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INTRODUCTION 

The organizers have asked me to talk about the renormalization group and its 

applications. I shall concentrate on explaining the rules for short-distance be

haviour in field theory and current algebra. Nothing will be said about applica

tions to form factors, on-shell scattering amplitudes, charmonium, etc. 1
). 

The renormalization group originated in papers by Stueckelberg and Peterrnann2
) 

(SP) and Gell-Mann and Low 3
) (GML) in 1953/54 and was revived, after a long 

quiescent period, by Wilson4
) (operator-product expansions and broken scale in

variance) and Callan and Syrnanzik 5
) (CS) (1968/70). Many people prefer the CS 

approach because there is no need to introduce unfamiliar renormalization pre

scriptions, but I think that it is unwise to completely ignore the original ideas. 

For example, a comparison of the GML and CS methods led to the use of mass

independent renormalization prescriptions [such as 6
) dimensional renormalization] 

which generate "improved" CS equations 7
). Consequently, all of these methods 

will be reviewed. Applications will be restricted to the results of assuming 

asymptotic freedom 0
) or broken scale invariance. I shall also report progress 

on an awkward technical problem, the properties of operator-product expansions 

for non-Abelian gauge theories. 

1. RENORMALIZATION GROUP: CALLAN-SYMANZIK METHOD 

Any renormalized amplitude A possesses a corresponding Callan-Syrnanzik (CS) 

equation 5
). The main ingredient in the derivation is knowing the mode of re

normalization of A: is it multiplicative, subtractive, or something more compli

cated? So we begin with a mini-review of the renormalization procedure itself 9
). 

1.1 Renormalization 

Let A represent a cut-off mass which regulates ultraviolet divergences in 

Feynman diagrams. Typically, these divergences appear as powers and logarithms 

of A which blow up as A tends to infinity. Divergences are caused by loop in

tegrations, so they can be isolated as divergences in one-particle-irreducible 

(lPI) (or "proper") subdiagrams*). Therefore, we consider the Feynman integral 

for an £-loop lPI amplitude with L external legs: 

1 ~L-1) = (1.1) 

The integrand I is a linear combination of products of vertices and internal pro

pagators which depend on loop momenta p
1

, ••• ,Pt and external momenta q
1

, ••• , qL-i• 

*) A lPI diagram is a connected graph which cannot be separated into two dis
connected pieces by cutting one of its internal lines. The corresponding lPI 
amplitude is understood not to include propagators for external lines. 
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Convergence is tested by applying power-counting arguments 10
•

11
). Imagine 

that a subset S = {p~, ... , p~} of the loop momenta {p
1

, ••• , p£} is scaled to 

infinity [all p~ = O(n) with n ~ 00] with all other momenta held fixed*). The 
J 

integrand I develops a power-law behaviour in n for which the formula 

< ,..., 
c(S) 

ri {CONSTANT} 

provides an asymptotic bound. Here c(S) is the sum of individual powers contri

buted by each vertex and propagator depending on p~, ... , p~; (for example, 

there is a power -2 for each boson propagator involved). Thus each subset S can 

contribute cut-off dependence 

(\ J(S) { ~o~s of A} 
to r, where the power 

d(s) = ~ m(S) + c (SJ (1. 2) 

is called the superficial degree of divergence of the subintegration over S. The 

integral (1.1) converges if d(S) is negative for all S. 

Consider the special case in which the only divergence in r is that caused 

by all of the loop momenta p
1

, ••• , p£ growing large together; in other words, 

r is superficially divergent [d(r) ~ o] but internally convergent [e.g., d(S) < 0 

for all Sf {p
1

, ••• , p£}]. Suppose that r is differentiated with respect to one 

of the external momenta q .. When a/aq. acts on the integrand I, the characteristic 
1 1. 

exponent c(r) for its asymptotic behaviour as p
1

, ••• , p£ become large is reduced 

by at least 1, while no increase occurs in the other c(S). Therefore, if a/aq. 
1. 

is applied a sufficient number of times tor, the result is completely convergent. 

Since rd. (the divergent part of r) is annihilated by these differentiations, it 
lV 

must be a polynomial of degree~ d(r) in q
1

, ••• , qL-l. In diagrammatic language 

(Fig. 1), this means that rd. is a local vertex produced by shrinking the blob r 
lV 

to a point. 

An £-loop divergence of this type is easily cancelled by including a counter

term ~ff£ in the Lagrangian ;t with bare vertex equal to -rdiv' However, many 

lPI graphs do not possess this property of being "primitively divergent"~<*). An 

arbitrary £-loop lPI graph may contain divergent £1 -loop lPI subgraphs (£ 1 < £) 

which must first be made convergent by including suitable counterterms ~ff£' in 

ff; i.e., it will be necessary to include internal counterterm vertices in the 

blob in Fig. 1. So we try the following prescription10
•

12
): 

*) 

**) 

More precisely, write pj = nrj and let n tend to 00
, keeping all rj, Pi ('any 

pj), and qi fixed and not allowing any partial sum L' r of the rj to vanish. 
Tfle latter condition ensures that a p 1 -dependent propagator (which carries 
momentum n l ' r + ~p1p' p + f 1 q) has the expected asymptotic dependence on 
n. The special directions l r = 0 are covered by looking at appropriate 
subsets s ' of s . 
A primitively divergent graph becomes convergent if any internal line is cut. 
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i) Start with !t0 , a Lagrangian from which propagators and vertices can be con

structed. 

ii) Construct counterterms 62?1 which remove all divergences in 1-loop lPI graphs 

generated by 21
0

• 

iii) Use a new Lagrangian 'l! 1 = :t + 6 'l! to generate 2-loop graphs and construct , a , 1 

6 '/! 2 to get rid of the resulting lPI divergences, and so on, to any finite 

number of loops and vertices 13 ): 

J,1 = ii-I + ~£1. 
Obviously, we obtain finite results for diagrams in which, for each pair of di-

vergent lPI subgraphs, one subgraph is entirely contained within the other ("nested" 

divergences) or the two subgraphs are disjoint. The difficult step in the proof 12 ) 

of convergence is to disentangle overlapping divergences (sets of divergent lPI 

graphs which are neither disjoint nor nested). The result, valid for all poly

nomial interactions (renormalizable or otherwise), is that the above procedure 

renders all subintegrations convergent by power-counting*). In other words, the 

Lagrangian 

i = 'ir!O = 'Lo + /). i, (1. 3) 

with counter term Lagrangian 6!/! given by 

~i = fl ii + f)'/,l + 
generates cut-off independent perturbative amplitudes. 

The form of 6,:/! is restricted by the fact that the degree of the polynomial 

fdiv (q 1, · .. , qL_
1

) in Fig. 1 cannot be greater than d(f), The set of allowed 

vertices is easily determined by counting mass dimensionalities. Each term in 

the Lagrangian has dimensionality 4, in four space-time dimensions. Boson and 

fermion fields <P and ~ have dimensionalities 1 and 3/2 corresponding 
,.., 

t 0 <P<P 'V p-2 

I"::! 1 
and ~~ rv p- for the propagators at large momentum P· [Higher-spin fields obey 

this rule if special circumstances, such as 

tudinal terms like iq q /q 2m2 in the spin-1 
)l v 

(m O) or cancelled off.] These rules fix 

of a coupling constant g; for example, for 

dim(g) = -2. A typical term in 6!.f is 

oc 

gauge invariance, ensure that longi
,........, 

propagator B B (m = mass) are absent 
)l v 

the effective dimensionality dim(g) 

the vertex g<P 6
, dim(<P 6

) = 6 implies 

(1.4) 

*) For the general case, the involved combinations of Hepp's proof 12 ) seem to be 
unavoidable. Authors of textbooks often choose to discuss a specific theory 
such as quantum electrodynamics, where skeleton expansions and Ward identities 
permit some simplification. 
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for integer powers j,p,r ~ 0 and N > 0, where the dimensionality d of the opera

tor od is given by 

= + r + + cL 

i.e., 

4 (1. 5) 

If dim(g) is negative, d is unbounded as the order of perturbation N in

creases. The inevitable result is a non-renormalizable theory in which the number 

of distinct vertices (and hence new coupling constants) is unbounded. Apart from 

the lack of predictive power of these theories 14
), the prescription (1.3) implies 

a quantization procedure for high-derivative counterterms which is not obviously 

unitary. So we shall ensure renormalizability (d ~ 4) by requiring 

0 (1. 6) 

but frequently permit external composite operators 13
•

15
) Q to couple to '.!!via 

sources X (to a fixed order 1n X): 

-~> :l(X) = + X(Q. + i:JQ) + O(x2
) 

(1. 7) 

Given the constraint (1.6), the rule for renormalization counterterms ~Q generated 

by lPI diagrams with a single Q-insertion is simply 

dim(Q) (1. 8) 

For example, consider 

= 
I 2. d);i., 
2m1 (1. 9) 

as a trial Lagrangian. Only the two- and four-legged lPI amplitudes r( 2),r( 4
) 

are superficially divergent. According to (1.4), we have d ~ 4, so the only 

possibilities are counterterms proportional to (ci~) 2 and ~ 2 [from rdi~J and ~ 4 

[from rd(~)]. Therefore, the most general expression for the complete Lagrangian 
1V 

is 

= '(1 ~:z,;l 'lm-om cp (1.10) 

where Z
1

, Z
3

, and 6m 2 are A-dependent. Note that there can be vertices in 'I! 

which do not appear in './!
0

• For example, the Yukawa trial Lagrangian 

= I lc02 rm 1 + (1.11) 
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produces an additional ¢ 4 vertex in _:/! because of divergences in four-point lPI 

boson amplitudes r( 4
), The result is a theory with two coupling constants, g and 

g I : 

= i z3 tarJ'" 

+ Zllfii¢'lJ! 

I ( 2. r 2) :i 
1 m - om cp 

(M - ~M) 'V 'Y + (1.12) 

The Lagrangian 'I! [Eq. (1.10) or (1.12)] produces finite lPI amplitudes f(L) and 

connected Green's functions G(L) (with L legs). We have no further use for .-27
0

; 

it is just a crutch which helps us to arrive at a suitable 2?. 

Sometimes it is convenient to introduce a new set of Feynman rules (labelled 

with a B for "bare" or "unrenormalized") for the same '/! in terms of new quan-

ti ties ¢B' 
2 

gB, The substitution mB, ... 

PB = z 1/2 
3 r 

1 Z3-1 (m.i 8m
2

} mB = (1.13) 

-2 

~B 
= Z3 z, 9 

in Eq. (1.10) produces a simple set of B rules: 

= (1.14) 

Let G~L) be the L-point Green's function computed using the B rules. Numerically, 

the only difference between G~L) and G(L) is the normalization of each external 

line -- internally, everything cancels when propagators and vertices are changed 

according to (1.13), because the Lagrangian 'I! remains the same. So we get: 

-L/2 (L)( ) 
Z3 GB ~,, ···' ~L-1; 9s' 'Wl.B' /\ (1.15) 

Therefore, if some cut-off dependence is suitably absorbed in coupling constant 

and mass renormalization, the remaining divergence of an unrenormalized Green's 

function can be segregated as a multiplicative constant 10
) Z~/ 2 • There is a 

wave-function renormalization Z~ 1 ~ for each external boson line, and a similar 

factor z;Y2 for each fe~mion [if Eq. (3.12) is being considered] with 

I 

9 (1.16) 

1.2 Renormalization group 

Prescriptions like (1.2), (1.10), and (1.12) still contain ah-independent 

ambiguity, because all we have done so far is to require that divergent parts of 

lPI graphs be cancelled. The corresponding finite parts have to be fixed by 
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imposing a renormalization prescription (call it R), and quantities such as 6m 2
, 

1' 2 (L) (L) 
¢, ... , must be regarded as R-dependent: u~, ¢R, gR, Zi(R), fR GR , and so 

on. In order to completely specify each distinct vertex appearing in~'/!, we 

must impose a normalization condition on the corresponding lPI amplitude. The 

label R refers to this set of conditions. The points in momentum space to which 

the conditions refer are called subtraction points. 

A popular choice for R is to normalize on-shell. For example, boson mass 

and wave-function normalizations are fixed by choosing 

r;(l)(~) ::: 0 d r_ ('J.)/ d l 
= 0 ( ~l = m~) R ·~ 

for the self-energy r < 2) so that the dressed boson propagator 
R ' 

(1.17) 

has a pole at q2 = ~ with conventional residue. Another example is the charge 

of the electron /4rra (with a- 1 = 137.036, ... ) in quantum electrodynamics (QED), 

which refers to the amplitude for an on-shell electron to absorb a zero-frequency 

photon. 

Alternatively, R can be specified by intermediate renormalization13
•

16
) in 

which the subtraction point is at the origin of momentum space; e.g., R for 

Eq. (1.10) is fixed by 

= d r;(ly d~l = t 

~2 = ~3 = 0 ) = 
(1.18) 

It does not matter that gR and ~ are not directly measurable; they parametrize 

the theory as effectively as on-shell variables do. 

More generally, R can be a function of several fixed "reference momenta" 

A1 , A2 , ••• , which parametrize the subtraction points: consider the prescription 

R = R(Ap ... , A
5

) for Eq. (1.10): 

= 

Note 

2 
t 't'Y\,R 

!,..) ( ) r; ,;\.3 , >-ir , .\. 

= 'l 

' 
(1.19) 

= 

i) To avoid trouble with unitarity, we want gR and~ to be real. However, for 

arbitrary A in Eq. (1.19), r( 2
) and r( 4

) may have absorptive parts. In that 

case, the normalization conditions (1.19) apply only to the real parts of 

the lPI amplitudes at non-singular points A. Additional conditions for 
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absorptive parts are not needed: a lPI absorptive part converges super

ficially because it is obtained by cutting internal lines of the full lPI 

amplitude. The A-momenta should be zero or space-like if a continuation of 

Feynman amplitudes to Euclidean space is being attempted . 

Suppose we use (1.19) to . f G (L) spec1 y and Z
3 

in Eq. (1.15); then they de-

pend on A as well as the variables shown explicitly. Of course, the B rules 

make no reference to A, so G(L) 
B , when written as a function of mB and gB, 

does not depend on A. 

iii) Do not confuse the momenta A
3

,A
4

,A
5 

at which gR is fixed with the momenta 

entering and leaving a vertex inside a Feynman diagram! 

Now suppose that two theorists are thinking about the same physical situation 

(i.e. they use the same '/!) but use different renormalization procedures, R and 

R': 

= = 

Transformation equations relating R and R1 are easily found by referring back to 

the B rules, which do not depend on R or R1
• The equations 

::: 

etc., imply [e.g . , for Eq. (1.12)] 

= 

= 

= 

= 

= 

= 

and 

G 
(P, f) = 

R' 

'1. (R' R) -'/4 
J3 ' ~R 
32 (.R', R) -'Ii- 1VR 

~t (R.', R)-' a3(R', R)
1 

9R 

3: (R,, R r, 3,. \R', R) 13 lR ', R J v.i ~ R, 

j
3
(R',R)m: + 8(R

1

,R) 

~ 1 (R', R) MR + Li(R',R) 

33(R,Rrb/i 3i(R',R) - f/2 G~b, f) 

( b bosons , f Fermions) , 

where the transformation coefficients 3., o, 6, given by 
1 

3i (R', R) 

<HR', R) 

ti(R
1

,R) 

= 

= 

= 

zi (R') / zi(R) 

33(R', R) owiR2 

~l(R', R) d MR 

(di: Ho for 

(1. 20) 

(1. 21) 

(1. 22) 

are all cut-off independent. The ambiguity mentioned at the beginning of this 

subsection is now completely characterized in terms of these coefficients. 
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The set ~~ of all transformations R-+ R1 is called 2
) the "Renor.malization 

Group". Measurable quantities .AL like decay rates and cross-sections are 

renormalization-group invariant: .AL(R 1
) = .AL(R). In other words, .Al should not 

be theorist-dependent. 

The group property is partially realized in the existence of an identity 

transformation R -+ R, an inverse R1 
-+ R to R -+ R1

, and a product R -+ R11 equivalent 

to successive transformations R-+ R1 and R1
-+ R11

, with 

~ 1 ( R 1 R) = l 

~i(R,R') 
-I 

= 3i (R', R) 

~i(R': R) = 3t(R",R') 3i(R',R) eh:. . 

However, we do not have a group at this stage 17
), because there is no rule for 

multiplying two arbitrary transformations R-+ R1 and R11
-+ R111

• A satisfactory 

rule can be obtained for special subsets of prescriptions which can be explicitly 

parametrized: R = R(A) [e.g., R = R(A
1

, ••• , A
5

) discussed above]. Then it is 

sufficient to consider transformations in A-space which possess the group pro

perty -- inversions, translations, rotations, scale transformations, etc. So the 

group property is certainly a feature of many subsets of ~. but it is not clear 

whether ~ itself can be characterized as a group or not. (Henceforth, I shall 

forget about this fine distinction.) 

The idea of SP 2
) was to look at sets of prescriptions R depending on con

tinuous parameters A from which a Lie group with associated Lie algebras can be 

obtained, and find equations giving the result of performing an infinitesimal 

A-transformation. The only subgroup of any practical importance seems to be the 

trivial case U(l) for scale transformations of the subtraction points A (with 

generator A•3/3A), Non-Abelian cases are easy to construct, but the results 

appear to be uninteresting. 

Eq. (1.21) means that G(b,f) transforms multiplicatively under the group. 

The lPI amplitudes transform similarly (with 3 
1
/
2 for each line instead of 3-1/2

) 

r: (b, f) 
R' 

= 
ft I ) p/:J, 7. (. I ) f/l r (b, f) 

3 3 ~ ' R J :i \R ' R I R 

[(b,f) r (2,0) (0,2)] 
(1.23) 

except for self-energy amplitudes, where there is an additional subtractive re-

normalization: Eqs. (1.17) (valid irrespective of R) and (1.21) imply 

r. (:i.,o) ~3(R',R) ~ti,e1l~l + i (3~(R
1

, R) l) ~ 
~ 

+ i S(R',R) 
R' 

= 

(1.24) 

1 1 
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for the boson self-energy [r( 2
) = r( 2

,
0
)], and there is an analogous equation for 

fermions: 

= + + i L1 (R, R) 
(1. 25) 

1.3 Callan-Symanzik equation 

The CS equation 5
) was the product of a search for the Ward identity of scale 

transformations in perturbation theory 18
). The generator of scale transforma-

tions 19
), D(x

0
) 

energy momentum 

= J d 3x xµ8 (x), has a time-variation given 
µo 

tensor 8 . In free-field theory, 8µ is the 
µ\! µ 

= + 

by the trace of the 

sum of mass terms 

(1. 26) 

To obtain something which looks like a scaling Ward identity for an amplitude A, 

we need the corresponding amplitude A(6) with an extra operator insertion 6 where, 

for free-field theory, 6 reduces to the zero-momentum mass operator J d 4x 8µ(x). 
µ 

Consider the L-leg boson Green's function G(L) (connected), which is multi

plicatively renormalized [Eqs. (1.15), (1.21)], and assume for convenience that 

there is only one mass m and dimensionless coupling constant g. If we use the B 

rules (1.14) to compute 20
) G~L), the only place in which mB appears is in undressed 

propagators i/(p 2 
- m~). Hence the identity 

= t 

implies that the operation mBa/amB (with external momenta and gB' A fixed) is 

equivalent to the insertion of a new vertex -i m~¢~ at zero-momentum transfer 

(i.e. -i6). So we define 

= 

where q is shorthand for (q
1

, ••• , qL_
1
). 

(1. 27) 

Of course, G(L)(6) is cut-off dependent, 
B 

but its renormalization is very simple. If the operator Qin (1.7) is chosen to 

be ¢ 2
, the only counterterm operator 6Q which can satisfy (1.8) is again ¢ 2 [~ 

does not appear because of !!'(~) = 2'(-¢)]: 

i(X) = i\o) + + 
2. 

x zt::.6. (1. 7') 

i.e. the composite operator ¢ 2 (x) is multiplicatively renormalized. Hence there 

is a wave-function renormalization Z~ 1 for the external line represented by the 

source x in addition to a factor z;V2 for each boson line: 
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G~Ll (6) = ( 1. 28) 

It is convenient (but not essential) to use the intermediate renormalization 

prescription (1.18), because then we do not have to worry about additional de

pendence on reference momenta A. In order to fix the finite ambiguity in z
6

, we 

have to choose a normalization condition for r( 2 )(6), the lPI amplitude with two 

boson legs and a 6 insertion: 

= (1.18 1
) 

Note the relation 

(2) 

G - (6; ~) = (1. 29) 

Now we construct two identities, each the result of applying ~ d/d~ (fixed 

q,gB,A) to GiL) and changing variables: 

tities with (1.28) is the CS equation 5
•

21
) 

+ 
(1.30) 

= 

with 

mR (dgR/ d'l'J'1.R) BR = 
S111 f\ 

"/R = - mR a/;tmrt in t Z3(/\/rnR , 9srr/.i} (1.31) 

~R = Zf::. \mR/m8) (dm.f) dwtR) 98 ,f\ 

The functions 'Y' 0 are cut-off independent, because we can apply the conditions 

G~
1

)(q, ~ o) "/ 1. = t.. mR 

lo/a~ 2 )G~
2

)(1 = o) ·1 ~ = '\, mR 
(1.32) 

G ~ii ( ~ ; ~ = 0) = 2/m~ 
[implied by Eqs. (1.17), (1.18), (1.18 1

), (1. 29) J to Eq. (1.30) with L 2: 
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~R 

"JR = 

rR 

2 + ! m; c\ (c1/J~i) G~L)(~; ~ = 0) 
( 1. 33) 

It follows from (1.30) that B is also cut-off independent. Hence the dimension

less functions B,y,o can only depend on gR, in this renormalization prescription. 

The formulas 

= 

= 

9R f\[J/of\ fn z9(f'../mR, 91) 

/\ af af\ ln {Z3(f\/m1u 5~)f '12 

( ~R = Zs 9B) 

(A ~ oo) 
\ 

(1.34) 

[from (1.31)] show the connection between Bandy and infinities in coupling

constant and wave-function renormalization. 

Let us introduce a parameter n which scales all the momenta together: 

q + nq. Since G~L) has mass dimensionality 4 - 3L, purely dimensional arguments 

imply the identity 

+ + 0 (1.35) 

so the CS equation can be cast in a form which shows the connection with scale 

transformations: 

(1.36) 

The term SRa/agR, caused by coupling-constant renormalization, means that 

J d 4x 80(x) effectively picks up a dimension 4 vertex 5
•

22
) -i BR J d 4 x ~ 4 (x). 

If there are se~eral coupling constants gR(i) (i = 1, ,, '! j), the BRa/agR 

term becomes It
1 

B~ 1 )a/agR(i); i.e. there is a B-fuaction 8~ 1 ) for each gR(i), 

and it depends on all of the gR(i) 's: 

-9R = 
-
~R = 

~R 

(gR(I), -- - - ' 9R(j)) 

~~)) 

= = "tR(SR) 

~ii' a/asR(i! 

(1.37) 

If there are also several masses ~(k), each mass can generate its own CS equation, 

B-functions B~i,k), and y-function y~k) Occasionally, these CS equations are 

separately useful 23
), but in most cases, it is better to sum them because then 

+ + 
~·a/a~ can be converted to na/an using the generalization of (1.35). 

Subscripts R have been attached to the symbols B,y,o in Eq. (1.36) to in

dicate that their functional forms depend on the renormalization prescription. 

To see this, consider a prescription R1 (such as on-shell normalization) in which 
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gR'' j
3

(R 1 ,R), and TIR'/TIR depend on gR alone; i.e. we avoid introducing depen

dence on a separate dimensionful quantity A. Then a change of variables (gR,~) 

to (gR''~') in Eq. (1.30) produces a CS equation of the same form, with R' re

placing R and 

µR 1(Stt•) 

d' R' ( 9R') 

= 

= 

~R {djR,/d3,J/{t + µR dfci9R 111, (rnR,/mR)} 

{1R + 33-1 ~R d~R/JsRJ/ {1 + ~R d/dgR .ln (mR,/mR)} 
Observe that B,y are R-independent in the 1-loop approximation. 

( 1. 38) 

The main complication for R = R(A) is that ~3/3~ in Eq. (1.30) has to be 

replaced by {~3/3~ + \•3/3\} so that we still get the infinitesimal scale trans

formation n3/3n in (1.36). In general, the B and y functions depend on dimension-

less ratios such as ~/).. 2 , AUA~, ... , as well as on gR. 

1 . . l' d (b,f) 
The genera izat1on to amp itu es GABC ••• involving several composite opera-

tors A, B, C, ... , can be readily carried through. The analogue of Eq. (1.7) is 

i(X) = 'L (0) + 

+ x: ~(AA) 
+ 

+ 

XA(A +~A) + XB(B + llB) + 

+ XAXB li(AB) + XAXC MAC) + + X:6(BB) 

+ XA3 l1 (A A A) + ___ _ (1. 39) 

where 6(ABC ••• ) is a local vertex with cut-off-dependent normalization. Con

sider the terms linear in X· For general A, there may be many counterterms 6A 

with dimensionality less than or equal to that of A [see Eq. (1.8)]. In other 

words, the Z-factors have to be treated as matrices. However, by adding suitable 

linear combinations of the counterterm vertices 6A, 6B, ... , we can always re

define A, B, C, ... , such that they are multiplicatively renormalized: 

A + {jA = 
' 

B + ~B = ZB(f\) B ' ... (1.40) 

Equation (1.39) also contains counterterms O(Xp) (p > 1) produced by superficially 

divergent lPI subdiagrams with p composite-operator insertions. However, these 

terms are very easy to isolate. For example, if A(x) and B(y) (x,y = coordinates) 

couple to the same lPI diagram, the induced counterterm must be proportional to 

P(a) o4 (x - y), where Pis a polynomial; this is so because a lPI diagram (made 
x 

convergent internally) shrinks to a point when the divergent part is taken 

(Fig. 1). In momentum space, we have P(-iqAB), where qAB is the momentum trans-

ferred from A to B. So the mode of renormalization is given by 

{ G~~2 . .}R = 
-I -1 -1 -b/2 -ff:;, {G (~,f) } 

ZA ZB Zc Z3 z.2 f\BC ••• Bctre. 

+ Li P;,(qsubseti)Ai 
(1.41) 
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h P · 1 · 1 · f · bl f the ith w ere i is a po ynomia in momentum-trans er varia es qsubset i or 

subset of {A, B, C, ••• }and,'{:. is a non-trivial amplitude involving the re
i 

maining operators plus the counterterm operator 6(ith subset), There is a factor 
l _l!z _l/2 

ZQ for each insertion Q, in addition to the usual factors Z
3 

, Z
2 

for each 

external boson and fermion line in a complete or connected Green's function, The 

subtractive renormalizations I· P. ~ f. lack absorptive parts in channels corres-
i i i 

ponding to the polynomial dependence P.(q b t .) • 
i su se i 

[
m .L 

R Jm 
R 

+ 

= 

where all factors are cut-off independent, 3'. is a polynomial, and 
i 

(1. 4 2) 

= a { ( I )}- 112 YR(gR) "Jf\ Ln zl. [\ YV\R' gB (1.43) 

is the fermionic analogue of yR(gR). The important thing to notice is that there 

is an addition rule satisfied by 

)' (R) 
( ~R) 

d fn, [ z R ZB zc J = 
A a" (1.44) 

f\BC ... 

they-function describing the combined effects of the product ABC •••• on wave

function renormalization, For each operator Q, there is a characteristic 

y-function 

= (1.45) 

which satisfies the formula 

)1 (R) ( ) = 
ABC . .. 3R + (1.46) 

Conserved currents (e.g. 6µv and the electromagnetic current Jµ) obey iden

tities such as 

= (1.47) 

irrespective of which rules (B or any R) are chosen. Hence there is no wave

function renormalization factor for a conserved current 

= = ( 1. 48) 
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and the corresponding y-function (l,45) vanishes identically: 

iJ 
µ 

= 0 

Of course, there can still be subtractive renormalizations induced by time-

(1.49) 

ordering products of conserved currents. For example, the renormalization of 

T(OjJ (x)J (0) jo) involves a subtraction proportional to (a a - g a2 )o 4 (x), 
)J \) )J \) )J \) 

Partially conserved currents such as the chiral SU(3)XSU(3) currents (:F~,:T~)J) 

of current algebra become conserved at short distances, so they also satisfy 

(1.48) and (l.49). 

2, ASYMPTOTIC SOLUTIONS 

This chapter concerns situations in which the mass-inserted amplitude G(6) 

can be neglected in the CS equation, In perturbation theory, an appropriate 

asymptotic limit is specified by Weinberg's theorem11
), 

2.1 Logarithms in perturbation theory 

Weinberg's theorem ex.tends the power-counting method to the pro bl em of es ti

mating the asymptotic behaviour of a Feynman amplitude as some of its external 

momenta become large, Actually, it is a theorem in real-variable analysis which 

describes the asymptotic behaviour of infinite multiple integrals, so its appli

cation to Feynman integrals is necessarily restricted to the Euclidean region, 

However, Pohlmeyer 24
) has proven a corresponding theorem for Minkowski space. 

Let ~t be a Feynman amplitude which depends on external momenta q
1

, ••• , qK 

and r
1

, ••• , rN' where the q-momenta are large: 

A 

= 

= 

(,. 
. 'l 

t = 1 

~K ; 

(~~ 00 

K 

Yj rN} 

-li,c'l'1 a.U fixed ) (2,1) 

d = 1 N 

All momenta are understood to be incoming, so momentum conservation requires 

N K 

.Lr. + ~I ~i 0 (2.2a) 
j: l i 

K 

L, 1. = 0 (2.2b) 
\.s I t 

Imagine the large O(n) momenta (indicated by heavy lines in Fig. 2) per

colating through all vertices and propagators of a subgraph Q' of a typical graph 

c• ,), Naturally, we arrange that the external lines of ~' include all external 

lines of g which carry the O(n) momenta q
1

, ••• , qK' and that it is kinematically 

possible for all internal lines of ~' to carry O(n) momenta. Each subgraph can 
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contribute to the asymptotic behaviour of ~. The idea is to count the powers 

produced by propagators, vertices and loop integrations in ~j', keeping the inter

mediate momenta k
1

, ••• , ~fixed. The effect of loop integration is illustrated 

by the 1-loop boson self-energy amplitude (Fig. 3) for a scalar Yukawa theory 

(interaction g~~¢)*): 

r.: \:i.,o) i 

R (q l 1-loop = - 'Wl. )
- 1 

(2.3) 

oO) 

This example shows that it is necessary to count 4 powers of n for each loop in

tegral f d 4 p inside**)~'. Consequently, each~' contributes a characteristic 
'J)(C'' ') 

power O(n · .J ) (with logarithmic corrections), where the dimensionality '.DUJ') 

of (·'' ,J is given by 

1)(~') = L: dim { ~ropa.gator-s arid vertices oF 11'} 

+ 4- {number- or i Y1Jl'.pe.Y1de nt loops in L~I} 

So far, the only restriction placed on the vectors £. is the momentum
i 

(2.4) 

conservation equation (2.2b), Another obvious requirement is that none of the 

£. should vanish -- otherwise, some of the q-momenta would not be O(n). However, 
l. 

the power-counting rules introduced above do not necessarily work unless additional 

conditions are imposed. For example, the 4 boson and 3 fermion propagators of the 

subgraph~' of Fig. 4 (Yukawa theory) normally contribute O(n-11
), However, at 

the "exceptional" momentum point 25
) £ 1 

of ~j' no longer carries momentum O(n): 

-£
2

, the fermion propagator in the middle 

= 

Additional exceptional points exist in Minkowski space: 

= or 

[depending on whether (£
1 

+ £
2
)•(c

1 
+ c + k) vanishes or not]. The general 

2 l 'j)(C"' ) 
conclusion is that tree graphs can be more singular than O(n · u ) if some of 

the partial sums I' £ happen to be light-like. 

Not surprisingly, loop integrals also misbehave at these exceptional points. 

Consider the I-loop amplitude (Fig. 5) 

*) 

**) 

Here, the relevant subgraph U' is the complete graph U. All other subgraphs 
involve restricting J d 4 p to a finite volume, so they contribute O(q-1

). 

The intermediate lines k
1

, ••• , kM may be 
this is not relevant for the subgraph U'. 
larger subgraph is considered. 

parts of closed loops in U, but 
It becomes relevant only when a 
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I (~,I --- ~K) 
J l K [ l :t ]-I 

(K ~ 3) = i K d*r nl lp t Qi) ·m 

i tr 
I( 

) 
(2.5a) 

\Qi .L 
~j l =rit· + c, . = ~ t• = 0 

j=• 1. \ -t lal t i.•I \ 

which can be simply represented as a Feynman-parameter integral 26
): 

l 
iK+l(K-3)1 I K /[ 2. ~~· n ctOl · g (t - L.o<) l: O(·Ol·(Q· - Q·) -

lb rr2 

0 
i .. 1 i i<j i J 1 3 

I = ] 

K-:l 

Wl.2. (2.5b) 

The limit n + 00 is equivalent to setting m and c. to zero in (2,5a) or (2,5b), 
l. 

If the massless amplitude I(m = 0 = c.) exists, the result is 
l. 

4--1K ( ) 
'YI I \m = o = .c,, ; fl ... 1 

which agrees with naive power-counting: 

= 4 lK (wah 

(2.6) 

However, I(m = 0 = c.) may not exist because of infrared singularities; in that 
2K-'+ l. 

case, n I(n) blows up as n tends to infinity, For example, if all partial 

sums L' £ are light-like but non-zero, there is a singularity at p = 0: 

l(n) ,., iH 4-J.K J~ fr [ l + 
·t 1'J (.21T) i=I p 

i 

2~·~1 lj + 
The true asymptotic behaviour can be found by substituting 

= + 0(1) 
into Eq, (2.5b), with . . 

r .. 
t3 = 2 (t, tk) .( t ck) 

thus, if r .. all have the same sign , the answer is 
l.J 

l K ( . K+l lK 3) ') I I K ( I [ ] K-l fl - 1. , ; • n d«i J t - £oc) .l:. '\ex -1 'f:tJ· 
fo1! 

0 
i=I 'l(J tJ 

( lE'lf" = 0 , L.'.{ + 0 11-o0 K ~ 3 ) 

because the resulting a-integral is manifestly convergent, 

(2,6 1
) 

In general, loop integrals become infrared singular at thresholds for the 

production of intermediate zero-mass particles. These thresholds occur when at 

least one of the momenta L' £ becomes light-like, This is precisely the condition 

for exceptional asymptotic behaviour of tree graph amplitudes, so we conclude that 

the general requirement for momenta to be non-exceptional 25
) is 

0 (2. 7) 

for all partial sums l' £ associated with connected amplitudes. 
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Note 

i) In coordinate space, the non-exceptional n + 00 limit corresponds to the 

short-distance limit 

(non-exceptional), 

where x
1

, ••• , xK are coordinates conjugate to the momenta q
1

, ••• , qK, If 

K1 partial sums I' £become light-like (0 < K1 < K), the x-coordinates are 

free to tend to K
1 + 1 distinct y-coordinates: 

(exceptional) 

ii) I have glossed over a complication caused by renormalization of ultraviolet 

divergences. Counterterms which remove logarithmic divergences develop loga-

rithmic infrared singularities 1 

J" ditty (,en ~)L/ p lfl 
as m, c., and all subtraction points A are effectively scaled to zero by the 

l 

n + 00 limit. Consequently, there are logarithmic corrections to naive power-

counting at non-exceptional momenta [as in Eq. (2,3)]: 

t&, c.ont rtburiotl = 
:D(<§') 

O[ ~ {Pol~nomial tn. lri-yt}] (2.8) 

Additional powers of n are not generated: the candidate 

JA dH I /fl - d(r) 
cou.n~ev+t'('m ( m - A = o) = . p p 

is not permitted because it is ultraviolet convergent*), 

(d(r) < o) 

The main features and limitations of the theorem have now been exposed. It 

states that the amplitude J(;(~) for a graph~ satisfies the asymptotic bound 

A{~) = 
Q ( yt Max :D(~'J ~rl;~(-5) 'yt J 

( 2. 9) 

for the non-exceptional limit n + 00 specified by Eqs. (2.1), (2.2), and (2.7). 

The power Max '.0(~ 1 ) denotes the maximum dimensionality attained in the set of all 

subgraphs~' of~; (see Fig, 2). The logarithmic power B(~) (integer~ 0) is 

determined by counting powers of ln A in counterterms which remove the ultraviolet 

divergences of subgraphs with maximal dimensionality27
), 

If propagators for external lines of ~' are excluded, theories with dimension

less coupling constants obey the rule 

*) In other words, we forbid "oversubtraction": once a lPI amplitude r becomes 
superficially convergent [d(f) < o], counterterms which further reduce d(f) 
are not introduced in Eq. (1.3). 
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{ I b L lt'} tiu.mber or osons extev-nQI ~o J 

i { 11umbu of ~¥"mions o:h.rnal to 1'} 
(2.10) 

Hence the maximum dimensionality is found by minimizing the number M of inter-

mediate lines in Fig, 2. If composite operators (with sources X) are present, 

the generalization of (2.10) is 

= 4- L clim. { exlev-nal lines of ':&'} (2.10 1
) 

where each source X is represented by a line (external or intermediate in Fig, 2) 

and given an appropriate dimensionality, For example, the source x¢ 2 for the 

composite operator ¢2 (x) ~arries dimensionality 2, so the complete graph shown in 

Fig, 5 has dimensionality 4 - 2K; [compare Eq. (2.6)]. 

According to Eqs, (2.10) and (2.10 1
), the value of '.J)(fJ') in renormalizable 

theories is completely specified by the number and nature of the lines carrying 

momenta k
1

, ••• ,~and q
1

, ••• , qK in Fig, 2. This means that Fig, 2 can be 

applied to a collection of Feynman diagrams for the amplitude 

~(;(q 1 , ••• , qK; r
1

, ,,,, rN) if all sets of intermediate lines {k
1

, ••• , ~} 

permitted by selection rules are considered. 

Now we examine the limit n ~ 00 for the CS equation [Eqs. (1,36), (1.42)] 

C:h G(11ci) + { subtmdi oVI. ~erms} = id G (~ ; rt 1) 

dG ri di d"1 µ d/d 9 J'G 
(2.11) 

for connected amplitudes G(nq), G(6;nq) at non-exceptional momenta q, Graphs 

contributing to G(nq) do not have external legs with fixed momenta (i.e. N = 0 in 

Fig, 2), so for each graph~. the dominant subgraph is~ itself: 

G{~q) = Q ( yt ~(G) f.m~ 11 J [l)(G) = 2) (~) J ( 2, 12) 

The dominant subgraphs *) for G(6) are shown in Fig. 6: 

lJ (~I • Fig. ba) [ :ll(G) 1 ( k,, ki = 1osons) , 
= 

(k, ' k~ = fa'fmions) ; lJ (G) 3 (2,13) 

1J ( i&' . r ig . bb) = :D(G) dim xf:3 

*) Graphs with one intermediate boson line and '."1)(~ 1 ) = '.J)(G) - 2 are possible 
if a ¢3 interaction is added to the Lagrangian (1.10) or (1.12). 
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Here x
6 

is the source for ~ljJ or <P
2 at zero 

dim xfj = 1 or 

Equations (2,13) and (2.14) imply 

G (~ ; t/~) 

G(~;~q) 

= 

= 

Q ( ~ Zl (G) - I ~ n ~ ~) 

O[o/{~(G)- l ~Yl~;] 

so the leading power Gas. of G, defined by 

momentum: 

2 

(fermions present), 

(no fermions), 

= + O[~~(G)-11;'~] 

satisfies the equation*) 

d Go.s.( ) 
G ~1 + { b .... } o.s. 

SU. . terms = 0 

with 

{ subtradi'.011 ten11.S} = L· P(& [ E~. (1. 4-2 )] 
'l t t 

= { su h. t en'YLS} a.s. + 0 [ t(Zl(G)-1 fn~,v~ J 

In other words, G (L'I) is asymptotically negligible 5
), 

(2.14) 

(2.15a) 

(2.15b) 

(2.16) 

(2.17) 

(2.18) 

The restriction to non-exceptional momenta 25
) is essential, For example, 

apart from a few special cases 1
), G(t::.) is not asymptotically negligible if G is 

an on-shell amplitude, Also, additional mass insertions usually do not reduce 

the asymptotic behaviour further: in most cases, the amplitudes G(n f::.'s) and 

( 1 A I ) " h • **) G n + u s in t e CS equation 

dG(n 6's) G (n ~'s) 

dG(n 6's) 

yfJ 

+ 

= 

= 

~sub. terms} = - i~ G(tt+t 6.'s) 

dG n rt\ 

- /\iJ/Jf\ fn Z~(A/mR, ~R) 

(2.19) 

have the same asymptotic power ~)(G) - 2. The situation for G(t::.6) is illustrated 

in Fig, 7: 

*) Unless a selection rule forces it to vanish, Gas. almost invariably receives 
contributions from the simplest Feynman graphs for G. If desired, the sub
traction terms can be removed by considering unordered products instead of 

the T-product Gi~tf~ •• in Eq. (1.42). 

**) See Eqs. (1. 28) and (1.45), and the addition rule (1.46). 
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1J (~'; ri~. 7a) { :ll(GI 1 (k,' kl = bosons ) , 
= 

2) (G) 3 (k,' kl rerm1ons); = (2.20) 

'JJ (':'!'; rt9. 7b) = 1)(G) l ctim x~ 

If 6 is proportional to J d 4x ~~(x), the asymptotic power is reduced from 

~)(G) - 1 for G(6) to ~)(G) - 2 for G(66). Otherwise, there is no reduction; 

clearly, any number of 6 insertions can be attached to the lower blob in Fig. 7a 

without changing the asymptotic power. 

In perturbation theory, the general form of Gas. consistent with Eq. (2.17) 

is 

= (2.21) 

where £(N) is the number of loops in Nth order diagrams for the amplitude G. The 
th 

presence of 3/3g in the CS operator aG means that (2.17) relates the N order 

coefficient G to lower-order coefficients. The consequences of this are best 
N,p 

illustrated with a simple example, the photon propagator in QED 28
): 

= ? ( ~t1v - ~!1 ~v/~z) J. ( ~l/m\ cl} 

[ oc = (c.ha.r~e)
2 

/ 4-n] 

+ 
( 2. 22) 

Charge renormalization is simpler than in Eq. (1.16) because gauge invariance 

irnplies 9
) Z1 = Z

2
: 

= (2.23) 

It follows that the combination ad(q 2 /m 2 ,a) has no wave-function renormalization, 

so its CS equation has no y-function or subtraction terms and the leading asymp

totic power adas.(n 2 q 2 /m2 ,a) satisfies the equation*) 

= 0 ( 2. 24) 

with 

= 
(2.25) 

If the perturbative expansions 

[d as. (~,ex )r1 

= l: rl..'l'l an('>'/) ( a
0
(r/) - 1 ) 

'11=0 

~( ex: ) = l: ctn bn 
ft= I 

(2. 26) 

*) Note that (1 - d- 1
) is the photon self-energy amplitude (lPI). 
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are substituted in Eq. (2.24), the result 1s a set of equations 

n 

~o ar(ri) (r-1) b-n-r +I ('l'l = 0,1,2, ___ ) 

which imply that a two-loop calculation 29
) of B(a) (b

1 
= 2/3n, b

2 

sufficient to determine the leading logarithm in any order: 

= b1 fn~ + a 1(11J 

= b
1 

b;-1, Un 1r-1
/(n -1) + , (n ~ l) 

(2. 27) 

(2,28) 

Examination of the cut-off dependence of photon self-energy diagrams shows that 

the n-loop graphs of Fig, 8 (plus suitable counterterm graphs) are responsible 

for the (ln n)n-l dependence of a (n) for n ~ 2 *). 
n 

The next problem is to decide how to sum the logarithms in Eq. (2.21). The 

leading-logarithm approximation is very easy to analyse, but it usually fails, 

For example, Eq. (2.28) yields 

(ex cC5f 1 = {leading lo~s} + { lsr rion-leadin~} + (2.29) 

with 

{!eadin~ logs} = oc-'{ 1 (loc/3rr) frt fl} (2 ,30) 

{1st rwn-leacling} = a
1
(1) + (3/4-rrJfn{ 1 - (.icx/3rr)fri 17} (2,31) 

Equation (2,30) is unsatisfactory as an asymptotic approximation for (adas.)- 1 

because it implies that adas. has a "ghost" pole 30
) (i.e. a pole at a space-like 

momentum point), This is not a genuine difficulty, because the "non-leading" 

term (2.31) dominates (2,30) in the relevant region (ln n ~ 3n/2a). In fact, the 

leading-logarithm approximation works only if n is much smaller: 

1 (lo</3rr) ln Y[ » 0( (2.32) 

As n increases, more and more non-leading logarithms [i.e. higher orders 1n the 

expansion of S(a)] become important. When n becomes sufficiently large, the per

turbation expansion for S(a) cannot be truncated at finite order, and all of the 

logarithms in (2.21) must be sununed, 

*) The sum of the two-loop graphs goes as -b 2 a~ ln A, and there is an additional 
power of ln A for each of the n - 2 fermion-loop insertions in the internal 
photon line: Z3 1 (Fig. 8) = O[(ln A)n- 1

]. Allother subsets of n-loop graphs 
(with Z1 = Z2 for each subset) are o[(ln A)n- 2

] so, according to the dis
cussion of Eqs. (2.8) and (2.9), they cannot influence the leading logarithmic 
behaviour of an(n). 
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Further progress depends on the following assumptions: 

I) The theory exists at finite values of the coupling constant g, where B(g), 

yG(g), G(g), Gas'(g), ••• , are differentiable functions of g. Perturbation 

theory is generated by asymptotically expanding these functions about g = 0, 

II) At finite g, the leading power of G is Gas., as in perturbation theory. 

Very little is known about the validity of (I) in non-trivial theories; for 

example: 

i) Does the radius of convergence of the perturbation series vanish 31 )? 

ii) If so, does unitarity (or something equally respectable) uniquely specify 

the continuation from g = 0 to finite g? 

iii) Are inequivalent theories generated by different orders of surranation 32
) 

[e.g. of diagrams, or of terms in (2.21)]? 

In general, the status of assumption (II) is equally uncertain, However, 

for asymptotically free theories 8
), it is not difficult to show7

) that (II) works, 

provided that the validity of (I) is assumed, 

2.2 Characteristics of solutions 

Consider Eq. (2.17) when subtraction terms are absent and there is only one 

coupling constant g: 

= 0 (2.33) 

The general solution of (2.33) is most conveniently written18
) 

= (2.34) 

where the auxiliary function g 

stant") is defined by 

g(g,n) (known as the "effective coupling con-

= (2.35) 

Then-dependence of Gas.(nq) is entirely contained in the g-dependence of the 

right-hand side of Eq. (2.34). For consistency, we must suppose that the integral 

J dx/B(x) diverges at least once to +00 and once to -oo, Otherwise, Eq. (2.35) 

does not permit the variable n to run freely from 0 (the infrared limit) to 00 

(the ultraviolet limit). 

If the divergence in f dx/B(x) is caused by the range of integration becoming 

infinite, 

= 00 (2.36) 
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then Eq. (2.35) implies that g diverges as ln n becomes infinite. There is no 

good argument for supposing that this does not happen in real life. Nevertheless, 

people usually do not bother with this case because of its lack of predictive 

power: additional assumptions for the g + 00 behaviour of the functions 

Gas.(q;g,m) must be introduced in order to determine their asymptotic behaviour 

from Eq. (2.34). 

Alternatively, 8(x) may possess "eigenvalues" or 11 fixed points" g
00

, 

= 0 (2.37) 

which make J dx/8(x) diverge; (e.g. the origin x = 0 is a fixed point). Ac

cording to Eq, (2.35), g approaches the nearest fixed point g
00 

as ln n tends to 

+00 (ultraviolet-stable fixed point) or to - 00 (infrared-stable fixed point) 33
); 

see Fig. 9. A series of fixed points g~, g:, ••• (as in Fig. 10), produces in

dependent regions I, II, III, ••• , in coupling-constant space, The effective 

coupling constant is restricted to the region in which the "physical" coupling 

constant g lies*), For example, if g lies within region III in Fig. 10, the 

relevant IR- and UV-stable fixed points are g" and g"': 
00 00 

= {im g 
"1-o 

( < = 9 (2.38) 

Generally, IR-stable fixed points are less interesting because the correction 

(G - Gas.) from mass insertions is expected to dominate Gas. when n becomes too 

small. 

It is convenient to discuss the asymptotic properties of Eq. (2.34) for the 

case g + g
00 

in terms of the function 34
,

35
) 

which is closely related to the exponential factor in (2.34): 

exp J~ clx 'YG(x)/ ~(x) 
tG(~oo) + f(~J 

= ~ j 

A change of integration variable x + v in Eq. (2.39), with 

)( = g(j,'lv) dx J @(x) = {n '11 dv 
yields the formula 

1 

£t~) = tJv {YG[S(j,~v)) 

*) If g is exactly equal to g
00

, 

Ga$. (11q ; g"° 'm) = 

Eq. (2.33) can be solved directly: 

'! 1'co(9 .. ) Gas.(~ ; ~°" ' m) 

(2.39) 

( 2. 40) 

(2.41) 
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From Eq. (2.41), we conclude 34
) 

(2.42) 

- v ~ because g(g,n ) tends to g
00 

for v r O, and yG(x) is bounded and continuous 

[according to assumption (I)]. 

The asymptotic behaviour of Gas.(nq) is obtained by expanding g about g
00 

in 

Eq. (2.34). The leading term 

(2.43) 

is almost entirely determined by properties of the theory at the fixed point 3
-

5
,

33
), 

All dependence on the region g ~ x < g
00 

is contained in the factor n€(n), which 

controls the over-all normalization of the leading term. If the region x ~ g
00 

generates a singularity of the integral in Eq, (2,39), this factor also modifies 

the leading power nYG(goo) in Eq. (2,43): e.g., 

c/(ln 11)~ 
~ 

or 

The precise form of the modification depends on 34
): 

(2.44) 

i) the strength of the singularity in {yG(x) - yG(g
00

)}/S(x) as x tends to g
00

; 

ii) the rate at which g approaches g
00

, This is controlled by the strength of 

the zero in S(x) at x = g
00

; [see Eq, (2.35)]. For example 32
), if g

00 
is an 

infinite-order zero of 8(x), g approaches g
00 

very slowly, e.g. 

= o[(~nltn111)-~] ( ~ > 0) 
compared with the rate at which g tends to a simple zero: 

= 0 [ 11 ~'(g .. )] =I= 0 ) . (2.45) 

Note 

+ 
a) If there are several coupling constants gas in Eq. (1.37), the effective 

coupling constant i is a vector in coupling-constant space defined by the 

equations 

= t(f) = 
..... 
g (2.35 1

) 

The exponent in Eq. (2,34) becomes 

(tVt ~)- 1 J~ dv )'u [ g(J, ~v)] 
. + . 

and the condition for a fixed point g
00 

is 

= 0 (2.37 1
) 
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A fixed point is UV-stable if it attracts l from all directions in g-space 

as n tends to infinity. 

b) The simplest example of a subtractively renormalized amplitude is the two

point function 

= (2.46) 

whose absorptive part is measured in the inclusive process e+e- + hadrons. 

According to Eq. (1,49), there is no g-dependent y-function, so the analogue 

of (2.33) is 

+ K(g) = 0 (2.47) 

with solution 

(2.48) 

2.3 Broken scale invariance 

Now we consider the possibility that Green's functions are asymptotically 

scale-invariant 4
). This means that the leading term (2,43) should be proportional 

to a pure power nYG(goo) in the UV limit n + 00 , 

To ensure that corrections of the type (2.44) are absent, we have to assume 

that the function E(n) tends to zero sufficiently rapidly: 

= 

Referring to Eq. (2,39), we see that the condition for asymptotic scale in

variance is 34
) 

= CoY1vergent 

(2.49) 

(2.50) 

Equation (2,50) is supposed to be valid for all Green's functions G, so this 

looks like a very strong assumption, However, if g
00 

is a simple zero of B(x), 

= 0 
' 

(2,51) 

(2.50) is automatically satisfied because assumption (I) says that yG(x) is dif

ferentiable*), 

*) Conversely, if goo is not a simple zero of B(x), it is unlikely that asymptotic 
scale invariance can be valid: for every Green's function G, 
{yG(x) - yG(g00)} would have to display a sufficiently strong zero at x = O to 
compensate for the zero of B(x) in Eq. (2,50), 
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The asymptotic expansion of Eq. (2.34) can now be specified more precisely 

than in Eqs, (2.42) and (2.43) 5
,

18
): 

= 

'(~~oo) 
(2.52) 

Equation (2.52) indicates that non-leading terms decrease as a power o[n-l 8 '<g00 ) I] 

relative to the leading term. This result is a consequence of Eq. (2.45) and the 

fact that the most important non-leading contributions arise from O(g - g ) terms 
00 

in the expansions of Gas'(q;g,m) and the exponential factor in Eq. (2,34). 

According to assumption (II), contributions to the asymptotic behaviour of 

G(nq) due to mass insertions also decrease as a power o[n-p(
6)](p(6) > O) rela

tive to the leading term in the expansion of Gas'(nq). Equation (2,52) and as

sumption (II) imply the result 

~ a'a(9oo) { 1 + 0 (Y?-P)} exp IG G ai;.(~ 

Min {p(L\) , I ~ 1

(900)1} 

Now suppose that G is the complete Green's function GABC 

901' vn) 

, where 

' (2.53) 

A, B, C, ••• , are renormalized field operators (simple or composite), 

Equation (2,53) is not directly applicable because of subtractive renormalizations 

(1.41) induced by the time-ordering operation in 

= 

(2.54) 

f d\ d\:t ... ex~ i(~ 1 .xt + ~ 1 .x 2 + ... ) T(olA~ 1 )B(xi)qx 3 ) ••• lo) 
However, this problem can be trivially circumvented by considering the unordered 

product instead, According to the addition rule (l,46) and assumption (I), the 

characteristic power yG(g
00

) in Eq, (2,53) is given by the rule 

= + + (2.55) 

Thus each operator Q contributes nYq(~) to the asymptotic behaviour of G. In 

coordinate space, the result is 

(OIR(fx1) B(~xl) C(fx3) IO) 

fV ~ - ( dA + d.B + d.c + ... ) f ( ) 
X1' X l ' X 3 ' ••. ' 

1 ,\ (2.56) 
t~ • ~- -+ o,. 

where 

{ catlonic.al dimel"lsion of Q} + (2.57) 
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is the dynamioal dimension 4
•

33
) of the operator Q, Equation (2,56) says that 

dynamical dimension is an additively conserved quantity at short distances, This 

rule, abstracted from the preceding field-theoretic machinery, is the basis for 

Wilson's theory of broken scale invariance 4
), 

If Q is a conserved operator, the "anomalous" term yQ(g
00

) vanishes because 

of Eq. (1.49): for example, 

= 3 = (2.58) 

In particular, if J is the electromagnetic current for hadrons, the two-point 
jJ 

function (O!J J !O) obeys the familiar condition 
jJ \) 

"' (R/11rr 4
) (gf1Vi· - dtA av)(/· 

(xec-o) 

)

-.l 

i £x0 , 
(2.59) 

so the total cross-section for e+e- + hadrons is predicted to be asymptotically 

scale-invariant 36
): 

Here q is the sum of the e+ and e- momenta, and 

ns. ( + - + -) 
r:f e e - fA P· = 

is a convenient normalizing factor, Asymptotic corrections to Eq. (2.60) are 

o[(q 2 )-P/
2J, where Pis the power defined in Eq. (2,53). [In fact, Eqs. (2.59) 

and (2.60) are valid for any UV-stable fixed point g
00

; if g
00 

is not a simple 

zero of 8(x), the corrections to (2.60) decrease logarithmically.] 

A practical difficulty of this theory is that we do not know how to compute 

quantities like R, because they are characteristic of the non-trivial interacting 

theory at g = g
00

, 

2.4 Asymptotic freedom 

i) 

A theory is asymptotically free 8
•

37
) if 

the fixed point at the origin is UV-stable: 

the condition 

) < 0 

for each coupling constant g., 
l 

( i = 1,2, ... ) (2.61) 

is satisfied in the neighbourhood of the origin g = O. 

ii) the value of g is chosen such that, as n increases from 1 to 00 , f describes 
+ 

a path linking g with the origin: 

' 
(2.62) 
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Equation (2.62) is not an automatic consequence of (2.61) because it assumes the 
-+ 

absence of barriers such as non-trivial fixed points which can prevent g from 

reaching points close to the origin. The important feature of these theories is 

that most of the terms in Eq. (2,43) can be computed explicitly, In particular, 

Gas'(q;g
00

,m) and yG(g
00

) are trivially given by free-field theory because the rele

vant fixed point g
00 

vanishes, 

Checking Eq, (2.61) is just a matter of computing one-loop*) contributions 

to 8(g) in perturbation theory. Most theories do not obey Eq. (2.61): in QED, 

the coefficient b
1 

of the one-loop term in (2.26) is positive (b 1 = + 2/3n), and 

more generally 38
), a four-dimensional renormalizable field theory cannot be asymp

totically free unless non-Abelian gauge mesons are present. Furthermore, 

Eq, (2,61) is satisfied only by special classes of gauge theories, The simplest 

and most interesting case 8
•

39
) involves massless gauge fields Aa interacting with 

themselves and with fermions ~i belonging to a representation Rµof the gauge 

group G. For applications to strong interactions 1
•

8
•

39
) the fermions are supposed 

to be current quarks 40
) distinguished by properties of "colour" and "flavour": 

(2.63) 

The flavours u, d, s, c, , • , (= up, down, strange, charmed, • , , quarks) are 

gauge-invariant and transform under observable symmetry groups G b such as 
0 s 

chiral SU(3) x SU(3), Each flavour carries a colour index K which is transformed 

by G but not by Gobs (e,g, u-+ uK' K = 1, 2, .. ,) , For example 40
), if K = 1, 2, 3 

refers to the fundamental representation l_ of G = SU(3), the complete fermionic 

representation R is a direct sum: 

R = (2.64) 

The Feynman rules of the theory involve a coupling constant g, the structure 

abc . a f 
constants c of the~auge group G, and the matrix generators T o G for the 

representation R. If necessary, the fermions can be provided with a gauge

invariant mass matrix ,A(, in flavour space to ensure that symmetries like chiral 

SU(3) x SU(3) are softly broken. Propagators and vertices are generated by the 

Lagrangian**) 

= + i ~.f, 

*) Two-loop, if the one-loop terms accidentally vanish. 

+ (2.65) 

**) For background, consult review articles 41
-

43
) on the quantization and re

normalization of gauge theories. 
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where 

+ abc.A b A' 
9c 1-l. v (2.66) 

is the gauge-covariant field-strength tensor, and 

= (2.67) 

is the gauge-covariant derivative for the fermionic representation R. The terms 

F
2

, ¢~f~ and ~.Al~ 

where 

t\ 

dAt-4 

b'lf 

ab 

DP-

are invariant under infinitesimal gauge transformations 

= 
(2.68) 

= 

= 
abc n c. 

g c.. n,.,_ (2.69) 

is the covariant derivative for the adjoint representation of G, and awa(x) are 

arbitrary non-singular functions of the coordinate x, The term '/! f in Eq. (2.65) 
g. 

specifies a gauge for which the propagator of A~ is well defined; e.g. a Fermi-

type gauge-fixing term 

= ( 2. 7 0) 

generates the propagator 

iSab 

v = (2.71) 

Unphysical contributions of .'/! .f to loop integrals must be cancelled by in-

cluding a ghost Lagrangian 44 • 4 ~) .Ph in Eq. (2.65). The choice of !!! in 
g ost g.f 

Eq. (2.70) produces a ghost Lagrangian 

= 

where the ghost field ¢a is a Lorentz scalar with Fermi-Dirac statistics. 

Equations (2,65) to (2.72) refer to the unrenormalized (B) representation. 

( 2. 7 2) 

One way of computing coupling-constant renormalization is to compare O(A 2
) 

and O(A 3
) terms in .'l! . Wave-function renormalization 

= (2.73) 

and a rescaling of the gauge parameter*) 

*) 

~ = R 
(2.74) 

The scaling factor in (2.74) is Z3 1 because Ward identities forbid (a.A) 2 

counterterms 45
): i.e. ~B 1 (a.A)~ = ~R 1 (a.A)~. Because of (2.74), the CS dif

ferential operator aG for ~-dependent Green's functions G contains an addi
tional term -2y(g,~)~a/a~. 
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account for the O(A 2
) terms, Three-meson lPI divergences produce a Z

1
-factor 

[similar to that in Eq, (1.10)] 

(2.75) 

so coupling-constant renormalization is given by 

Note 

3/:i. -1 

z3 z1 ~s = (2.76) 

Instead of (2,75), we could have considered one of the other g-dependent 

vertices in !.t: O(A 4
), O(~A~), or O(~*A~). For example, if Z

1
,Z

3 
are the 

renormalization factors for ghost amplitudes, 

), = z -lh), 
~'R 3 'f'B 

3s ca~' (cJ~ <f>'t): (A~ q,c)B = JR Zt c a~c (d~ ~a): (A~ ~ c)R (2.77) 

the result is 

(2.78) 

As long as the regularization procedure 46
•

47
) is chosen such that gauge Ward 

identities 43
•

4 e-so) are satisfied, the consistency of equations such as 

(2.76) and (2.78) is assured 48
): 

Z1/ Z1 = z3/ z3 (2. 79) 

A computation of the one-loop contributions to gR/gB yields (after a bit of 

algebra) the basic result 8
•

39
) 

~(g) = - b93 + 0(55) 

b = { ~ C:~(G) ~ T(R) }/ tbrr:t (2.80) 

with 

a1 acd bed ( C:J G) o) C!l(G) ~ = c c > (2.81) 

T(R)~ab = Tr{To.ib} ( T(R) ) o) (2.82) 

Hence Eq. (2.61) (b > 0) is satisfied if there are not too many fermions in the 

theory. The rate at which g approaches the origin is a direct consequence of 

Eqs. (2,35) and (2,80): 

_2. 

9 = + '(~-oo). (2.83) 
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Most Green's functions G(nq) are not asymptotically scale-invariant because 

the one-loop term cGg 2 in the perturbative expansion 

+ (2.84) 

causes the integral 

in Eq, (2.50) to diverge logarithmically at x = 0, The rate at which the addi

tional power s(n) [Eq, (2.39)] approaches zero is governed by the equation 

i.e. 

= 

J; dx [ (Y0lxl - l'0 (ol)Nl<l + '°G/bx) 

lim 
'l_-oo [£(yt)lnyt + (cG/b)fn(g/g)] 

s(n) decreases more slowly than (ln n)- 1
: 

(cG/lb) !vdn11/lnyt 

(2.85) 

This means that the leading singularity of Gas'(nq) differs from the singularity 

nYc(O) observed in free-field theory; there exist logarithmic modifications of 

the forms. 3 9) (ln n) eel 2b: 

This is a non-perturbative result. It depends on the validity of assumption (I), 

because the factor exp JG depends on the values of S(x) and yG(x) in the region 

0 < x < g. Also, a (ln n)cG/
2

b singularity cannot be generated by finite-order 

perturbation theory for G(nq), because in general, the power cG/2b is not an 

integer, 

Of course, if there is no wave-function renormalization for G [i,e, 

yG(x) = yG(O)], the leading singularity is the same as in free-field theory 

(parton model), In particular, the ratio 

R (~z/l'ni; g) = ( + - h d JI "s.( ~ - + -) o e e. _,. a rons <f e e - f" p. 

= Ra.s.{c,,2/m:.; j) + {non-lea.dirt~ powers} 
tends to the asymptotic value 8

•
39

) 

R - L, Q :i. (Q = 9uark c~cu·~e) 
flavo.,rS 
colours 

(2.87) 

(2.88) 

It is not difficult to find the leading asymptotic correction to this result. 

The two-loop contribution Ras'(q 2 /m 2 ;g) is 3g 2T(R)/16TI 2 relative to the one-loop 

contribution I Q2
; [the factor 3g 2 /16TI 2 can be extracted from the Jost-Luttinger 

calculation 29
) for QED]. So, if the right-hand side of the equation 
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Reis. ( 1 2./ 1 ) 
riq m; 9 = (2.89) 

is expanded in g about g = O, the result is 51
) 

Ras.( 2 :i./ i. ) 

11~ m ;~ 

Thus the first non-leading term is positive and decays logarithmically. This re

sult illustrates the difference between asymptotic freedom and asymptotic free

field behaviour; in free-field theory, the leading correction is negative and 

approaches zero very rapidly: O(n- 4
). 

Asymptotic freedom allows us to make very precise statements about amplitudes 

which involve a short-distanoe Zimit. Unfortunately the reverse is true elsewhere, 

especially for the problem of deciding whether the theory possesses a respectable 

S-matrix or not. Most Yang-Mills theories [e.g. Eq, (2,65)] do not possess a 

perturbative S-matrix because of infrared singularities at thresholds for the 

production of massless gauge mesons, and in any case, we do not want massless 

states to appear in the hadronic spectrum, The perturbative solution to this 

problem is to break the gauge symmetry spontaneously, i.e. to introduce enough 

Higgs-Kibble 52
) scalar fields ~ to make all of the gauge mesons massive. The 

presence of ~ 4 couplings means that Eq. (2.61) is much more difficult to satisfy 39
•

53
), 

Nevertheless, asymptotically free theories with scalar mesons do exist 54
) and in 

particular, there are models 55
) in which all perturbative states are massive. An 

immediate reason for not pursuing this line further is that it involves an un

realistic perturbative constraint. The spectrum of a summed-up theory is unlikely 

to bear much resemblance to the perturbative spectrum*), and hadronic states are 

definitely not perturbative. 

Another approach is to assume that there is a dynamical mechanism which breaks 

gauge invariance spontaneously 58
). There are no ~ fields; instead, the infrared 

singularities of perturbation theory are supposed to sum to scalar meson poles 

which simulate the Higgs-Kibble mechanism in a non-perturbative manner. Dynamical 

generation of mass from Lagrangians which contain no dimensionful parameters has 

been exhibited 59
) for four-dimensional scalar QED and some two-dimensional models. 

However, the most likely possibility is that the strong interaction gauge 

symmetry (colour) is exact 39
•

60
), One would break gauge invariance spontaneously 

only if it were desirable to produce a hadronic spectrum with lots of non-degenerate 

coloured states, including states with quark-like quantum numbers. Note that 

*) A variety of classes of graphs can be summed to produce non-perturbative states. 
The traditional bound-state picture 56

) typically involves the ladder approxi
mation for a scattering amplitude. The semi-classical approaches 57

) which are 
currently fashionable treat observable states as coherent superpositions of 
infinitely many perturbative states, 
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isospin and ordinary SU(3) have nothing to do with breaking a strong gauge group, 

because they are approximate degeneracy symmetries. Similarly, observable 

hadronic currents j (electromagnetic, chiral, etc,) are colour-invariant; other-
µ 

wise, instead of current conservation or partial conservation, we would have 

D
~b . b 

. J = (2.91) 

where Dab is the appropriate covariant derivative (2.67) with strong coupling 

constant g. 

So we return to the colour-flavour model mentioned at the beginning of this 

section, All flavours, observable operators and observable states are colour 

singlets. Perturbative amplitudes become infrared singular either as some of the 

external momenta are taken on-shell, or as a partial sum of the external momenta 

becomes light-like. We are better off with the singularities because then we 

can at least contemplate the possibility 60
) that these infrared effects, summed 

to all orders in perturbation theory, confine quarks, gluons and coloured "bound 

states" (constituent quarks, etc,). The precise criterion for this is poorly 

understood, but there are some hopeful signs: 

i) The Bloch-Nordsieck solution 61
) of the infrared problem in QED, which results 

in the existence of observable photon and fermion states, fails when applied 

to Yang-Mills theories 62
, 63 ), 

ii) The lattice approximation 64
) for the colour-flavour model indicates quark 

confinement. 

It is surprising that perturbative infrared singularities in gauge-invariant 

channels receive so little attention, because there we do have a precise criterion: 

observable amplitudes must not be infrared singular. In other words, when summed 

to all orders, the singularities should conspire to shift all gauge-invariant 

thresholds away from zero mass. Gauge-invariant singularities occur even if the 

fermions in Eq. (2.65) are all massive (.A(, IO). For example, consider the stress-

energy tensor 

= F~111. F~~ + ~ttJ f4- + 

~tA" \Jr( i ~f - .Ait)1Jr + 

i -( ++f 
4'1¥ Y~Dv 

{ renorrnal i za~i on cou TI terterms} 

The diagram shown in Fig. lla is responsible for the singularity 

iJd~ ei~.x T<ol 8°'~(x) 8,_cf(o)lo> rv -(d(G)/bol°)~°'~~~ 1 ~ 0 ln~:i. 
+ 0(9i) , (i{ ~ o) 

( 2. 9 2) 

(2.93) 

where d(G) is the number of generators of the gauge group G. More generally, 

amplitudes T(0!0 1 0
2
0 3 ••• ID) involving gauge-invariant operators Oi can be 
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infrared singular whenever the diagrams of Fig, llb (intermediate gluon or ghost

antighost pair) are permitted by selection rules, Of course, additional singu

larities appear if some of the fermions are massless. 

Note that observable amplitudes must be regular (not merely non-singular) 

at light-like momentum transfers, For example, if Q is the gauge-invariant 

operator 

Q(x) = + {re normal i "tab.on countrrterms} (2.94) 

there is a non-singular branch cut at q2 

for the two-point function 

0 in lowest-order perturbation theory 

(1d(GJ/ rr 2 )~ 4 ~tt~:z 
+ O(s2) ' (~i--+ 0) 

(2.95) 

The theory makes sense only if branch cuts like q4 ln q2 disappear when the sum 

to all orders in perturbation theory is performed, This means that a complete 

analysis of the infrared problem involves non-singular graphs with more than two 

intermediate gluons or ghosts (Fig. llc), as well as the diagrams of Fig, llb. 

The non-perturbative nature of the problem can be readily appreciated by 

considering the extreme case .A(,= 0 in (2,65), as advocated by Gross and Neveu 59
) 

[but without breaking the colour symmetry*)]. The only dimensional parameter in 

the theory is the renormalization subtraction point A, Amplitudes obey equations 

such as (2,33) and (2.48) exactly (with A replacing m), so t~e infrared behaviour 

for the limit in which all external momenta approach zero can be discussed in 

terms of a non-trivial infrared-stable fixed point g
00 

(possibly at infinity). 

For example, consider Eq. (2,48),(which is also valid for form factors of 

T(8aB8y0 )). The criterion is that 

f i rn ( 2 l./ 'A :I. ) 
·~ -+ 0 T( ri. ~ ; g .At = 0 = (2.96) 

should be finite with ~ero absorptive part, so K(x) must approach zero sufficiently 

strongly as x + g
00 

to make Jgoo dxK(x)/B(x) converge, 

The case .Al # 0 is more complicated, Apart from the lattice approximation, 

the main lines of analysis will probably involve: 

i) theorems 63
1

65
) that infrared singularities of amplitudes are given by the 

theory with massive fields omitted (except as external lines), up to finite 

renormalizations; 

ii) the improved CS equation 7
), to be considered in the next chapter. 

*) In order to generate ordinary SU(3) breaking for the .AL = 0 case, it must be 
supposed that there exist inequivalent methods of summing the theory, and that 
one of these methods is SU(3)-asymmetric, 
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3, OTHER METHODS 

3,1 Gell-Mann -- Low analysis 3
) 

Let us return to the subject of coupling-constant renormalization in quantum 

electrodynamics, 

The coupling constant a used in practical calculations (a- 1 = 137,036, ,,,) 

refers to the amplitude for an electron to emit a zero-frequency photon. Ac

cording to Eq, (2,23), charge renormalization is controlled by the wave-function 

renormalization of the photon propagator 

= (3.1) 

so the choice of a as coupling constant corresponds to the normalization con

dition 

d(o,cx) = 1 (3,2) 

for n;µv(q) at q2 = o. 

Consider another renormalization procedure in which the coupling constant 

aA is given by the amplitude for the emission of a virtual photon with space-like 

momentum A, Now the photon propagator (n;µV)A depends on q, A, m, and aA, 

a~ (D:~Jll = -(~ (~IA" - 1f'1vh'") D(1'"/t, m'"/A~cx,.) - ie(A ~~ ~f1v/~ 4 

and is normalized at q2 
= A2

: 

(3. 3) 

= (3 .4) 

When the renormalization prescription is altered by changing A, the normalization 

of (n;µV)A changes by a factor 3; 1 [as in Eq. (l,21)], but the combination 

a (D 1 
) is invariant: A Fµv A 

For q
2 

D (~:if>.~, m'"/~:, ocA) = Dh2/A:, m'"/1:, °'>.J 
= oc d(~ 1

/m
2

, ex) 

A~, Eqs. (3,5) and (3.6) become 

= 

D(~,m
1

//·, cxJ 
oc d(~">..'-/m 

2
, ex) 

where p is a convenient scale parameter: 

' 

(3. 5) 

(3.6) 

(3.7) 

(3.8) 

(3. 9) 
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The result of substituting (3.7) into (3.5) is a functional equation for the 

renormalization-group transformation*) A + A/P: 

= (3 .10) 

Application of a/a p to Eq. (3.10) at p = 1 produces the renormalization-group 

equation 

[x a/Jx + Ma/JM = 0 (3.11) 

with X 

tV(cx~, M) (3.12) 

In general, Eq. (3,11) cannot be integrated because~ depends on two vari

ables. However, GML 3
) observed that all renormalized Feynman integrals remain 

convergent when M l.S set equal to zero: 

0 
1 

+ 0 .A2 =I= 0 m. = 
~ 

(3,13) 

For example, the subtracted integral 

I(~,A,m) = Jd~r (rl - m2r1{ [(~+ i) 2 - m:trl [(~+At - m zr1} (3,14) 

remains both infrared and ultraviolet convergent when the condition (3,13) is im

posed. For the general case, ultraviolet power counting is not affected by setting 

m to zero, but infrared convergence has to be checked, either by inspection 3
) or 

by appealing to Kinoshita's theorem1
•

67
•

68
), The result is an integrable equation 

of the same form as Eq. (2,33), 

= 0 (3.15) 

where 

tV(z) == tV(z , o) (3.16) 

is known as the Gell-Mann/Low function, 

Instead of analys'ing D(X,O,aA) further, let us make use of the connection 

(3,6)-(3.8) between D(X,M,aA) and the conventionally renormalized theory. Thus 

Eq, (3,12) can be rewritten 

1f(rxd(A2./m1
, ex), ml./A2

) = [(d/Jf)ixd(~;t
2
/m 2 , tx)]f= 1 

= J/J fn(-A
1

) [c<d(l/m
1

, rx)] 
Order-by-order in perturbation theory, the leading power in m2 at m 

isolated by substituting the expansions 

(3.17) 

0 can be 

*) The connection between the GML analysis and the work of Stueckelberg and 
Petermann 2

) was noted by Bogoliubov and Shirkov 28
•

66
). 
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ljr(z) + 0 (m"{ (09s of ~}] 

rxdets.(>i.2/m2 ,ix) + O[m2{fogs of m}] 

(3.18) 

(3 .19) 

Equation (3,18) depends on the existence of the M ~ 0 limit (3,13), while (3,19) 

is just a special case of (2.16); [i.e, atlas, is the amplitude which appears in 

Eqs, (2,24) and (2,26)]. The result is an integrable equation 

wi h solu tion 

= 
crdas. (A2/m", oc) 

L."'(-1 , o<) 

dz 
\j!(z) 

(3. 20) 

(3.21) 

The analysis of the GML equation (3.21) is very similar to that of Eq, (2.35). 

The sign of the first term in the perturbative expansion 3
•

69
) 

'f (z) = + + 
implies that z = 0 is an infrared-stable fixed point, If there is an ultraviolet

stable fixed point a 0 , 

\Jr (cxo) = 0 
' 

(3. 23) 

it follows from (3, 21) that a
0 

is the asymptotic charge of the photon propagator 

at short distances: 

<Xdas.(A 2/rv/, oc) ex o , (-A2 --oo) (3. 24) 

If l/J(z) does not vanish for z > 0, we must suppose that J dz/l/J(z) diverges 

at z 00: 

ex d ets. ( Al/ m 
2 

~) , (-!ti --oo) 
' 

)t 00 (3. 25) 

Otherwise the theory is inconsistent because of the presence of a tachyonic singu

larity in adas.(A 2 /m 2 ,a) at 

= - m
2 

exp J;«) d.z(\)f(i.) (3. 26) 

[where q(a) is shorthand for adas.(-1,a)]. It is now obvious why the "ghost" 

(tachyon) problem 30
) discussed previously [(Eq, (2,30)] is not a genuine dif

ficulty: it is not reasonable to assume that the small-z behaviour z 2 /3rr is a 

good approximation for ~(z) at large z. 

The connection between l/J(z) and the 8-function (2.25) is found by applying 

the CS differential operator 

to Eq. (3.21) 32
): 

tfr(~(oc)) = 4, ex ~e<) d.ci(aJ/d.O( 

~(a:) ex J. "'\-t , oc) (3. 27) 
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For conventional on-shell renormalization, the perturbative expansions of q(a) 

and B(a) are 3
•

29
) 

9(0:) 

~(oc) 

= 

= 

5c:l/qrr + (l;(3J + 

+ o..2/2rr.:J. (3. 28) 

A feature of the GML formulation is that ~(z) is a universal function. Un

like B(z), it does not depend on the renormalization prescription A, Adler's 

proposal 32
) for computing the fine-structure constant 

= 0 131. 03b ??) (3. 29) 

illustrates this point. Equation (3,29) involves the B-function for on-shell re

normalization. This makes sense because the fine-structure constant is the on

shell coupling constant. A different renormalization procedure would produce a 

different $-function [O(a 3
) terms and higher] with an eigenvalue numerically 

different from a
00

, On the other hand, the corresponding asymptotic charge 

= (3. 30) 

is renormalization-group invariant. It does not refer to a particular point in 

A-space, so apart from the constraint a < a 0 , its value has nothing to do with 

the value of the fine-structure constant. 

To obtain renormalization-group equations for multiplicatively renonnalized 

amplitudes G, one can use the fact that the ratio 

is A-independent for arbitrary sets of external momenta p and q. For example, 

the analogue of Eq. (3.11) is 

[x a/ J x + M il I a M lY(cx,,_, M)a/arx~ :X(cx>i, M)]G(X,M,<XA)=O (3.31) 

X(ix~, M) = [(CJ/Jf) (ri G(f', Mfr, D(~, M, ex>.))]~= 
1 

(3.32) 

The analysis of the M = 0 limit is the same as that of Eq. (2.33), so X(a 0 ,0) is 

the power of X which characterizes the large-X behaviour of G: 

anomalous dimensiovi = (3.33) 

Of course, we expect anomalous dimension to be an invariant of the renormalization 

group. This can be checked from Eq. (1.38) and by considering transformations on 

Eq. (3.32). 

More complicated cases of coupling-constant renormalization can be handled 

by finding the appropriate generalization of the invariant function Din Eq. (3.3). 

For example, consider the invariant 

i5 = [ 

(2.) (1) (2) ('I.) ] 
1h ( 4) 

G (p,) G (~,.) G (p3) G (~~) r { p., 'P2, p), f~) (3 .34) 

I 

.JI 
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with c( 2
) = boson propagator, r( 4

) = 4-leg lPI vertex, p. = external momenta, 
1 

l p = O. In analogy with (3.4), the coupling constant gA for the ¢4 interaction 

is given by D at the subtraction point p. =A., 
1 1 

The M + 0 limit can be taken if 

p. and A. are not exceptional. 
1 1 

The resulting ~(g) function is universal with 

respect to transformations which scale all of the A. together, 
1 

In gauge theories, 

one vertex (e.g. 3-gluon) can be used to define D and gA, and then gauge Ward 

identities fix the normalization of the other vertices (4-gluon, ghost-gluon, 

etc.). 

The GML approach involves the same assumptions [CI) and (II) in the dis

cussion after (2,32)] as the CS method, so the choice of CS or GML method (or 

variation thereof) is mostly a matter of convenience; [e.g. the GML method is 

ideal for two-dimensional QED 70
)]. 

3,2 Improved CS equation 

According to assumption (II), non-leading powers in the asymptotic expansion 

of a perturbative amplitude do not compete with the leading power when sununed to 

all orders. These non-leading powers reflect the presence of masses (or other 

dimensionful coupling constants) in the Lagrangian 'l!, The rule 4
,

7
,

33
,

7 i) for 

estimating these terms involves the maximal dynamical dimension d
6 

of the mass 

operators of 2'; e.g. 

g + J'll(g<X>) (~ = 1-p 1.J!) 

dli = 
~'"/1) 

(3 .35) 

+ 111(~~) (6 = 

where y
6 

is the y-function (1.46) for the composite operator /::;, It states that 

the Nth set of non-leading powers of a perturbative amplitude G(nq) sums to an 

amplitude which is*) 

[ -N(4-J) { }] 
0 ~ !>. lo~s of f! 

' 
( N = 1 , 1 , . . . . not. 1:-oo large) (3 .36) 

1 · h d 1 d' Gas.(nq). re at1ve to t e sumrne -up ea ing power Thus we must assume 4
) 

< (3 .37) 

in order to ensure the validity of assumption (II), Equation (3.37) is auto

matically satisfied 7
) if the theory is asymptotically free because the relevant 

anomalous dimension Y1::,(0) vanishes. 

Wilson introduced Eq. (3.36) as one of the rules of his theory of broken 

scale invariance 4
) and later justified it**) within the context of the renorma

lization group by applying a variant of the GML analysis due to Eriksson72
), The 

*) Sop(/::;) can be replaced by 4-d/::; in Eq. (2.53), 

**) See Section IV of Ref, 33, Similar conclusions were obtained by Symanzik71
) 

for A¢ 4 theory in the CS formalism, 
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conventional GML procedure is to renormalize the mass on-shell; the renormalized 

mass is taken to be the position of the pole in the propagator and is regarded as 

being independent of the subtraction point A, [This accounts for the absence of 

a non-trivial coefficient for the operator Ma/aM in Eqs. (3.11) and (3,31) .] 

Eriksson's method involves a mass parameter mA defined in terms of the propagator 

at the subtraction point A, In bare outline, what happens is that a change of A 

induces a mass renormalization 

mx' = (3 ,38) 

as well as coupling-constant and wave-function renormalization, Because of the 

factor 3m' there is a function (m~/A 2 )Xm(aA,m~/A
2
) associated with Ad/dA(m~/A 2 ) 

in the same way that w(aA,m~/A 2 ) is related to Aa/aA(aA) [as in Eqs. (3.7) and 

(3,12), except that the change in renormalization prescription produces a dif

ferent two-variable w-function]. The variable m~/A 2 acts like a coupling con

stant in the renormalization-group equations, Thus the anomalous dimension of 6, 

~(a 0 ,0)/2 [or ~(a 0 ,0) for scalars], appears when the theory is expanded about 

the fixed point (a 0 ,0) in (aA,m~/A 2 ) space. Equation (3,37) is the condition for 

this fixed point to be UV-stable in the m~/A 2 direction, 

The result (3.36) was rediscovered by Weinberg 7) as a direct consequence of 

his improved CS equation 

Equation (3,39) is characteristic of "mass-independent" renormalization prescrip

tions in which there is a renormalization parameter µ but the S and y functions 

do not depend on ~/µ, Instead of a mass-insertion term, there is an ordinary 

derivative ~a/a~ multiplied by a y function ym(gR) associated with mass re

normalization. This means that Eq. (3,39) can be directly integrated without 

taking a zero mass limit, 

The main step in the derivation of (3.39) is to find a suitable renorma

lization prescription. One possibility7) is to multiply gB, mB, and GB by 

Z-factors given by setting mB = 0 in the corresponding factors Z(gB,A/µ,mB/µ) 

which relate bare and renormalized quantities in the GML prescription. Here,. 

µ is the GML reference momentum A and Zm = ~/mB is the Z-factor for the composite 

operator ~W· Assuming that cut-off independent renormalized amplitudes are pro

duced7•73), this prescription is obviously mass-independent: 

~(9R) 

ym (9R) 

}'(~ R) 

= 

= 

= 

{im 
/\-+ 00 

{im. 
I\ -oo 

!im 
I\ -+o<> 

( f af at-t) gR( Ss' A/fA) 

(t-tafa~) fn Zm( 98 , f\/f) 

(tAJ/J~) !n ZG ( 9s' "/r) 

(3.40) 
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Equation (3.39) is an immediate consequence of combining the formulas 

GR = z~ GB 

(~J/Jf'L) GB(fixed ~' ~ 5 ,mB) = 0 
(3,41) 

Weinberg also observed that all of the properties needed in the derivation 

of Eq. (3,39) are contained in 't Hooft's analysis 74
) of the renormalization group 

for dimensionally renormalized 46
•

75
-

77
) amplitudes, This line was subsequently 

studied in detail by many authors 78
), Briefly, the analysis depends on the fol

lowing theorem74
•

79
): in the dimensional renormalization scheme, counterterm 

vertices are polynomials i n the renormalized mass parameter ~ as well as in the 

external momenta q *) Thus Z-factors depend only on the unity of mass 74
) µ 

(which accompanies each loop integral µ 4-n J dnp), the complex parameter n, and 

gB' which has dimensionality (4 - n)K (with K = 1/2 for gauge theories, K = 1 for 

¢4 coupling): 

Once again, 

N9R) 
Ym(9R) 

1(gR) 

The analogue of Eq, (l,35) is 

with78
) 

(3 .42) 

(3.43) 

= 0 (3 .44) 

where the integer dG is the mass dimensionality of G, so if dG is absorbed into 

the definition of the y function 

= 

Eq, (3.39) can be written 

['la/Jvi - ~~R) J/J~R + {1-1'm(9R)} mR;)/JmR 

The general solution of Eq, (3.46) is 7
) 

where, in addition to the 

"effective mass" 

= 

+ (3 .45) 

= 0 (3.46) 

(3,47) 

is an 

(3.48) 

*) One proves (e.g. by induction in t) that the t-loop amplitude (a/amR)Pr con
verges for sufficiently large integers p; here, r is a lPI amplitude 
(Fig, 1) with i 1-loop counterterms (i 1 < i) included in the Lagrangian, Ob
serve that the result is not true for conventionally renormalized theories: 
Z = Z(A/~,gB) =polynomial in gB and ln (A/~), 
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The n + 00 limit of Eq, (3.47) is controlled by the asymptotic behaviour of 

both g and m *): 

m = 
(3 .49) 

Now, apart from finite renormalizations, the massless amplitude GR(q;gR,O,µ) may 

be identified with the leading-power amplitudes Gas.(q;g,m) and G(X,O,gA) of the 

CS and GML analyses, Therefore the condition 7
) 

m. ~o Y1vt ( 9ai) < (3. 50) 

is essential if assumption (II) is to be satisfied. Making t he identification 

dtl i 
3 + Ym ( joo ) (~ = 1/!W) 

= 
(ll o/ 11) 

(3.51) 

i + 2 Ym(900 ) 
= 

we see that Eq. (3.50) is equivalent to Eq. (3.37). 

Evidently, the terms N = 1, 2, ••• , of Eq. (3.36) correspond to increasing 

powers of m in the Taylor expansion of Eq. (3.47) about m = 0: 

(3. 5 2) 

However, it is necessary to insert the warning "not too large" in (3,36) because 

in general, the limit 

fim 
m-o (3.53) 

does not exist if r is too large 7
), If mR is a fermionic mass parameter, trouble 

first appears when (a/am) 3 acts on a single internal propagator, producing a loga

rithmic infrared singularity in the limit m + O: 

- 3 ( d )
3 J" di+- '.l It - ( 3 ) 

Wt \~hn ~!(¥ - m) - 0 m f n m (3.54) 

Higher derivatives (r > 3) do not reduce the power further: 

e·j· = (3. 55) 

For scalar masses ~· the r = 2 term (3.53) is infrared singular. 

The restriction of (3.36) to small values of N means that the non-leading 

terms are not completely under control, In particular, the logarithmic powers 6 

in O(m 3 ln6 m) (for fermions) should be further investigated; for example, are 

there models in which 6 is bounded as the order of perturbation grows? I think 

*) Note the analogy between the n-dependence of (g,m/mR) and the A-dependence of 
(aA,m~/A 2 ) in Wilson's analysis 33

), The mass-independence property simplifies 
the analysis: na/an(g, ln iii/mR) is given by the integrable expression 
(S(g),ym(g) - 1), whereas the equations for Ad/dA(aA,m\/A 2

) are coupled, 
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that B is larger than 1 in general, because the coefficient of the term (3,54) in 

the expansion of ~ 3 (a;a;) 3 GR is a zero-mass amplitude evaluated at exceptional mo

menta: 

= GR ( f = o, -~ = o ; 9,; ~ • m , tA) (3. 56) 

Here (p,-p) are external momenta for the fermion-antifermion pair obtained by 

cutting the internal propagator (p - m)- 1 in (3.54). In particular, the zero

mass limit can produce logarithms in the fermionic self-energy which modify the 

denominator 

(3. 57) 

and generate extra logarithms of; in Eq, (3,54). 

Equation (3,46) is valid for all momenta q, so there is no need to restrict 

its application to ultraviolet limits, Thus the discussion of infrared singu

larities at the end of Chapter II can be extended in an obvious way to include 

the case .AL ~ 0, For example, the analogue of Eq, (2,96) is 

lim 
ri-o = J9°"dx K(xL (3.58) 

gR ~(X) 
Unfortunately, the asymptotic value .AL of Jt (n ~ 0) is not known because the 

00 

IR-stable fixed point g
00 

is not at the origin. 

4. OPERATOR-PRODUCT EXPANSIONS 

In order to apply the renormalization group to topics such as current algebra 

and deep inelastic electroproduction, it is necessary to consider ultraviolet 

limits for subsets of the external lines of amplitudes. The appropriate tool is 

Wilson's expansion for operator products at short distances 4
). 

4.1 Short-distance limit 

The short-distance expansion 4 ,is,ao-a 3 ) 

I( 

n (4 .1) 

i : 1 

is an asymptotic expansion of the operator product TIA. into local operators 0 (x) 
1 n 

(including the identity operator I), with c-number coefficient functions C de-
n 

pending on the various coordinate differences p(~j - ~k), The product ITAi may be 

unordered (e.g. multiple commutators), or ordered (T-product, anti-T-product, ,,,), 

or some combination thereof. The terms C 0 in the sum l are ordered according 
n n n 

to the strength of the singularity of e in the scaling variable p *): 
n 

= 0 (N = 0,1,2, ... ) (4.2) 

*) Unlike its cousin, the light-cone expansion 84
•

85
), the shor£-distance ex-

pansion does not involve performing an infinite sunnnation \ • 
ln=O 



- 44 -

The effect of expanding about x' = x - p~ instead of x is to change the contri

butions of derivative operators: 

t 1-,· ( t. ~ ,)y- o,,(x') 
r. O 'I , \ CTX 

(4.3) 

In free-field theory, the expression (4.1) is trivially obtained by Taylor

expanding the Wick expansion of TIA . • For example, consider the Wick expansion 
1 

T{J;(t) J}(o)} = {1~(~)~L(Ai/2JM(op~v(At/2)~(01} I 
.-----. . . ,---, . 

+ : 111(~) Yf'- (f/1)1((~,ltJ!(o) Y"(A 1/2.) tV(o): + : lV(o) 1"(~'/1)1'1(0) 'V(~)Y/A(;\ i/l)~r(~): C4.4) 

+ : iV(~) 1r(ft.1/1) o/(~) l/!(0)111 (Ai/1) lf(O) : 

for SU(3) currents 

I ' ) 
\

1 

Ai = matrices fol" (l'fdinav~ SU(3) (4.5) 

with 
r--i 

1V(o) LJ!(~) = 
(4. 6) 

When expanded about ~ = O, each term on the right-hand side of (4.4) contributes 

to the Wilson expansion: 

= I (Fnt ~erm of \4.'+)) o't\ 

o'I'\ = two-krmion opel"r.ttors = : tii(x){ A, y matrices}{ ar J} '4'(x) : 

= 

= 

( secon.d crnd ~~ir-J rums of (Lt.4-)) ; 

four -f~rm i on op~r-a.tors 

lf(x){A, Y}{JJ ... a} lf\x)lV{x){li, r}{cJJ .. . c1}\l'(x): 

(last tt.rvn of (4.4-J) 

(4.7) 

r--'!, 

The expansion of ~(O)~(~) produces terms of the form ~p or ~p ln (~ 2 rn 2 ), so we 

have (p = integer) 

e1\(~) = tC( t~ . . . tw ( tl)'f> {con~tcrnt , or c.ortstcrnt. frt (m.7.tl)} (4.8) 

The logarithm is at least O(m 3 ln m) in Eq. (4.6) [compare (3.54)], so it contri

butes to unimportant non-leading terms in the Wilson expansion. 

The expansion (4.1) remains valid in renormalized perturbation theory 71
•

81
•

83
•

86
). 

The operators A.,O are provided with counterterms so that they yield finite 
1 n 

matrix elements. In general, there are more operators 0 than in free-field 
n 

theory. For example, the expansion of T{:Fµ:Fv} involves six-fermion, eight-

ferrnion, ••• , operators as well as renormalized versions of the operators in 
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(4,7), The operators 0 can also depend on other fields appearing in the 
n 

Lagrangian (e.g. gluon and ghost fields in gauge theories). The properties 71
•

87
) 

of the coefficient functions C are very similar to those of the asymptotic 
n 

parts Gas, of renormalized Green's functions; they become coupling-constant de-

pendent and exhibit extra logarithmic singularities compared with Eq, (4.8), 

(4.9) 

or more generally [in analogy with Eq. (2,21)] 

(4.10) 

Since the most interesting applications of Eq. (4.1) are non-perturbative, 

a proof based on the general principles of axiomatic field theory would be very 

desirable. The main difficulty to be overcome is that there is no general argu

ment which forbids the appearance of infinite oscillations in matrix elements of 

TIA. as p tends to zero 82
). A rather complete analysis is possible82

) if oscil-
1 

lations are assumed to be absent. 

Most practical applications 4
•

88
) involve products TIA. of observable hadronic 

1 

currents: .th7 electromagnetic current Jµ, the energy-momentum tensor 8µv' the 

currents :T
1
,:f~ associated with chiral SU(3) x SU(3), and so on. It is a con

µ µ 

sequence of (4.1) that the corresponding operators 0 are also observable. 
n 

Naturally 4
), the expansion respects the conservation and covariance properties 

of TIA. for exact symmetries (Poincare invariance, isospin, charge conjugation, 
1 

etc.), so it is often convenient to isolate a sector (J, I, ••• ) of the expansion 

containing operators 0 with spin J, isospin I, etc. As a rule 4
), the leading 

n 
power of p in a given sector also conserves symmetries which are only approximate 

[e.g. ordinary SU(3), chiral SU(2) x SU(2)]. For example, the leading contri-

bution proportional to e 
• • µv 

in the expansion 

t 1 
Ys~ ( X + ~) Jsv ( X - ~) + + ,(~~o) (4.11) 

= 

0 
(4.12) 

As in the discussion of the asymptotic properties of Green's functions, it is 

desirable to classify contributions to a given sector by powers of the scaling 

variahle p, not by logarithms*): 

= 0 [r -~(n)] (f(fl)>O) (4.13) 

*) The consistency conditions used to analyse n° ~ 2y decay 89
) involve coefficient 

functions classified according to (4,13). 
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The most important point is that the expansion (4,1) should not depend on 

the matrix element to which it is applied, The general condition for this to be 

true is 

(Fl ~{Ai(x+ytJBj(~t)}lr) ""' In '6n(p)(Fl~{On(x) Bi(~il}II) C4.14) 

where Ir), IF) are vacuum or on-shell states, the matrix element is complete (i,e, 

includes disconnected pieces), IT .. and IT. refer to unordered or ordered pro-
1,J J 

ducts*), and the limit p + 0 is taken with 

i) all momenta and other parameters of Ir), IF) fixed, 

ii) the coordinates x,~,y. fixed (y. ~ x), 
J J 

Note 

a) When ordered products (such as T-products) are involved, there can be am

biguities proportional to products of a(~. - ~.) and a(y. - yk) and deri-
1 J 1 

b) 

vatives thereof, For example, the renormalization of the left-hand side of 

Eq, (4,14) may involve counter terms of the form 

XA XA .. Xs Xe . . . bi.(AJl 1 
. .. B 1 B~ ... 

I l I 2 

in Eq, (1.39). The p + 0 limit of these a-function terms 

a-functions associated with counterterms 

XO x B x B ll( on Bi B4 .. . ) 
'I\ l 2 

on the right-hand side. 

Even in free-field theory, the state vector 

l'f(f)) = J d~x rr d 11

~i f(x, ~" ~2., ... )[ {TIA, 
i 

( f = suitable smet1.Y1ng 

does not vanish: 

(<f(fJI f(~)) 

(FI f(f)) 
i.e. the limit p + 0 is "weak". 

/-,. 
7 0 

0 

N 

I: 
'Yl=O 

) 

need not match the 

(4.15) 

(4.16) 

For most operators B.(y.), it is absolutely mandatory that the coordinates 
J J 

y. (and not the corresponding momenta) be held fixed as p tends to zero, This 
J 

point will be illustrated by considering the connected amplitude of Fig, 12a in 

the tree approximation, with 

(4,17) 

*) More precisely, to products which can be constructed from discontinuities of 
the completely time-ordered product, 
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The most singular q-number contribution generated by the Wick expansion (4,4) 

is 

(4.18) 

where e VA (s) scales as s- 3 and fijk are the structure constants for ordinary 

SU(3). CThis singularity generates the equal-time commutator 

= if ii~ s\fJ Jot 

of current algebra.] Thus the momentum-space singularity is 

= O(~) (4.19) 

The graphs responsible for this contribution are shown in Fig. 12b. 

We must also consider the graphs of Fig, 12c. If the coordinates y,z
1
,z

2 

are held fixed as s ~ O, the leading term contributed by these graphs is indepen

dent of s [i.e. O(t:;+ 3
) relative to (4,18)] and is given by the graph of Fig, 12d, 

with 

Q~v (0) = 

This agrees with the result of applying the limit s ~ 0 to the last term of 

Eq. (4,4). Thus the contribution Q is always present in the expansion of 
)JV 

T{-'.fµ-\,} and does not depend on whether B(y) is present or not, 

( 4. 20) 

On the other hand, if we transform to momentum space and let the momenta of 

the currents -'.F ,:Y become large (q = n£ + c; n ~ 00 , £ 2 1' O) with the momenta of 
).J v 

~. ¢, and B held fixed, the result 

{Fi~. 12 (c) graphs} = ( 4. 21) 

dominates the "expected" term (4.19). Thus naive substitution of the operator

product expansion for T{~:Jv} gives the wrong answer, 

However, it is very easy to explain the result (4.21) in the language of 

operator-product expansions. For simplicity, let us set the momentum of the B 

operator equal to zero and consider the limit £; ~ 0 of the ci.mplitude 

= (4.22) 

The point is that, in addition to the expansion of T{:T :T}, it is necessary to 
).J \) 

consider the expansion 

T { B(~) J:(~) ~j(o)} 

~~:(~Cf~) = 

i& :! ( ~ ' ~) ; 1Jr tJr: + . . . , ( c ~ - 0) ( 4. 23) 

0 (0-5b) 
) (4. 24) 
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Substituting into (4,22), we find 

Counting powers in coordinate space, we have four powers of p for the integral 

J d 4y to be added to the power -56 in (4.24): 

J d~ 11 ce~!(t, ~) = O(~ -s2) (4.26) 

Fourier transforming (4.26) yields the result 

Jd4t e 
1 ~·~ f d 4 ~ ~:: (C ~) = 0( q 49) (4. 27) 

in agreement with Eq, (4.21). In other words, it is not sufficient to substitute 

(4,18) into (4.22) because, for any non-zero value of~ (no matter how small), 

the integral J d 4y always contains the region y = O(~) in which the contribution 

(4.23) dominates. 

It can be seen from the literature15
•

71
•

81
•

86
•

90
) that a complete derivation 

of the Wilson expansion in perturbation theory is necessarily non-trivial, In

deed, explicit derivations of (4.14) have been given only for the following 

special cases 
l 

n 1\(x + f~i) 
i =I 

= D, { ~(x + f ~i) or 

N N 

in ¢4 theory; 
1~ I Bi ( ~ i) = rs I ~ ( ~ i) 
(for L arbitrary, see Ref. 90). However, the main idea of the 

derivation is the same for all cases (i.e. simple or composite operators A.,B. 
1 J 

in any renormalizable theory) and can be summarized fairly simply. 

Consider the complete time-ordered amplitude (Fig. 13) 

L N 

T (ol D, p
1 
A(~t,)B 1 (~i)I o) = (4.29) 

which corresponds to the choice x = O, Ir>= IF) = lo> in (4.14). In Fig. 13, wavy 

lines correspond to sources X for the operators A.,B. [as in Eq. (1,7)] and non-
1 J 

wavy lines indicate propagators of fields (gluon, ghost, fermion, etc.) from which 

the Lagrangian and A.,B. are constructed. 
1 J 

Some of the source functions X can be 

chosen to generate the field operators themselves; e.g. see the lines labelled 

A
1 

and B
2 

in Fig, 13, 

The amplitude " ~includes disconnected contributions, so the first step is to 

extract all factors of the form 

= (4.30) 

where S is any non-empty subset of {l, ••• , L}. We already know how to deal with 

the p + 0 limit of GS' because in momentum space, it becomes the n + 00 limit of 
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GS(nq + c) at non-exceptional 

complete set {l, •• ., L}), we 

q, Summing over all possible sets S (including the 

have1s,e1) 

L L 

T .n A,(~ ti) = : TT Ai ( f tt): 
i=I 11:1 

+ (4.31) 

where the generalized Wick products*) 

: n' 1\(fti) = 

1 
( n' = 11 1r ) 

i¢S or i=I 

correspond to time-ordered amplitudes 

= (4.32) 

constructed from graphs in which every A. operator in the product IT'A is connected 
1. 

to a B. operator, 
J 

the .;'{/ amplitudes. 

The problem is now reduced to that of obtaining expansions for 

The expansion for the original amplitude A: can then be recon-

structed from Eq, (4,31), with the amplitudes GS appearing as factors in various 

coefficient functions. [observe that we chose to extract only those factors 

(4.30) which do not depend on the B. operators.] 
J 

Let us denote the Fourier transform of (4.32) by 

F. T. [Jl' ] = (4.33) 

where K is the number of Ai operators in (4.32) and the momenta {q 1, ••• , qK} and 

fr 1, ••• , rN} are conjugate to the coordinates {p~i} and {y1, ••• , yN}, respec

tively, The notation is chosen such that Eqs, (2.1) and (2.2) and Fig. 2 can be 

applied directly to the amplitude"t'. Figure 2 involves decomposing "t' into an 

"upper blob 11 'l1 ( ~ / in Fig. 2) and a "lower blob" !l': 

The 'l1 amplitude is defined in terms of graphs ~' which become lPI when the co

ordinates~. are set equal: i.e. ~. = ~. for all i in IT~ (as shown in Fig. 14), 
1. 1. 1. 

The rationale for this definition is that it isolates all graphs ~' which are 

able to carry O(n) momenta simultaneously along all internal lines; i.e. the 

decomposition (4.34) is designed to facilitate power-counting for the limit 

Note 

i) One of the consequences of the definition is that propagators for the inter

mediate lines k 1, ••• , ~ (including self-energy corrections) are incorporated 

in the amplitude !l'. 

*) The name is appropriate because, in free-field theory, generalized Wick pro
ducts are the same as ordinary Wick products, 
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ii) The expression for 'l1 includes a momentum-conservation a-function 

(4,3Sa) 

so 'l1 can be considered as a function of (K + M) independent variables 

(q q k k) Also, some of the graphs ~J 01 may be disconnected,· l' ••• , K' l• ••• , -11 • 

each connected component gives rise to a factor 

in the expression for 'll, where l' and l" denote non-empty partial sums. 

iii) In Fig, 2 (as applied to ~1'), all external lines should be understood to be 

wavy source lines, Previously (Figs, 6b and 7b), we allowed some of the 

source lines r
1

, ••• , rN to be intermediate as well. However, for reasons 

which will shortly become evident, we now require that none of the inter

mediate lines k
1

, , , • , kM be wavy (as in Fig. 14). 

The amplitude 'lL can be expanded ink= (k 1 , ••• , ~) about the point*) 

= (o,o, ... ,o) (4.36) 

with all momenta q = (q
1

, ••• , qK) held fixed: 

.,_, 1 ( d )n I 
= J;o nT f<. a>i Ll(q,A) A= o + 

(4.37) 

( ~ ~ 1 notation : k · a/JA = 

Consider the dimensionality of the amplitudes appearing in (4.37). The definition 

of dimensionality given by Eq, (2.4) does not take account of the extra a-functions 

(4.35) which we have chosen to incorporate in the definition of CU. Since each 

a-function contributes a power -4, we have 

.V('U) = 2) ( ~ ') 

Each derivative 3/3A acting on 'l1 lowers its dimensionality by 1: 

7){(J/d).f' 'LL(~,:q} 

2J {R~} = 

= 2)('U) 

l) ( 'l.l) 

(4.38) 

(4.39) 

We see that Eq. (4.37), when substituted into (4.34), looks like a Wilson expan

sion with coefficient functions (3/oA)n'U,(q,A = O) multiplying operators 0 given 
n 

by momentum-space vertices 

(kf = (4.40) 

*) If zero-mass propagators are present, the expansion must be performed about a 
non-exceptional point A= (A 1 , ••• , AM) ink-space. The subsequent analysis 
is unchanged, apart from notational complications due to the A-dependence of 
various amplitudes, 
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However, the prescription (4.37) is not generally satisfactory: the remainder 

amplitude j~ need not be O(n-p ln8 n) relative to <t1 if gt contains subgraphs 
p 

with sufficiently large dimensionality. It is necessary to find a prescription 

for constructing a remainder amplitude in which the dimensionalities of all sub

graphs are simultaneously lowered, 

The answer is obvious if the complete graph g for the amplitude 3:.1 can be 

uniquely decomposed into a nested set of subgraphs (Fig. 15) 

~, 

1 
c -& I 

2 
c c ~, 

h (4.41) 

Let '11 1 , '11 2 , •• , , 'Uh be the corresponding "upper blob" amplitudes, with 

'U 2 \{~} 2 , ~) = ~ {d~} I Lt21({~L. '{'}J ll,({~li' ci) 

J {d-k }rn 'U(wi +I) m 1,(m cu(m+I) = 
so that the complete amplitude can be written 

l' = J {J'}~ it{v-,{k}t) ~t,({k}k' <t) 

= J~ 1 {J~}mih 'Uh("-1) 'U(fi-1)(~-2) 
We begin by subtracting the smallest blob '11

1 
as in (4.37), 

'U.1 ~ (1 - tt) 'Ui 
where t is shorthand for the Taylor operator 

m 

( 4. 4 2) 

etc. 

(4 .43) 

'U:tl cu. 

(4.44) 

~m = L: _1 ~.a_ 
tlml _, ( ~ r 
)":o v- ! . dA m A 

(m = 1 '.1 ' 3 ' ... , h) . (4 .45) 

= 0 

For the next graph g~, we have 

(4.46) 

and so on, until we arrive at a completely subtracted amplitude 

(4.47) 

in which the dimensionalities of the subgraphs g~, ..• , g~ are reduced by 

p(l), ••• , p(h), respectively. The difference between A' and S' is a finite 
p 

series in the form of an operator-product expansion: 

+ (4.48) 

The prescription for constructing S' must be generalized to include cases 
p 

in which there are overlapping subgraphs. Recall (Fig. 14) that the subgraphs gt 

are defined such that, when the coordinates ~. are identified, the result is a 
1 

lPI graph r' associated with the class of operators 
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Q( ~) = ' . . . . . (4.49) 

The superficial degree of divergence of f
1 is trivially related to the dimen

sionality of the amplitude 'l1 associated with g': 

2)( 'U) = d( r') 4-K (4.50) 

Furthermore, the subtractions t
1

, t
2

, ••• , th in (4.47) become renormalization 

counterterms 6Q for the operators Q when the coordinates S· are set equal to S• 
l 

So for the general case, the prescription is that subtractions used to construct 

81 from 1'<s· ~ s) should correspond to renormalization counterterms 6Q (possibly 
p l -

oversubtracted) for the amplitude "{1 (s. = s). This ensures that all subdimension-
- l -

alities of s' are reduced relative to those of "{'(s. ~ s), because the renorma-
p l 

lization theorem12
) says that all of the d(f 1

) can be lowered to any desired 

value by including sufficient counterterms 6Q in Eq. (1.7). Thus Eq. (4,48) re

mains valid for the general case. 

An example of overlapping subgraphs is given in Fig. 16, There are two 

nested sets 

J) ' c ,o ' ,g_ ' 
-:1, ~ :ia. c: -:13 

,P, I c J)_ I 

J, "J,_~ c '5' 
3 

with g~a and g~b overlapping. The remainder amplitude is given by the formula 

1.; = ff {J~L ldklii3(1 - t3). 

[ J {J~} la 'U,3(la) (I - t2a) 11(2a) I 

No account has been taken of the need for renormalization counterterms for 

the operator 0 (for example), so this discussion applies only to unrenormalized 
n 

In coordinate space, Eqs. (4.48) and (4.31) imply (B) amplitudes*). 
'Yl(f>) 

Jts = Io (ie~Ja (Jtti)s + 1'f (~!:i, in)B 
(4. 52) 

(A~J 8 = T(OI i~' On(o) Bi(~;)IO)B 
where S is constructed from Eq. (4,31) and the Fourier transforms of S' ampli-

p p 

tudes, 

According to the rule (1,41), A and A are renormalized as follows: 
n 

~ zA:1 z 8 ~\ltB + 8 [Ei - ci , yti - ~; , ~i: - 'Jj] 
(4.53) 

= 

= Z~
1 
~ z;i' (Jtn)B + d[ ~i, \ji - ~j] 

Some of the Z-factors (e.g. Z) may be matrices. The terms o[x., y., ••• ],which 
n i J 

involve a-functions of the coordinate differences xi' yj' ••• , are subtractions 

*) Unlike Refs. 15, 71, 81, 86, 90, which deal directly with renormalized ampli
tudes, The present approach is less satisfactory but avoids some complicated 
algebra. 
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generated by counterterms b(A
1
A

2 
... B

1
B

2 
... ) and 6(0nB

1
B

2 
... ) in Eq. (1.39); 

[see note (a) following Eq, (4.14)]. In general, the terms l C A and 8 mix 
n n n p 

under renormalization. However, in renormalizable theories, renormalization does 

not increase the subdimensionalities of an amplitude, 

in the equation 

Therefore, the term 0(8 ) 
p 

= + + (4. 54) 

can be absorbed into the definition of the renormalized amplitude (Sp)R without 

changing its maximum subdimensionality. So the result is 

AR 
11{ ~) 

( ~n)R (Jl~)R {$-functions} (~)R = I: + + (4.55) 
'11.>= 0 

where the remainder amplitude obeys the bound 

(1~/A)R = o(f? {"/ r) (~ ~ositi ve inh:ser (4.56) 

~-o with. ~i '~i fixed ) 
Note 

i) The terms C 0 do not depend on the operators B. because the sets of inter-
n n J 

mediate lines {k
1

, ••• , ~(m)}m do not involve sources. Because of this 

restriction on intermediate lines, the coordinates ~.,y. must be held fixed 
1 J 

as p tends to zero in (4.56). 

ii) Strictly speaking, the term {a-functions} [absent for the special case 

(4.28)] violates Eq. (4.1) because it need not be negligible relative to 

C and may depend on the B. operators. However, the violation is of the 
n J 

same form as the a-function ambiguities of ordered products, so it is of 

little practical importance. 

iii) It is permissible to fix the momenta of simple (i.e, non-composite) opera

tors B. in Eqs. (4.55) and (4.56). For example, consider the operator B2 in 
J 

Fig. 13; even if its momentum is fixed, its source line cannot be inter-

mediate because the corresponding subgraph would not be lPI for ~. = ~. 
1 

iv) The on-shell states Ir), IF) of Eq. (4.14) can be recovered by choosing some 

of the B. in (4,55) to be suitable interpolating operators. If simple 
J 

operators are used, remark (iii) is relevant. More generally, the on-shell 

limit isolates the set of graphs for which the interpolating operator (simple 

or composite) communicates with other external lines via a single internal 

line. For this subset, the source of the interpolating field cannot be an 

intermediate line, so the time-ordered case of (4,14) is obtained. 

The set of allowed discontinuities of T(FIIT .. A.B. Ir) is restricted by the 
lJ 1 J 

locality of the operator 0 on the right-hand side of Eq. (4,14). If the ordering 
n 

of the A. operators with respect to each other (but not to the B. operators) is 
1 J 
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partially or completely removed, T(F!IT.O B. Ir) remains completely time-ordered, 
J n J 

while the iE-prescription for coefficient functions is adjusted accordingly; e.g. 

T { A 1 (~) A;i,(o)} 

R 1 (~) Rl(o) 

(~
2 

- iE)°' 01(0) 

(~;i. - iEt
0
(0

1
(0) ( ) 

(4.57) 

~-o . 
It is also possible to unorder part of IT . B. on each side of (4.14), retaining the 

J J 
time-ordering between A.(p~.) (or 0) and B.(y.) for all i,j. Special precautions 

i i n J i 
are necessary when unordering a A.B. pair. In general, the relevant B. operator 

i J J 
should not appear in the middle of the partially or completely unordered product 

IT.A.: e.g. 
i i 

(OIA1l~) A:Jo)B(~)lo) 

( Ol 1\(~) B(~) A2 (0) lo) 

(C- Hto)°'<o!0 1 (o)B(~)lo) 
"" ? { ( ~ -- 0 , ~ fixed) 

These remarks are important 91
) for the process 

e + x 

(4.58) 

(4.59) 

where h is an observed hadron (momentum ph) and X denotes other final-state hadrons 

with combined momentum Px· The one-particle inclusive cross-section is propor

tional to 

= (4.60) 

where q is the momentum of the virtual photon. If ~h is an interpolating operator 

for h, the corresponding off-shell amplitude in coordinate space is 

= (4.61) 

where the coordinate ~ is conjugate to q and T denotes the anti-T-product. It is 

not possible to substitute an operator-product expansion for J J because local 
\l \) 

operators 0 cannot be produced by the combination T(A
1
B

1
)T(A

2
B

2
) [in the notation 

n 
of (4.14)]. Mueller 91

) has suggested an expansion of 'ill in which there are co
\lV 

efficient functions (different from the Wilson coefficient functions) which do 

not multiply local operators 0 • Derivations have been given for some non-gauge 
n 

theories 91 , 92 ). 

4.2 Renormalization-group properties 

A particular sector (J, I, ••• ) of the operator-product expansion (4.1) is 

obtained by projecting out intermediate sets {k
1

, ••• , ~}with total quantum 

numbers (J, I, ••• ), or equivalently, by a judicious choice of operators B. in 
J 

Eq. (4. 29) : 

~A 
(J' I' ... 
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The corresponding operators {O} have quantum numbers (J, I, ,,,), For simplicity, 
n 

let us assume that there is a single operator 0 (matrix element .-l ) which contri-
n n 

butes the first p powers of the scaling parameter p to the asymptotic expansion 

of.-'(;, order-by-order in perturbation theory: 

= 

= 

Fn ( f ~ i , ~i ; g , m , fA-) 

<t~J~ti;j,YYL,f){l + O(~f~np~)} 
( ~ - 0 ~ positive int~9er) 

(4.62) 

As indicated by the notation, we choose to carry out the analysis using a mass

independent renormalization prescription'°'). 

The improved CS equation for the ratio F is (neglecting 8-function sub
n 

tractions) 

Ym ( 9) m d J J m + Y( ~) - Yn ( ~) ] · 

where y(g) and y (g) are the 
n 

. Fn(~~i,;h; g,·m.,f-t) = 

y-functions for the amplitudes :'t and .-l 
n 

y(O) = 0 = yn(O)]. The addition rule (1.46) implies 

Y( ~) + 

Yn(~) = + 

0 

[with 

(4,63) 

so all dependence on y-functions for the B. operators drops out in the difference 
J 

1'(9) }'~ (g) = t )'Ri(S) l'o't ( g) (4.64) 

Equations (4.62)-(4.64) imply 

[tAd/dfA + ~ a/J~ + l'Wl md/dm + ~ ;yR· Y 0 ~J c6'1'1 
t t (4.65) 

= 0[f1> f1lr t&n(f)] 
Since C does not depend on y., µCl/Clµ can be eliminated in terms of ma/am and 

n J 

either pa/ap or na/an (n = p- 1
) using a homogeneity equation of the form (3,44): 

e,g, 

where C (q) is the Fourier transform of C (0 and de 
n n 

of C , 
n 

Thus the analogue of Eq. (3.46) is 

[~J/J11 - ~J/J9 + (1 - 't~)w1-J/Jm (dt; 

= 0 [ ~-1' (nP~ ~n] 

is the mass dimensionality 

(4. 67) 

*) See Ref. 7, The corresponding analysis for the ordinary CS equation18
•

71
•

86
•

87
) 

involves expanding T(~ITijAiBj), where~ is the zero-momentum mass-insertion 
operator [e.g.~= J d 4 x:w(xJ~(x):]. Straightforward substitution of (4.1) 
works for the leading power in a given sector, but for non-leading powers, the 
expansion of :~~:IT.A. also contributes, Compare Eqs, (4,17)-(4.27), 

1 1 
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If m is a fermionic mass, the amplitudes 

= (4.68) 

exist in perturbation theory for r 

Eq, (4,67) becomes 

O, 1, 2, but not for r = 3, 4, .. , , so 

(11a/Cl17 - ~a/Jg - {ct~ + ~l' 11 i - Y 0 ~ r(l- l'vn)}] l:' = 0 
(4.69) 

i) 

ii) 

o 4 ..- ' Min(2, ~-1) 
The consequences of (4.69) are analogous to those of Eq. (2,33): 

Broken scale invariance: 
.o<rJ 
'C3n r... const. 

- P( r, n) 

f 

Li JAi JO,,, 
For r = 0, Eq, (4.70) extends to coefficient functions 4

) the rule (2,56) 

P(r, n) = 
(4.70) 

that dynamical dimensions are conserved at short distances. Non-leading 

terms r = 1, 2, ... , are damped by a power r(4 - dli) of p, as in Eq. (3,36), 

if the condition (3,37) is satisfied, For the special case 

(4.71) 

there is a cancellation4
•

7
) of anomalous dimensions for the leading term 

(r = 1) 

P(r=l,n=6) = = (4.72) 

which is important for the short-distance analysis of n + 3~ decay and other 

weak and electromagnetic corrections to strong interactions. 

Asymptotic freedom 7
•

93
): 

f;(r) ,..., 
cons~. 

-~(v-,tt) (,en f) A ( r' n) { 1 + o( lnl fn fl/ tny)} 
'YI. ~ 

~(r, Yt) L· dim A· dim 0'11 
(4.73) 

= r 
1. l 

A(r, n) = l~ CA· 
1 1. 

Co~ + rc.wJ/lb 
Here, dim Q denotes the canonical dimension of Q, b is defined 1n Eq, (2,80), 

and cQ is the one-loop coefficient in the expansion 

= + (4.74) 

The result (4.73) generalizes Eq. (2,86), If A. and 0 are conserved or 
1 n 

partially conserved currents for r = O, or if Eq. (4.71) is applicable 7
) with 

r = 1, the logarithmic power 

e (r) (including the constant 
n 

result, [The last statement 

A(r,n) vanishes and the leading contribution to 

of proportionality) is given by the free-field 

assumes that the complete operator 0 is gene
n 

rated in the expansion of TIA. in free-field theory, This need not be the 
1 
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case for 0 = e . 
n µv' 

e.g. if the operators A. are chiral currents, only the 
l_ 

fermionic part of e 
µv 

is generated, The result 93
) is that the constant of 

proportionality is computable and differs from the constant which normalizes 

the term eµv(fermionic) in free-field theory.] 

If we want to check these predictions for short-distance behaviour by 

measuring the amplitudes C (q.), it is essential that the momenta {q . } be non-
n i i 

exceptional, For example, consider the connected matrix element 

wp..v = (.inf' J d\ ei~.x (pl[J~(x)' Jv(O)]lp) 

= ( ~f4V I M) ~ ( t ' ~ 
1

) + (~~ t~ I~·~) F,.( l ' ci,:t) 

+ (i £~v>.-ri ~~ ~llf 1~.~) F3(t, ~'") 
(4. 7 5) 

+ olhe.r ~eY-ms if J(-4 not complete I~ co rise rved. 

-I ~ ~ - ~?./1~-~ 
-I 

~ ~(-~,~2) = ± Fi(L~
2

) w 

I~) = nucleon , VYJUSS M moWlentuwi p 
For 0 ~ ~ S 1, W is proportional to the total cross-section for deep inelastic 

µv 
lepton-nucleon scattering, where q is the momentum transferred by the current and 

F. are the usual structure functions. As is well known 9 ~, 95 ) the BJ'orken limit 
l_ ' 

-q 2 
+ 00 at fixed ~ corresponds to x 2 

+ 0, not xµ + 0, In the language of 

Eqs. (2.1) and (2.7), this is because the limit involves exceptional values of q: 

= t'/l + c 
2 

,f, = 0 
' 

c.i =F 0 . (4.76) 

Also well known96
) is the fact that the leading Wilson coefficient function 

in the spin-J sector is asymptotically proportional to the moment 

= (n = J-1,J-2,J-1 ... for i = 11 2 13 •• ) (4.77) 

i.e. the x + 0 limit corresponds to the limit 
µ 

that the non-exceptional limit (t 2 # O) is not 

bound l~I ~ 1. This bound is relevant for the 

-q 2 + oo of M , It does not matter 
n 

kinematically consistent with the 

corrnnutator amplitude (4.75), where-

as the lack of exceptionality of the n + 00 limit should be checked for the time

ordered analogue of (4.75): 

T = 

--+ 00 

~ 

fixed. ~ 

= 
(4.78) 

(For simplicity, the indices µ,v have been dropped.) Given a suitably normalized 

spin-J projection*) of T, 

powerI 1 
?. Y: 2. 

Tin ( ~") oc ( ~ 
2

) _

1 
d v ( 1 - v ) 

2 

C,., ( v) T (-iv , ~ ) (4.79) 

*) Details of Eqs. (4.79) and (4.80), such as explicit formulas for µn, are given 
in Ref. 97. The functions C (v) are Gegenbauer polynomials. 

n 
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~ 

the -q 2 ~ oo limit of T is non-exceptional and is determined by C (a) and the 
n n · ' 

commutator amplitude is recovered by taking the absorptive part: 

Abs Tn(~
2

) 
(4.80) 

( - ~2. -+ 00) 
The difference between µ and M is that only spin-J operators contribute to µ , 

n n n 

whereas non-leading powers in the expansion of M involve a mixture of spins. 
n 

It would be desirable to directly measure the q-dependence of the moments in 

order to distinguish the alternatives 

l 
Kn (Bj. scaling} 

Mn t q2
) 

,..., K' (in '1-,_r>-(n) (lk freedom , E~. (4-. 73)) (4.81) 
'\'\ 

II (- f') -a(n) / 2 (Br, scale invariaV1ce.., E9, (/f.10)) K""' 
where K , K 1

, and K
11 are q-independent and the powers A (n), a(n) are given by 

n n n 

i\(n) = a(n) = (4.82) 

However, it has been observed 98
) that M (q 2) and µ (q 2) (small n) differ signi-

n n 

ficantly for 1 $ -q 2 $ 10 (GeV) 2, so there is an ambiguity caused by non-leading 

terms not being negligible. Thus it is not surprising that all three possibilities*) 

(4.81) continue to be discussed in the literature. For example, Parisi 100 ) and 

Nachtmann 98
) present the case for large anomalous dimensions a(n) (~ 1/2 or 1). 

Parisi's method [in which the moment equations (4.77) are inverted] has since 

been applied to asymptotically free theories 101 • 102 ). 

The most important qualitative feature of (4.81) is that, if Bjerken scaling 

is not valid, F.(~,q2) should rise at small ~ and fall near ~ = 1 as -q 2 increases. 
i 

This is because the smallest value of n (n = 0) corresponds to a conserved opera-

tor such as 8 (;\(O) 
µv 

O = a(O)) and positivity requirements 97
) force a(n) and 

A(n) to increase with n (A(n), a(n) > 0, n > O), so all moments decrease except 

for the asymptotically constant n = 0 moment. 

a-function: 

( r 2
) ------+ 2(K

0

1 

or K
0

11

) b(~) fir.,~ l; 

Eventually, F. collapses to a 
i 

(4.83) 

Recently, the FNAL muon-scattering group 103 ) reported indications that the struc

ture functions exhibit this behaviour. 

*) It has been argued 39 , 99 ) that Bjorken scaling is not consistent with the re
normalization group. Note that the possibility a(n) = 0 (all n) for gauge 
theories with g

00 
1 0 has yet to be excluded. 
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4.3 Complications for Yang-Mills theories 

In many cases, the operator 0 is not multiplicatively renormalized, In
m ..... 

stead, there is a set of operators 0 which generate each other as renormalization 
m 

counterterms 

(4.84) 

where the Z-factor and its y-function 

= (4.85) 

are matrices. [I am using dimensional regularization, as in (3.43), so 0 has 
m 

been substituted for 0 in order to avoid confusion with the complex parameter n], 
n 

According to Eq, (1.8), the counterterms 6Q of a vertex Q have canonical 

dimension dim(6Q) less than or equal to dim(Q). Counterterms with dim(6Q) < dim(Q) 

are not generated unless masses or other dimensionful coupling constants are 

present; e.g. ~,¢ generates mWW· So, if we restrict ourselves to the leading 

singularities Gas. and C (r = O), it is sufficient to compute all counterterms 
n 

of the zero-mass theory: 

dim(~Q) = dim( Q) (4.86) 

In particular, the asymptotic behaviour of the moments M (q 2
) in (4.81) is con

m 
..... ..... . . 

trolled by a term C •O in the operator-product expansion of J J , where all 
m m 1l v 

operators (0 ) . in the set 0 have the same canonical dimension*) 
m i m 

= J + 2 (I = spin of 0,-n) (4.87) 

..... 
and where the coefficient functions e (r = 0) satisfy the renormalization-group 

m 

equation 

+ r: ( ~) d(nt) ]~(-ri~; g ,f.t) 

mo.ss d.im2l'lsionalit~ oF ~m..) 

= 0 
(4.88) 

The new feature of the solution of Eq. (4.88) [compared with the solution 

(2.34) of Eq, (2,33)] is that matrices occurring in the exponential must be 

ordered: 

-
~m ( 11~ ; ~' f) 

{exp ... } = 
ord. 

(4.89) 

*) In perturbation theory, the "twist" T(Q) of an operator 104
) is defined as 

follows: T(Q) = dim(Q) - spin(Q). Thus Eq. (4,87) refers to twist-2 operators. 
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The limit n ~ 00 applied to (4.89) produces the following results: 

i) Broken scale invariance: anomalous dimensions are given by the eigenvalues 
++ 

of y (g ), 
m oo 

ii) Asymptotic freedom 93
): the constant c0 in Eq. (4.73) should be replaced 

m 
++ • 

by an eigenvalue of the matrix c given by 
m 

= + O(g4J -
(4.90) 

In each case, the dominant contribution in Eq. (4.81) is obtained by sub

stituting the smallest eigenvalue in Eq. (4.82). 

The application of these rules to the Yang-Mills Lagrangian (2.65) is not 

entirely straightforward, The trouble is that, whatever the gauge, the mixing 
++ 

matrix Z for SU(3)-singlet twist-two operators is enormous. It would be an 

onerous task to compute all of the matrix elements of "'c'", extract the eigenvalues, 
m 

and (by considering a sufficiently large class of gauges) determine which eigen-

values are physically relevant. Indeed, the original calculations 93
) are based 

on a simplified prescription which is assumed to be equivalent to the above rules. 

So the problem is to verify the correctness of the results for twist-two operators 

and more generally, to find labour-saving prescriptions for arbitrary-twist opera-

tors. 

Let us begin with the tree approximation for the upper blob graphs ~' in 

Figs, 2 and 14 (i,e, the zero-loop approximation for coefficient functions), 

Even for this case, the complete set of allowed operators is complicated, The 

intermediate sets {k 1 , ••• ,~}may include Fadde'ev-Popov ghosts as well as 

fermions and gauge mesons, so some of the tree-approximation operators are ghost

dependent and hence not manifestly gauge-invariant. However, if we restrict our

selves to twist-two operators, it is easy to see that intermediate ghost lines 

cannot appear in the tree approximation for ~'. An analysis of Abelian gauge 

theories by Gross and Treiman 104
) can be readily generalized to show that the 

allowed operators are given by symmetrizing the gauge-invariant combinations 

D/1 {1 ort\i/2}tJr 0
µ.,1 .•• f-!.,. 

= 

ordinar:J -SU(3) matrices) 
(4.91) 

in the Lorentz indices µ
1

, ••• , µJ and removing traces. The symmetric-traceless 

part can be projected out by multiplying the operators in (4.91) by the source 93
) 

xf-1 xfA,, xf,. ( x~ = o) ( 4. 9 2) 

The result is a pair of spin-J opera tors, one an SU(3) singlet, the other an 

octet: J-1 

Q, = o/ X. r ( iX. Df) 1JI 

Q(&) o/ X. r ( i X. Df) 
1

-
1 
(Ai/ ,i) 1jt (4.93) 

= 
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The next step is to consider the renormalization of these operators so that 

the one-loop contributions <c' to the mixing matrix can be isolated, In this con

text, the one-loop approximation means that we are considering one-loop counter

terms 6 1Q of Q, plus one-loop counterterms 6 16 1Q of 6 1Q, plus 6
1
6

1
6

1
Q, ••• , and so 

on, until no new vertices are produced, All of these counterterms necessarily 

appear as operators in the Wilson expansion*); otherwise, the expansion would 

not transform consistently under renormalization-group transformations, 

Renormalization produces complications because the Lagrangian (2,65) which 

generates the Feynman rules is not manifestly gauge-invariant, Instead, it is 

invariant under the following set of transformations, introduced by Becchi, 

Rouet and Stora 43
•

50
): 

= o;b (A) ~ b <l). 

Ca(A) SI.. 
(4.94) 

= 

Observe that Aa and ~ undergo a gauge transformation (2,68) with gauge function 
)J 

owa given by ~aOA, Since the ghost field obeys Fermi-Dirac statistics, the para-

meter OA should be treated as an anticommuting number 106
), The function Ca(A) 

refers to the choice of gauge; according to the quantization rules 45
•

49
), the 

gauge-fixing term can be written in the form 

i 
~·f· 

= 

with corresponding ghost Lagrangian given by 

= 

As in Eqs, (2,65)-(2.72), Eq. (4,94) involves unrenormalized quantities. 

(4. 95) 

(4.96) 

The rules for counterterms 6Q of a gauge-invariant operator Q are as follows: 

i) If a given order of perturbation theory produces no ghost-dependent terms in 

6Q, 6Q is manifestly gauge-invariant. Roughly speaking, this is because 

~OA acts as a c-numbe r for the set of Feynman diagrams being considered, 

ii) The appearance of ghost-dependent counterterms in 6Q implies a lack of ex

plicit gauge invariance for the accompanying meson-dependent counterterms, 

A non-trivial analysis 107-io 9
) based on the Ward identities associated with 

(4.94) shows that 6Q is symmetric under a source- dependent generalization of 

(4.94). 

*) To simplify the discussion, I shall assume that operators not generated as 
counterterms of tree-approximation operators do not appear in the Wilson ex
pansion. This problem is circumvented in Ref, 105. 
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Important special cases of rule (i) are: 

a) The operator 0(8) is multiplicatively renormalized 93
) in Lorentz-invariant 

gauges, because octet twist-two operators cannot depend on ghosts and 0(8) 

is the only vertex which is both Lorentz- and gauge-invariant. 

b) All counterterms 60 in the axial gauge 110
) 

Nl-4-A = 0 ( N~ = ~ix ed 4- - vec.tor) (4.97) 
~ 

are manifestly gauge-invariant because the relevant gauge-fixing term 

:L = - iim ;i,\x (N.A).i (4.98) 
~·f· cx.-o 

produces a vanishing interaction term g¢*•(N.A x ¢) in (4.96). 

Since the renormalization of 0(8) presents no difficulties, let us concen

trate on the mixing matrix generated by the singlet operator 0 1 in Eq. (4.93). 

The one-loop counterterms 6 10 1 include 0 1 itself plus a mesonic operator generated 

by the set of lPI diagrams displayed in Fig, 17. Only fermion propagators are 

involved, so the new counterterm is proportional to the gauge-invariant combination 

= 
fA ( )J-2 <XY 

X Ff cc i X. D F Xv (4.99) 

The next set of counterterms 6 10 2 includes Q1 and vertices given by the divergent 

parts of the diagrams in Fig. 18. As noted by Gross and Wilczek 93
), the ghost 

contributions from Fig. 18a do not vanish. This means that the accompanying 

mesonic terms (Fig. 18b) are necessarily not gauge-invariant 111
). 

The prescription adopted in Ref. 93 
• ++ 

is to construct a 2 :< 2 submatY'?,X Z(2) 
++ 

of Z corresponding to the gauge-invariant combinations 0 1 ,0
2

• Three of the ele-
++ 

ments of Z(2) (0 1 + 0
1

, 0
1 

+ Q
2

, 0
2 

+ 0
1

) are obtained from 6 1 01 and 6 10 2 without 

ambiguity. The diagonal element 0 2 + 0 2 is defined to be the contribution from 

lPI diagrams in which 0 2 is coupled to only two external lines, both of which are 
++ 

put on-shell. Thus the rows and columns of Z are chosen to refer to a basis 

vector with elements {0
1

, 0
2

, O(A 2
) operators which vanish on-shell, other opera-

++ 

tors, i.e. O(A 3
), O(A 4

), .... 0(¢*¢), 0(¢*A¢), ... },and Z(2) is taken to be the 
++ 

2 x 2 submatrix in the upper left-hand corner of Z. The answer is supposed to be 
<+ ) 

given by the eigenvalues of Z(2). Gross and Wilczek 93 checked their answer by 

repeating their on-shell prescription for the axial gauge (4.97) in the light

like case N2 = O. 

This prescription is not obviously correct because in general, the eigen

values of a submatrix do not coincide with any of the eigenvalues of the complete 

matrix, The fact that Gross and Wilczek obtain the same answer in two sets of 

gauges is not conclusive; it merely suggests that the prescription is gauge

invariant for twist-two operators. No matter how rigorous the proof of gauge in

variance may be, the answer is not correct unless it is an eigenvalue of the com-
·(->-

plete mixing matrix z. 
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Indeed, Kluberg-Stern and Zuber 112
) have observed that the prescription fails 

for the twist-4, spin-0 operator (F ) 2 in the usual Fermi gauges (2.70). Sub-
j.JV 

sequent analysis 107
•

109
) has shown this to be the rule rather than the ~xception. 

However, the exceptional case turns out to be that of twist-two operators. For 

reasons which can be understood only by consulting the detailed analysis 107
), the 

~->- +->-

eigenvalues of Z(2) are indeed eigenvalues of Z. Instead of continuing in gauges 

with ghosts, I shall explain what happens for axial gauges 105
). 

All Green's functions are homogeneous in the fixed vector N , because the 
).J 

only source of N -dependence is Eq. (4.98) which generates the free propagator 
).J 

for gauge mesons: 

= + (4 .100) 

In order to carry out the renormalization program, it is essential that the light

like case N2 
= 0 chosen by Gross and Wilczek be avoided. The chief characteristic 

of integrals involving denominators (k•N)-£ for N2 = 0 is that it is impossible 

to maintain power-counting 113
); there are insufficient scalar products available. 

For example, a momentum-dependent scalar counterterm involving N necessarily 
).J 

contains a factor 

V(N, ~· ~) = (4.101) 

because it must be homogeneous in N).J. Since V is not a polynomial in p and q, 

power-counting does not work. In principle, renormalization is still permitted 

for the non-local vertex V, because the denominators (N•q.)- 1
, (N•k)-£ are given 

1 

principal-value singularities and hence have no absorptive part. However, ex-

plicit calculations 105
) of meson and fermion self-energies demonstrate the exis

tence of divergent parts proportional to ln q 2
, where q is the momentum of the 

dressed propagator. 

not renormalizable. 

The absorptive part does not vanish, so the N
2 = 0 gauge is 

For N2 ~ 0, these difficulties disappear 105
•

114
); the N -

).J 
dependence of counterterms always takes the form 

couvite.derm = { Nfl<, . . . Nf-1
2

) (N "( }{ NfA- - inde.~ertde.nt} 
(4.102) 

( r = inte9er) 

or some linear combination thereof, and all counterterrns are polynomials in mo-

mentum space. 

Consider the renormalization mixing matrix Z generated by the operator Q1 

in axial gauges (N2 ~ 0). In view of the trouble caused by ghosts in Lorentz

invariant gauges, it is tempting to assume that the absence of ghosts in axial 

gauges means that no spurious mixing occurs. The simplest way to disprove this 

idea is to compute the divergent part of the diagram shown in Fig. 19 for the 

case spin J = 2 lOS) 
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P.P.ft;(J=l) = {3 2
Sijc2(R)/4-n

2
(n-4-)}{- ~¥X.i + '4X.N~.X/N

2 

- 2~ (N.X)
2

/N
2 

- ~ X.N~.N/N
2

} 
(4.103) 

where P.P. denotes the pole part of the lPI amplitude r .. and C2 (R) is the value 
1-J 

of the quadratic Casimir operator for the f ermionic representation R of the gauge 

group: 

= (4.104) 

In addition to the matrix element Q
2 

+ Q
1 

given by the term proportional to XX.q, 

three N -dependent vertices are generated. 
]J 

They appear in the following list of 

independent gauge-invariant operators P evaluated at zero momentum [i.e. 
r 

p + 
r 

zeroth-order lPI amplitude (~.(-q) P $.(q))]: 
J r i 

= 

= 

= 

= 

t '¥ ~ x. DF"' x. N I N 
2 

i 'V~fty(X.N//N
1 

i '¥ ¥ N. D; lJI' x. NI N 
2 

i tV tJ(J N.Dr o/(X.N) 
2

/(N
2

( 

~ij ~X.'tX.NjN
2 

~ij ~(X.N)
2

/ N
1 

--- bi,f 'j. N. ci x. NI N 
2 

--- &ij ~ N.~ (X.N)'/ (N
1r 

(4.105) 

(Here, and in the rules stated previously, the characterization "gauge-invariant" 

refers only to the operator-dependent parts of counterterms, The rules do not 

forbid dependence on gauge-dependent c-numbers such as N .) Since we are con-
JJ 

sidering the case J = 2, the list (4.105) is restricted to operators which are 

quadratic in X· Equations (4.103) and (4.105) become very complicated for arbi

trary spins J. Similar results can be obtained for the diagrams in Fig. 20; 

except for the case J = 2, P.P.f(J) is N -dependent, 
]J 

++ 
Evidently, the mixing matrix Z is very large. However, some simple features 

emerge if we define its rows and columns in terms of a well-chosen basis vector. 

Let us introduce operator classes Cp' where an operator Q belongs to Cp if it is 

of the form 

Q = (X. N) f { X. N - independ.ent terms} (p= 0,1,2, ... ,J) (4.106) 

The basis vector is partitioned in the following way: {(C
0 

operators), 

(C
1 

operators), (C
2 

operators), ••• , (CJ operators)}. The result is the par-
++ 

titioned matrix Z shown in Fig. 21. There is a series of submatrices 

M0 , M1 , M2 , ••• , MJ which occupy the main diagonal, where Mp describes the mixing 

of operators within the class C • 
p 

All counterterms ~Q of the operator Q in (4.106) contain the factor (x.N)P, 

because (X.N)p conunutes with loop integrals. Consequently, operators in the class 

C do not generate counterterms with smaller values of p: 
p 

c~ - c~, (4.107) 
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Equation (4.107) implies the identity 

det (z = 
1 

f= 
0 

clet( M1' (4 .108) 

because all submatrices below the diagonal set (M 0, M1 , M2 , ••• , MJ) vanish*), 
++ 

Hence the eigenvalues of Z are given by the eigenvalues of M0, M
1

, M
2

, ••• , MJ. 

The only x.N-independent gauge-invariant combinations are Q11 Q2 , and 

(4.109) 

so the matrix M0 is 3 x 3. The diagrams in Fig. 17 are N -independent, so the 
\J 

matrix element Q
1 

+ Q
3 

vanishes. Also, an explicit calculation of the diagrams 

in Fig. 20 yields the result 105 ) 

P. P. r"~(J) = 92 C2( G) (A: ( ~) Q2 A~ (- ~)) 1P I, bare 
.in"I tt - 4) (4.110) 

r 

• { 1 - t/JlJ-1) t/(J + I)(J + 2) + 2: rl} + O(X.N) 
j ='-

There are non-zero terms proportional to the bare vertices of Q2 and (for J ~ 4) 

x.N-dependent operators, but there is no term proportional to 

(lb r-2/ 2. 
16 (N.aXCI(- X.q~){N.qXP - X.qN,)(X.q) N , 

~ r ~ ~ ~ (4.111) 

(J= 2,4-,b, ... ) 

Hence the matrix element Q
2 

+ Q
3 

also vanishes. Furthermore, explicit calculations 

(with N2 ~ 0) show that the 2 x 2 submatrix of M0 generated by Q1 and Q2 is 
++ 

exactly the same as the submatrix Z(2) obtained in Ref. 93; for example, the 

Q
2 

+ Q2 matrix element can be checked by combining Eq. (4,110) with the one-loop 

result 116 ) 

1 (11C2 (G) - 4T(R)) ~
2
/2~rr2.(n-4-) 

+ O(~i.) , (N
2

:f O) 
gauge-meson field A~. 

= 
(4.112) 

++ 
for the Z-factor of the 

The results for M0 are summarized in Fig, 22, Clearly, the eigenvalues of 
++ ++ 
Z(2) are also eigenvalues of both M0 and z. Therefore the results in Ref, 93 are 

++ 
correct, provided that the other eigenvalues of Z are unphysical, [A separate 

discussion is necessary in order to verify this last point105 ) .] 

The same procedure works for operators with arbitrary twist. Further simpli

fication can be achieved by applying the following theorems 105 ): 

i) The presence of a factor D\JFµv' ~f~' or ~~f in the gauge-invariant combina

tion Q means that ~Q also contains one of these factors. 

*) That is, Z is block-triangular; see Fig. 21. The sa~e property, involving 
just two orerator)classes, has been demonstrated for Z in Lorentz-covariant 
gauges101- 09,11s • 
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ii) All Nµ-dependent counterterms contain either DµFµv' ~f~' or ~~fas a factor, 

Theorem (i) is the analogue of a theorem of Kluberg-Stern and Zuber 107
) for gauges 

with ghosts. Some consequences of theorem (ii) are evident in the twist-two case: 

a) The result Q2 f Q
3

, obtained in the one-loop approximation in Eq. (4.110), 

is true to all orders of perturbation theory, 

b) The operator P
4

, defined in Eq. (4.105), cannot contribute to Eq. (4.103), 

and the operators P
1 

and P
3 

necessarily appear in the combination (P 1 - P
3
). 

4.4 n + 3n decay 

Finally, let us consider a problem in current algebra 117
), the soft-meson 

theorems for n + 3n decay. We shall see that it is essential that the analysis 

be carried out in terms of short-distance expansions. Only then does it become 

clear that there is an extra term118
) which must be added to the conventional 

predictions 119
-

121
) for the decay amplitudes. 

We begin by recalling the standard assumption122
) for chiral syrnmetry

breaking terms in the energy density for strong interactions: 

+ + CUg (c ~ - 1.25) (4.113) 

The operator 8
00 

is SU(3) x SU(3) invariant. The 

belong to the (3,3) ~ (J,3) representation formed 

scalar-density operators u
0

, u
8 

by the set {u., v.; 
i J 

i,j = 0, 1, 2, ... , 8; u. =scalar density, 
i 

gauge theories with explicit chiral symmetry 

v. ~ pseudoscalar density}. In 
J 

breaking [~C ~ O in Eq. (2,65)], 

(u
0 

+ cu
8

) is given by the renormalized version of a mass term in ~.A(,~. 

It is natural to assume that the strong-interaction energy density induced 

by second-order electromagnetic effects is*) 

Jt em (pure) = (4.114) 

where Dµv(x) is the free photon propagator in coordinate space and J is the 
µ 

electromagnetic current for hadrons; (see Fig, 23). However, the consequences 

of (4.114) disagree with experiment: 

a) Sutherland 123
) showed that the decay amplitudes A(n + n+n-n°) and A(n + 3n°) 

vanish in the SU(2) x SU(2) approximation in which one of the pions (charged 

or uncharged) is soft, 

b) Dashen 124
) obtained the rule 

*) Added note: To normalize Jeem correctly, set D (x) equal to (ig /8n 2 )(x 2 
- iE)- 1

, 
µv µv 
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which is not consistent with the observed K+ - Ko and TI+ - TIO mass dif-

ferences. 

The standard remedy 119
•

121
) is to include a u

3 
tadpole 125

) in the expression 

for the energy density: 

total energ~ densit~ (4 .116) 

1£,em (tadpole) = 

In this scheme, Eq. (4.115) is retained and the tadpole is supposed to be res

ponsible for the deviation 

+ 

from Dashen's rule; e.g. the SU(3) approximation implies 

(nlu 3 ln) 

(K+I U31 K+) 

0 

1 C3 (K+I u3 I K+) 

(4.118) 

(4.119) 

(4.120) 

Similarly, Sutherland's null result for JC (pure) is retained and the decay 
em 

amplitudes 

T = (4.121) 

are supposed to be given by 

T ~ (4.122) 

in the SU(2) x SU(2) approximation. The amplitude T(n + TI+TI-TI 0
) still vanishes 

when a charged pion becomes soft, but the soft-TI 0 limit produces a new equal-time 

commutator 

i[F/, u3 ] = (J2v0 + 

T ( 'Yj -+ ft
0
(so ft J .2 rr) = 

v8)/J3 = v 

(c 3 /~) (2ttlvl 11) 

(4.123) 

(4.124) 

where Fi,F~ (i,j = 1, ••• , 8) are the charges which generate chiral SU(3) x SU(3) 122
) 

= I d3x -r. i 
.Tso Ix) 

the pion decay constant*) F ~ 94 MeV is given by 
TI 

= 

(4.125) 

(4 .126) 

and the matrix element (2Tilvln> (= (2TI 0 1vln> = (TI+TI-lvln)) is evaluated at zero 

momentum transfer. If (Znlvln) is not negligibly small, the energy dependence of 

the decay spectra is given by the formulas 120
,

126
) 

*) Note the extra factor 2 in the definitions of chiral currents and FTI in 
Ref. 119: e.g. FTI(Ref. 119) = 2FTI(4.126). 
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constant = ( c 3 / Ff( ) < 2 ft I v I "l ) 
(1 - 2E0 /m'l) (c 3 /Fn) (2rrlvl~) 
( E

0 
= 1T

0 ener9~ with '>'{ at rest) 

(4.127) 

in agreement with experiment 127 ), Contracting another pion yields the equal-time 

commutator 

i [F/, v J = U3 

(2njvl-ri) ::::: Fn-1 (1folu3 I~) 

Equations (4.120), (4.127), and (4.129) yield the result119,120) 

T( 11 --- 3rr
0

) ~ Jm'J//3 F11

2 

T(1l-fT+rc-n°) ~ (t -2E 0 /m"l)£m
2/.f3F/ 

(4.128) 

(4.129) 

(4.130) 

This corresponds to a partial decay width119 ) ~ 65 eV for n + n+n-n° which is 

considerably smaller than the experimental value128 ), 204 ± 29 eV, It can be 

argued that the prediction (4,130) is not expected to be as accurate as (4,127) 

because it involves approximate SU(3) x SU(3), not SU(2) x SU(2). Even so, the 

agreement with experiment is not impressive, 

Now we consider the short-distance approach to n + 3TI decay. Wilson 4
) ob

served that the Sutherland analysis and its generalization to include tadpoles 

assume that the expression (4,114) for Je (pure) converges. For the theory of 
em 

broken scale invariance or asymptotically free theories, this is not true 4
,

7
), 

When the operator-product expansion 

(4.131) 

is substituted in Eq. (4.~14) to test the ultraviolet convergence of the integral 

J d 4x, Lorentz invariance implies 

J 
~ ~v 

d x '&"!A" ( x) D (x) = 0 (4.132) 

for all coefficient functions except those which multiply scalar operators. In 

h . . 1 *) h t e isospin- sector • we ave 

~pv (x) u 3( 0) , (xo.: - 0 , (J,I) = (O~ l) sector) (4.133) 

This is an example of the special case (4.71), so the formula 

(4.134) 

is valid for both broken scale invariance 4
) (irrespective of the anomalous dimen

sion d of u
3

, 1 S d < 4) and asymptotic freedom 7
), Since Dµv(x) goes as x- 2, we 

see that the integral (4.114) diverges logarithmically, 

*) Singularities in the SU(3)-singlet sector also have to be removed, but this 
is irrelevant for n + 3TI decay and electromagnetic mass differences, 
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The integral must be properly subtracted so that the result is a convergent 

expression to which current-algebraic techniques can be applied, The divergence 

is logarithmic, so a single subtraction suffices 4
): 

+ (4.135) 

The finite constant f is introduced to adjust the finite part of the u 3 contri

bution to fit electromagnetic mass differences. 

Previously, we saw that the tadpole term was introduced as an extra parameter 

in response to the difficulties associated with Eq. (4,114). Here, the u 3 -

dependence of the electromagnetic interaction arises naturally, Indeed, the dis

tinction between an electromagnetic term Je (pure) and a strong isospin-breaking 
em 

term c
3
u

3
, which can be made for Eqs. (4.116) and (4.117), no longer exists, 

Wilson 4
•

129
) concludes that the interaction (4.135) yields the same results 

for n + 3rr decay as the tadpole interaction (4.117). He identifies the fu 3 term 

as the Coleman-Glashow tadpole 125
) c 3u

3
, and argues that the finiteness of the 

other term means that Sutherland's argument applies to it, in the same way that 

the Sutherland argument applies to Je (pure) if f d 4x in Eq. (4.114) happens to 
em 

converge, However, for reasons which will now be explained, I believe that this 

conclusion has to be modified. 

First, we note that the quantities Cµv(x), f in Eq. (4.135) are not abso

lute; they can be specified only with respect to a particular subtraction con

dition. The choice of a subtraction condition from the infinite set of possi

bilities is purely a matter of convenience. A label i will be added to a symbol 

to indicate its dependence on a given subtraction condition i: 

I· t = 

f ' ~fAV(x) - fi 

JJ~x T{ J
1
Jx) Jv(O) 

(4.136) 

Of course, the total electromagnetic energy density Je is observable, so it 
em 

does not depend on i: 

- e
2 

I· 'L + 

For example, we may decide to define the subtraction condition i 

the constraint 

= 

(4.137) 

7 by imposing 

(4.138) 

in which case f 7 is proportional to the proton-neutron mass difference: 

= m -p mn (4.139) 
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Note 

i) As this example shows, the principles of renormalization are not confined to 

perturbation theory. 

ii) It is not possible to substitute the leading x- 2 singularity in Eq. (4.134) 

for cµv(x), because that would introduce an infrared singularity in J d 4x 

at x = 00 , 

iii) As a rule (e.g. in perturbation theory), C 1 
(x) should include the complete 

µv 
leading power of T{J (x)J (O)} as x + O. In particular, if the theory is 

µ v 
asymptotically free, terms in T{J (x)J (O)} which are only logarithmically 

\J v 
less singular than x- 2 can also produce logarithmic infinities in J d 4x, so 

they must be included in the subtraction. 

iv) For a given prescription 

which satisfy 

i 
i, C µv (x) remains unspecified up to functions llµv 

+ (4.140) 

Now consider the amplitudes for n + 3n decay: 

A = (4.141) 

{The symbol A is used instead of T [Eq, (4.121)] to avoid confusing the results 

implied by the interactions (4.117) and (4.135).} The u 3 subtraction does not 
+ 

affect the soft-TI- limit because it commutes with the corresponding axial charges. 

Therefore we recover the desirable result [SU(2) x SU(2) approximation] 

A(11 -3rc0
) 

A ( 11- fl rt-n°) 
where the constant A0 is given by 

= 

= 

F\ {'Vt - rt
0
{soft) .2.ff) 

e
2

(1rr, n°(soHJIIil'Y]) 

and is assumed not to be small. 

(4.142) 

(4.143) 

It is evident that the question of whether Sutherland's argument is applicable 

or not has nothing to do with the convergence of the integral in (4.135), All of 

the integrals I . are finite, If we consider a pair I 1 ,I 2 corresponding to in-
1 

equivalent subtraction conditions (f 1 I f 2), Eq. (4.137) implies 

e
2 (I 1 - 12 ) = (f, f2) u 3 (4.144) 

e" ( lrr, tr
0
(soft) j (I 1 - I 2 )j-rr ) = -(f1 - f,_)(2rrlvl11)/F1f (4.145) 
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so Sutherland's argument cannot be valid for both of the convergent integrals 1
1 

and 1
2

• In fact, we can define a subtraction prescription i = S by requiring 

the validity of the "Sutherland condition" 

( ln , rr 0 (soft) I Is I rt) = 0 (4.146) 

or equivalently, 

= (4.147) 

The same reasoning can be applied to Dashen's rule, Eq, (4.115), Obviously, 

its derivation assumes the convergence of J d 4x in Eq. (4.114). For the energy 

density (4.135), the problem is that the u
3 

term in Eq. (4.144) does not satisfy 

the rule; according to Eq. (4,119), it contributes to the total mass difference 

om 2 defined in Eq. (4.118). So there is no analogue of Dashen's rule for the 

subtracted integrals I. except for a special subtraction prescription i = D in 
i 

which the "Dashen condition" 

is true by definition. 

dm2 

= fo [(K+lu3IK+) 

(K
0
jl

0
jK

0
) 

= (rtlIDlrr+) 

The formula for the corresponding constant fD is 

(4 .148) 

(4.149) 

The conclusion is that the interaction (4.135) produces the same results 

for n + 3n decay as the tadpole Hamiltonian (4.117) only if the subtraction pre

scriptions S and D happen to coincide [either exactly, or within the SU(3) x SU(3) 

approximation]. There is no reason to suppose that this is the case: in general, 

there will be a Penormalization mismatch: 

(4.150) 

The analogue of the previous SU(3) x SU(3) analysis can be carried out by 

observing that the SU(3) approximation to Eq. (4.149) looks like Eq, (4.120): 

(4.151) 

Combining Eqs. (4.129), (4.147), and (4,151), we obtain the result 

( fs / f D) dm 
4 
/ J3 F?r i (4.152) 

Apart from the extra factor fS/fD, the answer is the same as Eq. (4.130). The 

obvious conclusion is that this factor is responsible for the discrepancy between 

the conventional answer (4.130) and experiment, with 

1. 8 (4.153) 
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At present, an independent theoretical estimate of f
8

/fD is not available, 

but it is easy to see that a connection with operator-product expansions exists, 

A combination of Eqs, (4.143) and (4.147) yields the result 

~ (ln,n°(soft)I Inlri) = e-
2
(f5 - f0 )(lrrlvlf!) 

or equivalently, 

= f~o i J J\ e i~·1J T (2nl ()Js~(~) ID I 11) 

= 

+ 

T{t:t 5 0((~) II>} 
Q"' t' d"lt(~) 

+ ie-
2 (f5 - f0 ) b

4

(~) v(o) 

+ Qcxpd0ld~dlf.(1J) + · ·. 

(4.154) 

(4.155) 

where the series of derivative terms Qaaao 4 (y), QaBaaaBo 4 (y), ••• , is finite, and 

does not contribute to the q + 0 limit, The term proportional to v(O)o 4 (y) is 

not an equal-time commutator because the operator ID [defined by Eq. (4.136)] is 

biZooai, not local, Indeed, Sutherland's method, which works for the bilocal 

Je (pure) in (4.114) when J d 4x converges, cannot be applied to ID. If we supem 
pose that the derivative aa can be commuted with J d 4x in (4.136), the left-hand 

y 

side of (4,155) becomes 

J d\ Df\l(x) (a/a~)°' T [ 1s!l~J{ J"(x) J"(o) 

= T { a "' ~s: ( ~ ) I 1> } 

- ie:v(X) U3{0)}] 

i~
4
(11) v(O) Jd\ D

1411

(x} ie,;..,l'l<) 
(4.156) 

+ 
because the equal-time commutators with J ,J vanish, and the commutator with u

3 µ \) 

is given by Eq. (4.123). The factor J d 4x DµvCD is infinite, so the method 
µ\! 

fails, 

The simplest way to understand why the o4 (y) v(O) term appears is to note 

that it must correspond to a singularity O(y- 3
) in the trilocal T{.'.f

5
aID}. 

Equation (4.155) and the identity 

= (4.157) 

imply 

Jlx D"v(x) T [Js~(13){ J
14

(x} Jv(O) <&;11 (x)u3(0J}] 

"' (ln:1e
2t 1

(f5 - f 0 ){~"'/(1/· - i£):l.} v(o) 
(4.158) 

, ( ~°'-o) 
for the pseudoscalar isoscalar sector of the expansion of the trilocal, The left

hand side of (4.158) can be analysed in the same manner as the example discussed 

in Eqs, (4.17)-(4.27) and Fig, 12. The following regions must be considered: 

i) The limit y + 0 for the product of two operators associated with the sub

traction term: 

(4.159) 

The normalization is fixed by Eqs, (4.123) and (4.157). 
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ii) The limit x,y + 0 for the product of three operators 

~oc14v (" '~) v ( 0) 

Equation (4,160) is yet another example of the special case (4,71), so the 

equation 

= ( ~ -o} 

(4.160) 

(4 .161) 

is valid for either broken scale invariance or asymptotic freedom. In general, 

equal-time commutators from the regions x - y << x,y and y << x also have to be 

considered, but for the present case, there is no contribution because F; com

mutes with Jµ and JV at equal times, 

Substituting Eqs. (4.159) and (4.160) into Eq, (4.158), we arrive at the 

desired result: 

!lx D
14
v(x) [~ar~v(x,11) i&;v(x)~°'/21f 2 (1t-i£)"] 

(4.162) 

(.irc2'e:i.r
10s - f1,) ~0(/(~;4 - uf' 

In contrast with the situation in Eq. (4.156), the integral J 
' ( ~ -o) 

d 4x converges at 

x = O, because the x- 2 singularity of C (x,y) in the limit x << y is precisely aµv 
cancelled off by the subtraction term, Observe that if we count powers in the 

integral (-5 for Caµv' -2 for Dµv, and +4 for J d 4x), the result -5 -2 + 4 = -3 

agrees with the power O(y- 3
) which appears on the right-hand side of Eq. (4.162). 

It must be emphasized that the only similarity between this analysis and the 

short-distance analysis 4
,

99
) of TIO + 2y decay is that both involve coefficient 

functions for products of three operators 130
), The anomalous constant131

) S for 

TIO + 2y decay can be produced by the function CaSy(x,y) in 

T { Joc(x) J~(o) 1 5 :(~)} "' Cccpr(x,~) I (x,~ -+O) (4.163) 

if it is sufficiently singular 4
): 

:/= 0 ( x,~ + O ) (4.164) 

Thus, when the operator (a/ay)y is applied to the left-hand side of (4.163), the 

l 0 *) : leading power C a can generate a contact term which scales as p-
Ct.µy 

a; cocff ( x , ~) = (4.165) 

[compare with Eq. (4.157)]. On the other hand, the analysis of n + 3TI decay does 

not involve o 4 (x)o 4 (y) or its derivatives explicitly, and should not be understood 

*) Conserved a-function ambigui ties in Ca.Sy [ e.g . £a8 µv(ax)ya~a~o 4 (x)o 4 (y)] are 
irrelevant : they cannot contribute to the axayo

1
'(x)o 4 (yJ term. In the litera

t ure , beware of incorrect statements that the anomaly is controlled by short
distance singul arities of T{JaJ8aY:r;y}. 
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purely in terms of the failure of a naive manipulation [3 not corrnnuting with 
y 

f d 4x Dµv(x)]. The important point for n + 3TI decay (irrelevant for TIO + 2y decay) 

is that one must keep track of the initial subtraction prescription, 

Unfortunately, there is no analogue of the fact that the answer for TIO + 2y 

decay can be computed directly from the leading-power coefficient function 

caBy(x,y). 

integrand of 

Whatever function is chosen for the leading power*) e (x,y) in the 
aµv 

(4,162), there is no way of sidestepping the difficulty that we do 

not know the correct expression for CD . 
µv 

Since this function refers explicitly 

to the subtraction prescription D, there is no hope of calculating it in a reason

ably model-independent fashion: it depends on complicated non-asymptotic details 

of the strong interactions. Instead, one should look for measurable amplitudes 

involving integrals which can be related to the integral in Eq. (4.162). 

So far, the U(l) problem132
) of quark models has been ignored, For a long 

time, it has been known that free-quark models (quark-parton model and its abstrac

tions) are not consistent with approximate chiral syrrnnetry. Such models contain 

an observable axial baryonic current 

= (4.166) 

[e.g. generated by U(6) x U(6) algebra 133 )]which is partially conserved, The 

consequences of this are disastrous*): 

i) Glashow134
) obtained the result 

:l. J. 

m11 
~ 

mrr (4.167) 

which corresponds to the fact that a linear combination K 
50', 

of y. 0 

' 50', 
and :T-8 

50', 

becomes conserved in the SU (2) x SU(2) limit (c + -12): 

J°' K5CX = (ll + c) v /ff (4.168) 

More generally, there must be an observable pseudoscalar isoscalar particle L 

with mass~ given by 119
•

132
) 

(4.169) 

ii) Brandt and Preparata 135
) pointed out that Eq, (4.168) implies 

(.21Tlvl17) = 0 (4.170) 

*) For asymptotically free theories, the leading singularity of Caµv (but not 
the entire leading power) coincides with the result for free-field theory. 

**) This is the motivation for not assuming U(6) x U(6) algebra in Ref. 89, 
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because the matrix element is evaluated at zero-momentum transfer. Their 

solution is to abandon approximate chiral symmetry, but I think that too 

many good chiral-symmetric predictions [e.g. for Kt
3 

decay 136
)] have to be 

dismissed as accidents for this approach to be believable. 

For gauge theories, the divergence of :F~a is anomalous, but there is a gauge 

non-invariant symmetry current 

= 

which 1s partially conserved, so v 1s still equal to a total divergence: 

v oc (4.172) 

In order to obtain a non-vanishing result for (2nlvln>, Kogut and Susskind 129
) 

proposed the formula 

s 
( l TI I ~°' ( 0) I 11 ) ( consta1-tt) ~ix/ ~

1 

(~ -o) (4.173) 

where q is the momentum carried by:T~a· To ensure that the zero-mass pole 1s un

observable experimentally, they suppose that it is a linear combination of posi

tive and negative metric propagators, i/q 2 and -i/q 2
, which cancel for observable 

operators but not for unobservable operators such as*) T-5 
Weinberg 119

) has 
' sa • 

shown that the Kogut-Susskind mechanism also invalidates the bad result (4.169). 

Remarks at the end of Chapters 2 and 3 about the infrared behaviour of cur

rent amplitudes can be extended to amplitudes involving J 5 
• Since :T' is par-

sµ 5).1 

tially conserved, it is not multiplicatively renormalized, so the form factor 

n 1 (q 2
) for the amplitude 

. s s 
iJl"x ei~.x T(ol1

5
,Jx) ~~(O)jo) = (~o<~~- 9cx,~ 1 )rr 1 (ci,i.) + (4.174) 

satisfies the same renormalization-group equations as TI(q 2
) in Eq. (2.46) [but 

with a different subtraction function K(x) + K1 (x)]. To obtain a pole in n 1 (q 2
) 

at q 2 = 0, 

lim 
11-0 = finae 0 (4.175) 

it 1s necessary to assume g + 00 , or JI(, + 00 , or both; otherwise the basic assump

tions of the renormalization-group method are violated. If we assume the infrared

singularity theorems 63
•

65
) mentioned at the end of Chapter 2 to be applicable 

here, the effective coupling constant g1 obtained by omitting massive fields 

should also diverge as n tends to zero. 

*) The gauge-invariant charge J d 3x :F~ 0 (x) may be observable, 
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Figure captions 

Fig. 1 

Fig. 2 

Fig. 3 
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Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12 

Fig. 13 

Fig. 14 

Fig. 15 

Fig. 16 

Fig. 17 

Fig. 18 

Fig . 19 

Divergent part of an internally subtracted lPI graph, pp. 2-3. 

Subgraph IJ' of a graph fJ for the amplitudes A, A 1 in Eqs. (2.1), 

(4.33), and (4.34). The large momenta q flow through IJ'. 

Graphs for Eq. (2.3). 

Subgraph illustrating the existence of exceptional momenta, p. 15. 

Graph for Eqs. (2.5)-(2.6 1
). 

Dominant contributions for graphs with a single mass insertion ~. 

Eqs. (2.13)-(2.15). 

Dominant graphs with two mass insertions, Eq. (2.20). 

Graphs generating the (ln n)n-l terms (n ~ 2) in Eq. (2.28). 

Conditions for a fixed point to be ultraviolet or infrared stable, 

p. 23. 

Artist's conception of a Callan-Symanzik S-function for which 

Eq. (2.38) is relevant. 

Graphs producing infrared branch cuts in gauge-invariant channels. 

See Eqs. (2.93)-(2.95). 

Graphs for Eqs. (4.17)-(4.27). 

Amplitude A defined by Eq. (4. 29). 

Definition of graphs IJ' which contribute to the amplitude 'U, in 

Eq. (4.34). 

Nested set of subgraphs for Eqs. (4.41)-(4.47). 

Overlapping subgraphs, Eq. (4.51). 

One-loop graphs with divergent part proportional to Q
2

, Eq. (4.99). 

One-loop graphs producing counterterms which are not manifestly 

gauge-invariant, p. 62. 

Graph for Eq. (4.103). 



Fig. 20 

Fig. 21 

Fig. 22 

Fig. 23 
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Simplest examples of graphs in Fig. 18b. See p. 64 and Eq. (4.110). 

-<-> 

Partitioned mixing matrix Z for the operator classification C , 
p 

Eqs. (4.106)-(4.108). 

-<--> 

The 3 x 3 submatrix M
0 

of Z, p. 65. 

Second-order electromagnetic amplitude for n ~ 3rr decay, where Dµv 

is the photon propagator and J is the electromagnetic current for 
µ 

hadrons. See pp. 66-75. 
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