
ASYMPTOTIC BEHAVIORS OF

TYPE-2 ALGORITHMS AND

INDUCED BAIRE TOPOLOGIES*

Chung-Chih Li
Computer Science Department

Lamar University

Beaumont, Texas, USA

licc@hal.lamar.edu

Abstract We propose an alternative notion of asymptotic behaviors for the study of type-

2 computational complexity. Since the classical asymptotic notion (for all but

finitely many) is not acceptable in type-2 context, we alter the notion of “small

sets” from “finiteness” to topological “compactness” for type-2 complexity the-

ory. A natural reference for type-2 computations is the standard Baire topology.

However, we point out some serious drawbacks of this and introduce an alterna-

tive topology for describing compact sets. Following our notion explicit type-2

complexity classes can be defined in terms of resource bounds. We show that

such complexity classes are recursively representable; namely, every complex-

ity class has a programming system. We also prove type-2 analogs of Rabin’s

Theorem, Recursive Relatedness Theorem, and Gap Theorem to provide evi-

dence that our notion of type-2 asymptotic is workable. We speculate that our

investigation will give rise to a possible approach in examining the complexity

structure at type-2 along the line of the classical complexity theory.

Keywords: Type-2 Complexity, Type-2 Asymptotic Notation, Baire Topology.

1. Introduction

A key notion involved in defining the complexity of a problem is the use of “finite-

ness”. We say that, function is asymptotically bounded by if and only if for all but

finitely many such that Namely,

*
 A full version with detailed proofs of the theorems in this paper is available at

http://hal.lamar.edu/~licc/T2Asy/Full.T2AsyTCS2004.pdf

466

Based on the notion above, Hartmanis and Stearns [8] gave the very first precise defi-

nition for explicit complexity classes in the following form:

where is a computable function and is an acceptable programming system

[18] with a complexity measure associated to it [2]. The use of can also be

found elsewhere, e.g., the asymptotic notations in algorithm analysis. The

most important consequence of using asymptotic notations, in our opinion, is not only

that we can significantly simplify our notations, but that it is an indispensable tool in

the theoretical study of computational complexity. Almost all nontrivial complexity

theorems at the center of classical complexity theory such as the Speedup Theorem [2,

24], the Union Theorem [13], the Gap Theorem [3, 5, 24], the Compression Theorem

[2], the Honesty Theorem [13], and so on (see [20] for more), are all proven by a

mathematical technique called priority method. The method argues that the required

properties (behaviors) of a required program will be fulfilled eventually in the process

of its construction. In other words, we allow some finitely many violations. Likewise,

the recursive relatedness theorem [2] is also proven based on the notion of asymptotic

behaviors, which is the foundation for lifting different complexity measures into a

certain degree of abstraction such as the two machine independent axioms proposed

by Blum [2]. It is worth to note that the asymptotic notation is not arbitrary. Instead,

it is justified by a fact that any program can be patched on some finitely many inputs

by using a finite table to avoid expensive computations on those particular inputs.

Thus, theoretically, we can use and in (2) alternatively without changing the

underlying complexity structure of computable functions
1
.

When we shift our attention to higher ordered computation (in particular, type-2

computation), which in many cases seems to be a better computing model for many

contemporary computing problems, we soon realize that there is no general complex-

ity theory to unify results from different approaches. A primary reason is that we do

not have a reasonable notion of higher ordered asymptotic behaviors as the one in-

volved in (2). The direct use of “for all but finitely many” in type-2 computation is not

acceptable, because we cannot patch a type-2 program on a function input in general.

Consequently, many techniques used in the proofs of classical complexity theorems

are not applicable in type-2 context. Therefore, the present paper is intended to pro-

vide a robust notion of type-2 asymptotic behaviors so that the classical complexity

theory can be advanced into type-2. Since any machine model for computation be-

yond type-2 seems inconceivable by intuitions, we thus focus on type-2 computation

which can be intuitively modelled by the antiquity – Oracle Turing Machine (see [7]

for conventions).

Notations: A type-0 object is simply a natural number. A type-1 object is a function

over natural numbers. A type-2 object is a functional that takes and produces type-1

objects. By convention, we consider We are only interested

1
In fact, this is an overstatement. Here we overlook the honesty property of which is a necessary condition

for the statement. Nevertheless, the honesty condition is rather weak for most reasonable resource bounds.

467

in total functions, when they are taken as inputs of functionals. For conve-

nience, we use to denote the set of total functions and to denote the set of partial

functions. Note that functions in or may not be computable. Also, we use to

denote the set of finite functions, which means if and only if and

We fix a canonical indexing for and hence we are free to treat any

function in as a number so it can be taken as the input of a type-1 function. Unless

stated otherwise, we let range over N, range over and F, G, H

range over type-2 functionals. Here we consider some examples of type-2 function-

als:

where is function composition. Clearly, F, G, and H are type-2 functionals of type

and is a type-2 functional of type With we

have Since some complexity properties at type-2 can be easily

proven by the same tricks used in the original proofs, we therefore keep a type-0 in-

put in order to take this advantage. We also note that via, for example,

where Thus, we do not lose generality when we

restrict type-2 functionals to our standard type

Although the type-1 input itself is an infinite object in general, we observe that only

a finite part of it is needed for any terminating computation. This is a trivial application

of the following theorem due to Uspenskii [23] and Nerode [14]: A functional F is

continuous if and only if F is compact and monotone. Compactness and monotonicity

are defined as follows.

DEFINITION 1 Let F : We say that:

(i) F is compact if and only if

(ii) F is monotone if and only if

Compactness and monotonicity are the key properties of computable functionals in

defining our topologies for the concerned computation. We take Oracle Turing Ma-

chines (OTM here after) as our formal type-2 computing device, where the oracle is

extended from a set-oracle to a function-oracle. Thus, by a computable functional, we

mean a functional that can be computed by some OTM, where the type-1 input will be

prepared as an oracle attached to the machine. Clearly, every computable functional

is continuous [18]. As for classical Turing Machines, we can fix a programming sys-

tem associated with a complexity measure (say, the number of steps

performed) for OTM’s. Blum’s two axioms can be used directly without any modi-

fication. However, having Blum’s axioms for type-2 complexity measures does not

mean a general complexity theory immediately follows. A workable notion of type-

2 asymptotic behaviors indeed is the missing part of the current type-2 complexity

theory.

2. An Outlook of Present Complexity Theory at Type-2

Cook and Kapron defined second-order polynomials [9] in order to characterize

the set of type-2 Basic Feasible Functionals (BFF here after) [6]. Their framework

468

requires a rather artificial function called the length function, which is served as the

type-2 analog of where is the length of the bit string representing For

the length function of is defined by

Thus, is the maximum length of the values of on input with length BFF,

to some degree, is seen as the type-2 analog of P. Inside BFF, how conceivable is the

use of second-order polynomials together with the length functions? We present an

easy example to show that some results may drift away from our intuition. Consider

Let and denote their cost functions (e.g., numbers of steps performed). We

observe that the major cost of computing the two functionals is querying the oracle.

For each query at least steps are needed (for placing the query

and reading the answer). Thus, the max and min functions above need many

queries and each query need steps. In terms of length functions,

both functionals are bounded by and hence by a second-order

polynomial defined as where However, we also

observe that, unless we have In other words,

in most cases we have but we have difficulty to describe this

situation in terms of second-order polynomials and length functions. What should be

a formal and satisfactory notion of “most cases”? How do we formalize the concept of

“most cases” so that we can forgive a “few” “affordable” exceptional cases? On what

ground we can justify our intuition that G is easier than F?

For a general type-2 complexity theory to begin with, arguably, we need to have a

robust notion of type-2 complexity classes along the line of Hartmanis and Stearns’

definition as shown in (2). Here we consider Kapron and Cook’s setting again as

their work currently seems to be the most suitable framework for the study of type-2

complexity classes in terms of explicit bounds.
2
 A type-2 complexity class determined

by a second-order polynomial can be formulated as follows,

In [21] Seth also suggested a type-2 complexity class similar to (4) where was

extended to any type-2 computable functional. Seth speculated that some classical

complexity results such as the Gap theorem and the Union theorem may be proven.

However, we are skeptical about this because we notice that there is no notion of

asymptotic behaviors involved in (4) and, as we mentioned earlier, the original proofs

2Another line for the study of higher-order complexity theory is Implicit Computational Complexity; no
explicit resource bounds are used to name higher-order complexity classes.

469

of the two theorems rely on priority arguments in which some violations need to be

tolerated. In fact, we suspect that it is impossible to prove any nontrivial complexity

theorems without such tolerance.

An immediate idea is to keep the same notion of and implant it in (4) directly.

However, this is problematic, because there is no corresponding Church-Turing thesis

at type-2. In other words, there is no effective way to patch a program on finitely many

type-1 inputs (because some of them may not be computable).

Another way to get around the problem is to consider only “seen computation”.

As a matter of fact, all terminating computations are finite and countable. Based on

this observation, in early 70’s Symes [22] presented an axiomatic approach for type-2

complexity theory. The axiomatic system was modified from Blum’s. Symes required

a computation (represented by a computation tree) of the concerned type-2 functionals

to be explicitly provided as an input. The machine will be shut down if the provided

computation is not consistent with the “actual” computation of the machine. In his

proofs, was used as the context: “for all but finitely many computations”. This

seems to be a reasonable setup in a sense that, for every computable type-2 functionals

F and G, we consider F almost-everywhere less than G if there are

only finitely many computations of F and G resulting in F > G. However, the setup is

too remote for practice. No one can provide a computation tree before the computation

begins. All we can do is to enumerate all possible computations only for theoretical

investigation.

In the following section we introduce a new idea to define a workable type-2

almost-everywhere relation, As “compact” used in topology to some extent is

considered as a surrogate for “finite” and “small” and “computable”, our investigation

begins with a study on the close relation between topology and type-2 computation.

3. Topologies and Type-2 Computation

Notations:. Let be the discrete topology on N. The space is called Baire

space. The Baire topology [1, 15, 18] is denoted by in which a basic open set is

the set of all total extensions of some finite function. Let denote the product

topology of and Given we use to denote

the set Similarly, will be used in the

same way. A type-2 functional F is said to be computable if there is an OTM with

index that computes F For a straightforward

analog of would be:

However, as we pointed out earlier, (5) is too restrictive, because in general there is

no terminating computation that can recognize finitely many Thus, if we are

interested in computable functionals, a better notion of would be something

like: “For all but finitely many computations of F and G, the result of F is less than or

equal to the result of G.” This in fact is Symes’ idea. We put the subscript in

to reflect the type of its operands. We will use “computation” to mean “terminating

computation” for the time being. A computation of a computable functional is simply

470

a branch with finite length of its computation tree. We first state two naive objectives

for an ideal type-2 almost-everywhere relation to achieve.

Goal 1: OTM’s for F and G, respectively, such that, there are only finitely many

computations of the two OTM’s resulting in values such that F > G.

Goal 2: The type-2 relation should be transitive.

In type-1, the two objectives are rather trivial. Nevertheless, the first one assures that

we can patch a program, and the second one assures that we do not lose any functions

from a complexity class by increasing the resource bound. For the obvious reason,

we want to preserve the two properties at type-2. Unfortunately, the two properties

conflict; they hurt each other. In the end, we give up transitivity, which does not

seem too essential to our primary purpose: a workable notion of type-2 asymptotic

behaviors for proving theorems. The following standard theorem hints a possible way

to formalize

THEOREM 2 Let be total and let If S is compact in then

there are only finitely many computations of on S.

Thus, it seems reasonable to formalize our notion as follows: if and only if

there is a set X such that, X is and for all

we have We restate this in the following definition.

DEFINITION 3 Let if and only if is co-

compact in

We change the superscript to to reflect the conclusion we will discuss in a moment

that this definition is too strong for our purposes. Nevertheless, the following theorem

shows that relation meets our Goal 2.

THEOREM 4 Relation is transitive over type-2 continuous functionals.

A standard property of Baire topology says that, if S is compact, then the image of

any continuous functional on S is also compact. Also, every compact set in is finite.

We have the following corollary.

COROLLARY 5 If F and G are continuous and then there exists

such that, for every

Thus, if then adding some constant value to G allows us to bound F

everywhere. If we consider G as some sort of resource bound, we speculate that a

constant or linear speedup theorem may be proven. In other words, we can patch the

program for F to remove the extra constant cost Comparing to (1), the similarity

between and can be easily seen:

This suggests that Definition 3 might be a right choice. However, has a fatal

problem that discourages us to move any further. We show that in fact is an empty

471

notion and any possible definition for type-2 asymptotic behaviors based on will

not give any flexibility.

THEOREM 6 Let be continuous. if and only if

Sketch of Proof: The proof is an application of the Uspenskii-Nerode theorem that

every continuous functional must be compact [15]. Thus, if is not empty, it

must be But the only set in that is both open and compact is the

empty set. Therefore, if is not empty, it can’t be compact in

To fix this problem, we need a topology that can provide enough compact sets for

describing “small” sets. In other words, a coarser topology is needed.

4. Type-2 Almost-Everywhere Relations

In this section we define a class of topologies determined by the functional in-

volved in the relations. These topologies are induced from the Baire topology. On the

one hand, the induced topology must be coarse enough so that the compact sets are

not necessarily trivial. On the other hand, the induced topology must be fine enough

so that we can differentiate two computations in terms of their type-1 inputs. Also, the

formalization of the almost-everywhere relation should catch the intuitive idea stated

in previous sections. Unfortunately, the two goals proposed in Section 3 are difficult

to achieve at the same time. In the end, we give up transitivity in order to have a work-

able notion of type-2 asymptotic behaviors. Let denote the case that F

is defined on and its value is

DEFINITION 7 Let and We say that is a

locking fragment of F if and only if

If is a locking fragment of F and, for every is not a locking

fragment of F, then is said to be a minimal locking fragment of F.

Clearly, if F is total and computable, then for every there must

exist a unique with such that is a minimal locking fragment of F.

It is also clear that, if is a minimal locking fragment of F cannot be effectively

decided. For convenience, we use to denote the set of total extensions for any

We extend this notation to

For each we take as a basic open set of

We observe that, for every and

Note that if and are consistent; otherwise,

The union operation is conventional and an arbitrary

union may result in an open set that is not basic. Given any and if

then there exist and such that,

and Namely, is a Hausdorff topology on

472

4.1 The Induced Topology on

In stead of taking every as a basic open set (this will form the Baire topol-

ogy), we consider only those that are related to the concerned functionals. We intro-

duce a class of relative topologies determined by some participated functionals.

DEFINITION 8 Given a finite number of continuous functionals, let

denote the topology determined by as follows. For each

be the minimal locking fragment of on Take

as a basic open set of

Note that, in the definition above, we have Thus, if is a

basic open set of then must be a locking fragment to each

of and However, given any two functionals, and the topolo-

gies and are determined by different basic open sets, and hence the two

topologies do not share the same set of compact sets. This in fact is the inherited

difficulty of having a transitive relation.

4.2 Type-2 Almost-Everywhere Relation,

Now, we are in a position to define our type-2 almost-everywhere relation.

DEFINITION 9 Let be continuous. Define

The complement of is We call set the exceptional set of

THEOREM 10 There are two computable functionals such

that, and, for any two OTM’s that computes and respectively, there

are infinitely many computations resulting in

Sketch of Proof: We simply observe that, given any two computable functionals

and may not be continuous in topology Thus, being compact

in does not mean must be compact in Also,

may not be compact in and hence is not necessarily compact in

Thus, Goal 1 fails,
3
 but the statement of Goal 1 may be too strong in the context

of type-2 computation if the real purpose behind is to patch programs. We have the

following theorem to support our definition.

3 We could have defined Definition 9 as if and only if is co-compact in In
such a way we will have a finer topology so that every involved functional is also continuous in
It follows that we can have a result opposite to Theorem 10. However, the break of Goal 1 due to the
infinitely many computations of is acceptable, since mostly serves as a mathematical bound and its
computation is not interested at all. Besides, the topology is still not fine enough to bring back
transitivity to our type-2 almost everywhere relation. Therefore, we do not find any particular advantage of
using as our reference topology for the compactness of

let

473

THEOREM 11 Suppose are computable. If then

there is an OTM for such that, there are only finitely many computations of the

OTM on

We omit the proof, which is obvious from the definition of If in the above

theorem is the cost function of some OTM, we can patch the machine so that the

complexity of the patched machine is bounded by everywhere.

THEOREM 12 The relation is not transitive.

Proof: The idea is that the relations and hold based on two unre-

lated topologies and respectively. Thus, may not be compact

in Consequently, the set which is a subset of

may not be compact in Consider the following example.

It is clear that and hence Also, we have

Since the only basic open set of that contains is with

and it follow that is compact in and hence

We observe and to have

For each define as and Thus, for

every is a basic open set of Let

Clearly, is an open cover for without finite subcover. Thus, is

not compact in Therefore,

5. Applications in Type-2 Complexity Theory

Recall the two functionals F and G defined in (3). We simply compare and

Assume under some coding convention. Thus, if Let

We observe that, Since S is compact in

474

it follows that is also compact in Therefore,

which indeed reflects our intuitive understanding about the complexity of G and F.

In the following, we provide some serious applications of our type-2 asymptotic

behaviors. We show that the set of type-2 computable functionals asymptotically

bounded by a given computable type-2 functional is recursively enumerable. In other

words, every type-2 complexity class has a programming system. Also, we prove

a few complexity theorems at type-2 to show that the techniques used in classical

complexity theory now can be transferred under the notion of our type-2 asymptotic

behaviors.

5.1 Type-2 Complexity Classes

In [12, 11] we define a special class of type-1 computable functions of type

called Type-2 Time Bounds. Under some proper clocking scheme, we give

a type-2 complexity class determined by Type-2 Time Bound Since each

Type-2 Time Bound also determines a limit functional we can understand the

complexity class by the following formula.

Note that, for every Since the way we clock an OTM

not only depends on the result of but also on the course of computing we do

not have the converse of (6) in general. The complexity class is very sensitive to

the clocking scheme and the conventions made for our OTM’s. We may want to get rid

of the specific knowledge of the clocking scheme in defining complexity classes. In

the following, we give a more direct way in defining a type-2 complexity class, where

the computable type-2 functional simply serves as the resource bound.

DEFINITION 13 Let be computable. Define

Here we point out a fact with detailed explanation omitted that the notions of C(T) and

are not equivalent. Nevertheless, we speculate that the type-2 almost everywhere

relation involved in Definition 13 will let us directly modify the proofs given in [11]

for type-2 Speedup Theorem, Gap Theorem, Union Theorem, Compression Theorem,

and so on.

An analog big-O notation for type-2 algorithms can be directly given as follows:

DEFINITION 14 Let be computable. Define

4Note that the topology is determined by the locking fragments of the functional G, but not by the
actual queries made during the course of the computation of a machine for G (some unnecessary queries
may be made). However, an optimal program should not make unnecessary queries just as an ordinary
optimal type-1 program that should not go into some unnecessary loop.

475

We do not know yet if there is a computable functional F such that C(F) = O(T) in

general. A positive result to this question requires a Union Theorem.

At type-1, it is easy to show that the finite invariant closure of a complexity class is

recursively enumerable [3]. However, not every complexity class itself can be recur-

sively enumerated. When the resource bound is very small (namely, very dishonest),

the complexity class determined by is unlikely to be recursively enumerable [3,10].

On the other hand, if is big enough to bound all finite support functions
5
 almost

everywhere, then the complexity class determined by is recursively enumerable. In

particular, if is nontrivial, i.e., for all then all finite support

functions are contained in the complexity class determined by (see [4], Section 9.4).

The intuitive reason behind this is that, if the bound allows to compute every finite

support function almost everywhere, then we can patch a program at finitely many

places with cost bounded by almost everywhere. In such a way, we can exactly enu-

merate the complexity class determined by At type-2, we have the same situation.

To recursively enumerate C(T), we need a notion of non-triviality for T.

DEFINITION 15 Let be computable. T is said to be nontrivial if

and only if there is a constant such that, for every minimal locking fragment

of T, we have that, if and then

Note that, the constant in Definition 15 depends on OTM’s conventions. Although

we may not be interested in finding out what really is, we can’t drop this constant

until a linear speedup theorem is formally proven. Intuitively, a nontrivial computable

resource bound T allows an OTM to check whether or not is in at com-

putational cost bounded by T as long as is a fixed minimal locking fragment of

T. This property serves the same purpose of non-triviality of classical type-1 resource

bounds. We obtain the following theorem.

THEOREM 16 Let be computable and nontrivial. Then, the

complexity class C(T) is recursively enumerable.

Sketch of Proof: Recall that every is represented by a unique canonical index.

Let denote the zero extension of That is, when

otherwise. Let be a standard pairing

function. Together with the canonical indexing of we have for every

and

Let be computable and nontrivial. Unlike the proof for its type-1

counterpart, we are not going to enumerate all finite invariants of C(T).
6
 Instead, we

directly argue that there is a recursive function such that,

With a proper S-m-n theorem on type-0 arguments,
7
 we can construct a recursive

such that, for every and

5 A function is finite support if the value of is 0 almost everywhere.
6
ln fact, we haven’t had a precise definition of finite invariant for type-2 functionals.

7
Obviously, we do not have an S-m-n theorem for OTMs on type-1 arguments.

476

Next, we shall argue: (i) If there exist such that

(ii) For every we have Due to the space constrains, we

omit the detailed argument.

5.2 Type-2 Complexity Theorems – Rabin’s, Recursive
Relatedness, and Gap Theorems

Here we demonstrate the type-2 analogs of three interesting complexity theorems

in classical complexity theory: Rabin’s theorem [17], recursive relatedness theorem

[2], and Gap theorem [3]. Our purpose is to show that our type-2 asymptotic approach

is a reasonable one that can lead to a full scale investigation of type-2 complexity

theory. Due to the space constraints, detailed proofs are removed.

A technique using diagonalization together with a priority argument with no injury

is also known as cancellation argument [16], by which Rabin proved that, for any re-

cursive function there is a recursive 0-1 valued function such that

We modify Rabin’s proof and obtain an analogous type-2 result as follows. The proof

is also given in the full version of this paper.

THEOREM 17 (TYPE-2 RABIN’S THEOREM) For any computable

there is a 0-1 valued computable such that

As we mentioned earlier, recursive relatedness is a bridge for complexity theorems

between different complexity measures [2]. A type-2 analog will be also essential if

we want to further abstract away from a particular model of type-2 computation. We

thus formulate a type-2 Recursive Relatedness Theorem in the following. We omit the

proof since it can be obtained from the original proof with some minor modification.

THEOREM 18 (TYPE-2 RECURSIVE RELATEDNESS THEOREM) For any

two complexity measures for OTM’s, and there is a computable func-

tional such that, for every

and

The operation of an effective operator of type is indeed a special case

of type-2 computations where the type-1 input is restricted to (recursive functions).

However, the Operator Gap Theorem [5, 24] does not imply that we can directly obtain

a gap theorem at type-2. In fact, we prove that if we allow the gap factor to be a type-

2 computable functional (not just an operator), we can uniformly construct a type-2

477

computable functional that can inflate every type-2 complexity class [11]. For sim-

plicity, here we restrict the gap factor to recursive functions. We obtain the following

result.

THEOREM 19 (TYPE-2 GAP THEOREM) For any increasing recursive func-

tion there is a computable functional T such that,

Sketch of Proof: To proof this theorem, we first accept a convention that the OTM

has to scan (read) every bit of the oracle answer at least once; otherwise an opposite

theorem can be proven [11]. In other words, the cost of a query is at least the length

of the answer. This model is called Answer-Length-Cost Model [19]. We use the

following computable predicate, to determine the value of

Every computation of on is either:

making a oracle query outside or halts in

steps or does not halt in steps;

In the the predicate, (ii) essentially comes from the idea of the original proof. For (i),

we observe that, under our convention, if converges on a segment with

then so does and no OTM that queries beyond

can have

6. Conclusion

As a matter of fact, a general type-2 complexity theory is still an unclear territory.

Many applications of type-2 (or higher) computations (e.g., machine learning, interac-

tive computing, real computation, and the theory of programming languages) use their

own approaches to address their complexity issues. It is usually difficult to apply one

approach that is developed for one particular application to another application. We

believe that a workable notion of asymptotic behaviors of type-2 algorithms is the first

step in the search of a standard framework for the study of type-2 complexity. And we

hope that our notion of can provide such a step towards a general theory of type-2

complexity.

References

S. Abramsky, Dov M. Gabbay, and T.S.E. Maibaum, editors. Handbook of Logic in Com-

puter Science. Oxford University Press, 1992. Background: Mathematical Structures.

Manuel Blum. A machine-independent theory of the complexity of recursive functions.

Journal of the ACM, 14(2):322–336,1967.

A. Borodin. Computational complexity and the existence of complexity gaps. Journal of

the ACM, 19(1):158–174,1972.

Walter S. Brainerd and Landweber Lawrance H. Theory of Computation. John Wiley &

Sons, New York, 1974.

Robert L. Constable. The operator gap. Journal of the ACM, 19:175–183,1972.

Stephen Cook and Alasdair Urquhart. Functional interpretation of feasibly constructive

arithmetic. Proceedings of the 21st Annual ACM Symposium on the Theory of Computing,

pages 107–112, 1989.

[1]

[2]

[3]

[4]

[5]

[6]

478

Martin Davis. Computability and Unsolvability. McGraw-Hill, 1958. First reprinted by

Dover in 1982.

J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transi-

tions of the American Mathematics Society, pages 285–306, May 1965.

Bruce M. Kapron and Stephen A. Cook. A new characterization of type 2 feasibility.

SIAM Journal on Computing, 25:117–132,1996.

L.H. Landweber and E.R. Robertson. Recursive properties of abstract complexity classes.

ACM Symposium on the Theory of Complexity, May 1970.

Chung-Chih Li. Type-2 complexity theory. Ph.d. dissertation, Syracuse University, New

York, 2001.

Chung-Chih Li and James S. Royer. On type-2 complexity classes: Preliminary report.

Proceedings of the Third International Workshop on Implicit Computational Complexity,

pages 123–138, May 2001.

E. McCreight and A. R. Meyer. Classes of computable functions defined by bounds on

computation. Proceedings of the First ACM Symposium on the Theory of Computing,

pages 79–88,1969.

A. Nerode. General topology and partial recursive functionals. Talks Cornell Summ. Inst.

Symb. Log., Cornell, pages 247–251, 1957.

Piergiorgio Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and

the Foundations of Mathematics. Elsevier Science Publishing, North-Holland, Amster-

dam, 1989.

Piergiorgio Odifreddi. Classical Recursion Theory, Volume II, volume 143 of Studies in

Logic and the Foundations of Mathematics. Elsevier Science Publishing, North-Holland,

Amsterdam, 1999.

M.O. Rabin. Degree of difficulty of computing a function and a partial ordering of recur-

sive sets. Technical Report 2, Hebrew University, 1960.

Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-

Hill, 1967. First paperback edition published by MIT Press in 1987.

James S. Royer. Semantics vs. syntax vs. computations: Machine models of type-2

polynomial-time bounded functionals. Journal of Computer and System Science, 54:424–

436, 1997.

Joel I. Seiferas and Albert R. Meyer. Characterization of realizable space complexities.

Annals of Pure and Applied Logic, 73:171–190, 1995.

Anil Seth. Complexity theory of higher type functionals. Ph.d. dissertation, University of

Bombay, 1994.

D.M. Symes. The extension of machine independent computational complexity theory to

oracle machine computation and the computation of finite functions. Ph.d. dissertation,

University of Waterloo, Oct. 1971.

V.A. Uspenskii. On countable operations (Russian). Doklady Akademii Nauk SSSR,

103:773–776,1955.

Paul Young. Easy construction in complexity theory: Gap and speed-up theorems. Pro-

ceedings of the American Mathematical Society, 37(2):555–563, February 1973.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

