PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 2, Pages 407–411 S 0002-9939(99)05020-0 Article electronically published on July 6, 1999

ASYMPTOTIC BEHAVIOUR OF CASTELNUOVO-MUMFORD REGULARITY

VIJAY KODIYALAM

(Communicated by Wolmer V. Vasconcelos)

ABSTRACT. Let S be a polynomial ring over a field. For a graded S-module generated in degree at most P, the Castelnuovo-Mumford regularity of each of (i) its $n^{\rm th}$ symmetric power, (ii) its $n^{\rm th}$ torsion-free symmetric power and (iii) the integral closure of its $n^{\rm th}$ torsion-free symmetric power is bounded above by a linear function in n with leading coefficient at most P. For a graded ideal I of S, the regularity of I^n is given by a linear function of n for all sufficiently large n. The leading coefficient of this function is identified.

Let $S = k[x_1, \dots, x_d]$ be a polynomial ring over a field k with its usual grading, i.e., each x_i has degree 1, and let \mathfrak{m} denote the maximal graded ideal of S. Let N be a finitely generated non-zero graded S-module. The Castelnuovo-Mumford regularity of N, denoted $\operatorname{reg}(N)$, is defined to be the least integer m so that, for every j, the j^{th} syzygy of N is generated in degrees $\leq m+j$. By Hilbert's syzygy theorem, N has a graded free resolution over S of the form

$$0 \to F_k \to \cdots \to F_1 \to F_0 \to N \to 0$$

where $F_i = \bigoplus_{j=1}^{t_i} S(-a_{ij})$ for some integers a_{ij} — which we will refer to as the twists of F_i . Then, $\operatorname{reg}(N) \leq \max_{i,j} \{a_{ij} - i\}$ with equality holding if the resolution is minimal. For other equivalent definitions and properties of this invariant, see [Snb].

For a graded ideal I in S, the behaviour of the regularity of I^n as a function of n has been of some interest. If I defines a smooth complex projective variety, it is shown in [BrtEinLzr, Proposition 1] using the Kawamata-Viehweg vanishing theorem that $\operatorname{reg}(I^n) \leq Pn + Q$ where P is the maximal degree of a minimal generator of I and Q is a constant expressed in terms of the degrees of generators of I. In [GrmGmgPtt, Theorem 1.1] and in [Chn, Theorem 1] it is shown that if $\dim(R/I) \leq 1$, then $\operatorname{reg}(I^n) \leq n \cdot \operatorname{reg}(I)$ for all $n \in \mathbb{N}$. In [Chn, Conjecture 1], this is conjectured to be true for an arbitrary graded ideal. Supporting this conjecture is the result of [Swn, Theorem 3.6] that $\operatorname{reg}(I^n) \leq Pn$ for some constant P and for all $n \in \mathbb{N}$. The method of proof makes it difficult to explicitly identify such a constant. For monomial ideals, such a P is explicitly calculated in [SmtSwn, Theorem 3.1] and improved upon in [HoaTrn, Corollary 3.2].

We show that with S and N as above, the regularity of $\operatorname{Sym}_n(N)$ — and related modules — is bounded above by a linear function of n with leading coefficient at

Received by the editors October 28, 1997 and, in revised form, April 15, 1998. 1991 Mathematics Subject Classification. Primary 13D02; Secondary 13D40.

©1999 American Mathematical Society

most the maximal degree of a minimal generator of N. For a graded ideal I of S, we get the sharper result that $\operatorname{reg}(I^n)$ is actually given by a linear function of n for all sufficiently large n. The leading coefficient of this function is identified as a certain invariant $\rho(I)$ of I. This verifies Chandler's conjecture in the case $\operatorname{reg}(I) > \rho(I)$ and for all n sufficiently large.

One of the main ingredients of the proof is an analysis of a bigrading (= \mathbb{N}^2 grading) on the Rees ring, S[It], of a graded ideal $I \subseteq S$. This is defined by decreeing an element of S[It] to be homogeneous of bidegree (p, n) if it is of the form ft^n where f is a homogeneous element of degree p in S. For a recent application of this bigrading, see [CncHrzTrnVll].

Suppose that I is generated minimally by homogeneous elements f_1, \dots, f_k in S of degrees p_1, \dots, p_k respectively. Let $R = k[X_1, \dots, X_d, T_1, \dots, T_k]$ with bigrading defined by $\deg(X_i) = (1,0)$ and $\deg(T_j) = (p_j,1)$. The natural map $R \to S[It]$ defined by $X_i \mapsto x_i$ and $T_j \mapsto f_j t$ is then a surjective homomorphism of bigraded rings. In particular, S[It] is a cyclic bigraded R-module.

For a bigraded R-module $M = \bigoplus_{p,n \in \mathbb{N}} M_{(p,n)}$, define $M^{(n)}$ to be the graded S-module $\bigoplus_{p \in \mathbb{N}} M_{(p,n)}$ where x_i acts as X_i with its obvious grading. Note that $S[It]^{(n)} \cong I^n$. The assignment $M \mapsto M^{(n)}$ is an exact functor. For $a, b \in \mathbb{N}$, define the twisted module M(-a, -b) by $M(-a, -b)_{(p,n)} = M_{(p-a,n-b)}$. The crucial observation used in the proof is that

$$R(-a,-b)^{(n)} \cong R^{(n-b)}(-a) \cong \bigoplus_{l_1+\dots+l_k=n-b} S(-l_1p_1-\dots-l_kp_k-a)$$

as graded S-modules.

Theorem 1. Let k be a field and $S = k[x_1, \dots, x_d]$ graded as usual. Let $R = k[X_1, \dots, X_d, T_1, \dots, T_k]$ with bigrading defined by $\deg(X_i) = (1, 0)$ and $\deg(T_j) = (p_j, 1)$ for some $p_j \in \mathbb{N}$. For a finitely generated bigraded R-module M, there exists a constant Q so that $reg(M^{(n)}) \leq Pn + Q$ for all $n \geq 1$ where $P = \max\{p_1, \dots, p_k\}$.

Proof. By a bigraded version of Hilbert's syzygy theorem, the R-module M has a bigraded free resolution of the form

$$0 \to F_k \to \cdots \to F_1 \to F_0 \to M \to 0$$

where $F_i = \bigoplus_{j=1}^{t_i} R(-a_{ij}, -b_{ij}).$

Applying the functor $(\cdot)^{(n)}$ to this resolution yields a graded free S-resolution of $M^{(n)}$ from which an upper bound on its regularity can be read off. Since

$$F_i^{(n)} \cong \bigoplus_{j=1}^{t_i} \bigoplus_{l_1+\dots+l_k=n-b_{ij}} S(-l_1p_1 - \dots - l_kp_k - a_{ij}),$$

the maximal twist in F_i is $\max_j \{P(n-b_{ij}) + a_{ij}\}$ where $P = \max\{p_1, \dots, p_k\}$. Hence $\operatorname{reg}(M^{(n)}) \leq Pn + Q$ with $Q = \max_{i,j} \{a_{ij} - Pb_{ij} - i\}$.

As a matter of notation, for a graded S-module N, by $\theta(N)$ we will denote the maximal degree of a minimal generator of N. Equivalently, $\theta(N) = \text{reg}(N/\mathfrak{m}N)$. For the definition and properties of integral closures of modules, see [Res].

Corollary 2. Let $S = k[x_1, \dots, x_d]$ and N be a finitely generated graded S-module with $\theta(N) = P$. Let $F_n(N)$ denote any one of:

(1) $\operatorname{Sym}_n(N)$ — the nth symmetric power of N.

- (2) $S_n(N)$ the nth symmetric power of N modulo S-torsion.
- (3) $\overline{(S_n(N))}$ the integral closure of the module $S_n(N)$.

Then, there exists Q so that $reg(F_n(N)) \leq Pn + Q$ for all $n \in \mathbb{N}$.

Proof. Let N be generated by minimal generators in degrees $p_1 \leq \cdots \leq p_k = P$ and let $R = k[X_1, \cdots, X_d, T_1, \cdots, T_k]$ bigraded as before. Then, $M = \bigoplus_{n \in \mathbb{N}} F_n(N)$ is naturally a finitely generated, bigraded R-module with $M^{(n)} \cong F_n(N)$. Now appeal to Theorem 1.

Recall that an ideal $J \subseteq I$ is said to be a reduction of I if for some $n \in \mathbb{N}$ we have that $I^n = JI^{n-1}$. We will denote by $\rho(I)$ the minimum of $\theta(J)$ over all graded reductions J of I. Clearly, $\operatorname{reg}(I) \geq \theta(I) \geq \rho(I)$.

Corollary 3. Let I be a graded ideal of $S = k[x_1, \dots, x_d]$ and let $P = \rho(I)$. Then there exists a constant Q so that $\operatorname{reg}(I^n) \leq Pn + Q$ for all $n \in \mathbb{N}$.

Proof. Let J be a graded reduction of I with $\theta(J) = P$. As above, map a bigraded polynomial ring R onto S[Jt]. Since J is a reduction of I, S[It] is a finitely generated bigraded S[Jt]-module and hence also a finitely generated bigraded R-module. Apply Theorem 1 to this module.

In order to improve the inequality of the corollary to an asymptotic equality, we first linearly bound $reg(I^n)$ below by simply bounding $\theta(I^n)$.

Proposition 4. Let I be a graded ideal of $S = k[x_1, \dots, x_d]$ and let $P = \rho(I)$. Then $\theta(I^n) \geq Pn$ for all $n \in \mathbb{N}$.

Proof. Let $p \in \mathbb{N}$ be largest so that there exists $f \in I$ of degree p with $f^n \notin \mathfrak{m}I^n$ for all $n \in \mathbb{N}$. Hence I^n has a minimal generator in degree pn for every n and so $\theta(I^n) \geq pn$ for all $n \in \mathbb{N}$. It suffices to show that $p \geq P$ or equivalently that there exists a graded reduction J of I with $\theta(J) < p$.

Choose a minimal generating set f_1, \dots, f_k of I of degrees $p_1 \leq \dots \leq p_k$ respectively so that $f_j^n \notin \mathfrak{m} I^n$ for all n and $p_i > p_j = p$ for i > j. Set $J = (f_1, \dots, f_j)$ and $K = (f_{j+1}, \dots, f_k)$. Clearly J is a graded ideal with $\theta(J) = p$ and we claim that J is a reduction of I. This will complete the proof.

From the definition of p it follows easily that, for some $n \in \mathbb{N}$, $K^n \subseteq \mathfrak{m}I^n$. Then $I^n = (J+K)^n = J(J+K)^{n-1} + K^n \subseteq JI^{n-1} + \mathfrak{m}I^n$. By Nakayama's lemma, it follows that J is a reduction of I.

Theorem 5. Let I be a graded ideal of $S = k[x_1, \dots, x_d]$ and let $P = \rho(I)$. Then there exists a constant $M \in \mathbb{N}$ so that, for all $n \in \mathbb{N}$ sufficiently large, $\operatorname{reg}(I^n) = Pn + M$.

Proof. By Proposition 4, $reg(I^n) = Pn + Q_n$ for non-negative integers Q_n . We will show that the sequence Q_n is eventually constant.

Choose a graded reduction $J=(f_1,\dots,f_k)$ of I where f_i is homogeneous of degree p_i and $\theta(J)=P$. Let R be the bigraded ring $k[X_1,\dots,X_d,T_1,\dots,T_k]$ mapping onto S[Jt] as before. Consider the Koszul complex of the bigraded R-module S[It] with respect to T_1,\dots,T_k . All homology modules of this complex are annihilated by a power of (T_1,\dots,T_k) and hence, for all sufficiently large n, applying the functor $(\cdot)^{(n)}$ yields an exact complex of graded S-modules:

$$0 \to I^{n-k}(-p_1 - p_2 - \dots - p_k) \to \dots \to I^{n-1}(-p_1) \oplus \dots \oplus I^{n-1}(-p_k) \to I^n \to 0.$$

This complex may be used to construct a resolution of I^n given resolutions of I^{n-1}, \cdots, I^{n-k} and it follows from this construction that, for all n sufficiently large, $\operatorname{reg}(I^n) \leq \max\{\operatorname{reg}(I^{n-1}) + \max_i\{p_i\}, \operatorname{reg}(I^{n-2}) + \max_{i < j}\{p_i + p_j\} - 1, \cdots, \operatorname{reg}(I^{n-k}) + p_1 + \cdots + p_k - (k-1)\}$. Since $P = \max_i\{p_i\}, 2P \geq \max_{i < j}\{p_i + p_j\}$ etc., this implies that $Q_n \leq \max\{Q_{n-1}, Q_{n-2} - 1, \cdots, Q_{n-k} - (k-1)\}$.

For n > k, define $M_n = \max\{Q_{n-1}, \cdots, Q_{n-k}\}$. Then for all sufficiently large n, the sequence M_n is a non-increasing sequence of non-negative integers and therefore eventually constant with value, say, M. The sequence Q_n is bounded above for all large n by M. For sufficiently large n, if some $Q_n < M$, it follows that all successive Q's are also less than M. But then, M_n would also be less than M for all large n. The contradiction shows that the sequence Q_n is also eventually constant with value M.

Remarks. (1) The theorem should be compared with [BrtEinLzr, Proposition 1] and its refinements in [Brt]. Explicit determination of a Q as in Corollary 3 seems to involve fairly subtle techniques. On the other hand, it may be possible to find the M of Theorem 5 in the spirit of the methods of this paper.

(2) Following [SnbGot], say that a graded ideal I has a linear resolution if its regularity is equal to the degree of each of its minimal generators. In an earlier version of this paper I had the following proof that Chandler's conjecture is equivalent to the statement: If I has a linear resolution, so do all powers of I.

Proof. Clearly, Chandler's conjecture implies that statement. Conversely suppose that powers of ideals with linear resolutions also have linear resolutions. Let I be an arbitrary graded ideal of S with $\operatorname{reg}(I) = r$. By [SnbGot, Proposition 1.1], the graded ideal $I_{\geq r}$ ($= I \cap \mathfrak{m}^r$) has a linear resolution. Hence, so does $(I_{\geq r})^n$ for all $n \in \mathbb{N}$. Since $r \geq \theta(I)$, $(I_{\geq r})^n = I^n \cap \mathfrak{m}^{rn}$. By [SnbGot, Proposition 1.1] again, $\operatorname{reg}(I^n) \leq rn = n \cdot \operatorname{reg}(I)$.

Subsequently, I was made aware of an example, attributed to Terai in [Cnc], of a monomial ideal with linear resolution whose square does not have a linear resolution in characteristic different from 2. Thus, Chandler's conjecture is false. A recent preprint of Bernd Sturmfels [Str] gives a characteristic free such example.

- (3) The main result of this paper has been independently obtained in [CtkHrzTrn]. This paper also studies the regularity of the saturations of powers of an ideal.
 - (4) The referee has suggested that the bound

$$\operatorname{reg}(I^n) \le \max\{\operatorname{reg}(I^{n-1}) + \max_i \{p_i\}, \cdots, \operatorname{reg}(I^{n-k}) + p_1 + \cdots + p_k - (k-1)\},$$

in the proof of Theorem 5 follows easily by inductively applying the lemma: If $0 \to A \to B \to C \to 0$ is an exact sequence, then $reg(C) \le max\{reg(B), reg(A) - 1\}$.

Acknowledgements

I am very grateful to Irena Swanson for her preprint which kindled my interest in this question. I also thank Karen Chandler for her preprint, Dan Katz for his lectures on regularity, Radha Mohan and Shreedhar Inamdar for helpful conversations and the referee for a meticulous reading.

References

[BrtEinLzr]	Aaron Bertram, Lawrence Ein, Robert Lazarsfeld, Vanishing theorems, a theorem
	of Severi, and the equations defining projective varieties, Journal of the American
	Mathematical Society 4 (1991), 587-602. MR 92g:14014
[Brt]	Aaron Bertram, An application of a log version of the Kodaira vanishing theorem

to embedded projective varieties, Preprint alg-geom/9707001.

[Chn] Karen A. Chandler, Regularity of the powers of an ideal, Communications in

Algebra **25** (**12**) (1997), 3773-3776. CMP 98:04

[Cnc] Aldo Conca, Hilbert function and resolutions of the powers of the ideal of the

rational normal curve, Preprint.

[CncHrzTrnVll] Aldo Conca, Jurgen Herzog, Ngo Viet Trung, Giuseppe Valla, Diagonal sub-

algebras of bigraded algebras and embeddings of blow-ups of projective spaces,
American Journal of Mathematics 119 (4) (1997), 859-902. CMP 97:17

 $\hbox{[CtkHrzTrn]} \qquad \hbox{Dale Cutkosky, Jurgen Herzog, Ngo Viet Trung, } A symptotic \ behaviour \ of \ the \\ Catelnuovo-Mumford \ regularity, \\ \hbox{Preprint.}$

[Snb] David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, 1995. MR 97a:13001

[SnbGot] David Eisenbud, Shiro Goto, Linear free resolutions and minimal multiplicity, Journal of Algebra 88 (1984), 89-133. MR 85f:13023

[GrmGmgPtt] A. V. Geramita, A. Gimigliano, Y. Pitteloud, Graded Betti numbers of some embedded rational n-folds, Mathematische Annalen 301 (1995), 363-380. MR 96f:13022

[HoaTrn] Le Tuan Hoa, Ngo Viet Trung, On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals, Mathematische Zeitschrift, To appear.

[Res] D. Rees, Reduction of modules, Mathematical Proceedings of the Cambridge Philosophical Society 101 (1987), 431-448. MR 88a:13001

[SmtSwn] Karen E. Smith, Irena Swanson, Linear bounds on growth of associated primes, Communications in Algebra, 25 (1997), 3071-3079. CMP 97:17

[Str] Bernd Sturmfels, Four counterexamples in combinatorial algebraic geometry,

Preprint.

[Swn] Irena Swanson, Powers of ideals: Primary decompositions, Artin-Rees lemma

and regularity, Mathematische Annalen 307 (1997), 299-313. MR 97j:13005

THE INSTITUTE OF MATHEMATICAL SCIENCES, CHENNAI, INDIA 600113 E-mail address: vijay@imsc.ernet.in