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Abstract. In this paper we consider the Bresse system with past history acting in
the shear angle displacement. We show the exponential decay of the solution if and only
if the wave speeds are the same. On the contrary, we show that the Bresse system is
polynomial stable with optimal decay rate. The systems of equations considered here
introduce new mathematical difficulties in order to determine the asymptotic behavior.
As far as the authors know, there have been no contributions made in this sense.

1. Introduction. For the last several decades, various types of equations have been
employed as some mathematical model describing physical, chemical, biological and engi-
neering systems. Among them, the mathematical models of vibrating, flexible structures
have been considerably stimulated in recent years by an increasing number of questions of
practical concern. Research on stabilization of distributed parameter systems has largely
focused on the stabilization of dynamic models of individual structural members such as
strings, membranes and beams (see [1§]).

In this work we study the circular arch problem also known as the Bresse system (see
[7] for details). Elastic structures of the arcs type are objects of study widely explored in
engineering, architecture, marine engineering, aeronautics and others. In particular, the
free vibrations about elastic structures is a function of their natural properties and is an
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important subject of investigation in the engineering field and also in the mathematics
field. In the analysis mathematical field it is interesting to know the properties which
relate the behavior of the energy associated with solutions of the respective dynamic
model. For feedback laws, for example, we can ask what conditions about the dynamic
model must be ensured to obtain the decay of the energy of solutions in the time ¢. In this
sense, the property of stabilization has been extensively studied for dynamic problems in
elastic structures translated in terms of partial differential equations, and an interesting
property determines that the exponential decay with few feedback laws occurs only in a
particular situation (see [7]).

Following the main idea about deformation in elastic structures, we consider the Bresse
system given by the equations of motion

P1Ptt = Qx + ZN, (101)
petbue = M, —Q, (1.0.2)
prwy = N —1Q, (1.0.3)

where
N = ko(wy —lp), (1.0.4)
Q = k(ps+lw+1), (1.0.5)
YR —/ (s bt — 5) ds (1.0.6)

0

are the stress-strain relations for elastic behavior. Here p; = pA, ps = pl, Kk =

E'GA, ko = FA, b= EI, | = R~ where p is the density of material, FE is the modulus
of elasticity, G is the shear modulus, k&’ is the shear factor, A is the cross-sectional area,
I is the second moment of area of the cross-section and R is the radius of curvature. The
functions w, ¢ and v are the longitudinal, vertical and shear angle displacements, respec-
tively. Here g represents the memory effect acting only on the shear angle displacement.

From coupled equations (LOI))-[[Z0.6) we obtain the Bresse system with past memory

given by
prow — k(@ + ¥ +lw)y — kol(we —lp) = 0inQ, (1.0.7)
P2t — bibzz + /°° 9(8)ua(t —8) ds + k(px + ¥ +1lw) = 0inQ, (1.0.8)
plowtt — ko(wzy — 1) + Kl(pz + ¢ +1lw) = 0inQ, (1.0.9)

with initial conditions given by

©(-,0) = o, i(-,0) = @1, Y(-,0) = o, Pi(-,0) =¥,

w(-,0) = wg, w(-,0) =w; in]0, L[ (1.0.10)
where Q = (0, L) x (0,00). When g = 0, (LO1)-(C03) are the governing equations for
the theory of circular arch. For more details see [7].

REMARK 1.1. If R — oo and g = 0, then [ — 0 and this model reduces to the well-
known Timoshenko beam equations (see [6] and [7] for details). If R — oo and g # 0,

then [ — 0 and this model reduces to the well-known Timoshenko beam equations with
past history (see Rivera [10] for details).
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REMARK 1.2. Many interesting physical phenomena (such as viscoelasticity, heredi-
tary polarization in dielectrics, population dynamics or heat flow in real conductors, to
name some) are modeled by differential equations which are influenced by the past values
of one or more variables in play, so-called equations with memory. The main problem in
the analysis of equations of this kind lies in their nonlocal character, due to the presence
of the memory term (in general, the time convolution of the unknown function against a
suitable memory kernel).

In this work we will examine the issues concerning the asymptotic stabilization of the
Bresse system with past memory. Our main tool is Priiss’s result on the exponential
stability of semigroups (see [5,9,11]). So to use these results, it is necessary to put the
problem in the context of semigroups; thus some modifications to the original problem
(CO07)-([C0I0) should be made.

In fact, following the approach of Dafermos [3] and Fabrizio [4], we consider = n'(s),
the relative history of ¢, defined as

n=mn'(s) =v(t) =t —s). (1.0.11)
Hence, putting
Bo =b— by >0, with by = /00 g(s) ds, (1.0.12)
the system (LO7)-(C09) and (COI0) turns into t;e system
p1ow — k(e + ¥ + 1w,y — Kol(wy — lp) = 01in Q, (1.0.13)

p2it — BoVzz — /0 9(T)Naa (T) dT + k(e + 1P +lw) = 0in Q,

(
prwy — Ko(we — o) + Kl (e + 1 +lw) = 01in Q, (
M+ s — Yy =01in Q, (1.0.16
@(+,0) = ¢o(z), @u(-,0) = ¢1(x) in (0, L), (
U(+0) = Yo(x), (- 0) = ¥1(x), w(-, 0) = wo(x), wi(-,0) = wi(z) in (0,L), (
Mo(y8) = Yo (+,0) — o(-,—s) in (0,L) x (0,00), (1.0.19
where the fourth equation is obtained differentiating ([COIT) with respect to s, and the

condition (LOI9) means that the history is considered an initial value. We consider the
Dirichlet boundary conditions

@(07t) = @(Lvt) :w(oat) :w(Lat) :w(ovt) = ’LU(L,t) =0,
n'(0,s) = n'(L,s)=0, s,t>0, (1.0.20)
or Dirichlet-Neumann—Neumann—Neumann boundary conditions
©(0,t) = o(L,t) = 1;(0,t) = ¥, (L,t) = w,(0,t) = wy (L, t) = 0,
nt(0,s) = nt(L,s)=0 s,t>0. (1.0.21)

There exist only a few results about the asymptotic behavior to the Bresse system.
The most important, from our point of view, is given by Liu and Rao [I5]. In that
paper, the authors consider the Bresse system with two different dissipative mechanisms,
given by two temperatures coupled to the system. The authors showed the same result
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concerning the exponential stability, but concerning the polynomial decay, they found
rates that depend on the boundary condition. When the system has a Dirichlet-Neumann
boundary condition, they show that the system decays as t~* and for a fully Dirichlet
boundary condition, they proved that the solution decays as t~%. An important problem
in the Bresse system is to find a minimum dissipation by which their solutions decay
uniformly to zero in time. In this direction we have the paper of Fatori and Rivera [13],
which improved the paper by Liu and Rao [15]. They showed that, in general, the Bresse
system is not exponentially stable but that there exists polynomial stability with rates
that depend on the wave propagations and the regularity of the initial data. Moreover,
they introduced a necessary condition to dissipative semigroup decay polynomially. This
result allowed them to show some optimality to the polynomial rate of decay. The Bresse
system with frictional damping was considered by Fatiha Alabau Boussouira et al. [I0].
In that paper the authors showed that the Bresse system is exponentially stable if and
only if the velocities of waves propagations are the same. Also, they showed that when
the velocities are not the same, the system is not exponentially stable, and they proved
that the solution in this case goes to zero polynomially, with rates that can be improved
by taking more regular initial data. This rate of polynomial decay was improved by Luci
Harue Fatori and Rodrigo Nunes Monteiro [I2]. The indefinite damping acting on the
shear angle displacement was considered by Juan A. Palomino et al. [I4]. In [I9] Nahla
Noun and Ali Wehbe extended the results of Alabau-Boussouira et al. [I0] and considered
the important case when the dissipation law is locally distributed.

In this paper we study the Bresse system with past history. We show that the system
is exponentially stable if and only if the wave speeds are the same. When in general
the wave speeds are not the same we prove that the Bresse system is polynomially
stable with optimal decay rate. The systems of equations considered here introduce new
mathematical difficulties in order to determine the asymptotic behavior. As far as the
authors know, there have been no contributions made in this sense.

The paper is organized as follows: in section 2 we establish the existence, regularity
and uniqueness of global solutions of the problem (LOI3)-(L020) and also of system
(COI3)-([C0I9) with boundary conditions (LO.21)). We use the semigroup technique (see
[8l20]). In section 3 we study the exponential decay of the strong solutions of the system
(COI3)-([C020). We show the uniform decay of the solution by using a multipliers
method. In section 4 we study the lack of exponential decay using Priiss’s results [9] (see
also [Bl1]). Finally in section 5 we show that the system (LOI3)-(LC0I9) with boundary
(CT2T) is polynomially stable with optimal decay rate. For this we use the recent result
due to Borichev and Tomilov [IJ.

2. The semigroup setting. In this section we will study the existence and unique-

ness of strong solutions for the system (LOI3)-(L020) and also of system ([LOI3)-
(COTI9) with boundary conditions (LO.ZI) using semigroup techniques. For this, we

consider that the kernel g satisfies the following hypotheses (as in [17]):

g€ CYRYYNLYRY), g(t) >0, 3o, ¢1 > 0: —qog(t) < g'(t) < —qug(t), ¥Vt > 0.
(2.0.1)
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In view of ZQT), let L2(R*, Hj(0, L)) be the Hilbert space of H{ (0, L)-value functions
on RT, endowed with the inner product

oo L
(W mony = [ 06) [ £ sh(e.s) do ds.

To give an accurate formulation of the evolution problem we are introducing the product
Hilbert space

Hy = Hy(0,L) x L*(0, L) x Hy (0, L) x L*(0, L) x Hy(0, L) x L*(0, L) x L2(R*, Hy (0, L))
(2.0.2)
and

Hy := Hy(0,L) x L*(0,L) x H}(0,L) x L¥(0, L) x H}(0,L) x LZ(0, L) x L2 (R™, H{(0, L))
(2.0.3)
with inner product given by

L L L
(U, U2)u;, = Pl/ P19z dx + po P12 d$+91/ wiws dx
0 0 0
L L o
+ ﬂo/ V1z2q. dx + H/ (P12 + 1 + lwnr) (P2z + 2 + lwz) dx
0 0

L oo L
+ Ho/ (wig — lp1)(Waz — lg2) do + / g(s)/ NizM2e dx ds, (2.0.4)
0 0 0

where

U1 = (@15a7¢17¢17w17@17n1)’r5 U2 = (@27@71/)2’@[12’1027@7772)T € H’i

and norm given by
U132, = (e, &9, 0w, @,m) T3,

L
= / p1|@I° + p2lv]* + prl@|* + Bolvba|® + Kl + ¥ + lw]? + Kolwy — lg|? da
0

[e%s) L
(2, 8)|? da ds. 0.
[ o) [ inates) do s (2.0.5)
Here we consider
L
L%(0,L) = {f € L*(0, L) :/ f(z)dx =0}, HX0,L)= H"0,L)NL20,L). (2.0.6)
0

Let U = (¢, 91, %, ¥, w,we,n)T exist and define the operator A; : D(A;) C H; — H,;
given by

0 1 0 0 0 0 0
my2 _ml’p 5 0 (strollg 0 0
p1 % P1 p1 " p1 *
0 0 I 0 0
R _ kK Boa2 _ K _ Kl 1 [oo 2.
A = >0 0 220, —=1 0 - 0 o Jo 9(s)dz(-,s)ds | (2.0.7)
0 0 0 0 1 0
_lrotmly L 0 fey2_Lep o 0
P1 p1 1 P1
0 0 0 I 0 0 =T
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with domain
D(A) = {(0,8,%, ¢, w,@,n)" € Hi; @,we HY0,L)NH*0,L),3, v, @ € Hy (0, L),
o+ [ a(e)n(s) ds € HY(0.L) N H(0. L) € Di(T)) (2.0.8)
where T = n, with
Dy(T) = {n e LL(R*; Hy(0,L));ns € L3 (R™; Hy (0, L)), 7(0) = 0}
and
D(Ax) = {(0, 8,9, ¢, w,@,n)" € Ha; € H}(0,L)N H*0,L),
we HN0,L)NH?*(0,L), € H}(0,L),1, @ € H0, L),
oo+ [ a(s)nls) ds € HEO.L)NE0.L)n € Da(T)), (209)
where Tn = n, with
Do(T) = {n e LLR*; HL(0,L));ns € L3 (RT; HL(0, L)), n(0) = 0},

where 7 is the distributional derivative of n with respect to the internal variable s.

Therefore, the system (LOI3)-(C0I9) with boundary conditions (LO20) or (LO.2T) is

equivalent to

{ Ur = =AU (2.0.10)

Uo) =0
where UO = (@OagplawOawlva;wlano)Ta 1= 172

THEOREM 2.1. The operator A; generates a Cy-semigroup S(t) of contraction on H;.
Thus, for any initial data Uy € H;, the problem (LO.I3)-(L0I9) with boundary con-
ditions (CO20) or (CLO2I) has a unique weak solution U(t) € C°([0,00[,H;). More-
over, if Uy € D(A;), then U(t) is a strong solution of (LOIJ)-(COIT), ie., U(t) €
C([0, 00[, H;) N CO(]0, 00, D(A;)).

Proof. Tt is easy to see that D(A;) is dense in H;, i = 1,2. Now, for U =
(0, 91,0, s, w,we,m)T using the inner product Z0.4) we get

L 2
K Kol K K+ Ko)l o
0o P P1 P1 P1
L o)
K K Kl 1 —
+ pz/ (——wa+ @wm ——Y——w+— [ g(s)nx(s) ds)¢; dzx
0 P2 P2 P2 P2 P2 Jo
L 2
l l l
+ / ) L L TP P
0 P1 P1 P1

L . L o
+ BO[) Uigthy dr + H/O (Sﬁtx + Uy + l’wt)(@—i- U+ l@) dx

L [e’s) L
+ no/ (Wi — loy) (W — 1) dx + / / (V1w — Nsz )Tz da ds.
0 o Jo
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Using integration by parts and the boundary conditions (LO.20) or (LO2T]), after easy
simplifications we can take the real parts to obtain

1 oo L
Re(AU U, =5 [ d) [ nata o) o ds
0 0

From hypothesis (2201 on g we conclude that
¢ o'} L
Re(AU, U, <=2 [ gs) [ nuls)? da ds <.
0 0
Therefore, A; is a dissipative operator.
Next, we show that the operator I — A; is onto. For this, let us consider the equation

(I-A)U=F

of its components the above equation becomes

o—¢ = f' (2.0.11)
.k Kol? K K+ ko)l
P = — Pz + O—<P - _d)w - wa = f2, (2012)
P1 £1 £1 £1
V-1 = f3  (2.0.13)
~ K K Kkl 1 [
Y+ —z — @%m + =Y+ —w—-— g(s)nea(s)ds = f4, (2.0.14)
P2 P2 P2 P2 P2 Jo
w—w = f° (2.0.15)
~ l l 12
w+ M% S - B+ S = 5 (2.0.16)
P1 P1 P1 P1
n—v+n = f1. (20.17)
Integrating (20.17), we obtain
. s
n(,s)=v()(1—e%) + / e (-, 7) dr. (2.0.18)
0

Substituting ¢ and 7 from Z013) and ZIIR) into ZOIJ), we have
P2 + Ky — gqux + kY + klw = P2(f3 + f4)

> -5 _ 3 ° T—5 £7 (. d d 0.
[ Ca |- [ a] e o9
where -
Cy = bo —I—/ g(s)(1 —e ) ds.
0

Note that C is a positive constant by virtue of (Z0.Il). Moreover, it can be shown that
the right-hand side of ZI9) is in H~1(0, L).
On the other hand, substituting ¢ given by (ZO0II) and w given by (Z.0.15) into
E012) and 20.I6), respectively, we obtain
P1P — KPap + Kol — Kby — (K + Ko)lwe = p1(f* + f2), (2.0.20)
prw + (ko + K)ls — Kl — Kowas + KI2w = p1(f° + £O). (2.0.21)
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First we prove that o,1,w € HJ(0,L), in the case of operator Aj, or p € H}(0,L),
W, w € HL(0, L), in the case of operator As.
To do this, let us consider the bilinear form

L L
a(®1,®y) = Cg/ Vizthor dx + H/ (P12 + Y1 + lwr)(Paz + Yo + lW02) dr
0 0
L L
+f€0/ (wizp — lp1)(Wag — 1P) dx + p1/ p1p2 dr
0 0

L L
+p2 / P1is dx + py / w w3 dz, (2.0.22)
0 0

for @1 = (p1,¢1,w1), P2 = (p2,¢2,ws) € (HG(0,L))* or @1 = (p1,91,w1), P2 =
(p2,12,we) € HE(0, L) x HX(0, L) x HL(0, L). Then, the Lax-Milgram theorem (see [2])
provides existence and uniqueness of the solutions

(¢, w) € (Ho (0, L))?
or
(00, w) € Hy (0, L) x H, (0, L) x H.(0, L)
of problem (ZOT9)-@202T). As a consequence, 1) & LZ(R*; H(0,L)) or n € LI(RT;
HL(0,L)). In fact, Z0I3) yields v € H}(0,L) or ¢ € H}(0, L), so that from (Z0.I6) it
easily follows that

| ot / o)/ da ds:/o""g@)/;%(s)@dx N

=3 Ty / U a(9)[? du ds + / " gs) / U e()7(s) d ds,

which in turn, by virtue of (0.1 and the Young inequality, yields

1 -
§||77||%§(R+;H(}(0,L)) <C (H%H%z + ||f7||%§(R+;H5(O,L)))
or
1 -
Sl s 0.0y < C (IalBe + 157 s im0, ) -
From ZII) and ZOI5), we can conclude that @, w € H}(0,L) or ¢ € H}(0,L), w €
HL(0,L). Now, from ([ZO.I4) we get that
utes + [ a(6)na(s) ds € L(0. L),
0
Furthermore, from (Z0.I7), we have
sl p2 &+ 13 0,0)) < € <||¢z||L2 +nllzz ®+;m300,0)) + ||f7||Lg(R+;H3(o,L)))
or
[msllz3 @m0, < C (IIalle + Inllzgram oy + 1 llg@e oy ) -

Hence, 1, € LZ(R*;Hj(0,L)) or ns € LZ(RT; HI(0,L)). On the other hand, from
(Z0I8) we have
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Thus, I—A; is onto. Then, thanks to the Lumer-Phillips theorem (see [8], Theorem 1.4.3),
the operator A; generates a Co-semigroup of contractions e~ ** on H,;. O

3. Uniform exponential decay. In this section we are assuming the boundary
conditions (LO20) and we are denoting by A the operator A; and by H the Hilbert
space Hi. However, all results in this section remain valid with boundary conditions
(CO2T) with slight modifications.

REMARK 3.1. Note that

V= H}(0,L) x Hy(0,L) x Hy(0,L)
with the norm given by
(s, w)|[F = H‘Pﬁ{(}(o,m + ||¢||§{5(0,L) + Hw”fqg(mL)
is a Hilbert space. On the other hand, it easy to see that }V with the norm given by
(s, W[5 = Kllpa + 9 + lwl[F2 + kollws — lol[72 + bl[tel|72
is a Banach space. Indeed, using triangle and Poincaré inequalities, we have

(e, 2, w)l3 < Cull(o, ¥, w3,

where C] is a positive constant. Now, as a consequence of the open mapping theorem,
we conclude that there exists a positive constant Cs such that

(e, %, W)} < Call(, ¥, w)][3-

From the above considerations, we suppose that the system (LOI3)-(L0.20) and hy-
potheses (LOIZ), (2000 over the kernel g hold. We shall demonstrate that the energy

1 L
E(t) = 5/ (prleel? + palibe] + prlwel® + Bolwbal® + Kla + ¥ + lw|? + Kolwe — lp|?) dx
0
1 oo L )
+= g(s) M2(x, 8)|” dx ds (3.0.1)
2 0 0
decays to zero exponentially as time goes to infinity provided conditions
P1 K
— =— and k=K 3.0.2
P (3.0.2)

hold. We shall use Priiss’s result [J], which states that a semigroup e** is exponentially
stable if and only if the following conditions hold:

iR C p(A) resolvent set (3.0.3)
and

3K >0, YUe€D(A), VreR: [|(iX[—A) Yy <K. (3.0.4)
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In fact, note that the resolvent equation (il — A)U = F is given by

ixi! —u? = fl (3.0.5)
iApru? — k(ul +ud +ud), — rol(ud — ') = pif?,  (3.0.6)
i —ut = f3, (3.0.7)
oo
iXpout — Boud, + k(ul +u? + ) — / 9(8)ex(s) ds = paft,  (3.0.8)
0
i’ —u® = f5, (3.0.9)
iAp1u® — ko(ud — lut), + kl(ul +u +1u®) = pifS  (3.0.10)
g+, —ut = fT (3.0.11)

To prove condition ([B.0.4]) we will use a series of lemmas.

LEMMA 3.2. Let A be defined in ([ZX07) and let us suppose that conditions (COI2) and
@0OT) on g hold. Then set iR = {iX : A € R} is contained in p(.A).

Proof. Then following the arguments given by Liu and Zheng [20], the proof consists
of the following steps:

Step 1. In this lemma, we will use || - || to denote the norm in the space L(H).
Since 0 € p(A), for any real number A with [[AA7!|| < 1, the linear bounded opera-
tor (iAA! — I) is invertible; therefore iA\] — A = A(GINAT! — I) is invertible and its
inverse belongs to £(H), that is, i € p(A). Moreover, ||(iA] — .A)~!|| is a continuous
function of A in the interval (—|[A71||71, [[A7Y|71).

Step 2. If sup{||(iA] — A)7!|: [N < [[A7Y|7'} = M < oo, then for [Ao| < [|A7Y|7!
and A € R such that |A\ — \g| < M~1 we have ||(A — \og)(iAol — A)71|| < 1; there-
fore the operator i\ — A = (iAol — A)(I +i(X — Xo)(iXol — A)71) is invertible with
its inverse in L(#), that is, i\ € p(A). Since \g is arbitrary we can conclude that
{ix: D <A77t + M1} C p(A) and the function ||(iA] — .A)~Y|| is continuous in
the interval (—|[A7Y||7Y = ML AT T+ MY,

Step 3. Thus, it follows by B04) that if R C p(A) is not true, then there exists
w € R with ||]A7Y|7! < |w| such that {iX: || < |w|} C p(A) and sup{||(i\] — A)7L]| :
|A| < |w|} = oo. Therefore, there exist a sequence A, in R with A\, = w, |\,| < |w| and
sequences of vector functions U,, = (ul,u?,u3 ut ud ub n) € D(A), with ||Uy,||3 = 1,
and F,, = (fL, f2, f3, f4 £, f5, f7) € H, such that (iN] — A)U,, = F,, and F,, — 0 in H
when n — oo.

Since

Re((iAl — A)U,,Un)y — 0, when n — oo

we get

M — 0, in L2(RT; Hg(0,L)). (3.0.12)
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From B.0.I1) and B0.7) we conclude that
up — 0, in HY(0, L), (3.0.13)
u — 0, in H}(0, L) (3.0.14)

because w # 0. Now, multiplying B08) by (ul + u + lud) and performing integration
by parts, we have

L

L
H/ lub, 4+ ul +1ud|? de = —il,p2 / ul (ul, +ud + lud) d
0 0

L
5 / &, T T, da
0

=M,

oo L
[ 96) [ el Tal TR, do ds
0 0

Z:MQ

L
o / FiTal, ¥ T TB) de
0

oo =L
# (ot [ ot as) k] (3.0.15)
0 =0
Now, substituting (ul, +u3 + [u?), given in ([B.06) into M; and M,, respectively, we
obtain
L

L
Ii/ [upy +us +ub|? do = —ang/ up (ul, +ud +lud) do
0 0

L
5o / U8 (D12 T ol (uh, — Tub) + pif2) de
0

') L
4 / o(s) / i (5) (Do + ol — Tl) &+ prf2) e ds
0 0

L
—I—pz/ Al 4+ ud +1ud) da
0
x=L

; KBOuf’m + /O " () nals) ds) u} . (3.0.16)

=0

2:M3
We analyze each term on the right side of the above equality. Then, using Cauchy-
Schwarz and Poincaré inequalities and noting that |\,| < |w|, we have

L
i>\nﬂ2/ Un (uhy + 03+ 1uf) dz| < Clollung ||z |[un, +up + 132, (3.0.17)
0

L
oo [0 TR T ol — Tal) + i 73) deo
0

< Clled, e (wlll2llze + ludy — Wlllce +1121122) . (3.0.18)
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') L
/ o(s) / i (8) (Do + ol — Tad) + prf2) e ds
0 0

< CHUHL?(W;H(}(O,L)) (|WHW721HL2 + ||U§m - lU}lHLQ + ||f5||L2) (3.0.19)

and

L
pz/ falub, +ud + b)) da| < Ol follpellun, + ud + || (3.0.20)
0

where C' is a positive constant.
In what follows we analyze the term Ms. For this let us take ¢ € C([0, L]) such that

q(0)=—¢(L) = 1. Then, multiplying equation (B0.8)) by ¢(x)(Soud, + fo $)Nna(8) ds)
and integrating by parts in L?(0, L), we have
=0

- [@ (ot + [ a6Dns(o d)]

= —% /OL q'(x) (ﬂouf‘m + /OOO ()1 (s) d5> dx

L o0
—idupa /O b a(e) (Botid, + /0 9() s (s) ds) da

z=L

L 0
[ e+ 1)) o+ [ a5 s) ds) o

0

o0
+p2/ fiq(x)(Boud, + / 9(8)Nnx(8) ds) dx.
0
Using Young and Cauchy-Schwarz inequalities, the above equation can be rewritten as
97 @=L
] =0
< C (e + bl 22 + 1022y 0.0 + N2

+C by + 1 + Wiz (Iludallze + 0l 2o ny) - (3:0:21)

a(w)
2

3 N nx d
Bouid, + / 9() s (5) ds

From the convergences (B.0.12), B:0.13), and B.0TI4l), noting that

F,—0, in H when n—oo
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and taking into account the estimates (B.0.17)-(B.0.21]), we can conclude that

L
i)\npg/ up (ul, +ud +1ud) de| — 0, (3.0.22)
0

L
60/ ud (—idupru2 + rol(ud, — lul) + p1 £2) dz| — 0, (3.0.23)
0
0 L
/ g(s) / N (8)(—idnpru2 + kol(ud, — luk) + p1f2) dx ds| — 0, (3.0.24)
0 0
L
s / P+ w10 da| = 0, (3.0.25)
0
|M3| — 0, when n — oo (3.0.26)
because w # 0 and ||U,||3 = 1. Therefore, from (B.0.16)
L
m/ lul, 4+ ud +1ud|?> de — 0, when n — oo,
0
from which it follows that
(ul, +ud 4+ 1u) =0, in L2(0,L). (3.0.27)

Thus, from B0H), 09, of the convergence obtained and Remark Bl we get

u? — 0, in L*(0, L), (3.0.28)
uS — 0, in L?(0, L), (u3, — lu}t) — 0, in L?(0, L). (3.0.29)

Since ||U,||x = 1, for all n € N, we have a contradiction and the proof of the lemma is
complete. (Il

REMARK 3.3. In particular this result implies that the semigroup is strongly stable,
that is

S(t)Uo — O,

where S(t) := e is the Cy-semigroup of contractions on Hilbert space Hy and ¥y is the
initial data.

LEMMA 3.4. Let us suppose that conditions (LOI2) and (Z01) on g hold. Then there
exists a positive constant K > 0 being independent of F' € H, such that

L %)
// 9()ma? ds da < K| |]| |l
0 0

Proof. Multiplying equation B0.06) by u2 (in L2(0, L)) we get
L

L L
iAp1 / |u?|? dx + n/ (ul + ud + lu®)u2 do — nol/
0 0

L
(u® — lutyu? do = pl/ f*u? dx
0 0
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and, using equation ([B.0.5]) we arrive at
L L o L L
iAp1 / |u?|? dx — i)\ﬁ/ (ul 4 u® + W)l doe + ikl | (ud —lub)ul do
0 0 0
L L o
=1 f2u? dx+/<;/ (ul +u® + ) fI da
0 0
L —
— Hol/ (ud — lut) f* da. (3.0.30)
0
On the other hand, multiplying equation B0.8) by u* (in L2(0, L)) we get

L L L
i)\pg/ lut|? dw—i—ﬁo/ udud da?—i—n/ (ul + ud + lud)u* do
0 0 0

=1 =17

/ / (8)neut ds do = pg/ fAut de.

2—]3

Substituting u* given by ([B.L7) and [B.01) into I, I and I3, respectively, we get
L L L L
iApo / |ut|? dz — ifo) / |ud|? dx — i)\/i/ (ul 4 u® + lu®)u3 dx

—z)\/ / |771 ds da:+/ / 8)NeTles ds dx = pz/ f4u4 dx

—|—ﬂ0/ fxu3da:+/£/ (ul +u® 4 1) f3 da

/ / 8)ne fT ds da. (3.0.31)

Now, multiplying the equality BI0) by u6 (in L2(0, L)) we get

L L
i)\pl/ |u®|? dx + no/ (ud — lu")uS da
0 0
::I4

L L
—l—:‘{l/ (ul +ud + luP)ub do = py / f5ub da.
0 0

=I5

Using the equality (B0.9)) in I, and Is we have
L L o L -
iAp1 / [u®|? da — i/\mo/ (ud — lu" b do — z'/\/d/ (u} 4 u® + lw®)ub dr
0 0 0

L L L
= KO/O (ud — lu)f3 dx + /@l/o (ul +ud +1u®) f5 dx + py ; foub dr.  (3.0.32)
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Adding 3.0.30), B.0.31) and B0.32) we get

L L L
i)\pl/ |u?|? dac—l—i)\pz/ lu*|? dcc+i)\p1/ [u®|? dm—i)\fi/ lub + u® + WP|? da
0 0
L
—i)\ﬁo/ lud — lu')? dz — iBo) / lus|? dx—z)\/ / $)|n|? ds dx
/ / nznzsdsdx—pl/ qudx—i—K/ (uz—l—u +lu)%dac
0

*Ii()l/( lu)fldx+p2/ fu4dx+[30/ 3B dx
L E—
+/£/ (up + u® + ) f3dac+// nxfzdsdac—&—no/ (ud — ") f3 do
0 0

+/il/ (ux+u + lu )fddx+p1/ F9uS da.
0

Using integrating by parts, we have

/ / $)NaTles du = ——/ / 8)|ne|* ds da. (3.0.33)

Substituting equation ([3.0.33]) into the above equation, we get

L L L L
i/\pl/ |u?|? deri)\pz/ lu*|? dm+i)\p1/ [u®|? dz — i/\n/ lub + u® + WP|? da
0 0
L
—i)\no/ lud — lu*)? da:—zﬁo)\/ lus|? x—z)\/ / 8)|ns|? ds dx
f—/ / $)|n=(s dsdx—pl/ qud:B+/<;/ (ug + v’ + W) fI dx
0

—Hol/ lu fldm+p2/ fu4d:t+ﬂo/ 3B dw
L R—
—&—n/ (ux—&—u +lu f3d:c+// nzfxdsdx—&—fio/ (ui—lul)fﬁdm
0 0

+/~cl/ (ug + v’ + lu )f5dx+p1/ 15U da.
0

Taking the real part on the left side of the above equality and using the conditions [Z0.1])
on g, our conclusion follows. ]

LEMMA 3.5. With the same hypotheses as in Lemma [3.4] there exists K > 0 such that

L 1 1
pz/ | do < K||U 32l | Fll2e + ENU 3 FIZ (3] 22+ ug + ® + ]| 2).
0
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Proof. Multiplying BI8) by [~ g

[

s)n ds in L?(0, L) we get

s)u’ ds dx—i—BO/ / 8)igus ds dx
=g
L 00 . L oo
—|—/<;/ / g(s)(ul + u? + 1u)7 ds dx—f—/ / g(s)n. ds
o 1Jo
= / | atomr s @

Substituting n given in B0II]) into Is we get
szo/ [ut|? do = —02/ /

+ﬁo// $)Tx(s udsda:+/»e//
+/0 / o(sInels) ds|

2
dx

o] L
Yul f7(s) ds dx + pg/ g(s) / u'n,(s) dx ds
0 0

(ul 4 u® + lu®)q(s) ds dx

dx — pg/ / s)f4 ds dx (3.0.34)
where by = fo

) ds. From Lemma [34] and using the Poincaré inequality we obtain
L S 2

[ atomts) as| o < /

0 0

ds//
K/OL/Omg(sxl

up 4+ u® + W®)7(s) ds dx
and

$)na|* ds de < C||U]||Fl5, (3.0.35)

1 1
< Kllug +u’ + 1’| 2| U131 FlI,

(3.0.36)
[e) L 5 3 1 1
o [ as) [ utm, () do ds| < K IUIAIFI: (3.037)
0 0
Substituting [B035)-B031) into (B034) and noting that
/ / $)Ts ut ds dx| < =2

our conclusion follows

/ \u42dx+K/ / (8)||n2|* ds dx,
O
LEMMA 3.6. With the same hypotheses as in Lemmam there exists K > 0 such that
2 2
(pl - ) / a2 da + "2

and

|u |2dm<K/ lul +u® + 1) dx
L
+K/ WP da + KU 3| F | + K||FI2,
0

L
60/ |’U,32dx<,‘€/ |u315—|—u3—|—lu5|2dx—l—K||U\|H||F||H
0
1

1
+ K|UZIFNZ (gl oz + lug + o + || 22)
for |A| > 1 large enough
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Proof. Multiplying BILG) by u! in L?(0, L) and using (IL5), we arrive at
L L L
pl/ [u?)? dz = Ii/ (up + u® + ®)ul de — Ii()l/ (ud — lu")ul do
0 0 0
L _ E—
o [ G T o
0
L L
= Ii/ lub + u® + l®|? dxf/s/ (up +u® + ) (u® + [wd) dz
0 0

L L
+ liol/ u’ul do + /1012/ |u'? dz
0 0

L
- o [T T do
0
L r L , o
= /1/ lus + u® + W) do — m/ (up +u® + 1u®) (u® + [wd) da
0 0
L L L
+ Kol/ uS(u:}c + ud + [ud) do — K,Ql/ w’ud dr — nol2/ |u5|2 dx
0 0 0
L L o
+ 5012/ lu'|? dz — pl/ (f2ul +u*f7) da.
0 0
From (B.0.3]), we have
|

ot < 12 (3.0.38)
AL A

On the other hand, using the Poincaré inequality and Remark 3] we can conclude that
1 ez < Clifallzz < ClIF ||
where C' is a positive constant.

Therefore, substituting the inequality (B.0.38) into the above equation, we obtain

L L L
P1 / |u?|? dx < K/ lul 4+ u® + 1’| do — H/ (ul 4+ u® + lu®)ud dr
0 0 0

=ay

L L
- /{Z/ (ul 4 u® + lud)ub dx—i—nol/ u®(ul +ud + [ud) dx
0 0

i=as i=as
e L :‘<;()l2 L
- nol/ uud dx —IiolQ/ |u®|? da?+—2/ |u?)? dx
0 0 AP Jo
—_——
i=aagq
1 2
+ —‘)\PHFH%JF—|)\|2||U|\H||F||H+p1\|U||H|\F\|H- (3.0.39)

Applying the Young inequality in aj, as, az and ay4, the inequality (B.0.39) becomes

rol? T rol? [* 512 Lo 3 5|2
L= o |u”|* de + —— [u’|* de < K lug +u® + lu’]® do
Al 0 2 Jo 0

L
+K/ 32 do + K||U |l [Pl + K| FI2,. (3.0.40)
0
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Now, multiplying ([Z038) by u® we get

L L L
i)\pg/ u'ud dr + 60/ [ud|? dr + Ii/ (ul + ud + lu®)ud da
0 0 0
| S S—

i=as

/ / $)n(s)ud ds do = pg/ fAud da.

Substituting u® given in ([B.07) into as, we have

L L L
BO/ lud|? doe = p2/ lu*|? da — Ii/ (ul +ud + lu®)ud da
0 0

L
// $)nz(s)us ds—f—pg/ f4u3dx+p2/ utf3 du.
0

(3.0.41)

Now we can consider the Poincaré and Young inequalities, then take into account Lemmas

B4 and to obtain the following inequality:

L
Bo/ |u‘32dx</<;/ lul + v 4+ 1WP)? de + K||U||» || F||x
0

1 1
+EU2FI3 (12l ez + ug +u® + 1] 2)

from which the second part of the lemma follows. The proof is now complete.

(3.0.42)

O

Our next step is to estimate the term ||ul +u®+1u®|| 2. Here we shall use the condition

B.0.2).

LEMMA 3.7. For any strong solutions of system (LOI3)-(T0.20) and for any &1 > 0 there

exists K., > 0 such that

l2 L
w1 2o / il + 4 12 de < Ko |[U 1Pl
2’f|>\| 0

[e%s) o =L
+Re <[ﬂ0ui —|—/ 9(8)Ns ds] ui)
0 =0

+€1||U2||2L2(0,L) +e1f|ul — lu'] |2L2(0,L)

Bol? o 412 o 612
+ (e + 2+ 50 / | dxmpl/ )2 da
0

+| D] p—;—%‘/ ud||u?| do
0

with |A| > 1 large enough.
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Proof. Multiplying equation B.0.8) by (ul + u3 + [u5) in L?(0, L) and integrating by
parts we get

L %) _ \*=L
i)\pg/ ut(ul 4+ ud + ud) do — ({ﬁoug + / 9(8)Ns ds] uglg)
0 0 =0
L 0 L
+/ <[ﬂoui + / g(s)ny ds]) (ul +ud +ud), dx —|—/<;/ lul +u?® + 1u°|)? do
0 0 0

=17
L _—
= pg/ FHul 4 ud + ud) da.
0
Substituting (ul + u? + lu®), given by (B.0.8) into I7 we arrive at

L L L
i)\pg/ utul da;—l—z'/\pg/ wtud dz +i\psl utud dx
0 0 0

=Ty =Ty =110

00 =L . L
— A —
- ([ﬂou% / 9(8)11a ds] u;) _ eifo / WBuZ dx
0 =0 K 0

Y Lo
_ Boro / ud (ud — lul) dx—M/ ud f2 da
0 k- Jo

K

=111

_ A / / (8)neu2 ds dx _ kol / / ub — lul) ds dx

=112

L L
+/<c/ lul +ud + WP|)? da = pg/ FAHul + ud + d) da
0

/ / Sy f? ds dz. (3.0.43)

Substituting u! given by ([BL3) and u* given by [.0.7) into Ig, we obtain
L L L
Is = —i)\pg/ uu2 dr — pg/ u' fL dx + pg/ 2 dx. (3.0.44)
0 0 0
Substituting u? given in ([B7) into Iy we get
L L
Iy = —p2/ lut|? dx — pg/ u f3 du. (3.0.45)
0 0

On the other hand, substituting u® given by .03) into I1o and using the Young ine-
quality, we obtain

L
ol < Koy [t o S [T e K F, G040
0
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where ¢ is a small positive constant. From (B.0.7), we get

T
<1l (3.0.47)
SR IR

Performing an integration by parts in 131, we get

L
I = / VT = TalY, da. (3.0.48)
K 0

Substituting (u — lu'), given by B0I0) into B.0.48), we have

1t — —_—— —
I, = Bol / u3(—=iAp1ub + Kl(ul 4+ w3 + lud) — py fO) da. (3.0.49)
k- Jo

Again, substituting u3 given by ([B.0.7) and using (3.0.47) into B.0.49), and applying the
Young inequality we get

L e [F
T K/ |u4|2dx+—/ [[2 di + K|[U || F 1

Bol® t 42 Bol? g 1 3 52
BN [u*)® de + —— \uw—l—u + W’ |” dx. (3.0.50)

* 2

Finally, substituting n given by B.0I1)) into ;5 yields

L o)
112_—/ / nxsu ds dx — 1b0/ uiﬁdl‘—& / Q(S)fgﬁds dzx.
Kk Jo K Jo Jo

Now, substituting u* given b into I13, we can rewrite I as
gu-g y

N —
/ / (8)npu? ds d — ZF)J/ udu? da
0

P1b0/ f3 2 dp — P / / f7u2 ds dzx. (3.0.51)
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Substituting B.0.44), (.0.43), (0.40), B.0.50) and B.0.51) into (B0.43), we obtain

L L
n/ lul + u® + 1u’)? d:vﬁ\)db’g—&’/ |u2 |[u2| dz
0 k b1Jo

o'e) o x=L BOZQ L
+ 50“2 —|—/ g(8)n, ds| ulk po + 2K, + —— / |u4|2 dx
0 x=0 2|/\|

L L
_|_p2/ 4f3d33—|-p2/ 4 1d1‘

/ / 8)fTu2 ds dx + —/ / (8)neu? ds dx

_|_€1p1/ |u6|2d +50P1/ fzd +§0)\| |u;+u3—|—lu5\2 da
0

) e —
KO// lul)dsdx—i—pg/ fHul 4+ ud + ud) do

// nwadsda:—i—(z—pl—bo)/ f3u? dx

+E[U || F |- (3.0.52)

Applying the Young inequality in the above inequality, considering the previous lemmas
and taking the real parts, we obtain the conclusion of the lemma. The proof is now
complete. 0

LEMMA 3.8. Under the above notation, let us take ¢ € C([0,L]) such that ¢(0) =
—q(L) = 1. Then there exist K, K, > 0 such that

o (%

3 5,1 3 5 212
KU 1 F 3 |ug + v + || L20,0) + 1K, [[u|[72(0,1)

=L
) < K|\U|I5]|Fll
=0

50“2 +/ 9(5)% ds
0

and

=L

y q(x)

(i) —(—2 u;|2) < KUl ]|l
=0

1 1 .
FE U2 F2 (lug +u® + || 220,0) + [l £2(0,2))
+ Ky ([Juy — lulHQLQ(OL) +€1Hu2||2L?(O,L))'
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Proof. To prove (i), we multiply B08) by ¢(z)(Bous + fo s)n ds) in L?(0, L) to
obtain

L 9
ivn [ uta@) ot + [ gt o

=114

L L 9
- / (Bouid, + / 9(5)7es d8)q(z) (Boud + / 9311, ds)de

11115

L 9
o [ ol o+ [ (o) ds)da

L S
_ 4 3 . ds)dz. 3.0.53
po [ fate)Boui+ [ atsin. dsyis (3.0.53)
From B07) and B0TT]), we have

L
he="20 [ @)t dw—pzﬂo/ utq(a) 73 do
- pg/ / YulTly ds dx — po / / 7 ds dx. (3.0.54)

Now, we can note that

Ls = _(_q(;) ‘/30%3,;4-/ g(s)n. ds
0
1t
+ 5/0 q(z)

Substituting B:0.54) and (054 into B053), taking the real part and using the previ-
ous lemmas, we get the conclusion of the first inequality.

To prove the inequality (ii) we multiply B0.6) by ¢(z)ul in L?(0, L) to obtain

r=L
)1:—0
2

da. (3.0.55)

Bous + / g(s)n, ds
0

L L
iAp1 / u?q(z)ul do —/@/ (ul + ud + 1) pq(z)ul do
0 0

Ie

L L
ol [ (a2~ gl do = pu [ Pa(o)if
0 0
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Substituting u! given in ([B0.5) into I;¢ and integrating by parts, we have

x=L L
o (BR) = [ do
0

=0

L L
| @it dosw [ el do
0 0

L L
+Iil/ udq(z)ul dr + nol/ (ud — lu")q(x)ul dv
0 0

N =

L L
4o [ @ dotpr [ Patad do
0 0

Using the previous lemmas and taking the real part, our conclusion follows. The proof
is now complete. ([l
The next lemma gives an estimate to ||ud — lu!|| 2.

LEMMA 3.9. For any e2 > 0 there exists K., > 0 such that

L L
l
fd/ lu? — ' doe 4+ —— " / |ub)? dx < idpy (1 - i) / w?ul da
0 2k Ko/ Jo

R,
bond [ e 52 [ e KUl P

K2l .
K, [U] | 1F 13 + (K—0 +e)lluy +u’ + 1.

Proof. Multiplying equation (B0.8]) by (u2 — lul) in L?(0, L), we have

L L L
ml/ lud — ' |? doe = i)\pl/ u?ud dx — i)\pll/ u?ul da
0 0 0

=114

Substituting the equations (B.0.5]) and B0I0) into [14 and I5, respectively, we arrive
at

L L L L
ml/ |ud — lu'? doe = i/\pl/ u?ub dr + pll/ |u?|? da + pll/ u?f1 dx
0 0 0 0
T
+— (u +u® 4 1uP) (IAp1ub + Kl(ul + ud + [ud) — py f6)

z=L

—p1 / fA(ud — lut) dz — K {u;@} , (3.0.56)

z=0
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from which it follows that

L L . .
Hl/ fuz — tu'|* dx:i)‘Pl/ u’ul dx—|—/71l/ [u?? dx—|—pll/ u?fT dx
0 0 ; ;

L L
— iz')\pl/ u;u6 dx — ﬁi)\pl / wub dr
0 0

Ko Ko
=117 =118
L 2; L
. i/\pll/ u’ub dm+K—Z/ lub +u® + W) dx
Ko 0 Ko Jo
:=I19
K L : 5\ L — —*=L
—_Pl/ (ug + u® + W) f6 do — pl/ 2w — ) dz — & [uiug] . (3.0.57)
Ko 0 0 =0
Substituting u! given by ([B.LH) into I17, we have
L L
K — K —
I = — —pl/ u2ub dr ——p; / frub da.
Ro 0 Ko 0
I
Now, substituting u® given by B0.3) into Is, I;7 can be rewritten as
K Lo K L K Cp—
I, = —pli)\/ uub dr — —pl/ u? f5 da ——pl/ frub da. (3.0.58)
ko 0 Ko 0 Ko 0

I Izo

Integrating by parts Io; and Ise, we get

L L L
I, = —ipli)\/ wul dz + ip1/ u?f5 dx — i,01/ frub da. (3.0.59)
K)O 0 K)O 0 HO 0

Substituting u® given by ([BILT) into I1g, we obtain

L L
Ly =—"p) / wib de — Zp, / f3ub da. (3.0.60)
Ko 0 Ko 0
On the other hand, substituting u® given by [B.09) into I9, we have
K L K L _
Iy = ——pll/ |u®|? dx — —pll/ fPub dx. (3.0.61)
Ko 0 Ko 0
Using a similar argument as in Alabau ([10], Lemma 4.3), we obtain
—_jxz=L
usid| < ellud +u? + %l a0 1 + Kool U1l Pl (3.0.62)

where g7 is a small positive constant. Substituting the inequalities ([B.0.59)-([B.0.62]) into
BORD), then using the Young inequality we can conclude that

L L L
Iil/ lu? — ' |* de < idpy (1 - i) / w*ud dr + pll/ |u?|? dx
0 ko/ Jo 0

kol [F K L
o / W8P da+ =21 [ (2 de + K||U| |3 F ||
0

2K)0 2/4301 0
K2l
+ KU 2| |F |2 + (H—O + o) |Jul 4+ u® 4+ 1Wd||2,. (3.0.63)
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The proof is now complete. O
Now, we can prove the main result of this section.

THEOREM 3.10. Let us assume hypotheses (LOI2) and (201) on ¢g and suppose that
initial data satisfies

®o, o, wo € Hy (0, LYNH?(0,L), no€Li(RY, H*(0,L)NH(0,L)) and 1, 11, wi € Hy(0,L).
If

% = % and Kk = Ko, (3.0.64)

then there exist positive constants C' and « such that
E(t) < CE(0)e™*, Vt>0.
Proof. From lemmas 3.4 B3] 3.6l B.7, and we can conclude that
10113, < K|[Ull|Flls + K||IF|3, YU € D(A),
from which it follows that
Ul < K[|F[l3, YU € D(A).

Using Priiss’s result [9] the conclusion of the theorem follows. O

4. Lack of polynomial decay. In this section we are assuming the boundary con-
ditions (CO2T)) and we are denoting by A the operator Az and by H the Hilbert space
Ho.

Our starting point is to show that the semigroup associated to the Bresse system is
not exponential stable. To show this, we assume that g(t) = e~ %!, with w € RT. We will
use Priiss’s theorem [9] to prove the lack of exponential stability; that is, we will show
that there exists a sequence of values A, such that

(A = A) e 0) — 00 (4.0.1)

It is equivalent to proving that there exist a sequence of data F), € H and a sequence of
complex numbers ), € iR, with ||F, ||y <1, such that

(A — A F, || — o0 (4.0.2)
where

AU, — AU, = F, (4.0.3)
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with U, not bounded. Rewriting the spectral equation in terms of its components we
have

il —u? = (4.0.4)

ixpru? — k(ul +ud +ud), — rol(ud — ') = pif?,  (4.0.5)

i —ut = f3, (4.0.6)

iXpout — Boud, + k(ul +u? + ) — / 9(8)ex(s) ds = paft,  (4.0.7)
0

iu® —uS = f5 (4.0.8)

ixpru® — ro(ud — lut), + Kl(ul +u® +1u®) = pifS  (4.0.9)

ixg+n,—ut = f7. (4.0.10)

THEOREM 4.1. Let us assume hypotheses (LOI2) and (Z0OJ) on g, suppose that the
initial data satisfies

(S007§017¢07’(/}17w07w1777)T € D(A)7

and suppose that

or K # Ko. (4.0.11)

P1 K
/)2#5

Then the semigroup associated to system (LO.I3)-(L0I9) with boundary conditions

(C021)) is not exponentially stable.

Proof. Let us take f; = f3 = f5 = fr = 0. Using equations B0.0), B01) and E0.9)

to eliminate the terms u?, u* and u% we get

—pi N2t — k(ul 4w ), — kol(ud —lut) = pife,  (4.0.12)

—paN?u® — Boud, + K(ub +u® + lu®) — / 9(8)Ngw ds = pafs, (4.0.13)
0

i N2 — ko(ud — lut), + kl(ul +u® + 1) = pifs,  (4.0.14)

)

ixp+ns —idud = 0. (4.0.15
Let us take
fa(x) = sin (%x) ,  fa(x) = cos (%x) . fe(x)=0. (4.0.16)
Then we can look for solutions of the form
u' = A sin (%x) . u®= B cos (%x) . u®=C cos (%x) ,

n(z,s) = v(s) cos (%x) , (4.0.17)
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where A, B, C and 7(s) depend on A and will be determined explicitly in what follows.
Consequently the system ([AL0.I12)-(L0.15) is equivalent to

[—/\2 + = (”—W)Q + @12] A+ (H)B

p1 N\ L p1 p1 \L
l sum
- (7) Ok + ko) = 1, (4.0.18)
L a2y Do (L / N "
pz(L)AvL{)\—Fp?(L)—F(L) ; g(s)'y(s)ds+p23
+50 =1, (4.0.19)
P2
I /um K [ o Ko (UT\2 K 2]
(B (ko) A+ B a2+ B0 (B L B o, 4.0.20
pl(L)( 0) 1 pl(L) p1 ( )
7' (s) +iXy(s) —iAB = 0. (4.0.21)
Solving ([L02T]) we get
v(s) = Cre™™* 4 B. (4.0.22)
Since 7(0) = 0 then Cy = —B, and ([L0.22]) becomes
v(s) = B — Be™ ™, (4.0.23)

Then, from [023]) we have
oo (o) . o0 .
/ g(s)y(s) ds = / (B — Be™™*) ds = Bby — B/ g(s)e™™* ds (4.0.24)
0 0 0
where by = fooo g(s) ds. Consequently from ([@LOI])-020) we get

{_Aszi (M)2+%ZQ]A+£ (M)B+L (ﬂ) Cli+ro) =1,  (4.025)

p1 \ L p1 \ L p1 N\ L
K [um o b umN2Z sum 2/°° —ids K
FETY Ay | a2 2 (BT (BT ds+ | B
+ 20 =1, (4.0.26)
P2
L /pm K 9 Ko (UT\Z K 4
ol A+ —IB —-A — (= —l7| C=0. 4.0.27
Pl(L)(H+HO) +Pl +[ +P1<L) +p1 ( )

First, we assume that

Pk
p2 " b’

Then, choosing A = A, such that

K (BT\2 Ko, K T
A2+ — (—) + 22 =2—1
p1 N L p1 p1 L
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the above system can be rewritten as

K [ um 7 B
QEZ(L)/H—E (T)B+2—Z<T)O_1, (4.0.28)
K (HT B CIAYUZ0 R 0700 M LR S
2y as e L () - () [ o ase 2] B
+5i0 =1, (4.0.29)
P2
2—4(L>A+—JB+QEJ(L>C:0. (4.0.30)
From (L028) and (030) we have
P1
B=—2 (4.0.31)
w1
Then from (030) and (L03T) we get
A=—-C— ! . (4.0.32)

() () [
Substituting ([@LO31) and @032) into {029 yields

K T K T l
E(l_%)c - E(%) (Q_;d) (;ur) [p,ﬂ' l]

’ /O 7 g(s)eins ds} o (40.33)

from which it follows that

pp2 [(b Kk > /OO —is }
C— - e s)e ds 4.0.34
K2 Km P1 0 9(5) ( )
bounded as p—oo
and
o0
A— p1§2 [(ﬁ - ﬁ) —/ g(s)e ds} . (4.0.35)
K P2 p1 0

bounded as p—oo

Then, from ([@034) and [E035) we have
> K u? —lu T > K udl — Al — = o0 4.0.36
U2, 5l d C ”L :
0

as u — o0o. Therefore there is no exponential stability. Now let us assume that the
coefficients satisfy
P1

K
pgzg’ K # Kg.
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Multiplying the equality (£0.27)) by m and choosing A such that

_A2+@<M)2:@12

)

p1 \ L p1
the equalities (£0.29), (E0.26) and [@O0.Z7) become
RZRO) (BTN gRopl 4 K (BT Lo(um _
[( - >(L) +2pll]A+p1(L)Berl(L)C(/erno)—l, (4.0.37)
£o(bx (Lo B (BTN (V[T e s 4 B4 B
p2(L)A+|:p1(1 K,)(L) (L)/O 9(s)e d8+p2+pll B
+ 20 =1, (4.0.38)
p2
2
K [T K K
E(EYa+ —" By Eic=o. 4.0.39
pl(L) +p1(/€+l€o) +p1 ( )

From equations ([A03]) and [@039), we have

K Ko\ /T 2 pm\2 [ —ix K Koo K2
£ (1) (B (Y gt S e
[Pl ( k/ \L L7 J 9(s) P2 p1 p1(k + Ko)
from which it follows that
K Ko\ (pmN\2  pm\2 (% —ix
£ () o
[01 ( - 7 7 ; g(s)e s| B —
as j — oo. Substituting this expression into (LO.37) and (£0.39) we get

Kn—@) (@)2”@[2} A_,_é(M_F)C(n—l—HO):l—O(%% (4.0.40)

P1 L P1 L
K [T K 1
—(— ) A+ —IC =1+ 0(—). 4.041
p1 ( L ) p1 O(/ﬂ) ( )

So, we have
Ko | rpmN2 K+ Ko (U 1
S, RALAS | (Rl R .4 QP il | Y
p1 [(L) l} Kp1 (L)+ O(N)’

from which it follows that

(E)A_) K+ Ko

L 2KK0p1
From ([{0.39) we can conclude that
o= o .
2/%0

Using the same argument as above we conclude that
Uyl — oo. (4.0.42)
So we have no exponential stability. O

REMARK 4.2. Note that showing the lack of exponential decay of the problem (COI3])-
(COI9) with boundary conditions (LO.20) when

Pt o K # Ko
P2 b

is an important open problem.
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5. Polynomial decay. In this section we are assuming the boundary conditions
(C021) and we are denoting by A the operator As and by H the Hilbert space Hs.
Our main result is proving the polynomial decay. Therefore, the next theorem gives the
polynomial decay of our problem studied here.

THEOREM 5.1. Let us suppose that
P =+ B oor & % Ko.
p2 " b

Then the semigroup associated to system (LO.I3)-(L0I9) with boundary conditions
(L0221 is polynomially stable and

1
|leAUpl| < %HUOHD(A)-
Moreover, this rate of decay is optimal.
Proof. To start, let us suppose that
P E, K # Kg.
p2 b
Then from Lemma

L L L
l
nl/ |ud — lu'|? do + —— fpL / |u®|? dx < i\p (1 - i) / u?ud dx
0 2k0 Jo Ko/ Jo

Ios
Kp
bt [0 e £ [t de s KO
+K62||UHH||F||H+az\lum+u + il |[7s (5.0.1)

Substituting u? given by (B.0.5) and u® given by (B.0.9) into I3 and applying the Young
inequality, we get

l L
Is| < K|>\\2/ luk + a4 1P da +Zp1/ S 2 der
0

Ko
L
+ K|/\\2/ 2] da + K|/\|2/ 2 da. (5.0.2)
0 0
Substituting the inequality (B.02) into (B0T]) and using Lemmas B4 B35 B.6, B.7, B8]
we have

with |A| > 1 large enough. Then using Theorem 2.4 in [I] the conclusion of theorem
follows. The other case follows using the same argument. So the polynomial decay
holds.

To prove that the rate of decay is optimal, we will argue by contradiction. Suppose
that the rate ¢t~ 2 can be improved, for example that the rate is ™7 for some 0 < € < 2.
From Theorem 5.3 in [13], the operator

IAT2FE NI = A) |2
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should be limited, but this does not happen. For this, let us suppose that there exist a
sequence (A\,) C R with lim,_,~ |\,| = 00 and (U,,) C D(A) for (F,) C H such that
(A — AU, = Fy,
is bounded in ‘H and

. —24 &
lim |, [

UHHH = OQ.

Then, we can consider, for each p € N, F, = (O,sin (u”—g) ,0, cos (HE—I) ,O,O,O)T and

U = (Pps Prs Vs Vs Wy, @y M) T, where, due to the boundary conditions, U, are of the

form ¢, =Asin (u7%), 1, =Bsin (p=2), w, =C cos (=) and n,(z, s) =~(s) cos (LT .
Then following the same steps as in the proof of Theorem Il we can conclude that

Nl 22 [|ULl 3 > O(pu2) = 00, as p— cc.

Therefore the rate cannot be improved. The proof is now complete. O

Acknowledgment. The authors are grateful to the referee for the valuable sugges-
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