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1. Introduction 

Let G be a connected noncompact real form of a simply connected complex semisimple 

Lie group. For many questions of Fourier Analysis on G it is useful to have a good knowledge 

of the behaviour, at infinity on G, of the matrix coefficients of the irreducible unitary 

representations of G. In  this paper we restrict ourselves to the discrete series of 

representations of G, and study the rapidity with which the corresponding matrix 

coefficients decay at infinity on the group. 

Let K be a maximal compact subgroup of G. Given any p, with 1 ~<p~<2, we denote 

by E~(G) the set of all equivalence classes of irreducible unitary representations of G 

whose K-finite matrix coefficients are in LV(G); E~(G) is then the discrete series of G, while 

E~,(G) _c E~(G) for 1 ~<p' ~<p ~<2. We assume that  rk (G) = rk  (K) so that  ~(G) is nonempty. 

Let ;z and ~r be the spherical functions on G defined in [15]. Then it follows from the work 

in [14] that, if ~oE E2(G) and if / is a K-finite matrix coefficient of (a representation 

belonging to) 09, one can find constants c>0 ,  7 > 0 ,  q~>0 (depending on ]) such that  

]/(x)] <cE(x)l+~(l+~(x))~ (x~G). (1.1) 

Given o~ E E2(G) and a number 7 >0, we shall say that co is o] type 7 if the K-finite matrix 

coefficients of ~o satisfy (1.1) for suitable c > 0, q ~> 0. For a fixed ~o E E2(G) it is then natural 

to ask what is the largest 7 > 0 for which ~o is of type 7. In  particular, it is natural to  ask for 

necessary and sufficient conditions in order that  eo e Ev(G) (1 ~<p <2). 

Let g be the Lie algebra of G, and go~_ g the complexification of ~. Let B ~ _ K  be a Cartan 

subgroup of G; b, the Lie algebra of B; and bo = C. b. Let s be the additive group of all 
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integral elements in the dual 5" of 5~, and s the subset of all regular elements of ~ .  

Let  W(5~) be the Weyl group of (g~, 5c), and W(G/B) the subgroup of W(w162 that  comes 

from G. For X E s let o(~) be the equivalence class in Ee(G) constructed by Harish- 

Chandra ([14], Theorem 16). Let  P be a positive system of roots of (g~, ~), and let Pn 

(resp. P~) be the set of all noncompact (resp. compact) roots in P. For any ~EP, let H a 

be the image of ~ in l~c under the canonical isomorphism of l)* with b~; let H~ be the 

unique element of R 'H~ such that  zr and let 

k(fl):  E (-P)>. (1.2) 
o:EP 

One of our main results (Theorem 8.1) asserts tha t  if Y > 0 and ~ E s are given, then, for 

~o(~) to be of type 7 it is necessary that  

I).(HB)I (VfiEPn) (1.3) 
and sufficient that  

l(s2) (Hz) I >~ yk(fl) (u EP~, Ys E W(5~)); (1.4) 

in particular, (1.4) is the necessary and sufficient condition that  o(s2) be of type y for all 

s e W(bD. 

Fix p, 1 ~ p  <2. Let  w E ~2(G). We then prove that  o E Ep(G) if and only if it is of type 

for some ~ > ( 2 / p ) - 1  (Theorem 7.5). I t  follows from this and Theorem 8.1 that  for 

r to be in E~(G) it is necessary that  

I ) . ( / I~) ]>(~-1) /c ( /~)  (u (1.5) 

and sufficient that  

I ( s ) . ) ( / ~ ) , > (  2 -  1)k(fl) (u165 (1.6) 

as before, (1.6) is necessary and sufficient that  ~o(sJt) E E~(G) for all s E W(w (Theorem 8.2). 

For any x EG, let D(x) be defined in the usual manner as the coefficient of t I in 

det (Ad (x) - 1  + t), where l = rk  (G) and t is an indeterminate. For any Cartan subalgebra 

of ~ le t / )~ and G~ be as in [13], p. 110. Fix wE E~(G), and let O w be the character of o9. 

Then, for o) to be of type ~ it is actually necessary (Theorem 8.1) that., for each Cartan 

subalgebra ~, there should exist a constant c(~)>0, such that, 

In(x)] �89 lOw(l)] ~< c(~)ln~(x)l -~/2 (xEe~). (1.7) 

The condition (1.7) is stricter than (1.3); to deduce (1.3) from this it is enough to specialize 

suitably. I t  appears likely that  the validity of (1.7) for all Cartan subalgebras ~ would 

also be sufficient to ensure that  co is of type y. We have not been able to prove this. 
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The space El(G) was first introduced by Harish-Chandra [5] (el. also [2], [16], [17]) 

in which, among other things, he obtained sufficient conditions for co().) to be in ~I(G), 

when G/K is tIermitian symmetric and o)(~) belongs to the so-called holomorphic discrete 

series; we verify in w 9 that  these conditions are the same as (1.5) (with p = 1). I t  follows 

from this that  if G/K is Hermitian symmetric and co(2) belongs to the holomorphic discrete 

series, the conditions (I.5) (with t0 = 1) are necessary and sufficient for co(2) to be in 

~I(G). At the same time, this leads to examples of 2E ~ for which co(2)E 81(G) but  

co(s2)r for some sEW(w176 in other words, the equivalence classes in ~(G) that  

correspond to the same infinitesimal character may be of different types. Ia  the general 

case when G/K is not assumed to be Hermitiart symmetric, Harish-Chandra had 

obtained certain sufficient conditions in order that  co(s~)E El(G) for all s E W(b~) ([9], 

[i0], Ill]); these are also discussed in w 9. 

We are greatly indebted to Professors Harish-Chandra and I~anga Rao for many 

stimulating conversations dealing with harmonic analysis on semi simple Lie groups. We 

are also grateful to Professor Harish-Chandra for giving us permission to discuss his 

unpublished work [10], [lI],  and, more specifically, for suggesting the possibility of 

obtaining estimates such as Lemma 8.4. 

2. Notation and preliminaries 

G, K wiU be as in w 1 with rk (G)=rk (K). We will assume that  GgGc, where Go is a 

simply connected complex analytic group with Lie algebra ~. ~ is the Lie algebra of K 

and B, l), 5c will be as in w 1.0 will denote the Cartan involution induced on G, as well as g, 

by K; and g = f + g ,  the Caftan decomposition. For XEg, we put ilXl12=-<x, ON>, 

( . ,  .} being the Killing form. g becomes a real t t i lbert  space under I1" I1" g = ~ + a + r t  

(a___g), and G=KAN, are Iwasawa decompositions, with A = e x p n ,  N = e x p  1l; if 

XEg and x = e x p  X, we write X =log x. A =A(g, a) is the set of roots of (g, a); A +, the set of 

positive roots; E = { ~  1 ..... as}, the simple roots; and gz ()~EA) the root subspaees, a + 

is the positive chamber in a, and A + = exp a +. ~(H) = tr  (ad H)n (H E a), the suffix denoting 

restriction to 11. I denotes a 0-stable Caftan subalgebra with I N g =a .  For any Cartan 

subalgebra I) of g, we write ~)~ for C" ~), W(I~o) for the Weyl group of (g~, I~), and s for the 

additive group of all integral elements of [?*. The spherical functions a and ~ on G are 

defined as in [15]. I t  is known that  for suitable constants c0>0, r0>~0, 

e -~(x~ ~) ~< E (h) <~ c o e -~(~~ ~) (1 + a(h)) '~ (h E A § (2.1) 

In particular, ~,2(1 + a)-~ELI(G) if r >2% +d. 15I denotes the universal enveloping algebra 

of g~; ~, 91, ~ ,  ~ etc. are the subalgebras of (~ generated by (1, ~), (1, a), (1, b), (1, [) etc. 
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The elements of ~ act in the usual manner as differential operators from both left and 

right. We shall use Harish-Chandra's  notation to denote differential operators; thus, if 

/ is a C ~ function on a C | manifold M, and E is a differential operator acting from the 

left (resp. right), we wri te / (x;  E) (resp. /(E~ x)) to denote (E/)(x) (resp. (/E)(x)) (xEM). 

o denotes composition of differential operators. ~ is the center of ~ .  

A subalgebra 0 of ~ is called parabolic if C" p contains a Borel subalgebra of go- Let  

be parabolic, fi, its nilradical. Write ~tl =~  f3 0(~). Then ml is reductive in g, rk (n~l) = 

rk (~), and p = m l  + n  is a direct sum. Put  ~=cen te r  (~1)n ~. Then ~ is the centralizer of 

in ~, and ~ is called the split component of ~. Let  F ~ Z and let aF he the set of common zeros 

of members of F. Write ml~ for the centralizer of ae in g, mF for the orthogonal complement 

of a~ in mlF, and Ar for the roots of (uh~,, a); we put  A+=A+N AF. I f  nF=~r  

then pe = mF + aF + nr is parabolic, #g ,  and aF is its split component; and, given a parabolic 

subalgebra p 4~  of g, there exists a unique F ~  Z such tha t  for some kEK, pk=~F. We 
4= 

write ~)~F, ~ r  and ~,IF for the subalgebras of ~ generated by (1, ml~), (1,mF) and (1, aF) 

respectively. ~F is the center of 9 ~ .  We put, for H E a, 

~F(H) = �89 tr  (ad H),~., ~ox(H) = �89 tr  (adH)r%n,, fi~(H) = min ~(H) (2.2) 
),e Z \  Y 

Then ~ = o~ + ~ ,  ~e ] a~ = 0, ~r I a ~ m~ = 0. Also let 

a + = {H: HZ ae, fir(H) >0}, A~ = exp a~. (2.3) 

Let  M~e denote the centralizer of a~ in G; Ae = cxp a~ and N~ = exp hr. Then P~ = 

M~N~ is the normalizer of Or in G, and is called the parabolic subgroup corresponding to 

~ .  Let  M~ denote the intersection of the kernels of all continuous homomorphisms of 

M ~  into the positive reals. Then MI~ = M~AF and the map m, a, n ~-~ man of MF • A~ • NF 

into P~ is an analytic diffeomorphism; moreover, G=KM1FK. In  general, the group ME 

is neither semisimple nor connected. Under our assumption tha t  G is a matr ix  group, it is 

however not difficult to show tha t  (i) M~/M ~ is finite, M ~ being the connected component 

of Me containing the identity (ii) if _M~ and C~ are the analytic subgroups of M ~ defined 

respectively by  the derived algebra and center of m~, then they are both closed, Y/e is a 

semisimple matrix group while Cr is compact, and M ~ =~1~ C~. This circumstance makes 

it possible to extend to M~ most of the results valid for semisimple matr ix  groups. We 

shall make use of such extensions without explicit comment. K~=Kn M~=K~ M ~  is 

a maximal compact subgroup of M~. We denote by  7~ F the fundamental  spherical function 

on M~, and extend it to M ~  by  setting ~(ma) = ~(m)  (m ~ MF, a ~ A~). Finally, we write dF 

for the homomorphism of MI~ into the positive reals given by  

dF(ma ) = e e ~ ( l ~  (me M~, a e  A~). (2.4) 
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The parabolic subgroup PF is called cuspidal if rk (Mr )=rk  (KF). PF is cuspidal if 

and only if there is a 0-stable Cartan subalgebra ~ of g such that  ~)n~=ar  ([15], w 

cf. also [1]). 

Let  W(Ic)F denote the subgroup of W(ic) generated by the reflexions corresponding 

to the roots of (C'mlr, lo). Let I(W(lc)) (resp. I(W(ic)~)) be the subalgebra of all elements 

of s invariant under W(I~) (resp. W([~)~). We then have a canonical isomorphism /~g/~ 

(resp./~mlF/t) of 3 onto I(W(Ic)) (resp. 3 r  onto I(W(i~)F) ([12], 9 12). Suppose ze 3. Then 

there is a unique element z l e ~ r  such that  z =z  I (rood | I t  is known that  z-z16 
0(ttF)l~t~; and that,  if we ~-rite #F(z) =d~ozlodF 1, then #F is an algebra injection of ~ into 

~ ,  and /,~l~(z)=/~mlp/l(#F(z)) for all ze3 )[13], 9 ~o). i t  follows from this that  ~F is a free 

finite module over #F(~) of rank equal to the index of W(I~)F in W(Ic). We shall denote by 

rF this index ([12], 9 12). 

Let  {H 1 ..... Ha} be the basis of a dual to {gl .... , ~a}. For 1 <]<~d, let F j = Y ~ { a j } .  

We shall write Pj  for the parabolic subgroup PFj, and in general (when this is not likely to 

cause confusion), we shall replace the suffix F~ by ?" in denoting the objects associated with 

Fj; thus M~=MF~, dj=d~j etc. 

We shall now give a brief outline of the proofs of our main results. Let ~ 6/2~ and 

let 01=W(Ic)(,~oy) where y6G c is such that  y.[~=w Let ))>0, let co6 E2(G) be of type 

- ~ for every e > 0, and let ~ be a K-finite matrix coefficient of w. For any ] = 1, ..., d we 

consider the parabolic subgroup Pj=MljNj, and transcribe the differential equations 

z~=yr (ze 3, Ae0~) to M ,  (9 4). I t  turns out tha t  these differential equations 

are perturbations of the equations satisfied by suitable ~r on Mxr (9 5). This 

fact enables us to prove that  for any m6M~r the limit 

lira d~ (m exp tH~)~+~(m exp tHe)= ~v~.~ (m) (2.5) 
t-m+ r162 

exists, and depends only on the component of m in Me; and that  the restriction of 

~vr to Me belongs to the linear span of the Kr matrix coefficients of certain classes 

w~ ..... mr from 8~ (Me), whose infinitesimal characters can be computed from a knowledge 

of 0t (9 7). In particular, ~r =0  if Pc is not cuspidal. Moreover, by carefully following up 

the various estimates, we obtain the following estimate 

] ~v(h) - 4r (h)-(~+~)~r ~ (h)] -<. const. 7~(h) ~ +~+~'" (2.6) 

for all h e A~ (/~); here 0 < # < 1, A](/~) is the sectorial region defined by  (7.2), and ~0 >0  is a 

constant independent of ~,/~, q (Theorem 7.3). 

Suppose now that  ), satisfies (1.4). Then [A(Hr ~>~(H~) for all A 6 0 t  and ?" for which 

P~ is cuspidal (Lemma 8.3). Let  ~ be the supremum of all ~' >O for which w is of type 7'. 
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I f  9 <7, an examination of the differential equations satisfied by the ~j.~ shows tha t  %.; =0  

for cuspidal Pj, hence for all j = 1 ..... d. (2.6) then implies tha t  oJ is of type 7 '  for some 

7'  >9,  a contradiction. So 9 ~>7, and a simple argument based on an induction on dim (G) 

completes the proof tha t  r is of type 7. 

Suppose that  r for some p(lKp<2). Then r is of type 9 = ( 2 / p ) - 1  

(Corollary 3.4) and (2.6) is valid for any K-finite matr ix  coefficient ~p of ~0. I t  follows from 

this that  Fj . ;=  0, 1 Ky~d ,  and hence tha t  o9 is of type y '  >9  (Theorem 7.5). 

We then consider the converse problem. Let  o~eE2(G) be of type 7>0, let O be the 

character of (o, and let ~z be a uni tary representation belonging to co. Denoting by  ~ (K) the 

set of all equivalence classes of irreducible unitary representations of K, we obtain the 

following estimate from the work in w 3 and elementary properties of the discrete series 

(Lemma 5.6): there exist constants C > 0, r ~> 0 such tha t  for all x e G, b e E(K), and unit 

vectors e, e' in the space of ~ tha t  transform under ~(K) according to b, 

[ (~(x)e, e') I -< VC(~)r ~ (X) (2.7) 

(here c(b) is defined as in [14J, w 3). Using (2.7) as uniform initial estimates in the 

differential equations for the functions x~+(~(x)e, e'), and employing a method tha t  is 

essentially one of successive approximation, we improve (2.7) and obtain the following: 

given any e >0,  we can find constants C~ > 0, r~ ~ 0  such that  

[ (z(x) e, e')] < G c(b) ~ -~(x) ~+~-~ (2.8) 

for all x e G, b e E(K), e, e' as before (Theorem 7.3). From (2.8) we obtain the following 

continuity property of (9 (Lemm~ 8.4): for each e >0  we can find ~ e f f  such tha t  for all 

leVy(G) 
I (9(1)l < sup r~-,+~,-~ I&/I.  (2.9) 

G 

We now imitate the arguments of w 19 of [14] to pass from (2.9) to estimates for the values 

of (9 on the various Cartan subgroups of G (Lemma 8.7); these lead to (1.7) in a direct 

m a n n e r .  

3. Some estimates of the Sobolev type 

In  this section we obtain estimates for certain supremum norms of a function 

/EC~(G) in terms of the LV-norms of / and its derivatives (Theorem 3.3). These are 

analogous to the classical Sobolev estimates. Our proofs make no use of the assumption 

that  rk (G)=rk  (K). We put  

J(h) = 1-I (e ~(l~ e-~(l~ dim(~2 (he A+). (3.1) 
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Then we can normalize the Haa r  measures on G and A so tha t  dx=J(h)dlcldhdk2, i.e., 

for all / E L 1 (G), 

fG fdx~ ~Kx A+x K f(]clh]r J(h) d]c I dhdk 2. (3.2) 

I n  Lemmas  3.1 and 3.2 V will denote a real Hilbert  space of finite dimension d, 

with norm denoted by  11" I[" dx is a Lebesgue measure on V. For  x E V and r > 0, B(x, r) 

denotes the closed ball with center x and radius r. We fix p with 1 ~<p < ~ ,  a n o n e m p t y  

open set V~_ Y and a wEC~ such tha t  w(x) > 0  for all x e  V. II" lip denotes the usual  norm 

on LP(V, dx). S is the symmetr ic  algebra over the complexification of V; elements of S act  

in the usual manner  as differential operators on C~ and for ~E S, ]~+~f denotes the 

corresponding differential operator. For  ~E S a n d / E C ~ ( U ) ,  let 

~(f) = (ful~/l" wdx) ~!~ (3.3) 

Ha, is the  space of all IEC~ with ,~;(f)< ~ for all ~E S. E~ch ,u~ is a seminorm on H~. 

We write ~ for the collection of all finite sums of the /Q.  Since w is bounded away  from 

0 on compact  subsets of U, the usual form of Sobolev's lemma implies tha t  for any  

compact  set W___ U and any  $ES, /~-~supx~wIf(x; ~)1 is a seminorm on H~ tha t  is con- 

t inuous in the topo logy  induced by  ~.  I t  follows easily from this tha t  H~, equipped with 

the topology induced by  ~,  is ~ Frechet  space. Let  H 0 be the space of all f E C~(U) with 

SUpx~uI/(x;~)l < ~ for each ~ES. H 0 is also a Frechet  space under  the collection of 

seminorms f~-> supply I/(x; ~) l (~ E S). 

L~MMA 3.1. Let notation be as above. Fix a real function e on U such that O<~(x) <~1, 

and B(x, ~(x))~_ U, /or all xEU. Let 

~(x) = inf {w(y): y E B(x, s(x))). (3.4) 

Then, there exists an integer k >~ O, and seminorm ~ E ~, such that for all /E H~, and all x E U, 

If(x) l < ~(x)=%(x)-l~'v(f). (3.5) 

Proof. For  any  a > 0  let uaEC~(V) be the function 

uo(x) = _{oa d exp (-  a'/(a'- Ifxlr)> ifif IIxilllxii < a>.a 

where c is such tha t  ~vu~dx=l for all a > 0 .  For  xE V and r > 0  let ~ , r  = IB(~,�89 (here 

I~ is the characteristic function of E, and * denotes convolution). Then ~xrEC~(V), 
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0 ~< q%.r ~< 1, ~x.r = 1 on B(x, r/4) and supp cf2.r ~ B(x, 3r/4); moreover ,  it is easy to see tha t ,  

for any  homogeneous element  ~E $ of degree m, there is a cons tant  c(~)>0,  such tha t ,  for 

all x, y E V and all r >0 ,  
I~ . r  (Y; ~)1 < c(~) r-m" (3.6) 

B y  the  classical Sobolev's  lemma,  we can find ~1 .. . . .  ~q E $ such that ,  for all ~f E C~ (V) 

and all y E V, 

1 4 i~q  

Replacing y~ by/q~x.,(~) we find, f o r / E  H~ and x e  U, 

il(x) I < I1 , .,x,)ll.. (3.7) 

B y  Liebniz 's  formula,  we can find homogeneous elements  $~j, ~ 4 E $ (1 ~< i ~< q, 1 ~< ] ~< r) such 

that ,  for all u, vECoo(U), ~(uv)=Zl<~j<~(~iju)(~hjv ) for 1 <~i<~q. We use this in (3 .7)wi th  

/ = u, ~i~(z) = v. Sett ing 
c = m a x  c(~ij), k = m~x deg(~hj ) 

i,j ~,1 

and observing t h a t  w(y)>~a)(x) for all y E s u p p  (r]~j~,~(xj), we get, f rom (3.6) and  (3.7), 

s 
l~t<~q l~j<~r 

L e m m a  3.1 follows a t  once f rom this. 

L E M ~ A  3.2. Let notation be as above. Suppose there are nonzero real linear/unctions 

..... tiN on V, and constants c > 0 ,  r >~O, such that, U={x: xE V, )~j(x) > 0 / o r  1 <~i <~N }, and 

w(x)>~c(l+( rain ~ (x ) ) - l )  -r (xEU).  (3.8) 

Then H~_  Ho, and the natural inclusion is continuous. This is in particular the case, i/, 

w(x)=II~<j<~(1 - e  -~'~)) (xe U). 

Proo/. We begin the  proof wi th  the following remark .  Suppose ~ is a C ~ funct ion on 

(0, a), ~ > 1 ,  and tha t ,  for suitable constants  Z m > 0  ( m = 0 ,  1, ...) and an integer q~O,  ~ 

satisfies the  inequalities 

I~(m)(t)i<~L~n t-q ( 0 < t ~ < l , m = 0 , 1  . . . .  ); 

we m a y  then  conclude t h a t  

[r ~ ~ Lm+ ~ (0<t~<l ,m=0 ,1  . . . .  ). (3.9) 
0 ~ / ~ q + l  

This is tr ivial  if q = 0. Now, for 0 < t ~< 1, 
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f t  
]~(~'(t)t < 1'~'~+1) (8) I da § I~'~) (1) I. (3.10) 

I f  q = l ,  (3.10) gives ]~,m)(~)[ <Lm+Lm+lllogtl ' 0 < t ~ < l ,  m = 0 ,  1 . . . .  ; app ly ing  (3.10) 

again with these est imates,  we get (3.9). I f  q > 1, (3.10) gives [(v (m) (t) l ~< (Lm +Lm+~)t -(~-~), 

0 < t ~ < l ,  m = 0 ,  1 . . . .  ; induct ion on q now proves  (3.9). 

This said, we come to the  proof of the lemma.  Wri te  c~=2 max~<,<~(1 + I1~11) and 

define 
1 

e(x) = -  rain (1, X~(x) . . . . .  X~(x)) (xE U). (3.11) 
C 1 

Then, for x E U and y E B(x, s(x)), [~ (y - x) I ~< �89 (x) for 1 ~< i ~< N, so t ha t  X~(y) >~ �89 (x) for 

l<~i<N. I t  follows f rom this t ha t  B(x, s(x))~_ U for x E U  and  tha t ,  with c~=c-2  -~, 

o~(x) >~ ces(x) r (xE U). (3.12) 

We now apply  L e m m a  3.1. Le t  k and v be as in t ha t  lemma.  P u t  vl=c~l lPv and let b any  

integer >/k + rip. Then (3.12) and  (3.5) imply  t ha t  ]/(x) I ~< ~(x)-%1(]) for all /E Hw, x E U. For  

~ES,  let v~(])=Vl(~]) (/EHw). Then v~ET/, and we have, for all /EHw, xE U, 

[/(x; ~)[ ~< e(x)-Vv~(/). (3.13) 

Choose and fix uoEU. Let  /EHw, ~ES, xEU, and let ~ be the funct ion defined b y  

~(t)=/(x+tuo;~ ) for t>~0 (note t h a t  x§  for all t>~0). Clearly TEC~~ oo) and  

fo (m) (t)=/(x+tuo; u'~) ( t>0 ,  m = 0 ,  1 . . . .  ). On the  other  hand  it is easy to see f rom (3.11) 

t h a t  e(x § for all t with 0 < t  ~< 1. Hence,  by  (3.13), 

I~v (m) (t) l < ~(Uo) -~v%~ (/) t -~ (o < t < 1, m = 0, 1 . . . .  ). 

Le t  ~ = s ( u 0 )  -~ 2 ~ ~ v ~ .  
0~<m~b+l 0 

Then  the  r emark  made  a t  the beginning of the  proof implies 

n/<x; xeg)  < 14) 

(3.14) gives the  first  assertion of the  lemma.  I f  w= III<~<N ( 1 - e - ~ ) ,  w satisfies (3.8) with 

c = l ,  r =~Y. This proves  the lemma.  

Fix  p,  1 ~<p<oo.  Let  ~/~=~4P(G) be the  space of all /EC~(G) such t h a t  b/aELP(G) 

for all a, b E{!l. E x a c t l y  as in the  case of the  space Hw considered above,  we use the 

classical Sobolev l emma  to conclude t h a t  ~t ~ is a Freche t  space under  the  seminorms 

/~-->Hb]aH~ (a, bE(~). ~40.~=~0.~(G) is the space of all /EC~176 with supv 7~-21Plb]a ] <o~ 
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for all a, b6(~; it is a Freehet  space with respect to the  seminorms /~->sups 7~-~/~lb/a I 

(a, b 6 6j). 

THEOREM 3.3. Let ~ and ~1to. ~ be as above. Then ~-t~ ~_ :]-to.~, and the natural inclusion is 

continuous. 

Pro@ Let  J be as in (3.1). For  any  continuous function g on A +, let Ilqll~., denote the 

L~-norm of g with respect to the measure Jdh. Let  H~ denote the space of all g6C~176 +) 

for which Ilagll~.,<~ for all a691. Let  w be the function Y[a~+(1-e-ea)a 'm% ' on a +. 

Then, for any  ~ 6 C~(ct +) and a 69/, with a '  = e (e/~)e o ao e -(e/~)~~ 

f~+ [~(H; a)I" J (exp  H) dH = fa+ I(e (~'~)~ q)) (H; a')[~ w(H) dH. 

Lemma 3.2 (with V = a, U = ~+, w as above) and the above formula then give us the 

following: there exist, a~, . . . ,  arc ~[ such tha t  

Ig(h) l~<e -(2/p)~(~~ ~ lla~gll~.~ (geH~,hEA+). 
l<~i<<.r 

From (2.1) we then  obtain  

Ig(h)l<~7~(h)(e'P) ~ Ila~glIj.p (g6Hj, h6A+). (3.15) 
l <~ i<~r 

For  any  g6C~(G), kl, lc26K, let gk~.k2(h)=g(lclh] @ (h6A+). Given a 6 ~ ,  we can 

find c 1 ..... c~ 6 (~ and analytic functions ill, ..., fi~ on K such tha t  

agk~.k~= ~ fl~(/C2)(c~g)k~.k~ (3.16) 
l<~<<.m 

for all g6C~(G), ]~1' ]~2 e K "  (3.16) and (3.2) show tha t  if / 6 N  p, /kl.k26Hg for almost all 

( /Cl , /Q)6K• Applying (3.15) to the /k~,k: and using (3.16) with a = a  i we get the 

following result: we can find a constant  c > 0 ,  and b 1 .. . . .  b~6(~, such tha t  for any / e~ t / , ,  

the inequali ty 

sup < c II(bfl)   (3.17) 
h ~ A  § J~J<~q 

is satisfied for almost  all (/% k2)6K • Replacing / by  $]~ (~, ~ 6 ~ )  in (3.17), we get, 

after an integrat ion over K •  the following result: for any  ~, ~]E~, /E~/p and 

hEA+, 

(ffK ]/(~i klhke;~)'Pdlcldk2) Ijp( "z,~,2/p  c t,0, 2 IIb, / ll  (3.1s) 
• K l <~]~q 

On the other hand, f rom the harmonic analysis on K •  we have the following 
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familiar result: there are ~,  ~ E ~ (1 <~ i ~< r) such that  for all ~v E C~(K • K), (ux, u~) E K x K, 

Combining this and (3.18) we then have 

~ " ~ \ 2 l p  IIb, : l,ldlp 

for a l l /E74 ~, kl, k~EK, hEA +. So, f o r / E T C  and u, vE(~, 

Theorem 3.3 follows at once from (3.19). 

(3.19) 

COrOLLArY 3.4. I /  1 ~<p<2, then any wE Ep(G) iso/ type ( 2 / p ) - l .  I/l<~p'<~p, then 

~,(G)~_ E~(G)~ E~(G). 

Proo/. Let 1 ~<p < 2, co E E~(G), and / ,  a K-finite matrix coefficient of m. By Theorem 1 

of [14] we can find g, fiEC~~ such t h a t / = ~ + ] ~ f i .  Consequently, given a, bE(~, there 

exist g', fl 'EC~(G) such that  b /a=~ '~ /~ f l ' .  So/E:H p and hence supa E-eIpl/] < oo. This 

proves tha t  co is of type ( 2 / p ) -  1. The second statement  follows now on noting tha t  for 

1 ~<q'< q~<2, F,2/q'ELq(G). 

Remark. Let C p = CP(G) be the space of all / E C o(G) for which supa E 2/p(1 + a) r I b/al < oo 

for all a, b E (~ and r ~ 0, topologized in the obvious way. I t  is then not difficult to deduce 

from Theorem 3.3 the following result: C" is precisely the space of all ]EC~176 for 

which (1 + a)r (b]a)EL~(G) for all a, b E ~,  r >~ O, and its topology is exactly the one induced 

by the seminorms/~+ll(1 +a)r(b/a)Hp (a, bE(~, r~O). We do not prove this here since we 

make no use of it in what  follows. 

4. Differential operators on C a ( G :  Is': "r) 

Let ~v be a K-finite eigenfunction (for ~)~ and P~=MIFN ~ ( F ~ E ) ,  a parabolic sub- 

group. For studying the behavior of q~(ma), when aEA~ and tends to infinity, while m 

varies in Mlr,  we use Harish-Chandra's  idea, of replacing the differential equations on G, 

by differential equations on M1F. We shall find it convenient to work with vector valued 

functions. 

Let  V be a complex finite dimensional Hilbert  space, the scalar product and norm of 

which are denoted by  ( . , . )  and H H. By a unitary double representation of g in V we mean 
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a pair ~= (vl, T2) such that  (i) q (resp. ~ )  is a representation (resp. antirepresentation) 

of K in V, and ~(k) is unitary for all k e K ,  j = l ,  2 (ii) ~l(kl) and ~(k~) commute for all 

k~, k~6K. We allow the ~l(k) to act on vectors of V from the left, and the ~e(k) to act from 

the right. We write ~ (resp. ~)  for the corresponding representation (resp. antirepresenta- 

tion) of ~. A map /: G~->V is called z-spherical if /(klXk2)=Tl(kl)/(x)T2(k2) for all x6G, 

k~, k~6K; C~ V:~) denotes the space of all ~-spherical / of class C ~. Note that  

C~176 V: ~) is invariant under ~. 

l~ecall that  ~ is a Hilbert space. If we write x ~ for 0(x -i) (x6G), then Ad (x) and Ad (x*) 

are adjoints of each other. 

Fix F c  F~. For m6M~F, let 7F(m)= IIAd (m-i)n~H.Then?F(m)= [IAd(0(m))~r[[ also. Put  

{ M~F = {m: m6MiF, (Ad(m -1) - Ad(m*))n~ is invertible} (4.1) 

M ~  = {m: m6i~F,  yF(m) < 1}. 

Define bF(m ) and c~(m) for m6M~r by 

bE(m ) = (Ad(m -1) - Ad(mt))~, CF(m) = Ad(m-1).FbF(m ). (4.2) 

4- ! I t  is easily verified that  MI~ c_ M1F, and that  for m 6M~r, 

eF(m) = -- X (Ad(mtm)ns) -*, bF(m)= --Ad 0(m)n. ~ (Ad(mtm)n.) -~, (4.3) 
r~>l - r~>0 

the series converging since IIAd(mtm)~lll < ~(m)~< 1 (cf. [83 w 2). Note that yF(exp H) = 

e-~s on) (H6 Cl(a+)). 

L~M~A 4.1. Let E be the projection o~ ~ on ~ modulo ~. Then/or all X61IF, m6M~F, 

we have 
OX = - 2Ad (m -1) EbF(m) X + 2EcF(m) X.  

Proo/. Let h6M~FNA, 16A+~A~,  X6g~. Write X = Y + Z ,  Y6~, Z6~. A simple 

calculation shows that  

( e~(1og ~ ) _ e- ~(lo~ h ) ) O X = 2 y h -1 _ 2 e - ~(l~ h) y .  

This gives the result we want when m = h. The general case follows from the above 

special case, since M~F =KF(A ~ M~F)KF, while cr(ul mu~)=Ad (u~ 1)~FcF(m) Ad (u2)np and 

bF(ul mu~) =Ad (ul)nFbF(m) Ad (u2)nF, for ul, u 26KF, m 6Ml~. 

L~M~A 4.2. Let {Y1 ..... Y~} be a basis /or (ltF+O(nF))N ~. Let $o.~ be the algebra 

generated (without 1) by the matrix coe//icients o/ cF and bE. Then, given X 6nE, we can find 

/~, h,6So.F (1 <~i <~p) such that OX=F~l<,<p(/~(m ) YT~-~ +hdm) Y~) (m6M;F). 
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Proo/. Let { X  1 . . . . .  Xq} be a basis for rt~, and (%z(m)), (b~a(m)) the matrices of c~(m) 

and b~(m) respectively, with respect to it. Let  EXa=Zx<~<~aa~ Y~, X=Y~l<a<qxaXa. We 

obtain Lemma 4.2 from Lemma 4.1 by routine calculation with ]~ = - 2  Zx<~.~<q x~ a:~ b~a 

Write ~e=ml~f~, ~e=mlef~ .  Then 9--~+~e+0(rte) is a direct sum. Let  k be the 

symmetrizer map of S(~r (~ and let ~ = X ( S ( ~ ) ) .  Then ( ~ = 0 ( r t ~ ) ( ~ + ~ + ~ e  

is also a direct sum. For b6(~, let u~(b) (i=0, 1, 2) be the respective components of b in 

0(1t~)~, ~ and ~ .  Define re(b)--~x(b)+vz(b ). I t  follows easily from the Poincar& 

Birkhoff-Witt theorem that  deg u~(b)~<deg (b) ( i=0,  1, 2), and that  we can write vr(b)= 

Z ~ < ~ ,  where ~ 6 ~ ,  ~ 6 ~ ,  deg (~) +deg (~) ~<deg (b) (1 ~<?'<r). 

L ~ A  4.3. Let b6(~ and deg (b)=r. De/ine So.~ as in JLemma 4.2. Then we can select 

~ , ~ i ~ ,  ~ i ~ J ~ l F ,  g t ~ O , p  (l~<i,.<s) such that (i) deg(~)~<r-1 ,  d e g ( ~ ) + d e g ( ~ ) +  

deg ( ~ ) < r  (1 <i~<s) (if) /or all m6M;~, 

ra--1 b=~,r(b)+ ~ g,(m)~i ~,~. (4.4) 
I<~i~S 

Proo]. We use induction on r. The case r= 0 is trivial. Let r= 1, b = Y6g. If  

Yel+~F, then vF(Y) -~ Y and we have (4,4) with g t -0 ;  if Y=-OX for some X6rtF, then 

~r(Y) = 0, and Lemma 4.2 implies what we want. Let r ~> 2 and assume that  the lemma has 

been proved for elements of degree ~< r -  1. If b 6 ~F ~, then uF(b) = b and we have (4.4) with 

gt---0. So it is enough to consider the case beO(rt~)$. We may obviously assume that  

b =OX. 5 where X 6 IlF and deg (5)~< r -  1. Note that  vF(b)=0. By the induction hypothesis, 

we can find ts, $3 6~,  ~j6~IF,  Yj6$0.F such that  the appropriate conditions on degrees 

are satisfied, and for all m6M~y, 

- -  ~ r n - - 1  - 

Write UF(5)=2Jl<k<qUkVk where Uks V~6~, deg(uk)+deg(vk)<.r-1 for l~<k~<q. 

Substituting for OX from Lemma 4.2 we find, after a simple calculation, the following result, 

valid for meM~F: 

b= ~ h,(m)[Y~,5]+ ~ ~ (/~(m)Y'~-lukvk+h,(m)ukvkY,) 

+ Y Y y,(m){/,(m)(Y,~,)~-lr 

Applying the induction hypothesis t o  [Y~, $] (which is permissible as deg ([Y~, 5])~<r-1), 

and substituting ;in t h e  above expression for b, we obtain (4.4) without much difficulty. 

17 - 722902 Acta mathematica 129, Imprim6 le 50c$obre 1972 
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L E P T A  4,4. For zE~,  ~F(z)=dF~o#F(z)odF. 

Proo/. vF(z) is the unique element of ~ F ~  such that  z--VF(z)EO(ltF)(~. On the other 

hand, d71o/~F(z)odFe~1~_| while z--dT~o/aF(z)odFEO(lIF)(~F, for ZE~. This proves 

the lemma. 

We choose and fix elements v~=l ,  v2 ..... v~E~F such that  

3F = ~ /~F(~)v, (direct sum). (4.5) 
l~<~<r~ 

Let S0.F be as in Lemma 4.2. We denote by SF the algebra generated (without 1 ) b y  

functions of the form ~g (7 E~)~F, g E So.F). The following is then the main result  of this 

section. 

T ~ o n ~  4,5. (i) Let bE~) and let g~, ~ ,  ~ ,  ~ be as in Lemma 4.3.: Write ~'F(b) = 

Z ~ < ~ < ~  (~,E~OJ~IF, ~ e  ~). Then ]or arbitrary V, v and .~vEC~ V: T) we have, /or 

m e M~F, 
~(m; b) = Z ~(m; V~) ~ ($~) + ~ ~(m) ~(~,) ~(m; V~) ~ (C,). 

l<~<<.r l<~i~s 

(ii) Fix v E ~F and let z~ (1 <~ i ~ rF) be the unique elements o /~  such that v = E~< ~<~v~/zF(z~) 

Then, there exist ~ ~, ~ E ~, ~ ~ E ~i~IF , g ~ E $y (1 <~] <~q) with the/ollowing property! ]or arbitrary 

V, % q)EC~(G: V: T), and mEM~F ~, 

cf(m;vodF)= ~ cf(m;v~odFozi)+ ~. g~(m) v~(~)~(m;~'i~odF)Te(G). 
l<.~<~rF ~<~i<<.q 

Proo/, If IpEC~176 V: T), ~, ~ECE~, ~eC~, xEG, then Ip(x; ~ ~,C)=z~(~)Ip(x;~),V~(C), 

(4.4) then leads at  once to (i). We shall now prove (ii). By Lemmas 4.3 and 4.4 we. ca n 

select ~,~, ~,. E ~, ~ E ~ F ,  gt~ E So.r such that  for all m E M~F, 1 ~< i ~< r~, 

rn--1 
zt=dFl~176 - 1.<~_< ~ ~ h ~  (4.6) 

so that,  for arbitrary V, T, ~vE C~(G: V: z), and m, i as above, 

From this we calculate ~v(m; vodF) to be 

cf(m;v~~176 ~ Z Tx(~j) cf(m;v~~176176 (4.7) 

where ~=d~o~lijod~ 1, By the~ definition of SF, we can find wkE~lF , h~k~SF (l~</c~t,) 

such that  v~qg~j =Z~<~<,thijkowk for all :i, ]. Substituting in (4.7) we get the  re.quired resul, t,~ 
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Remarks 1. We note that, in (ii), g~, ~,  ~ ,  ~ do not depend on V and ~. This enables us 

to keep track of the way in which our subsequent estimates for ~ vary with V and ~. 

2. The results of this section do not need the assumption rk (G)=rk (K) for their 

validity. 

5. The differential equations for W and certain initial estimates 

We fix F c ~:. We select a complex Hilbert space T of dimension rF, an orthonormal 
4= 

basis {% . . . . .  er~ } of it, and identify endomorphisms of T with their matrices in this basis. 

Given V and r= ( r i ,  T2) as in w 4, we define _V= V(DT,: T_l(k) =ri(k)Q1, E2(k) =~(k)Q1 

(/c 6K). y is a Hilbert space in the usual way, and ~ = (_vi, E2) is a unitary double representa- 

tion of K in V. ~F and ~_F are the double representations of Kp obtained by restricting T and 

respectively to KF. 

Given v e e r ,  there are unique zv:~j6~ such that  

vvr = I<~,F#E(Z,:~j) V~ (1 • ] < rE). (5.1) 

For AeI* let F(A: v) be the endomorphism of T with matrix (/2r then 

P(sA: v)=P(A: v) (seW(Iv)) and w+F(A:  v) is a representation of ~r  in T.  I t  is known 

that  F(A: v) has the numbers /~mlF/t(v)(sA) (seW(iv)) as its eigenvalues, and that  it is 

semisimple if A is regular. Let i*' be the set of all regular A e i*. Since aF_c~F, it is 

then clear that  for AeI*" and Heap,  F(A: H) is semisimple with eigenvalues (sA)(H) 

(s6 W(tc)). In fact, the following lemma is valid (cf. [7] w 3, [8] Lemma 19). 

L~MMA 5.1. Let P be a positive system o~ roots o] (g~, Iv) and Pr  the subset o] P 

vanishing on at. Write ~r = I I ~ H ~ ,  ~r F =II~e~ H~. Let s 1 = 1, s~, ..., s~ F be a complete system o] 

representatives o~ W(I~)/W(I~)F. Let uj=/~m~F/i(vj) , l < ] ~ r r  and let ek(A) be the element 

Zl<j<r~,uj(s~lA)ej o/ T. Then, i/ Ae I*', the ej(A) /orm a basis o/ T, and F(A: v)ej(A)= 

~um~/I(sj -1 A) ej (A) (v 6 ~ . ,  1 < ] < rF). Moreover, there is an r E x rr matrix E with entries ir~ 

the quotient /ield o/ I(W(Ic)r) having the /oUowing properties: (i) (w/wF)E has entries iu 

I(W([~)E) (ii) /or A 6 [*', E(s;1A) are the projections T~C.ee  (A) corresponding to the direct 

sum T = Zl<k<r~ ,C .  e~(A). 

Fix v 6 ~ .  By Theorem 4.5 ~we can choose ~ ,  ~ 6 ~, V~ e!YJ~F, ~/~ 6 ~E (1 <~ ] <. rE,. 

1 ~/r ~< q)such t h a t  for arbitrary V, T, ~ 6 C ~r (G: V: ~), and m 6 M ~ ,  

cf(m;vv~odr)= ~. q~(m;v~odrozv:~j)§ ~ g~( ' ,n)~i(~)~(m;u~odE)~2(~) .  (5.2} 

We now define the differential operator D ,  on C (M~E:_V) by setting, for all f =  

~l<j<rF/]~e I (/ eC (M1F: V)), 
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D~f = ~ D~:d~ | (5.3) 
l~i<~rp 

where, f o r / E  C~(M~F: V) and mE M~p, 

l ~ k ~ q  

The following lemma is then immediate. 

LEMMA 5.2. Let notation be as above. For ~EC~176 V: v) let 

(I)(m) = Zl<jgrp q~(m; vjodF) (~ej. 

Assume that /or some AEI*, z~=#g/~(z)(A)~/or all ze3. Then, /or ve~F and meM;., 

(I)(m; v) = (1 |  v))Cb(m) +(I)(m; D~). (5.4) 

Moreover, let y>~O and let It~=d~.r _For qE~]~ and vE~F, let 'q=d~Voqodr~, 'D~v., = 

d~o('qD:v)od~ r. Then, /or meM~r, 

~F(m; v~) = (I |  'v))~F(m; 7) +~F(m; 'D~.,). (5.5) 

If  mEM+F, H E a  +, then mexptHeM~F for t~>0; also 'H=H+7~(H)I.  So Lemma 

5.2 gives 

LEM~A 5.3. Let notation be as above. Fix H Ea~, ~E~)]~xF. For m E M ~  let F,,=Fm.H., 

and Gm =- G,n,r~., be the /unctions on [0, c~) de/ined by 

Fro(t) =~F(m exp tH; ~), (Gin(t) =~F(m exp tH; 'D~H.~). (5.6) 

Then, on (0, ~)  dFm d t .=  {1 | (F(A: H) + r0(H) 1)} F~ + G m. (5.7) 

Choose an orthonormal basis (X~ . . . . .  X~} of ~, Put  

= 1--(X~ + . . .  § X~a), [TI = (1 + + II =(a)ll). (5s )  

L ~  5.4. _Fix vE~F, ~ ] E ~ J ~ I F .  Then there exist r=r,,,>~O, eo~=eo~ .v . ,E~  

(1-<.<k~<q=q~.,) such that/or arbitrary V, T, and/EC~176 V), and all mEMCs, 

ll:(m; ~oD:)II < r,(m)(: -~,,,(m))-' IT I' ~- ILl(m; (m; ~o~)II. 

Proo/. I t  is clear from the definition of D~:~ and D~ tha~ fo r / ,  m as above, 

~ T v .g v IV(m,,~oD:)ll < ~.<~,, ~.<II, (~,~)II II ,(c,~)ll ll/1 (m ;,~ogao,~a)ll. 

0 v v - -  v v Now we can select ~ E  ~ ,  g ~ E  ~r such that U g ~ o ~  - ~<~<~ g ~ o ~  for all i, ]r So  

we get 
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v ~ v . v 

i.t .lc 

(*) 

Observe now that  given any 9 q SF, there are constants c(g)> O, q(g)>~0 such that  for 

all m ~ M ~  

Ig(~) I < c+)~g~)(1 -rg~))-~,~). (5.9) 

Indeed, this is immediate from Lemma 7 of [8] if 9 = vh for some v ~ ~J~ and some matrix 

coefficient h of c~. On the other hand, we see from (4.3) tha t  b~(m) = - A d  (0(m)),e (1 - cF(m)), 

SO that  our claim is true for derivatives of matrix coefficients of b~ also. The estimate (5.9) 

now follows from the definition of $~. Furthermore, we have the following elementary result 

from the representation theory of K: given ~ ~ of degree s, there is a constant a(~)>0 

such that,  for any finite dimensional unitary representation fl of K, ]]fl(~)l] ~<a(~)[[~(~2)ll 

Using this  and (5.9) in (*) we get the lemma. 

Let  ]l" II be a norm on 1". Given A e [* and z, put  

1~, AI = (1 + I1~1(~)11)(1 + II~(~)ll)(1 § IIAII) 

~(A: G: z) = {~: q~eC~176 V: ~), z~o=l~r for all ze~} .  
(5.1o) 

As usual, L2(G: V) is the Hilbert space of functions 1: G-+ V with II111~--$~ I I1(~) II :d :  < ~-  

Note that  E(A:G:z)NL2(G: V)#{0} if and only if A s 1 6 3  [14]. Also it  follows from 

Theorem 1 of [14] that  i f / e s  G:z)NLa(G: V), then b/aeL*(G: V) for all a, b ~ .  

L~M~A 5.5. Let r>~O; a, bE(~ such that deg(a)+deg(b)~r' Then 3 a constant 

C=Ca.b >O such that ]or arbitrary ~, A e s and leE(A: G: ~:) fiL~(G: V), 

Ilb/all: < Cl~, AI: II]11~. (5.11) 

Proo/. Extend {Xl ... . .  Xo} to au orthonormal basis {Xl . . . . .  X~} for 9, and let 
2 2 q=- (X l+ . . .+Xn) ,  o~=-(X~+...+X~)+(X~+I+...+X2,). Then ~o is the Casimir of 

G, g=-co+2~2-2,  and I~r HA>-c for all AEs c being a constant. So 

we can  select a c o >/1 such that  2 + ]pGdw)(A)I ~< co2(1 + [JAIl) ~ for all A e  s Now, if :~ is 

any unitary representation of G in a Hilbert space ~ and ~v is a differentiable vector for 

a, -(a(X~)2% ~v)=lla(X~)v[l~>~0 (l<~iEn),  so that  Ii~(xi)viI~<(a(q)v,v). We apply 

this to the case when ~ =L2(G: V), a is the right regular representation of G in ~, and 

~0--16s G: T)n @; as/=~++[++fl for suitable a, /~6C~(G) by  Theorem 1 of [14], [ is 

surely differentiable for ~. Thus, for 1 <~ i 4 n, IIX,[[[~ 4 - (eel, 1) - 2(/, [) + 2(~2/, [) < (2 + 

[~o,,(o~)(A)l) 1l/ll~+21 (h i , / ) l .  But ] (n/ , / ) l  = I j '~(/(z)~(~), /(~))d~l < II~(n)ll ll/]l~. So we 

get the estimate llX,/ll~.<c01~, AI II/ll~ from whieh w e  get IIX/ll~<nlIXll%l~:, AI Illll~ 
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for all Xeg .  A similar estimate holds for [[/X[[~. We have ~hus proved the lemma when 

deg (a) +deg (b) < 1. 

Assume the lemma for r = m .  Let a', b ' E ~  with d e g ( a ' ) + d e g ( b ' ) K m .  Let (~x 

(resp. @~) be the subspace of ~ of all elements of degree <deg (a') (resp. deg (b')), and 

let (a,)~<,<a (resp. (b~)~<~<s) be a basis of 6j~ (resp. (~) such that  the matrices (c%(k)) (resp. 

fl~(k)) ( k ~ K )  of the adjoint representation of K in (~  (resp. ~2) are unitary. Let U be 

a ttilbert space with an orthonormal basis (ui~)~<,<~.x~<~<s, and define the unitary double 

representation v=(v~,v2) of K in U by setting v~(k)u~q=X~<~,<<.na~,(Ic-1)u,q, u~qv~(k)= 

~<~<s~q~(k)%~ (kEK, 1 < p K R ,  1<q~<S). Given V, z, f as above, let 1 7 = V ~ U ,  

= r  | and F ( x ) =  G~<<.~<<.~.~<<.~<s/(a,; x; b~)| u~ (x E G). I t  is easily seen that  F E s G: ~)fi 

L2(G: ?) .  So by. the earlier result, [[XF[[~+I[FX[I~KCx[~,A[IiF[] ~ for XEg, Cx>0 

depending only on X. Thus, for 1 <~iKR, 1 <~jKS, XG~,  

We estimate the right side of this inequality by the induction hypothesis applied to 

[[bq/a~[[ 2, and by the (easily proved) fact that  for a suitable constant c' > 0, [ ~, A [ < c'[v, A [ 

for all A, ~. This gives the lemma for r = m + 1. 

From Lemma 5.5 and Theorem 3.3 we get 

L~M=~/~ 5.6. Given a, b E ~ ,  there are constants C = Ca. b >0  and r = ra. b ~ 0  such that /or  

arbitrary V, ~, A , / e ~ ( A :  G:~)~L2(G: V), 

II/(a; x; b)l I ~<C]'~ , AIrT~(x)ll/ll~ (xEG). (5.12) 

L~MMA 5.7. Given ~]E~J~IF , there are constants C = C n > 0 ,  r=rn>~O such that /or 

arbitrary V, T, A, m EM+p, ~E E(A: G: ~) ~ L2(G: V) and ~P as in Lemma 5.2, 

lie(m; v)ll AJ*d (m)S(m)IlVll . (5.13) 

Proo/. Let (~vj)' = dT~o (~vs)o dp. The lemma follows from Lemma 5.6 and the inequality 

(•vj)')[[. (5.14) 
l~<i~rp 

L ~ M M A 5:8. (i) There are constants cl > O, r 1 ~ 0 such that/or all m E M~y, dF(m) .~. (m) <. 

Cl.~.F~,m) (1 + q(m)r'; (ii) given H E a~, there is a constant c~(H) > 0 such that m exp tHE M + 

/or any m E M I ~  and t>~e~(H)a(m); (iii) given H E n  +, 7>~0, 0 < ~ < 1 ,  there are constants 

a = a~.~, 0 < a < 1, and c(e) -= c~.~ (e) > O, such that , /or  m E M+F and t >~ O, 
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d~(m exp tH)~+vE (m exp tH)l+r-~a:,,< c(s)d~(m)l+rZ (m) 1-~v-" e ~. (5.15) 

Pro@ (i) and (iii) follow quickly from (2.1) and the relation M ~  KF Cl(A +) KF. For (ii) 

see [14], p. 69. 

L ~ M A  5.9. Let HEa~, ~E~O~IF. Then we can select r=rH.n>~O, q=q~.~,>~l and 

ode~j~F (1 <~ s<--. q) such that /or arbitrary V, ~, A, ~0e E(A: G: ~), the /unctions F,~ and 

G m de/ined by (5.6) satis/y the ]ollowing inequalities, /or all meM~r and t>~0: 

il~m(t)ll ~< ~ / m  exp tH) 1~" ~ [l~o(m exp tH; ,os)ll 
l<~s<~q 

UGAt)II < 7~(~) ( t -  r~(m exp t/t))-" I~[ 'e -~  (~) d~(m exp tH) ~§ ~ [[v(m exp tH; ~)U. 
l ~ q  

(516) 

Proo/. Write et=ex p tH. Then (5.14) gives, for m, t as above, 

llFm(t)[I < ' t A m e #  § "Z II~(me,; (',~,,H)ll. 

Further, Gm (t)= dF(met) ~ alP(met; '~D~) can be estimated by Lemma 5.4. Write, in the no- 

tation of that  lemma, q= q~..n, ~= r~.n, ~k - w~.~.., ; then l]G~(t)l I is majorized b y  

~F(met) (1--~,F(me~))-~l-rlCdF(met) ~' 5 Ildp(me~; ~'~)ll; 
l ~ k ~  

as 7~,(met)~ e-the(roTe(m), we find from (5.14) that I[Om(~)[[ is majorized by 

~r(m) (1 - yr  (me,))-r I ~ I ~ e -'a,(m cd,(met) ~+" 2 IIq~(mee; (r 
1,k 

Our lemma follows at  once from these estimates. 

Remark. Except Lemmas 5.5 and 5.6, the results of this section do not need the 

assumption rk (G)=rk (K) for their validity. 

6. A lemma on ordinary differential equations 

In this w X is a finite dimensional Banach space with norm H" [[; r is a semisimple 

endomorphism of X with only real eigenvalues; S=S(F)  is the set of eigenva!ues of 1 ~, 

and IS] is the number of elements of S; for c E S, Xc is the eigensubspace and E c is the 

spectral projection, corresponding to c. We define 

C=max LtEoll ~=min  (~, mm Icl). (6.1) 
ceS ceS,ce~O 
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L~MMA 6.1. L ~  / and g be /unct ions  o/ class C x de]ined on an interval o] the ]orm 

( - h ,  cr (h>0) ,  with values in X .  Suppose that d] /d t=F]  §  on (0, c~), and that, ]or each 

e with 0 < e < l ,  there is a constant C8>0 ]or which 

II/(t)ll < c,~ "~, II~,(t)ll <C'.e"-' (t>~O). (6.2) 

Then ]~ = lim~.,+or ](t) exists, lies in  Xo, a n d / o r  all t >1 O, 0 < e < �89 

Ilf~ll < 3 c o . ,  lit(t)-/.oil < 3[s]  VO.e"-". (6.3) 

Proo]. For  c e S  pu t  ]c( t )=Ec/( t ) ,gc( t )=Ecg(t) .  Then  d / J d t = c / c §  c on (0, c~), and  

we have,  for  t ~> 0 and 0 < e < l ,  

Illo(t)ll < OC.e", Ilgo(t)ll < CC.e"-'. (6.4) 

We consider three  cases. 

Case 1: c > 0 .  Then,  for 0 ~ t <  t', we have  

~ ' - t  

e-Ct']o (t') -- e-Ct]c (t) = e -ct e-CUg c (t + u) du. 
dO 

Taking  e < rain (e, 1) in (6.4) we find t h a t  e-~']c (t') ~ 0 as t' ~ + ~ while 

fo~ ~)II ~ "  § d u <  

So fr - S ~ e - c " g c ( t §  u )du ,  f rom which we get, on using (6.4), 

IIh(t)ll < (~ + a .  ~)- 'CCoe"- '  (c >0,  t~> 0). (6.~) 

Case 2: c < 0. We have,  for  t >~ 0, 

[~(t) = e~t]o(O) + eC~ff~(t - u) du. 

F r o m  (6.4) we find t h a t  the  in tegrand  is major ized  b y  CC, e~ - t e  ~u+u-eu which is 

<. CC, e~-~e (1-~)~, as c~< - g. We  then  find 

IlYo(t)ll < (1 § 1/(1 - ~)) VO, e '~-~" (c<  O, t ~  0). (6.6) 

Oase 8: ~:0 .  Since d/o/tit=go and S; Ilgo(u)ll d~< ~ ,  we see that  ]oo =limt_.,+cc]o(t) 

exists, lies in Xo, and, for t >~ O, 

;o /~=lo(t)+ go(~+u)du. (6.7) 

Tak ing  t = 0 in (6.7) and using (6.4) we find easily t h a t  
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II/~H < (1 + 1/(1 - e ) )  c v . ;  (6.8) 

moreover, for t>~O, (6.7) and (6.4) give 

lifo(t)-f~ll < ( l - e ) - ' c c ,  c ''-'  (o< ~< x). (6.9) 

On the other hand, we have 

I l l ( t ) -  1~11 < Ilto ( t ) -  1~11 + o,,~.o111o(~)tl . (6.10) 

From (6.5), (6.6), (6.8)-(6.10), we see that l(t)-~l~ as t ~  + %  and that (6.3) is true for 

t>~0, 0<e~<�89 

7. The |unctions r associated with a ~ ot type (A ,  ~, y )  

Let 7 > 0 and V, T as in w167 4, 5. A function ~: G-~ V is said to be of type (A, v, 7) if 

e s G: 3) and if, given b E ~ ,  c > 0, we can choose a constant B e = Be(b: ~) > 0 such tha t  

][~0(x;b)H < B ~ . ( x )  l+r-" (xEG). (7.1) 

Such ~0 lie in L~(G: V); conversely, it  follows from the work of [14] that  any ~ E s G: 3) N 

L2(G: V) is of type (A, 3, fl) for some fl > 0. In this w we shall make a close study of functions 

of type (A, 3, 7)- 

We recall the sets Fj  and the parabolic subgroups P~-~MsAjNj defined in w 2 

(1 ~<}'~<d). For a n y / z > 0  we put 

A?(#) = {h: h CA+, ~j(log h) >/~e(log h)} (7.2) 

for l~<j~<d. Then A'~(la)~A~(#') if 0<#-~/~,  and A + _  Ul<~<aA~(/z) for sufficiently 

small/z. To see the latter, let Q be the compact set {h: heClA +, Hlog h l l= l ) ,  and let 

c~=infh~Qq(logh), c~=suph,~e(logh), and c3=Z~<~e(H~); if hE A  +, then l o g h =  

Zi<j<a ~j (log h) Hi, so that  for h e Q N A+ one has c 1 ~< c a max~<~<a ~j (log h), proving that  

a~(log h)> (cJ2c2c3)e(log h) for some ]. In other words, 

A+~-- U A~(~) (0<[~<Cl/2C2%). (7.3) 
l~J~d 

As mentioned in w 2, we write dj=dp~, r~=re~ etc. 

T Hv. OR ~,M 7.1. Let A e s 7 > O, V, v a~ usual, and let q~ be o/type (A, 3, 7). Let 1 <. ] <~d. 

Then, for any mEMI~ 

r = lira d~(m exp tH~)~+eq~(m exp the) 
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exists. Moreover, we can write ~ / , ? ~ l < ~ < r i ~ ) / . ~ . . t  where q~i.v.~(ma)=~i.,.~(m ) /or m e M i ,  

a e At, and q~. r.~ I M~ is o/ type (s~ A I [ ~ m~, v~, ~,) (x) (1 <~ i <. r~) ; in particular, 

~(z)  (d;~%.~) = #~dz) (A) (dJ%.~) (ze~) 

% . r = 0  i] P~ is not cuspidal. I] 9;~,r:#O, we can find s~ V([c) such that (sA) (H~)= -yo(H~). 

Proo/. Define ~F as in Lemma 5.2. For any  ~ and m~M~,  let F~ and G,~ be as 

in Lemma 5.3, with /v--2'~ and / / = H ~ .  Then d~'mldt=A~Fm+G~ on (0, ~ )  where 

A ~ = I  (~)(F(A: H~) - ~ ( H ~ )  1), We obtain easily from (5.15), (5.16) and (7.1) the following 

result (note tha t  fi~ (Hi) = 1): if Q ~ M ~  is a compact set and 0 < ~ < 1, there is a constant 

C~.~ > 0  such tha t  
< IIG (t)ll < C .f (7.4) 

for m CQ, t >i 0. Further,  as A E s A j is u semisimple endomorphism of V whose eigenvalues are 

the real numbers (sA)(Hi)+ ~0(H~) (s e W(I~)). Let  T o --{u: u ~ T, F(A: H~)u + ~(H~)u = 0}. 

Then, by  Lemma 6.1, we can find O~ (m)e V @ T  o such tha t  F~(t)--~F(m exp tHe; 7 ) ~  O, (m) 

as t-~ + 0% for each m ~M~, ~ ~ i ~ .  Moreover, using (7.4), we infer from tha t  lemma the 

existence of a constant a > 0  such that ,  for any  compact set Qc_M+~ ~nd any s (0<s~<�89 

we have 

IlT'(m exp tHj; v ) -  O, (m)ll <- D~.~ e *t-~t (t >1 O, m ~ Q) (7.5) 

for suitable constants DQ.~. Let  ~F~ (m)=~F(m exp tHj). Then the estimates (7.5) show tha t  

for any vt e ~ l J ,  ~Ft -*  ~ uniformly on compact subsets of M~. Thus @1 is of class C ~ 

and ~)~ = ~ 1  for ~ e~j~lj. 

Now 01(m exp tHj)= (~l(m) for m e M~, t/> 0. On the other hand, given any compact 

set Q c  M~s , there is t o > 0 such tha t  m exp tHj~M+i for m EQ, t >~t 0 (Lemma 5 .8 ) . I t  follows 

easily from this tha t  we can extend @~ uniquely to a function 6)EC~176 VQTo)  

such t h a t  O(ma)=@(m) for all meM~j, aeAj. Obviously 

O(m; 7) = lim ~F(m exp tHj; 7) (mE Mlj, U E~i~lj ). (7.6) 
t--> -I- o o  

From (7.6) we see tha t  0 is ~Fspherieal.  Suppose O =W01 Since the values of ~) are in 

V ~) T 0, we have T O ~= (0). So, for some s E W(Io), (sA) (Hi) + re(Hi) = O. Let  v E ~j, m e Mlj. 

Then we get from (5.5) (with U = I ) ,  for all sufficiently large t, 

~F(m exp tHe; v) = (1 ~)F(A: 'v))~-F(m exp tHe) +q~(m exp tHe; d~oD;vodJ). (7.7) 

(1) The s~ are as in Lemma 5,1 with -F=Ft. Also Mt, is in general neither connected nor semi- 
simple, and we should remember the remarks made in w 2. 



ASYMPTOTIC BEHAVIOIPR OF EIGEN FUNCTIONS ON i SEMISIMPLE LIE GROUP 259 

A simple argument based o n  Lemma 5.4 shows that  the second term on  the right of (7.7) 

tends to 0 as t-> + ~ .  Changing v to d~ovodi ~', we get from (7.6) and (7.7), 

v(di-:'O)= ( I |  v)) (dFO) (vE~j) (7.8) 

Observe that,  if v =ttpj(z) (zE3) , then zv:r8 =(~,sz in (5.1), so that  F(A: #~j(z)) =/~g/~(z)(A). 1. 

(7:8) then gives 

riFt(z) (dT~'O)=ffglL(Z) (dJO) (ze~). (7.9) 

Let  E(s;1A) be as in Lemma 5.1, and let O k = ( l |  Then O=~l<k<rsOk; 

moreover, from (7.8) we have 

v(dyrOk) =/tm,~/l(v ) (s~lA) (dFvOk) (v e~j,  1 ~</c< rj). (7.10) 

We shall now estimate O. Fix ~ 6~J~lj. Let  E 0 be the spectral projection V-~ VQTo: 

Then from (5.6), (5.7), and (6.7) (with t = l )  we have, for all meMO, 

~/) = EoEm(1) + f?EoG,n(U) du. (7.11) O(m; 

Estimating the right side of (7.11) using (5,16), we easily obtain the fo l lo~ng  result: let 

ok (1 ~</~ ~< q) be as in Lemma 5.9; then there is a constant C > 0 such that  for all m E M~, 

HO(m; ~)H <~ Cdj(m exp Hj)l+~<~<a]]9~(m exp Hi; (ok)H 

f; + C 2 e-~d~(mexpuH,)~+rl[cf(mexpuH~; o~)Hdu- 
l ~ k ~ q  

If we now use (5.15) and (7.1) to estimate the right side of this inequality, we get the 

following result: given ~ with 0 < ~ < 1 ,  there is a constant Av.~>0 such that  

llO(m§ v)ll ~< A,.~dj (m +)~+~,~. (m +)~+~-~ (m + e M~j). (7.12) 

On the other hand, if c 1 and %=c~(Hj) are as in ( i )and (ii) of Lemma 5:8, then, for any 

meMj, m+=m exp c~a(m)H~EM~iand O(m; ~)=O(m+; 7); so, from (7.12) we get, for all 

m~Mj, writing A~.~ =A~,~ c~ +~ and r~ =rl(1 +y), 

]lore; ~}l[ < A~.~ ~-~ (m+) ~§ (1 + ~(.~+))',dj(m+) ~. (*) 

But .~(m +) = .~(m), d~(m +) = e ~;'(';) (c~ = c~(H~)), and there are constants c a > 0, c a > 0, 

such tha t  ~j(m) Eca e-c'"('n), (1 + (~(m+))~<ca(1 + a(m)) ~ (m~M~). Le t  0 <  s <  1. Then, 

writing A,~.~.e - c ~/~+r'~' 
- ~ "~n.~, we get from (*), for all m~Mi and 0 < 6 <  e/2, 
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Ile(m;  )ll A.. {e + 

I t  is clear that  there is a ~ =~(e) with 0 <~ <e/2, such that  the supremum of the expression 

within {...}, as m varies in Mj, is finite. Choosing (~ =(~(e), we find the following: given 

~, 0 < 8 < 1, there is B~.8 > 0 such that  

Ilo( ; v)ll (7.13) 

Let  @(m)=Zl<~<<.rOs(m)Qe~, @~(m)=El<~<qO,.~(m)@e ~ (mfiMlj), and put  q j .v=0 i, 

~J.v. ,=0t.1 (1 ~<i<rj). Then it  is obvious that  dj(m exp tHj)l+Yq~(m exp tH~)~q~j.~(m) 

as t-~ + 0% for each m~Mlj .  From the properties of @ and | it is moreover immediate 

tha t  q~j.v.,(ma)=qD~.v.,(m) for meMj ,  aeAj ,  tha t  ~j.v=El<,<qqr and that  the 

~ .~ . ,  are v~Fspherical. If  we remember that  dr on Me, we may conclude from (7.10) 

and (7.13) that  q~.v. ,] Mr is of type (s,Almen I, vr;, Y) (1 ~< i ~< re). Finally (7.9) leads to the 

required differential equations for dFrq~j, r. 

Now, if Pc is not cuspidal, Me cannot admit any nonzero cigenfunction (for the center 

of ~ )  in L~(M~). So, in this case, we must have q~.~.~=0 for l<i<.r~, proving that  

qr If  qr m0, then O ~ 0  and so, as we saw earlier, (s(A)(H~)+70(H~)=0 for some 

s q W(Ir This completes the proof of the theorem. 

We now turn to the problem of obtaining estimates for ~ - ~ ,  v. With later applications 

in mind we shall formulate the estimates so as to take into account the variation of 

"~ and A. 

L ]~ M M A 7.2. Fix  j (1 < j <~ d). Then (i) {A(Hr : A e s = Oj is a discrete additive subgroup 

o[ It (ii) there are constants C0>0 , %>~0 with the ]ollowing property: i/ E(s~IA) are as 

in Lemma 5.1, 

Y IIE(s~IA)II<~Co(I+}}AH) q~ (Vhfis (7.14) 

Proo]. If A e s A is a linear combination with rational coefficients of the roots of 

(go, It). Hence A I a is a linear combination with rational coefficients of ~1, -.., ad, proving 

that  A(Hj) is rational. As i:i is finitely generated, we may conclude that  Oj is a finitely 

generated subgroup of the rationals. Hence ~ j  is discrete. To prove (ii) observe tha t  

(w/~rFi)E has polynomial entries (Lemma 5.1), and so there are constants C1>0 , q0>~0 

such that  
I~(A)/~j(A){ {IE(A)II < C1(1 -~-IIAII) r (Ael*). 

On the other hand, there is a constant c 1 > 0 such that  I <A, fl> ]/> c 1 > 0 for all roots fl Of 

(gr Ic) and all regular A e  s and so there is a constant c 2 > 0 such that  I ~(A)/~e~(A)I ~> 

c~>0 for an AEs This leads to (ii). 
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T H ] ~ O R ~  7.3. (i) Let y > 0 .  Given any 8>0,  and a, be(~, there are constants 

D~ = De. a. ~, ~, > O, and q~ = q~. a. ~. ~ >~ 0, such that,/or arbitrary V, ~, and q~ o/type (A, ~, ~), we 

have 
IIq0(a; x; b)l I <~Delv, Ala, ll~ll~.~(x)l+v-~ (xEG). (7.15) 

(ii) Let ~>0.  Then there exists ~o=/~0(7)>0 with the/ollowing property: given any # 

with 0 < # < 1, we can select constants E~.v > 0 and p~. r >~ 0 such that/or 1 ~ ] <~ d, h E A ~ (#), 

and/or arbitrary V, ~, and q~ o I type (A, ~, y), one has the lollowing estimate 

lib(h) - d / ( h ) - ( I + F ' ~ o / . F  (h)II < L..~ ] v, A 1~,.~]]~}]~ ~ (h) ~+~+~0". (7.16) 

Proo/. We note first that  it is enough to prove (i) with a = b ~ 1. Suppose in fact that  

this has been done. Let q'~ >i 0 and D,' > 0 be such that for arbitrary V, ~, A, and / of type 

(A, T, 7), 
ll/(x)ll <~D'l'~,hlq'~ii/]]~(x) 1+v-6 (xEG). 

Let a, b E @, and deg (a) + deg (b) <p.  Given / of type (A, ~, ~), we define ~' as in Lemma 

5.5 and use the notation therein (with a-=a ', b =b', p =m). Since F is of type (A, ~, ~), we 

have, for each e >0, 

IIF(x)H <D: Iu  q~lIFiI2~(x) ~+r-' (xEG). 

Let a=F~l<~<<.Rc;a,, b=Zl<s<sdjb~ (c,,djEC) and let Q=(ZIc,d~l~)�89 Then Ill(a: x;b)ll< 
QIIF(x)II, and so, for xeG and 8>0,  

I[/(a~ x; b)[ I ~< QD:IL A[~',~ (x)l+r-~( Z IIbj/a, ll~)*. 
i,1 

This gives (7.15) in view of (5.11) and the fact that  I~, A I ~<clv, A I for some constant 

c > 0 independent of v and A. 

I t  is convenient to prove (i) and (ii) together. We begin by choosing a number 

~o, 0~<70~<~, with the following property: given bE(~ and ~>0,  there are constants 

L(b: e) > 0 and p(b: e) >7 0 such that for arbitrary A, T, and ~0 of type (A, ~, ~), and each e > 0, 

[IV(x; b)[ I <~L(b:8)I~,Al,(':,)llvI[2:~(x)l+v,-, (xEe). (7.17) 

i t  is clear from Lemma 5.6 that  such numbers 7o exist; for example, 0. We now proceed as in 

the proof of Theorem 7.1. Let 1 <<-i<d, r  as in Lemma 5.2, and ~ =d}'~ For vE~j,  put  

~=dTV~ '. Define, for meMO, the functions F ~ and G~ on (0, c~) by  

F~176 exp tHe), G~ (t)= xF~ exp tH~;dr~ L od -r~ 
t Hi,1 t )" 
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Let  A~.A= I| H~) + 7oo(H~)l). Then, we have, on (0, ~ )  

0 no. 
dt 

Arguing as in Theorem 7.1 we conclude that  0 ~ (m)= limt_~+ ~ F  ~ (m exp tHj)exists for each 

mEMlj .  Write |176176 and put  ~f~.r=O~. 

We shall now estimate ~F~ ~ using (6.3) (with At. A instead of F). To this end we 

shall find bounds for the constants C, C~, ~ defined in (6.1) and (6.2). 

Let  S~. A be the set o f  eigenvalues of A~.A, and, for c~S~,A, let E~.~, A be the corre- 

sponding spectral projection. Then it follows from Lemmas 5.1 and 7.2 that  S~.A~_ 0~+  

7oO(H~) and that  for any c~S~. h 

E~j.A= 1 | ~ E(sZ~A) (Aes (7.18) 
k: (s/~A + 70~) (Hi) = c 

Since Ul<j<g(~j+yoO(Hj)) is a discrete subset of R, we can select ~o=~o(yo) such that  

(i) 0<%<~�89 (ii) if  c # 0  and cE [.Jl<j<a(~j+~0o(Hj)), then Ic[ >~o. With this choice of %, 

we have 
ceSj.A,C~=O~]c[>% (AeE{ , l< j<d) .  (7.19) 

Moreover, from (7.141 and (7.18), there are  constants CI>0  , q l~0 ,  such that  

{]Ec.j,A[ [ < C1(1 "~ [[A[]) q' (AeEt', 1 <~ j<~ d, CeSj, A). (7.20) 

Also [Sj. A] ~< r r  

I t  remains to determine bounds for the Q. We use Lemma 5.9 with H = Hi, with Fj 

instead of F, and F ~ G ~ and 70 instead of .Fro, G'~ and y. Let  q, r, o98 (1 ~<s~<q) be as in 

tha t  lamina; moreover, let ao=agj.,~ and Co(e ) = c~j.~o(e) (0 < e < l )  be the constants satis- 

fying (5.15). Then (5.15), (5.16), and (7.17) give us the estimates 

0 e t - t  II•~ < o d  t, IIam(t)[[ (7.21) 

for all mEM~,t>~O, O < e < l ,  where C~=O~.m.s.A.~ is defined as follows, with p'~=r+ 

maxl<~<~ p(c%: eao) : 

C~=co(e)l%A[~( ~ L(~o~:eao))(1-Tj(m))-P;dj(m)~+voE(m)~+v~ (7.22) 

t t ~<: 0 t 
We now observe tha t  for any m eMij ,  IIF~.,0(m )1]-~ [[@ (m)[[ and 

< l l , r  - o 

Define p"(e)=p~ +q~ where iv', is as above and q l i s  as in (7:20). Pu t  
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K(e) =3C~co(e)rr ~ L(co~: ca0) ~ (7.23) 
l<.s<.q 

where Cx is as in (7.20). From Lemma 6.1 we then get the following estimate (go is as in 

(7.19)): for arbitrary A, 3, q0 of type (A,%y),  m6M~, t>~O, and 0<s< �89  

[[q~(m exp the)- 4(m exp tH])-(l+~'o)~j, yo (m exp tHj)[I 

~< K@)13, AI v''~) (1 - y~ (m)) -v'(~) E (m) ~+v~ II~tl. ~-*~0"+~~ 
(7.24) 

Moreover, as ~r176 (m)= ~VZvo(m exp Hi), we obtain from (6.3) the following estimate for 

~v,, r~ (m) : let 

K'(s)= K(s) (1-~)-~"(~)d~(exp H,)i+r~ (7.25) 

then, for m 6 M~-, 0 < s < �89 go, 

II~J.~~ (m)ll < K'(~)13, A I ~(~ ~ (m cxp H+)'+~o-% (m) ~+~. II~ll:- (7.26) 

We now convert (7.24) and (7.26) into uniform estimates for I l k ( h )  - d~(h)-(~§176 ~, (4)II 
as h varies over A~(#). Let  sa be the null space of gj, so that  a = j a + a r  is a direct sum. 

If HEn,  H=jH+g~(H)Hj where jHEja; if H E n  +, then, r Suppose now h =  

e x p H E A ~ ( # )  (cf. (7.2)), where 0 < # < 1  and gj( logh)>2.  Then h=mexptH~ where 

t = � 8 9  and m = e x p  (jH+�89 Clearly mEM+j and 7j(m)<~l/e. We now 

substitute these  choices for m and t in (7.24). We also select, for any s with 0 < S < �89 a con, 

stant  d(s) > 0  such that  ~(h')l+~~ -(l+r'-2~)al~ for all 4' 6CI(A§ Defining 

Kx(e) = K(e) (1- ! ) -v"(~)d(e) ,  (7.27) 

we obta in  from (7 .24) the  following estimate:  for  arbitrary A, 3, ~ of type (A, 3, y), 

hEAl=(#) with %(log 4) >2,  and 0 <  e<  �89 

in deriving this we must remember that  t=�89 h)>(~t/2)o(log b). So, remembering 

(2.1) we findl for arbitrary A, 3, q~ of type (A, 3, y), and e ~ t h  0 <  ~< (go/~/16), 

for all h 6 A + (/x) with gj (log h) > 2. On the other hand, let Q, = {h: h 6 A~ (#), gj (log h) ~< 2}. 

Then CI(Q,) is compact, and so:~ we  can find; for  each e with 0 < e  ~< (g0/~/16), :a constant 

K(e : #) > 0 such that  for all h 6 Q,, 
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/~(i : ~) E (h) '+~~ + K' (e) H (h exp Hi) '+~~ ~ K(e : ~) H (h) ' +r~176 

Taking into account (7.17) a = b = 1 we have, from (7.26) and the above inequality, for 

all hEQ~, and 0<  ~ (~o/x/16), 

lib(h) - < K(s: #)[3, AI ~, l[o~}12 ~. (h) '+r~ (7.29) 

where p, = p(1 : e) + p~'. Let~ e, = (~o/x/16) and write 

fie = ~ no, P, = p,~, L ,  = K(e,:  ~) + K1 (e,). (7.30) 

Then, on combining (7.28) and (7.29), we obtain the following result. Given /x, with 

0 < # < l ,  we have, for arbitrary A, v, O~ of type (A, z, 7), and h6A~(#) (1 <~]<~d), 

{{oo(h) - dx (h)-a+~o)%.v~ (h){{ < L, [~, A[P~ [[O~[[z ~ (h) '+r~176 (7.31) 

We must remember tha t  (7.31) has been proved under the sole assumption that,  for each 

b E ~  and ~>0, (7.17) is satisfied by  all 00 of type (A,v, 7 ). Note also that  L~ and p~ 

depend on 7% and 7- 

We are now in a position to prove (i) with a =b =1. Let  Z be the set of all numbers 

7' with 0 <F'  <~F such that  (i) is true for all O~ of type (A, v, 7) with 7' replacing 7 in the 

estimate (7.15). From Lemma 5.6 it follows that  0EZ, so that  Z is nonempty. Let  

7o=SUpr,~zT'. Then, for any s>0 ,  there is a 7~EZ such that  70-s]2<7~--<7o. A simple 

argument then proves t ha t  given bE(~ and e>0 ,  we can select constants L(b: ~)>0, 

p(b: e) >/0 such that  (7.17), and hence (7.31), is true for all ~ of type (A, v, 7), A, ~ being 

arbitrary. If ~o>~F, we already obtain (i) (with a = l  to be sure, but  this is enough, in view 

of our earlier remarks). We shall now prove that  70 <7  leads to a contradiction. Suppose 

0 < 7 o < 7 .  If ~ is of type (A, ~, 7), then we know from Theorem 7.1 that  for any mEMlj, 

%,r(m) =lim~+ood~(m exp tH~)~§ exp the) exists. On the other hand, as 7-70 >0,  

d~(m exp tH~)-(r-v*)->0 as t-~ + 0% for each mEM D. Therefore we have ~ .v ,  =0, 1 ~<]~<d. 

So, from (7.31) we have, for arbitrary A, % ~ of type (A, ~, 7), hEA~(/a) (0 </~ <1, 1 ~<j~<d) 

{[~(h){{ ~ L~ IT, A{ ~ HOo{I2E (h) '+~~176 (7.32) 

Choose #o with 0</Xo< 1 such that  A + _  ~ U~.<<~,<~A~(/~0) (of. (7.3)) and write Lo=L~~ 

To=P~o, ~o =fl0/~o �9 Then (7.32) gives us the following result: for arbitrary A, ~, and 00 of 

t y p e  (A, ~, 7). 

{{Oo(x){{ ~< L o {~, A{ ~' {{0o{{~E (x) ~§176 (x~G). (7.33) 

I t  is clear from (7.33) that  70 +~$o 6Z, contradicting the definition of 70- The proof of (i) is 

thus complete. 
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By virtue of (i), estimates of the form (7.17) are now true with 7 replacing 70. But then 

the estimates (7.31) are also true, with y replacing 70. This gives (ii). 

Theorem 7.3 is completely proved. 

COROLLARY 7.4. Fix y > 0  and a q~ o/type (A, 3,7). Then, given a, b6~ ,  there are 

constants C~O, q>~O such that 

H~(a~ x; b)l I ~< C~(x)l+r(1 +a(x)) q (xEG). (7.34) 

Proo/. As usual: we come down to the case a = b = I, We use induction on dim (G). 

Choose tt0, 0 <#o ~ 1, such that  A + _~ A + UI<,<~ j (#o). and let Ko =L,o]3, Ai~.Jllw[l~, ~o =flo~o 

where L~ and p ,  are as in (7.31). Then (7.31) implies that  for all hEA+ 

Ilk(h) II < Ko F. (h) 1+~+~0 -~ ~ dj (h) -`1+~) [[(~j., (h)[[. (7.35) 

Now r if Pj  is not cuspidal. Consider i such that  P~ is cuspidal, and write ~0~.~= 

Z~<~,<r~j.r., as in Theorem 7.1. Since ~j.r.~]Mj is of type (s~A]m~nt,3~,7) and 

dim (M~) < dim (G), the induction hypothesis is applicable (1) and so we can find constants 

C > 0, q >~ 0 such that  

II~j.~(m)ll ~< C~(m)~+~(1 § ( m e M ,  1 < j  <d). (7.36) 

If hEA + and we write h=hih ~ where h l E M ~  A, h~A~,  then ~t(log hi)~>0 for all ~t~A~, 

while there is a constant c~>0 independent of h such tha~ 1 +a(h~) ~<c~(1 + a(h)). Therefore, 

as ~ . ~ ( h ) = ~ :  ~(h~), we find from (7.36) and  (2.1) the following result: there are constants 

CI>0, ql>~0 such that  for all h e A  +, 1 <~]<d, 

II . (h)]l < c~ ~-%(~~ ~'(~+~)(1 + z(h))~'. (7.37) 

From (7.37), (7.35) and (2.1) we obtain, for all h e A  + 

H~v(h)H ~< Ko~ (h) l+r+o~ + dC~.~ (h) l+r (1 + a(h))% (7.38) 

This leads to the  corollary easily. 

T ~ o R ~  7.5. (i) Let l~<p<2 and 2=(2 ]p ) -1 .  I] q~e~(A:G:3)~L~(G: V), then 

~eL~(G: V) q and only i] q~ is o/ type (A, % 7) /or some 7 >~. 

(ii) Let 1 < p < 2. Then there is e o = s0(p) > 0, and,/or each a, b e q~, constants Ca. 0 > 0, 

qa.~ >~O, such that ]or arbitrary V, % A, and ~eg(A: G:3) f3LV(G: V), 

(1) Cf, t h e  remarks made made in w 2 concernhlg M~. If  d = ], Mj is compact, :~jCm) ~ 1, and 

(7,36) is tr ivial ,  So the case d =1, which starts  the induction, i s  simple to handle, and in fact, i ts 

proof is eonta~ed:ixi the given proof. 

1 8 -  722902 Acta mathematica 129. Imprim6 lo 6 Octobre 1972 
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II (< x; b)ll Co,bl3,Al ~ (xea). (7.39) 

Proo/. (i) If ~ is of type (A, 3, 7) with 7 > ( 2 / p ) - 1 ,  then II (x)ll  <eonst. for all 

xEG, t~ being a constant >2. So ~E/2(G: V). 

Conversely, let ~ E ~(A: G: 3) N/2(G: V). Arguing as in Corollary 3.4 we see that  

a~beLP(G: V) for all a, bE| Hence by Theorem 3.3, ~up~e~7~(x)-2/~i]~(a:x; b)]l<oo 

for all a, b E (~. So ~ is of type (A, 3, 2). 

We shall now prove that  ~j.7 = 0, 1 <~]~d. Fix ] and write ~o =~j.~. Choose # such that  

0 < # < 1  and A~(/~) is nonempty. We then obtain from (7,16) (with ~ replacing ~) the 

following resulti there are  constants C>0;  ~>0  such that,  for all hEA~(#), 

d,(h) -(e'p) [lw(h)II ~< II (h)ll + (7.40) 

Let  J be as in (3.1). Then J(h) ~< e 2 q(1og h) for all h E A+, and so, each of the functions appearing 

in the right of (7.40) belongs to LP(A +, Jdh). So, if we write a~= {H: HEn  +, ~ j (H)>  

max (1,/2~(H))}, then a ,  is nonempty, and 

fa II~(ex p H)ll~dj(exp H) r ( 7 )  H)-2J(exp dH ~41 

dH being a Lebesgue measure on a. On the other hand, if we put  

*J(h)= 1-I (e ~(l~176 ) (h~A+), (7.42) 

it is easily seen that  there is a constant c o > 0 for which J(exp H) >1 cod ~ (exp H) ~ *J(exp H) 

for all H e  ~,. (7.41) then gives us 

f ]]y~(exp H)[I~ *J(exp H) < o~. (7.43) dH 
,u 

? t 
Let  ~a be the null space of :r Select H0ea  ,, and write Ho=Ho+soH, where HoE~.  

If we put  
U={H':H'E~a, ~,(H') >0  f o r / 4 / ,  �89 } '  

then an easy verification shows that  U is a neighborhood o f H  0 in ~a and that  H' + sH~ E a, 

whenever H '  E U and 8 ~> 2s 0. Writing dH' for the Lebesgue measure on ~a, we then get from 

(7.43) 

[[~(exp H'  exp tH,)[[" *J(exp H'  exp tH,) dH d t  . (7.44) 
8a 

But the integrand fin (7.44) is independent o[ t. S o  ~p(expH'exptH~)=O, for H'~U, 

t ~> 280. _As y~ is analytic, ~[A = 0; and the fact that  y~ is 3v(spherical then  implies that  ~o =0. 
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I t  now follows from (7.16) (with 7 = p  and ~t.~=0) that  for suitable constants 

C > 0 ,  6>0,  ]]~(x)[[ <.rE(x) ~+~ for all xEG. (i) follows from this. 

To prove (ii), select/~0 such that  0 < # 0 < 1  and A+~_ (J~<<.~<aA~+(#o), and take ~ =~, 

# = / t  o and ~ELV(G: V) fl ~(A: G: ~) ia (7.16). If Ko=Lt,,.7, , po =p~~ eo=/3o# o, we obtain 

the following result: for arbitrary A, ~, ~ E ~(A: G: ~) f3 LV(G: V) 

IIv(x)ll ~< K0 ]~, h i  v~ HVH~ ~ (x) (~/~)+~~ (x ~G). (7.45) 

This proves (ii) with a =b = 1. The case of arbitrary a, b ~ (~ is then deduced from this in 

the usual manner. This proves the theorem. 

8.  E s t i m a t e s  t o t  t h e  m a t r i x  coeI f i e i en t s  of  the  d i screte  s er i e s  

Let P, Pn and k(fl) (flEPu - P )  be as in w I t  is obvious that  k ( f l )=k( - f l )=  

k(sfl)>0 (sEW(b~)), and that  k(fi) does not depend on P. Moreover, for fixed fl, if 

/)~'+ (resp. PZ'-) is the set of all a e P  with (~,fl}>~0 (resp. (~ , f l~<0) ,  P~=P"+U 

then it is easily seen that  P~ is a positive system and k(fi) = ( -P~ ' - ) ,  and ~--- ~ E ~ p ~ ,  

~(B~) .  This shows that  k(fl) is an integer for all ft. For any Cartan subalgebra ~ of 6, we 

define the function D~ and the set G 0 as in [13] (p. 110). The function D is a in w 1. If  

[)j (j = 1, 2) are Cartan subalgebras of ~c, and 0j is a W(~j)-orbit in ~*, we say that  O~ and O~ 

correspond if there is a yEGc such that  Y ' ~ I = ~  and O~oy=01. 

Let t E ~ and ~ > 0. Suppose g is a representation in co(A), and that, for some q ~> 0 
! 

and a pair ~f0, Vo of nonzero K-finite vectors in the space of z, 

sup .~ (x) -(1 +~) (1 + a(x))  -q ] (~r(x)~Po, ~o) 1 < ~ ; 
XEG 

(8.1) 

then a simple argument, based on Theorem 1 of [14] and the irreducibility of ~, shows 

that  (8.1) is true when YJ0 and V0 are replaced by any other pair % ~' of K-finite vectors, 

with the same choice of $ and q. Thus, in this case, co(A) is of type ~ in the sense of the 

definition in w 1. The purpose of this section is to obtain proofs of the following theorems. 

THEOREM 8.1. Let tEs co=co(A), and let O~ be the character o/ co(A). Fix 7 > 0 .  

Then, in order that co be o/type ~, it is necessary that/or each Cartan subalgebra ~ o/ g, 

sup IDa (x)I~/~ 1D(x) I ~ I O~ (x) l < oo; (8.2) 
xE% 

in particular, it is necessary that 

I(}) (/tz)] >/7k(fl) (Vile Pn). (8,3) 
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Moreover, in order that w(s~) be o/ty2~e 7 /o r  all s~ W(bc), it is necessary and su//icient that 

[(s),) (-~) l  >~ ~,k(fl) (u E Pn, Vs e W(bc)). (8.4) 

T ~ E O ~ E ~ 8:2. -Fix p, 1 <~p < 2. I1 CO e 8~(G), then to e E~(G) i /and  only i / i t  is o/type 

/or some y > (2 /p ) -  l. Let ~ e F~, eo=eo(,~). Then, in order that coeds(G) it is necessary that 

/or some ~ > (2]p) - 1, (8.2) should be satis/ied /or all Cartan subalgebras ~ o/~; in particular, 

it is necessary that 

In  order that eo(s2)e ~ ( G )  /or all se  W(be), it is necessary and su/licient that 

](s~t)(~'~)]>(2-1) k(fl) (u (8.6) 

We begin with the proof t ha t  (8.4) is sufficient for co(s~) to  be of type  ? for  all 

s e W(5c). We need a lemma. 

Lw~MA 8.3. Let Q be the set o/all  j with 1 <~j <~d such that the parabolic subgroup Pj  is 

cuspidal. Given ~EP~ and jEQ, let us write 8N],  i/ there is some yeGc and some tdO 

in R, such that, ~ -  ~ -  bc- lc ,  H ~ - t H j ,  and k(fl)= It[e(H~). Then, /or any fleP~, there is i eQ 

such that fiN]; and,/or any ] eQ, there is fleP~ such that fl ~i .  I n  particular, i / 2 e  s O~ = 

W(hc) .~, and Oi is the W(I~)-orbit in [* that corresponds to 0~, then 

{ [~(g~) ]/k(~): ~ e 00, ~ ep~} = (IA(HAI/e(HA: A e 0~, i eQ}. 

Proo/. Let  fl eP~. Let  b(fl) be the null space of ft. Select H o e 5(fi) such t h a t  fl is the  only 

root  in P tha t  vanishes a t  H 0. Le t  ~ be the centralizer of H 0 in ~, and $1, the derived algebra 

of $. Then  dim ($1) =3,  0($i) =$1, and the noncompactness  of fl implies tha t  $~ is isomorphic 

to ~1(2, It). I t  follows (cf. also [13], w 24) from this t ha t  we can find I t ' ,  X' ,  Y'e$~ such t ha t  

(i) [ H ' , X ' ] = 2 X ' ,  [ H ' , ~ Y ' ] = - 2 Y ' ,  [X', Z 'J=H'  (ii) H'e~ ,  Y ' = - O X ' ,  X ' - Y ' = i H ~ .  

Since 5(fl) is the center of $, 5 and b(fl) ~- R. H '  = ~) are two 0-stable Cartan subalgebras of 

3 (and fi), and so, we can f ind yoEG~ such that ,  Yo centralizes b(fi), yo'w and 

H~ ~ =H'.  Let A' be the set of roots of (go, ~c), and P' =Poyg  ~. Then P '  is a positive system 
1 t ! for A' and k(fl)=�89 la'(H')l ,  so that ,  we must  have k ( f l ) = :  Z~,~..~,(H,)>0a (H) .  On 

the other  hand, let  1il' be the centralizer of H '  in g, and let n '  be the space spanned by  the 

eigensubspaces of ad H '  t ha t  correspond to  its positive eigenvalues. I t  is easy to see t h a t  

~' =m'  +It' is a parabolic subalgebra of ~; our  previous expression for k(fl) now gives 

k(fl) =�89 t r  (ad H'),'. Also R . H '  =~ N ~ is the split component  of p'. Choose F ~  Z and k E K  
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such that  (~3')~= ~0r. Clearly ar t3 ~)k=~kfl ~. PF is thus cuspidal and dim (aF)=-1, so 

that  F = F j  for some ]EQ. I t  follows from the construction of ~' that  H'k=tHj for some 

t > 0 ,  and so k(fl)= tQ(Hj). Write ~ j = ~ .  :Let Mjo be the complex analytic subgroup of Go 

defined by C'mj. Then there is zEMr162 such that  ~o=lc. Define y=zky o. Then b~=[c, 

H~=tH~=tHj, and k(fl)=tp(Hj). This proves that  f l~ j .  

Conversely, let ]EQ. Let ~j be a 0-stable Cartan subalgebra of mj such that  

bcf~$=R.H~. If Mjr is as in the previous paragraph, we can find zEMj~ such that  

~]~ = I~. As ~j is not conjugate to b in G, we can find a root ~' of (g~, ~) tha t  is real valued on 

~j ([6], Lemma 33). I t  is obvious that  H,, E R . H  s, and so, replacing ~' by - ~ '  if necessary, 

we may assume t h a t / ~ ,  = tHj for some t > 0. I t  follows from the definition of ~tr that  

t~(Hr189 where A' is the set of roots of (~r If P '  is a posi. 

t i re  system in A', we have then t~(Hj)=�89 y.e,~e.lT'(/7=,)l, o n  the other hand, a simple 

argument, based on the facts that  ~r is 0-stable and ~' is real valued on ~j, enables us to 

select nonzero X~=.Eg, such that, X~=. are root vectors corresponding to __+~', X_~,= 

-OX~., and IX=,, X_~,] =/7=.. Write bl=(~jtq ~)+R-(X=,-X_=,). Then b lu r ,  and ~i and 

~s are Cartan subalgebras of the centralizer of ~j f~ ~ in g. Select y~ E G~ centralizing ~j f~ 

such that  b l r  ~r Then ~ = zc'oy~ is a non compact root of (B~, b~c), P" =P'oy~ is a 

positive system of roots of (~, b~c), and, re(He)=�89 E,,e. . lT(H~)].  Select kEK such that  

t} ~= b~ and write fi~ = ~ o k .  Then /~x is noncompact and so/~ = e/~x EP~ where e = • 1. If  

y = zyxk, then b~ = [~, H~ = eH~, = etHr k(~) = t~(Hr So fl ~- ]. The second statement of the 

lemma is an immediate consequence of the first. 

At this stage we can complete the proof that  (8.4) is sufficient for ~o(s2) to be of type 

for all sE W(I~). Fix s, 2; let 0~= W(br and O~, the corresponding W([~)-orbit in I~*; 

and let AEOt. Let z~ be a representation in o~(s2) acting in a Hilbert space 7/. Let  b be an 

equivalence class of irreducible representations of K that  occurs in ~]K.  We write 

7/~ for the corresponding subspaee of ~ and denote by P~ the orthogonal projection 

~-+7/~. Denote by V~ the algebra of endomorphisms of 7/~, and, for kEK, vEV~, 

let z~.~(k)v=zt~(k)v, vr~,~(k)=vz~(k), where z~(k)=~(k)lT/~. Then v~ll}vll]~=tr(vv *) 

(~ denotes adjoints) converts V~ into a Hilbert space, and v~= (~.~, ~.~) is a unitary 

double representation of K in V~. If  we define q%(x)=q(x)=P~r~(x)P~ (considered as an 

element of V~) for x E G, it  is clear that  ~v E E(A: G: ~) in the notation of w 7. In view of Corol- 

lary 7,4, it is sufficient to prove that  ~ is of ~ype (A, r, ~). Let  :e0 be the supremum of 

all numbers 7'>~0 such that  q0 is of type (A, r, ~'). I t  is obvious from the definition in w 7 

(cf. (7.1)) that  7~ is of type (A,~,70) also. We assert that  for some ~0 with l<]o<~d, 

qr Otherwise, if q%r0 =0  for 1 <]<d, the estimates (7.16) (with~,=~0) would imply 

the existence of constants C > O, ~ > 0 such that  )ll~(x)ll} ~< C~(x) ~§176 for all x E G; this would 
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show tha t  ~ is of type (A, v, 7o +~), contradicting the definition of 70. From Theorem 

7.1 we now conclude that  Pj~ is cuspidal, i.e., ?'0 EQ, and tha t  there exists A 'E O[ such tha t  

A'(Hj~)=-ToQ(Hj,).  But  then the last s ta tement  of Lemma 8.3 implies at  once the 

existence of fieP~ and/~EO~ such tha t  I/~(HZ)] =70k(~). So, by  (8.4), 70~>7 . Since ~ is of 

type (A, T, 7o), it must  be of type (A, ~, 7) also. This proves what we wanted. 

We shall now fix ,~ E s assume tha t  co =co0~) is of type y >0,  and prove tha t  (8.2) 

and (8.3) are satisfied. Put  ~ )=0~ .  ~ is as in (5.8). 

LEMM~_ 8.4. Assume, as above, that co is o / t y p e  y. Then, given any s w i t h O < e <  7, 

we can f ind a constant C - C ~ > O  and an integer p=p~>~0 such that, /or alt ]eC:2(G), 

I o(/)1 < c sup I. (8.7) 
G 

Proof. Let ~ be a representation in co acting in the Hilbert space ~4, and let 

~(K) (resp. E~) denote the set of all equivalence classes of irreducible unitary representa- 

tions of K (resp. occurring in the reduction of z I K). Given b E E,, let ~b, Vb, Pb, Tb and 

~ have the same meaning as in the preceding discussion, so that  Tb is of type (A, ~b, ~)- 

Write n (b)=dim (~b) (bEE=); then, there is a constant c0>0 such tha t  n(b)<~codim (b) ~ 

for all bE E~. For bEE(K),  let c(b) denote the scalar into which the element ~ is 

mapped by  representations from b. Then c(b) is real, ~> 1, and it is not difficult to show 

that  there are constants c~ >0,  r 1 > 0 for which 

c(b)-r,< oo, dim(b)<clc(b)r~ (Vbe~(K))  (8.8) 
be~(K) 

(cf. [14], w 4 ) .  Since rb.~ (i2) = vb.2 (~) = c (b). identity, I[~b,~ (E2)II = ]l~b. 2 (~)11 = c(b) (b e E=). 

So, in view of (5.10) we can choose a constant e= c A > 0  such that  [vb, A I ~< cc(b) ~ for all 

Given a n y  e with 0 <  e <  7, we can select by virtue of (i) of Theorem 7.3, constants 

~ ,  > o, q, -J 0 such tha t  for all b ~ ~= a n d  all x ~ G, 

Ill ~ (z)Ill < D" 1~, AI% II~ll~z (~)'+'-("~'. (8:9) 

On the other hand, if e I . . . . .  en(~l is an orthonormal basis for ~ ,  we have 

[llw( )lll = ( ea) 
l~<i.]~<n(b) 

from which it follows that  ]l~]]~=d~o~n(b), d~ being the formal degree of co From (8.8), 

(8,9), and the earlier estimates for Ir~, A I and n(b) we then obtain the following result: 

given any e with 0 < e < 7 ,  we can find a constant D~>0 and an integer q,~>0 such that ,  

for all b ~ ~ and all x EG, 
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n(~) IIl~(x) lll < D.c(b)~ ( ~ ) " :  (''~). (8.1o) 

L e t / 6  C~(G). Then 

| = ~ / l ( x )  tr(gb(x))dx, 
JG 

the series converging absolutely, Now, for any integer p>~0 and  x6 G,~b(x; ~ ) =  

c(b)P~b(x); so, for such p, 

(~(/) = ~ c(b) -~ f /(x; ~ ) t r  (~b(x)) dx. 

On the other hand, if b 6 E= and x6 G, I tr (~b(x))] < n(b) I Il~b(=)[l[, so that  ]tr (~b(=))l <~ 

D~c(~))q~Z (x)l+v-(e/2) I by (8.10). Choosing p = p~ = q, + r 1 in the last formula for O(/), and 

writing C: = D , =  ~be~=c(b) -~', we have, 

I o(/)l < cif~ ~_ (~)'§ 1/(x; n ') l  d=. (8.11) 

Put  C~= C'~ ~e~ (x)2+(~l=)dx. Then (8.11) leads to (8.7). This proves the lemma. 

By a simple modification of the argument above that  led to (8.10) we obtain the following 

result from (7.39): let 1 ~p  <2, and ~, an irreducible unitary representation of G in a 

Hilbert space ~ such that  the equivalence class of x belongs to E~(G). Then, there are 

constants C>0,  r>~0 such thatl with co>0 as in (if) Theorem 7.5, 

I(~(x) V, V')[ ~< Cc(b) r c(b') r F, (x) (~/p)+'~ (8.12) 

for all x6G, all b, b'6 E~, and arbitrary unit vectors V 6 ~4b, V' 6~v .  The estimate (8.12) 

leads at once to the following two corollaries. For deducing the first of these we must 

recall that  if V 6 ~  is a differentiable vector for 7~, then Zb~%~HPbvtlc(b)m< ~o for every 

m>O ([14], w 3). 

COROLLARY 8.5. Let 1 <~p <2. Let x~ be an irreducible unitary representation o/ G in a 

Hilbert space ~ such that the equivalence class o/7~ is in ~(G).  Then, i /V ,  V' are two di/- 

/erentiable vectors /or 7~, and e o >0 is as in Theorem 7.5, (if)., we can /ind a constant 

C = Cv. v" > 0 such that 

I(~(x) ~, ~')1 <- C~  (x) (~)§ (xe G). 

In  particular, the /unction x~+ I (Te(x)v , V')l lies in L~(G). 

COROLLARY 8,6. Let  l~<p<2. Let ~ be an irreducible unitary representation in a 

Hilbert space ~ such that the equivalence class o /~  belongs to ~ (  G). Then, there are constants 

c>0,  r>~O, such that, ]or arbitrary b, b ' 6 ~ ,  and V 6~b, V'6 ~v ,  with Uv]l = IIv'l[ :=1, 
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f l (~(~) % ~0')I ~ 4~ < cc(b)r e(b % (8. ~ 3) 

Consider a 0-stable Cartan subalgebra ~ t h a t  is not conjugate to ~ under G. Let  

A~ be the corresponding Cartan subgroup; A~, the set of regular points of A~; G,--(A,) . 

Write ~ = ~ N ~ ,  A z = A ,  N K, A ~ = e x p ~ .  Then A~=AxA.~ is a direct product, a n d w e  

write a~, for the component in A+, of aEA~. Given # ~ ,  ~ denotes the corresponding 

character of A~. Let A~ be a connected component of Ax, ~ be the set of all H E ~  such 

that  a(H) 40  for any root ~ of (~c, ~) that  is not identically zero on ~ ,  and let ~ be a 

connected component of ~ ;  write A~ =exp ~ .  Fix a positive system Q+ of roots of 

(@c, ~o), such that,  if c~ is a root and ~ ] ~ 0 ,  then a6Q+ if and only if a(H) '~0 for all 

H e ~ .  Let 
8 + = ~ y~ ~, A{ = ~_~§ 1-I ( ~ -  1). (S,~4) 

~eQ + ueO + 

~+l~  actually depends only on ~ .  In fact, let ~ be the centralizer of ~2 in fl, and, more 

generally, for any v e~*, let g, be the space of all X E ~ with [H, X] = v(H)X for all 
+ - ~  H e ~ ;  if 11 - ~:~(n)>ovn~+~, then 0+=3+11 + is a parabolic subalgebra, and 

~+(H) = ~ tr (ad n) .+ (He~) .  (8:15) 

Define the function ~ on A~ by (P~(a) = A~(a)@(a) (aEA~), | (and o~) being as in 

Lemma 8.4. If  aEQ+ is real on b, it is not difficult to verify that  ~ - 1  has no zero in 

=A1 A2 N A~ we may therefore conclude that  qb~lA~ extends to an ~1 ~ +A2. + Writing A~ + + 

A+A + analytic function on 1 ~ ([12], Lemma 31). Let O 9 be the W(~)-orbit in ~c* that eor- 
+ responds to W(~).A. I t  is then clear that  for suitable constants % (#EOo)we have the 

following formula: 

O~(a) = ~ ~,'~+ s:~t, ~'*lJr" ~,,i,(~o~a,)~ (aeA~). (8.16) 
~ e o ~  

LEPTA 8.7. Let (o=eo(R) be o/type 7, |174 and let notation be as above. Then 

/~eO,, c+~=0v ~ (#+75+)(H) < 0  ]or all H e ~ .  (8.17) 

Proo]. I t  is clearly enough to prove the following implication: 

+ 
/~EOo, c, ~=0 ~ (#+(7-e)~+)(H)<O for all H e ~ ,  (8.18) 

for every e with 0 < ~ <  7. In what follows we fix e (0<e<7) ,  write ~ = 7 - e ,  and select 

C >0, p >~0 such that  I O(/)] < C supo E-I+~I~p/I for all/EC~C(G). Let A~ be the normal- 

izer of A~ in G, and let Wa be the image of A~/A$ in W(~e). 
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Proceeding as in w 19 of [14] we construct a map fl~+/~of:C~(A~)into C~(G~) with!the 

following, properties: 

(i) for flECc (A~) and aEA~, writing G=G/A~, 

(8.1 9) 

here, x r-~ ~ is the natural map  of G onto G, d~ is an invariant measure on G. 

(ii) there is a compact set X=X-I~G such that  supp(/~)_=(suppfl) x for all 

~6oo (A~). 

(iii) Let  ~ be t h e  algebra of functions on A~ generated by 1 and all the 

~ = ( 1 - ~ : ) - 1  (~ any root of (g~, ~o)), and l e t ~  be the subalgebra of ~ generated by 

(1, ~); then, given any u E (~, there exist u~ E~, gts E ~ (s E WA, 1 < i  < q) such that,  for all 

EC~ (A~), aeA~, xEX, 

I I~(a~;~)l<l~:~+(a)l  -~ E E le,8(~)l Ifl(a'; ,dl. (8.20) 
I <~i~q sGWA 

I t  follows from (8.19) tha t  @(]~)= ~A~@~ (a)fl(a)da for all fie C?  (A~), provided da is suit- 

ably normalized, On the other hand, by (ii) above, we have, for all fl E C~ (A~), 

sup a - l + x l a % l =  sup ~(aX)-~+x[/~(a~;av)l, 
G afiA~, xeX 

and we can estimate the right side of this relation by (8.20). Observing that  there is a 

constant c > 0  with c-17~(y)<.~.(xlyx3)<c~(y) for all yEG, x~,x~EX, we then get the 

following result: there are v~sE~, h~E '3t (1 <i<r, sE W~) such tha t  for all ~EO2C(A~), 

IfA~r : sup (g(a)-~+xl~+(a)l-llh,~(a)ll~(a~;v,~),). (8.21) 
~,s a~A~ 

Now, each element of WA is induced by  some element of K, and hence ~(a s) = ~(a) 

(aEA~, sEW~)(~). On the other hand, from (8.15), and the fact that  the parabolic 

subalgebra p+ defined there is conjugate to some pz through an element of K, we conclude 

that  1~<~ (expg)e~+(U)<co(l+]]HII) ~o for all H e ~ ,  c o and r o being as in (2.1). So 

1 ~< I~$+(a) l.~(a ) ~< co(1 +a(a)) r" (a EA~). (8.22) 

(x) Suppose xEA~ induces sEWA. Writing x=k exp Z (kEK, ZE~) one finds that exp 2Z= 

0(x -1) z6A~, so that Z6~2. This shows that ks and induces s. 
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Finally, since ~ is stable under the action of W~, the funct ions/~:  a~--~ h~ (a ~-~) (a E A~, 
s E W~) belong to ~. Using these observations in (8.21) we find after a simple calculation, 

the following estimate, vahd for fl E C~(A~): 

IJ A f ~(a)l~(a)da] ~Co~ sup <(1 + (r<a))r~ 

Since ~+: a-+i~$§ ~ is a character of A~, it follows that  ~+-iov~so~+ are well defined 

elements of  ~. Replacing fl by fl~+ in the above estimate, we finally obtain the following 

result: there exist m>~l, v~E~, hCE ~ (1 <~i<<.r) such that, for all flEC~(A~), 

IJA I [ I ~  r ~" sup ((1 + (~(a))'~ihj(a)ilfl(a; vj)[). 
l ~ < r  aeA~ 

(8.23) 

The estimate (8.23) is the analogue of Lemma 32 of [14] with the function 

( I )~+  : aF__ > ~ v/~'+~$/~ ~t~l]{" ~ uD(/~+~+ (loga=) 
,ueO~ 

in the place of (I). If  we now argue as in [14]. we obtain (8.18) in exactly the same 

way as Lemma 34 'is deduced from Lemma 32 in [14]. This proves the lemma. 

I t  follows from (8.16) and (8.17) that,  if ~o =w(~) is of type y, and ~ =0(~) is as above, 

then there is a constant c~ > 0 such that  

JD(a) l~l| < ~ l ~ + ( a )  l -~ (aE A~) .  (8.24) 

Let Q~ be the set of all roots ~EQ+ with al~2=0, and let v be the number of elements 

in Q+~Q~. If aEA~ and aEQ+~Q~, we haVe [1-~_=(a)l <l+e-=a~ while, for 

aEA~ and ~EQ~, [$=(a)] =1. Hence, for aEA~, 

[D~(a)t = Uf 
=~O+ \Q+ 

= 11 
=eO+ \Q~ 

I 1 -- ~= (a)[ 11 -- ~_a (a)[ 

I ~ - ~"= (a)I~ I~'= (a)[ < 2 ~ VI I$~ (a) l = 2 ~ I~'~ + (a)12. 

Writing c(A~) = 2~:'c~, we then obtain from (8.24) 

]D(a) l~lO(a)l< c(X D ID~ (a)]-"~ (ae A~). (8.25) 

Since there are only finitely many sets of the form A{ (for a given ~), and since their 

union is dense in A{; we conclude from (8.25) that  for eo =go(2) to be of type y, (8.2) must 

be true for all ~). 
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In  order to complete the proof of Theorem 8.1 it remains to show how (8.3) may be 

obtained from (8.2) by  choosing ~) suitably. Let  fi be a noncompact root of (fie, 5r 

We now specialize the Cartan subalgebra I) of the above discussion to be the one con- 

structed at  the beginning of the proof of Lemma 8.3. Let  H '  be as in that  lemma, 

y = exp ( - 1)�89 (~/4) (Z '  + Y ' ) .  Then H '  E l)~, and on defining ~ = {tH': t > 0}, we find 

a t  once that, ~+(H')= k(fl). On the other hand, there are nonzero constants c s (s E W(G/B)) 

such that,  for all aEA~, 

A~ (a) O(a) = ~ Cs~(s~)oy-1 (al) e -I((sa)~176 (8.26) 
$ E W(G/B) 

This formula was established by Harish-Chandra in w 24 of [13] in the special case 

when rk (G/K)=I; in the more general case t reated here, (8.26) can be established 

with only minor modifications in the arguments of [13]. In  view of (8.26) and (8.24), we 

must  have ](/~oy -~)(H')[ >~yS+(H'), i.e., I~(H~)I >~Tk(fl). 

Theorem 8.1 is therefore completely proved. Theorem 8.2 follows at  once from 

Theorem 8.1, since an co in E~(G) belongs to E~(G) if and only if it is of type y for some 

y > (2/p) - 1 (el. Theorem 7.5). 

9. Examples and remarks 

We shall now complement the results of the preceding sections with some examples 

and remarks. 

We begin with a discussion of the condition (cf. [10], [11]) of I-Iarish-Chandra which is 

sufficient for ~o(s/~) to belong to El(G) for all sEW(•c). Let :tEs O~=W(hc)'~, O~=the 

W(ic)-orbit in 1" tha t  corresponds to O~; and let 0 be the subset of a* obtained by restricting 

the elements of OK to a. Given yea* we write v-(0  to mean v (Hi )<0  for 1 <.i~d; here, 

the H,  are as in w 2. Let  0- be the set of all rE0 such tha t  ~-(0. Then Harish-Chandra's 

result is as follows: In order that eo(s,~)EEl(G) /or all sE W(hc) it is su//icient that v+~(O 

/or every v E o-. To prove this it is enough to verify tha t  this condition implies tha t  

I(sA)(Ha) I >k(fl) for all sEW(b~), flEPn, or equivalently, tha t  IA(H~)I >q(H~) for all 

AEOI and ?'EQ, by virtue of Lemma 8.3 (here Q is as in tha t  lemma). This implication is an 

immediate consequence of the following lemma. 

LE~MA 9.1. Fix A EOi, ]EQ. Then there exists A'EO~ such that (i) IA'(Hj)I  = IA(Hj)] 

(ii) (A'[ a) E 0-. 

Proo/. We use the notation of w 2. Let  ~j be a 0-stable Cartan subalgebra of ~ such tha t  

~N ~ = a j ( = R . H j ) .  As in the proof of  Lemma 8.3 we can select a root ~' of (gc, ~jo) 
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and an clement zEG e centralizing Hi, such that  ~c = ~c and H~.~cHj for some c~0 .  If 

~ l=a 'oz -1 ,  then ~1 is a root of (go, Ic) and l~:l=cHj: This shows that  A(Hj)~=0 and 

( s~ ,A)(Hj)=-A(Hj) .  We may therefore assume without any loss of generality tha t  

A(Hj) < 0 .  

Select a positive system:Q + of roots of (go, It) with the property that,  if ~ is any root 

and a!a~=0, then aEQ + if and only if a ( H ) > 0  fOr all H e n  +. Let Q~ be the set of all 

:r with o:(Hj)=O, and let ~+=�89 Q? is then a positive system of roots of 

(C. mlj, 1~), and 87 [ a = eFj. Let  $ = [mlj, I~tl~], [ = $ N [, and ~ = $ N a. As aj = center (mlj) N ~, 

it follows that  ~ is precisely the orthogonal complement of aj in a, so that  fi = mj fl a also. 

Now A is regular and integral, and so, we can find an s e W(Io)Fj such that  (sA)(H~) 

is an integer <0  for all ~eQ?. Then s .Hj=Hj,  and we can write - s A = A ~ + 8 ?  where 

AI(I~,)>~0 for every aeQ~. On the other hand, if fl~ ..... fl~ are the simple roots in 

Q?, it follows from a well known result that  we can write Al[-[c=Zl<<]<<.rmt(fli]~c) where 

the m s are all ~>0. In  particular Ail~=Z~<.<j<,mj(flj]~). But the flj vanish on a~, and e~J 

vanishes on ~; moreover, (sA)(Hj)=A(H~). So, on defining t = - A ( H j ) / ~ ( H j ) ,  we find 

that  t > 0 and sA [ a = - q e ~ -  tQ ~j - Zl<j<~mj(flj[ a). If  u = min (1, t), (sA) (H) ~< - uq(H) for 

all H E Cl(a+), so that  (sA)(H,)<0, 1 ~<i ~<d. We then have (i) and (if)with A'  =sA. 

We assume next  that  G/K is Hermitian symmetric, and consider those members of 

~,(G) which constitute the so-called holomorphie discrete series. For brevity, a positive 

system of roots of (~, 5~) will be called admissible if every noneompaet root in it  is totally 

positive. We now assume that  the positive system P is admissible. Let  P~ be the set o f  

compact roots in P.  We write ($=�89 Z~e~. Let  2'es be such that  ~'(H~)1>0 for all 

aeP~ and ($' + 6) (Ha) <0  for all a e P  n. Then ~ = ~ ' § 1 6 3  moreover, if x~. is the 

representation associated with ~' constructed by Harish-Chandra in [3], [4], [5], then 

z~.eo)(~), Our aim now is to examine under what circumstances w(~)~ ~I(G). 

T ~ v . o ~ E ~  9.2. Let G]K be Hermitian symmetric and let ~, P be as described above. The 

]ollowing statements are then equivalent: 

(i) ~o(~) e El(G) 

(if) ]2(/t~)] >k(fl) /or all flEP~. 

(iii) ~ ( / t ~ ) < 1 - 2 ~ ( / t ~ )  /or all flEP~, where 2~=Z:~e~a .  

Proo/. Theorem 8.2 gives the implication (i)~ (if). In his paper [5] (Lcmma 30) 

ttarish-Chandra established the implication (iii)~ (i). I t  therefore remains to verify 

tha t  (if) ~ (iii). Let  P' = -P~ O Pn. I~ s o is the element of the Weyl group of (t~, ~c) such that  

so.P ~ = -P~, it is clear that  so.P=P'. So P '  is a positive system of roots of (~c, b~), I t  is 

obvious that  P '  is also admissible and that  P~ =P~. Let (fl~, ..., fl,) be the simple system 
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of roots of  P ' ,  and let notation be such that/31, /3t are precisely the noneompact roots 

from among fix .. . .  ,/3~. I t  is known that  every aeP;: is a linear combination with non- 

negative integral coefficients of bt+ll .... 5~ ([3], Lemma 13), so that,  ~(/~)~<0 whenever 

a e P ;  and 1 ~<?'<t. I t  is also known that,  for any/3',/3"eP.,/3"(H~,)>>-O ([5], Lemma 10). 

Assume that  i satisfies (ii). Since/c(/3) is an integer and ~(H~)<0 for/3fiP~, we have 

I ( /~)  ~< -/c(/3) - 1 for all/3 eP~. We assert tha t  ~(H~) < -- 2(3~(Hp~) for 1 ~< j ~< I. Suppose 

i > t .  Then/3~e - P ~  so that  l ( t ~ )  < 0. But  s~,=~n for all s in the Weyl group of (~, b~), 

as P is admissible, so that  O,(H~)=0. Thus our assertion is true in this case. On the other 

hand, let l~<i~<t: Then fl~eP~ and so t(R~;)~ < -/c(/3~)-1. Now 

But, as flj is simple in P ' ,  �89 ~ee '  ~(/~j) = 1. So 

k(/3j)+ 1 =2(3n(H~j ) ( i<j~<t) .  (9.1) 

From (9.1) we obtain 2(H~j)~< - 2 ~ ( H ~ )  when 1 < j ~< t. Our assertion is therefore proved. 

We therefore have (2, f l j )4 -2 (~n , /3 j ) ,  1 <1" ~<l, This implies that  (2, f l)~<-2(5n,/3) 

for all 13 e P', in particular, for all/3 E P~. But  then i(/~)~< - 2 ~ ( H ~ ) <  1 -  2(~(1~) for all 

flaPs, proving (iii). 

We shall now use Theorem 9.2 to construct examples of I es such that  o)(t)E El(G), 

but  o)(sl) ~ El(G) for some s e W(bc). Let  notation be as above. We shall assume that  there 

a re  elements of W(I~) which transform a compact root into a noncompact root. (~) Let  

c x ..... c~ be in tege r s>0  such t h a t  0<-(3(/~r~j)~<cj<~k(flj) for t<~<l. Since - ~ j E P  

(t<j~</) and ]c(/3)>~(H~) vt3eP , it  is possible to choose such c,. Define l a b *  by setting 

1 ( /~ )  = - cj, 1 < j ~< l. I t  is obvious that  i E IZ~, and that  i =i' +5, where 2'(H~) >~ 0 for all 

x~Pk; and so, (iii) of Theorem 9.2 shows that  w(I)6 El(G) if cl, ..., ct are all sufficiently 

large. But, if ~ and sEW(5~) are such that  t<]<~l, and sfl~=fl is a noncompact root 

I (~)(//~) [ = [~(J%,) I <k(~)=k(~) ,  so that  ~(8~) r ~(G).  

Let  us now return to the case of an arbi t rary  G. The estimates for  the eigenfunetions 

for ~ which we have obtained have also taken into account the variation of the eigenvalues. 

We shall now indicate an application of these estimates. 

Fix p with l~<p<2.  Let  C(G) (=C2(G)in the nota t ion of the remark following 

Corollary 3.4) be the Schwart z space of G. Let  ~ (rasp. ~ the smallest 

closed subspace of L ~ (G) containing all the K-finite matr ix coefficients of the members 

(1) It  is not difficult to show that this is always the case unless ~ is the direct sum of []~,]~] 
and a ccrtaln number of algebras isomorphic to ~[ (2, R). 
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of ~2(G) (resp. E~(G)). Let  ~ (resp. ~ be the orthogonal projection L2(G)-->~ 

(resp. L2(G)-->~ Harish-Chandra has proved ([15]) that  if / e  C(G), ~ C(G) also, 

and that/~-->~ continuous in the Schwartz topology. We shall now obtain an exten- 

sion of this result. 

THEOREM 9.3. Let notation be as above. Then, /or any ]EC(G), ~ C~(G), and the 

map ]~-> Ep[ is continuous ]rom C(G) into CP(G). 

Proo/. Let l:(p) be the set of all ~E/~ such that  2(/1~)>0 for all ~EP~ and 

co(k) ~ E~(G). Then ~ F-> w(~) is a bijection of s onto ~(G).  For each ~ E l:(p) we select 

a Hilbert space ~ ,  a representation ~;Eo~(~) acting in ~ ,  and an orthonormal basis 

{e~. f: i ENd} of ~4~, such that,  each e~, ~ lies in a subspace invariant and irreducible under 

~.(K).  Let  ~ be as in (5.8). Then there are numbers c~.f>~l such that  z~(~)e~.f=c~.f e~, i 

(i ENd). Now, there is an integer m ~> 1 such that  for any ~ E ~ and any equivalence class 

b of irreducible representations of K, the multiplicity of b in ~ I K  is ~<m.dim (b). I t  

follows from this and (8.8), that  there are constants a > 0, r >~ 0 with the following property: 

sup ~; c - ~ = a <  co 
~E~(p) feN), 

Moreover, if ~o is the Casimir of G, we h av e /~b  (to)(~)= I[~ll ~ -  ]]~]]~ (~ = �89 ~ a )  for all 

e c~. So, if ~ = ~ + (~ + ]]olP), we  h a v e  ~ e 3 ,  and Z~ ~(~)(~)= ~ ~ II~]l ~, ~ e Cg. 

Let d~ be the formal degree of w(~). We define 

a~.~.~(x)= d~(~),(x)e~.~, e),.f) (xEG, i, ]~N~). (9.3) 

Then {a~.f.~: 2EE(p), i,]e~V~} is an  orthonormal basis for ~ and one has, for any 

/E L~(G), 
~ Z Z (/,a),.,.~)a),.f.~. (9.4) 

,1~s (p) ~.ieN), 

Suppose now that /E C(G). If q > 0  is sufficiently large, j'a ~(1 +a)-qlgldy< oo for each 

gELS(G). I t  follows easily from this that  the function x~-->~J(xy)g(y)dy is of class C ~ 

for each g EL~(G). / is thus a weakly, and hence strongly, differentiable vector for the left 

regular representation. A similar result is true for the right regular representation also. 

Since ~ commutes with both regular representations, ~ also differentiable for both. 

In particular ~ is of class C ~176 and, for u, vE~), v(~176 so 

v(~ u= 5 5 (u/v,a),.~.~)a~,f.~. (9.5) 

We shall now estimate the terms on the right of (9.5). Since zaz.f.~= (1 + II~l[~)a)`,,. 
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~ a & ~ , j ~  m= c~,~c~.j a~.~.j, and since b o t h / a n d  a& i.j a r e  in C(G), we have,  f o r  any  in teger  

m~>0, 
(u[v, a& t,j)= [c~.~c~.j(1 + 1t).ll2)]-'n(~mz'~u]v~ '~, a&,,j). (9.6) 

On the  o ther  hand ,  we ob ta in  w i thou t  much  diff icul ty,  t h e  following es t imate ,  f rom 

(7.39): there  are  cons tan t s  C > 0 ,  q>~0 such t h a t  

]a~, ,., (x)] < C [c~,, c&,( 1 + [[ 2112)] q ~ (x) (2/,)+~~ (9.7) 

for all  ~E~(p ) ,  i ,  jeN~, x e G  (s0>0 as in (7.39)). So, combining (9.6) and  (9.7) we have,  

for any  in teger  m ~> q and  2, i, ], x as above,  

](u/v,a&,.j) a&,.j(x)] < C[c,c~(1 -t-II,~ll~)]-(m-o)~ II m a"ll . (9.8) 

Choose m 0 > q such t h a t  

C o = C  5 ~ [c&,c~,j(l+H~ll~)]-(m'-q)<c~, (9.9) 
dec(p) t . 1 ~  2 

which is c lear ly possible  in view of (9.2). W e  then  have,  f rom (9.5) and  (9.8) 

s u p  E (x)-((2~')+~')](~ (u; x; v)] < Co ltg~'~z'~u/v n~[l~, (9.10) 
xEG 

for all ]E C(G). Theorem 9.3 follows a t  once f rom (9.10). 
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