5.1) have the following
asymptotic behavior:

g, n w agymptotic behavior
2n 4+ o4 1< 0 w > 2 (5.8) - (5.8)
24 o+1=0 w=2 (5.6) (5.7) (6.8) (5.10)
M +o+1>0,0+3<0, nt+0+2<0 | I<w<?2 (5.2) (5.5) (5.7) (5.8) (5.9)
nto+2=0 w=1 (5.8)

M40+ 1>0 0+3<0,nt0-2>0 | O<w<l (5.8)

64+ 3=0 w=0 (5.11)

o+ 3>0 w<< 0 (5.2) (5.11)
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In the following expressions a, b, d, and {, are some constants.
(5.2)  u(t)= et*(1 + o(1))

(3.3)  u(t)=a+ b{I—15) + d(t—1,)?

dn(t_t0)2n+o'+a | N
__(2"—}-0—}-3)(2%—!—a—l—2)(2n+o~_|_1)( +0(1))

(3.4)  w(t)= a4 b(t—1t) + d(t —1,)* — dr[tIn (t/ty) — t —1t,](1 + o(1))
(6.5)  w(t)= a4 b(t—1) + §d(t—1,)* — }d In (/4,)(1 + o(1))

bn(t__to)n+0'+3(1 + 0(1))

(6:6)  wlt) = a4 bl —t) = e T o 9 Lo 1 3)

(3.7 w(t)=a -+ b(t—1,) —b"In (t/t,)(1 + o(1))

an(t — t)o+s

(5.8  wl)=a—r—r 1)(o -+ 2)(c+3

)(1 + o(1))

(6.9} The solution wu(f) intersects with the function »(f) = et* infinity often .

(5.10) tlim w'(£) = 0; tlim w (1) = thm u(t)= oo, wu et .
(6.11) tlim u'(t) = tlim () = tllm u(ty=0, uFctv .

In the case w< 0 we point out that for u(f) a solution of Eq. (5.1) that
lim u(f) = ll_i)rg.}u’(t) =}_i)1£u”(t) = 0. The solution «(f) = ct” is of this form. To in-
vestigate the possibility of other asymptotic expressions possessing this behavioral
condition, we set u = ¢t¥v, t = ¢* in Eq. (5.1) and obtain as before

(6.12) 0"+ a0’ fo' -+ yo =y,

Since the characteristic roots of the linear part of Eq. (5.12) are —w, 1 —w, and
2 — w, all positive, we have by Lemma 2.4 that no positive solution of (5.12) tends
to zero as s tends to infinity. Hence, any proper solution of (5.1) for w < 0 tends
to zero monotonically but not « faster » than ct®.

In a theorem analogous to Theorem 3.2, we can prove that the asymptotic
forms (5.3)-(5.8) are valid asymptotic behaviors for the values of ¢ and » that allow
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them to exist. By integrating

u(t) = ulty) -+ u' (&)t —1,) + %“”(%)(t—to)g
to
—1 f (s — 1)2s°u™(s) ds
£

<ulle) + ' (te)(E— o) = Fu" (Bo) (E—10)? .

Therefore, any positive—solution of Eq. (5.1) can be continued to the entire in-
terval [t,, o).
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