ASYMPTOTIC BEHAVIOUR OF EIGEN FUNCTIONS ON A SEMISIMPLE LIE GROUP: THE DISCRETE SPECTRUM

P. C. TROMBI and V. S. VARADARAJAN ${ }^{1}$)
University of California, Los Angeles, Calif., USA

1. Introduction

Let G be a connected noncompact real form of a simply connected complex semisimple Lie group. For many questions of Fourier Analysis on G it is useful to have a good knowledge of the behaviour, at infinity on G, of the matrix coefficients of the irreducible unitary representations of G. In this paper we restrict ourselves to the discrete series of representations of G, and study the rapidity with which the corresponding matrix coefficients decay at infinity on the group.

Let K be a maximal compact subgroup of G. Given any p, with $\mathbf{l} \leqslant p \leqslant 2$, we denote by $\mathcal{E}_{p}(G)$ the set of all equivalence classes of irreducible unitary representations of G whose K-finite matrix coefficients are in $L^{p}(G) ; \mathcal{E}_{2}(G)$ is then the discrete series of G, while $\mathcal{E}_{p^{\prime}}(G) \subseteq \mathcal{E}_{p}(G)$ for $1 \leqslant p^{\prime} \leqslant p \leqslant 2$. We assume that $\operatorname{rk}(G)=\operatorname{rk}(K)$ so that $\mathcal{E}_{2}(G)$ is nonempty. Let Ξ and σ be the spherical functions on G defined in [15]. Then it follows from the work in [14] that, if $\omega \in \mathcal{E}_{2}(G)$ and if f is a K-finite matrix coefficient of (a representation belonging to) ω, one can find constants $c>0, \gamma>0, q \geqslant 0$ (depending on f) such that

$$
\begin{equation*}
|f(x)| \leqslant c \Xi(x)^{1+\gamma}(\mathbf{l}+\sigma(x))^{q} \quad(x \in G) \tag{1.1}
\end{equation*}
$$

Given $\omega \in \mathcal{E}_{2}(G)$ and a number $\gamma>0$, we shall say that ω is of type γ if the K-finite matrix coefficients of ω satisfy (1.1) for suitable $c>0, q \geqslant 0$. For a fixed $\omega \in \mathcal{E}_{2}(G)$ it is then natural to ask what is the largest $\gamma>0$ for which ω is of type γ. In particular, it is natural to ask for necessary and sufficient conditions in order that $\omega \in \mathcal{E}_{p}(G)(1 \leqslant p<2)$.

Let \mathfrak{g} be the Lie algebra of G, and $\mathfrak{g}_{c} \supseteq \mathfrak{g}$ the complexification of \mathfrak{g}. Let $B \subseteq K$ be a Cartan subgroup of $G ; \mathfrak{b}$, the Lie algebra of B; and $\mathfrak{b}_{c}=\mathbf{C} \cdot \mathfrak{b}$. Let $\mathcal{L}_{\mathfrak{b}}$ be the additive group of all
${ }^{(1)}$ The work of this author was supported at various stages by NSF Grant No. GE-18127, and by a fellowship of the Alfred P. Sloan Foundation. This support is gratefully acknowledged.
integral elements in the dual \mathfrak{b}_{c}^{*} of \mathfrak{b}_{c}, and $\mathfrak{L}_{\mathfrak{b}}^{\prime}$, the subset of all regular elements of $\mathcal{L}_{\mathfrak{b}}$. Let $W\left(\mathfrak{b}_{c}\right)$ be the Weyl group of $\left(\mathfrak{g}_{c}, \mathfrak{b}_{c}\right)$, and $W(G / B)$ the subgroup of $W\left(\mathfrak{b}_{c}\right)$ that comes from G. For $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}$, let $\omega(\lambda)$ be the equivalence class in $\mathcal{E}_{2}(G)$ constructed by HarishChandra ([14], Theorem 16). Let P be a positive system of roots of ($\mathfrak{g}_{c}, \mathfrak{b}_{c}$), and let P_{n} (resp. P_{k}) be the set of all noncompact (resp. compact) roots in P. For any $\alpha \in P$, let H_{α} be the image of α in \mathfrak{b}_{c} under the canonical isomorphism of \mathfrak{b}_{c}^{*} with \mathfrak{b}_{c}; let \bar{H}_{α} be the unique element of $\mathbf{R} \cdot H_{\alpha}$ such that $\alpha\left(\bar{H}_{\alpha}\right)=2$; and let

$$
\begin{equation*}
k(\beta)=\frac{1}{2} \sum_{\alpha \in P}\left|\alpha\left(\bar{H}_{\beta}\right)\right| \quad(\beta \in P \cup(-P)) \tag{1.2}
\end{equation*}
$$

One of our main results (Theorem 8.1) asserts that if $\gamma>0$ and $\lambda \in \mathcal{L}_{\mathfrak{6}}^{\prime}$ are given, then, for $\omega(\lambda)$ to be of type γ it is necessary that
and sufficient that

$$
\begin{equation*}
\left|\lambda\left(\bar{H}_{\beta}\right)\right| \geqslant \gamma k(\beta) \quad\left(\forall \beta \in P_{n}\right) \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\left|(s \lambda)\left(\bar{H}_{\beta}\right)\right| \geqslant \gamma k(\beta) \quad\left(\forall \beta \in P_{n}, \forall s \in W\left(\mathfrak{b}_{c}\right)\right) ; \tag{1.4}
\end{equation*}
$$

in particular, (1.4) is the necessary and sufficient condition that $\omega(s \lambda)$ be of type γ for all $s \in W\left(\mathfrak{b}_{c}\right)$.

Fix $p, \mathbf{1} \leqslant p<2$. Let $\omega \in \mathcal{E}_{2}(G)$. We then prove that $\omega \in \mathcal{E}_{p}(G)$ if and only if it is of type γ for some $\gamma>(2 / p)-1$ (Theorem 7.5). It follows from this and Theorem 8.1 that for $\omega(\lambda)$ to be in $\mathcal{E}_{p}(G)$ it is necessary that

$$
\begin{equation*}
\left|\lambda\left(\bar{H}_{\beta}\right)\right|>\left(\frac{2}{p}-1\right) k(\beta) \quad\left(\forall \beta \in P_{n}\right) \tag{1.5}
\end{equation*}
$$

and sufficient that

$$
\begin{equation*}
\left|(s \lambda)\left(\bar{H}_{\beta}\right)\right|>\left(\frac{2}{p}-1\right) k(\beta) \quad\left(\forall \beta \in P_{n}, \forall s \in W\left(\mathfrak{b}_{c}\right)\right) ; \tag{1.6}
\end{equation*}
$$

as before, (1.6) is necessary and sufficient that $\omega(s \lambda) \in \mathcal{E}_{p}(G)$ for all $s \in W\left(\mathfrak{h}_{c}\right)$ (Theorem 8.2).
For any $x \in G$, let $D(x)$ be defined in the usual manner as the coefficient of t^{l} in $\operatorname{det}(\operatorname{Ad}(x)-1+t)$, where $l=\operatorname{rk}(G)$ and t is an indeterminate. For any Cartan subalgebra \mathfrak{h} of \mathfrak{g} let $D_{\mathfrak{h}}$ and $G_{\mathfrak{H}}$ be as in [13], p. 110. Fix $\omega \in \mathcal{E}_{2}(G)$, and let Θ_{w} be the character of ω. Then, for ω to be of type γ it is actually necessary (Theorem 8.1) that, for each Cartan subalgebra \mathfrak{h}, there should exist a constant $c(\mathfrak{h})>0$, such that,

$$
\begin{equation*}
|D(x)|^{\frac{1}{2}}\left|\Theta_{\omega}(x)\right| \leqslant c(\mathfrak{h})\left|D_{\mathfrak{h}}(x)\right|^{-\gamma / 2} \quad\left(x \in G_{\mathfrak{G}}\right) . \tag{1.7}
\end{equation*}
$$

The condition (1.7) is stricter than (1.3); to deduce (1.3) from this it is enough to specialize \mathfrak{h} suitably. It appears likely that the validity of (1.7) for all Cartan subalgebras \mathfrak{h} would also be sufficient to ensure that ω is of type γ. We have not been able to prove this.

The space $\varepsilon_{1}(G)$ was first introduced by Harish-Chandra [5] (cf. also [2], [16], [17]) in which, among other things, he obtained sufficient conditions for $\omega(\lambda)$ to be in $\mathcal{E}_{1}(G)$, when G / K is Hermitian symmetric and $\omega(\lambda)$ belongs to the so-called holomorphic discrete series; we verify in $\S 9$ that these conditions are the same as (1.5) (with $p=1$). It follows from this that if G / K is Hermitian symmetric and $\omega(\lambda)$ belongs to the holomorphic discrete series, the conditions (1.5) (with $p=1$) are necessary and sufficient for $\omega(\lambda)$ to be in $\mathcal{E}_{1}(G)$. At the same time, this leads to examples of $\lambda \in \mathcal{L}_{\mathfrak{k}}^{\prime}$ for which $\omega(\lambda) \in \mathcal{E}_{1}(G)$ but $\omega(s \lambda) \notin \mathcal{E}_{1}(G)$ for some $s \in W\left(\mathfrak{b}_{c}\right)$; in other words, the equivalence classes in $\mathcal{E}_{2}(G)$ that correspond to the same infinitesimal character may be of different types. In the general case when G / K is not assumed to be Hermitian symmetric, Harish-Chandra had obtained certain sufficient conditions in order that $\omega(s \lambda) \in \mathcal{E}_{1}(G)$ for all $s \in W\left(\mathfrak{b}_{c}\right)$ ([9], [10], [11]); these are also discussed in §9.

We are greatly indebted to Professors Harish-Chandra and Ranga Rao for many stimulating conversations dealing with harmonic analysis on semi simple Lie groups. We are also grateful to Professor Harish-Chandra for giving us permission to discuss his unpublished work [10], [11], and, more specifically, for suggesting the possibility of obtaining estimates such as Lemma 8.4.

2. Notation and preliminaries

G, K will be as in $\S 1$ with $\operatorname{rk}(G)=\operatorname{rk}(K)$. We will assume that $G \subseteq G_{c}$, where G_{c} is a simply connected complex analytic group with Lie algebra $\mathfrak{g}_{c} . \mathfrak{F}$ is the Lie algebra of K and $B, \mathfrak{b}, \mathfrak{b}_{c}$ will be as in $\S 1 . \theta$ will denote the Cartan involution induced on G, as well as \mathfrak{g}, by K; and $\mathfrak{g}=\mathfrak{f}+\mathfrak{\xi}$, the Cartan decomposition. For $X \in \mathfrak{g}$, we put $\|X\|^{2}=-\langle X, \theta X\rangle$, $\langle\cdot, \cdot\rangle$ being the Killing form. \mathfrak{g} becomes a real Hilbert space under $\|\cdot\| \cdot \mathfrak{g}=\mathfrak{f}+\mathfrak{a}+\mathfrak{t}$ $(\mathfrak{a} \subseteq \mathfrak{b})$, and $G=K A N$, are Iwasawa decompositions, with $A=\exp \mathfrak{a}, N=\exp \mathfrak{n}$; if $X \in \mathfrak{G}$ and $x=\exp X$, we write $X=\log x . \Delta=\Delta(\mathfrak{g}, \mathfrak{a})$ is the set of roots of $(\mathfrak{g}, \mathfrak{a}) ; \Delta^{+}$, the set of positive roots; $\Sigma=\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$, the simple roots; and. $\mathfrak{g}_{2}(\lambda \in \Delta)$ the root subspaces. \mathfrak{a}^{+} is the positive chamber in \mathfrak{a}, and $A^{+}=\exp \mathfrak{a}^{+}, \varrho(H)=\operatorname{tr}(\operatorname{ad} H)_{\mathfrak{n}}(H \in \mathfrak{a})$, the suffix denoting restriction to \mathfrak{n}. I denotes a θ-stable Cartan subalgebra with $\mathfrak{l} \cap \mathfrak{Z}=a$. For any Cartan subalgebra \mathfrak{h} of \mathfrak{g}, we write \mathfrak{h}_{c} for $\mathbf{C} \cdot \mathfrak{h}, W\left(\mathfrak{h}_{c}\right)$ for the Weyl group of $\left(\mathfrak{g}_{c}, \mathfrak{g}_{c}\right)$, and $\mathcal{L}_{\mathfrak{h}}$ for the additive group of all integral elements of \mathfrak{h}_{c}^{*}. The spherical functions σ and Ξ on G are defined as in [15]. It is known that for suitable constants $c_{0}>0, r_{0} \geqslant 0$,

$$
\begin{equation*}
e^{-\sigma(\log h)} \leqslant \Xi(h) \leqslant c_{0} e^{-\varrho(\log h)}(1+\sigma(h))^{\gamma_{0}} \quad\left(h \in A^{+}\right) \tag{2.1}
\end{equation*}
$$

In particular, $\mathbb{\Xi}^{2}(1+\sigma)^{-r} \in L^{1}(G)$ if $r>2 r_{0}+d$. (6) denotes the universal enveloping algebra of $\mathfrak{g}_{c} ; \mathfrak{K}, \mathfrak{A}, \mathfrak{B}, \mathfrak{L}$ etc. are the subalgebras of \mathfrak{G} generated by $(1, \mathfrak{f}),(1, \mathfrak{a}),(1, \mathfrak{b}),(1, \mathfrak{l})$ etc.

The elements of (8) act in the usual manner as differential operators from both left and right. We shall use Harish-Chandra's notation to denote differential operators; thus, if f is a C^{∞} function on a C^{∞} manifold M, and E is a differential operator acting from the left (resp. right), we write $f(x ; E)$ (resp. $f(E ; x)$) to denote $(E f)(x)$ (resp. $(f E)(x))(x \in M)$. - denotes composition of differential operators. 8 is the center of $\mathfrak{G S}$.

A subalgebra \bar{p} of \mathfrak{g} is called parabolic if $\mathbf{C} \cdot \overline{\mathfrak{p}}$ contains a Borel subalgebra of \mathfrak{g}_{c}. Let \bar{p} be parabolic, $\overline{\mathfrak{n}}$, its nilradical. Write $\overline{\mathfrak{m}}_{1}=\overline{\mathfrak{p}} \cap \theta(\bar{p})$. Then $\overline{\mathfrak{m}}_{1}$ is reductive in \mathfrak{g}, $\mathbf{r k}\left(\overline{\mathfrak{n}}_{1}\right)=$ rk (\mathfrak{g}), and $\overline{\mathfrak{p}}=\overline{\mathfrak{m}}_{1}+\overline{\mathfrak{m}}$ is a direct sum. Put $\overline{\mathfrak{a}}=$ center $\left(\overline{\mathfrak{m}}_{1}\right) \cap \mathfrak{\mathfrak { g }}$. Then \bar{m}_{1} is the centralizer of \mathfrak{a} in \mathfrak{g}, and $\overline{\mathfrak{a}}$ is called the split component of $\overline{\mathfrak{p}}$. Let $F \underset{\ddagger}{\subset}$ and let \mathfrak{a}_{F} be the set of common zeros of members of F. Write $\mathfrak{m}_{1 F}$ for the centralizer of \mathfrak{a}_{F} in \mathfrak{g}, \mathfrak{m}_{F} for the orthogonal complement of \mathfrak{a}_{F} in $\mathfrak{m}_{1 F}$, and Δ_{F} for the roots of ($\mathfrak{H}_{1 F}, \mathfrak{a}$); we put $\Delta_{F}^{+}=\Delta^{+} \cap \Delta_{F}$. If $\mathfrak{n}_{F}=\sum_{\lambda \in \Delta^{+} \backslash \Delta_{F}^{+}} \mathfrak{g}_{\lambda}$, then $\mathfrak{p}_{F}=\mathfrak{n t}_{F}+\mathfrak{a}_{F}+\mathfrak{n}_{F}$ is parabolic, $\neq \mathfrak{g}$, and \mathfrak{a}_{F} is its split component; and, given a parabolic subalgebra $\mathfrak{p} \neq \mathfrak{g}$ of \mathfrak{g}, there exists a unique $F \subset \Sigma$ such that for some $k \in K$, $\mathfrak{p}^{k}=\mathfrak{p}_{F}$. We write $\mathfrak{M}_{1 F}, \mathfrak{M}_{F}$ and \mathfrak{M}_{F} for the subalgebras of $\mathfrak{G S}$ generated by $\left(1, \mathfrak{m}_{1 F}\right),\left(1, \mathfrak{m}_{F}\right)$ and $\left(1, \mathfrak{a}_{F}\right)$ respectively. \mathcal{B}_{F} is the center of $\mathfrak{M}_{1 F}$. We put, for $H \in \mathfrak{a}$,

$$
\begin{equation*}
\varrho^{F}(H)=\frac{1}{2} \operatorname{tr}(\operatorname{ad} H)_{\mathfrak{n}_{F}}, \quad \varrho_{F}(H)=\frac{1}{2} \operatorname{tr}(\operatorname{ad} H)_{\mathfrak{m}_{F} \cap \mathfrak{n}}, \quad \beta_{F}(H)=\min _{\lambda \in \Sigma \backslash F} \lambda(H) \tag{2.2}
\end{equation*}
$$

Then $\varrho=\varrho_{F}+\varrho^{F}, \varrho_{F}\left|\mathfrak{a}_{F}=0, \varrho^{F}\right| \mathfrak{a} \cap \mathfrak{m}_{F}=0$. Also let

$$
\begin{equation*}
\mathfrak{a}_{F}^{+}=\left\{H: H \in \mathfrak{a}_{F}, \beta_{F}(H)>0\right\}, \quad A_{F}^{+}=\exp \mathfrak{a}_{F}^{+} . \tag{2.3}
\end{equation*}
$$

Let $M_{1 F}$ denote the centralizer of \mathfrak{a}_{F} in $G ; A_{F}=\exp \mathfrak{a}_{F}$ and $N_{F}=\exp \mathfrak{n}_{F}$. Then $P_{F}=$ $M_{1 F} N_{F}$ is the normalizer of \mathfrak{p}_{F} in G, and is called the parabolic subgroup corresponding to \mathfrak{p}_{F}. Let M_{F} denote the intersection of the kernels of all continuous homomorphisms of $M_{1 F}$ into the positive reals. Then $M_{1 F}=M_{F} A_{F}$ and the map $m, a, n \mapsto \operatorname{man}$ of $M_{F} \times A_{F} \times N_{F}$ into P_{F} is an analytic diffeomorphism; moreover, $G=K M_{1 F} K$. In general, the group M_{F} is neither semisimple nor connected. Under our assumption that G is a matrix group, it is however not difficult to show that (i) M_{F} / M_{F}^{0} is finite, M_{F}^{0} being the connected component of M_{F} containing the identity (ii) if \bar{M}_{F} and C_{F} are the analytic subgroups of M_{F}^{0}, defined respectively by the derived algebra and center of \mathfrak{m}_{F}, then they are both closed, \bar{M}_{F} is a semisimple matrix group while C_{F} is compact, and $M_{F}^{0}=\bar{M}_{F} C_{F}$. This circumstance makes it possible to extend to M_{F} most of the results valid for semisimple matrix groups. We shall make use of such extensions without explicit comment. $K_{F}=K \cap M_{F}=K \cap M_{1 F}$ is a maximal compact subgroup of M_{F}. We denote by Ξ_{F} the fundamental spherical function on M_{F}, and extend it to $M_{1 F}$ by setting $\Xi_{F}(m a)=\Xi_{F}(m)\left(m \in M_{F}, a \in A_{F}\right)$. Finally, we write d_{F} for the homomorphism of $M_{1 F}$ into the positive reals given by

$$
\begin{equation*}
d_{F}(m a)=e^{e^{F}(\log a)} \quad\left(m \in M_{F}, a \in A_{F}\right) . \tag{2.4}
\end{equation*}
$$

The parabolic subgroup P_{F} is called cuspidal if $\mathrm{rk}\left(M_{F}\right)=\mathrm{rk}\left(K_{F}\right) . P_{F}$ is cuspidal if and only if there is a θ－stable Cartan subalgebra \mathfrak{h} of \mathfrak{g} such that $\mathfrak{h} \cap \mathfrak{j}=\mathfrak{a}_{F}([15], \S 5$ ； cf．also［1］）．

Let $W\left(\mathfrak{l}_{c}\right)_{F}$ denote the subgroup of $W\left(\mathfrak{l}_{c}\right)$ generated by the reflexions corresponding to the roots of $\left(\mathbf{C} \cdot \mathrm{m}_{1 F}, \mathfrak{l}_{c}\right)$ ．Let $I\left(W\left(\mathfrak{l}_{c}\right)\right)$（resp．$\left.I\left(W\left(\mathfrak{l}_{c}\right)_{F}\right)\right)$ be the subalgebra of all elements of \mathbb{Q} invariant under $W\left(\mathfrak{l}_{c}\right)$（resp．$\left.W\left(\mathfrak{l}_{c}\right)_{F}\right)$ ．We then have a canonical isomorphism $\mu_{\mathrm{g} / \mathrm{l}}$ （resp．$\mu_{\mathfrak{m}_{1 F} / \mathrm{l}}$ ）of 8 onto $I\left(W\left(\mathfrak{l}_{c}\right)\right.$ ）（resp． \mathcal{B}_{F} onto $I\left(W\left(\mathfrak{l}_{c}\right)_{F}\right)$（［12］，§ 12）．Suppose $z \in 马$ ．Then there is a unique element $z_{1} \in \mathcal{Q}_{F}$ such that $z \equiv z_{1}\left(\bmod \left(\mathfrak{S n}_{F}\right)\right.$ ．It is known that $z-z_{1} \in$ $\theta\left(\mathrm{n}_{F}\right)\left(\mathrm{Sn}_{F}\right.$ ；and that，if we write $\mu_{F}(z)=d_{F} \circ z_{1} \circ d_{F}^{-1}$ ，then μ_{F} is an algebra injection of \bar{B} into $乃_{F}$ ，and $\mu_{\mathfrak{g} / 2}(z)=\mu_{\mathfrak{m}_{1 F} / 2}\left(\mu_{F}(z)\right)$ for all $\left.\left.z \in 马\right)[13], \S 10\right)$ ．It follows from this that B_{F} is a free finite module over $\mu_{F}(3)$ of rank equal to the index of $W\left(\mathfrak{l}_{c}\right)_{F}$ in $W\left(I_{c}\right)$ ．We shall denote by r_{F} this index（［12］，§12）．

Let $\left\{H_{1}, \ldots, H_{d}\right\}$ be the basis of \mathfrak{a} dual to $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ ．For $1 \leqslant j \leqslant d$ ，let $F_{j}=\Sigma \backslash\left\{\alpha_{j}\right\}$ ． We shall write P_{j} for the parabolic subgroup $P_{F_{j}}$ ，and in general（when this is not likely to cause confusion），we shall replace the suffix F_{j} by j in denoting the objects associated with $F_{j} ;$ thus $M_{j}=M_{F_{j}}, d_{j}=d_{F_{j}}$ etc．

We shall now give a brief outline of the proofs of our main results．Let $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}$ and let $O_{1}=W\left(\mathfrak{l}_{c}\right)(\lambda \circ y)$ where $y \in G_{c}$ is such that $y \cdot \mathfrak{l}_{c}=\mathfrak{b}_{c}$ ．Let $\bar{\gamma}>0$ ，let $\omega \in \mathcal{E}_{2}(G)$ be of type $\bar{\gamma}-\varepsilon$ for every $\varepsilon>0$ ，and let φ be a K－finite matrix coefficient of ω ．For any $j=1, \ldots, d$ we consider the parabolic subgroup $P_{j}=M_{1 j} N_{j}$ ，and transcribe the differential equations $z \varphi=\mu_{\mathfrak{g} / 1}(z)(\Lambda) \varphi\left(z \in 马, \Lambda \in O_{l}\right)$ to $M_{1 j}(\S 4)$ ．It turns out that these differential equations are perturbations of the equations satisfied by suitable $马_{j}$－eigenfunctions on $M_{1 j}$（§5）．This fact enables us to prove that for any $m \in M_{1 j}$ ，the limit

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} d_{j}\left(m \exp t H_{j}\right)^{1+\bar{\gamma}} \varphi\left(m \exp t H_{j}\right)=\varphi_{j, \bar{\gamma}(m)} \tag{2.5}
\end{equation*}
$$

exists，and depends only on the component of m in \boldsymbol{M}_{j} ；and that the restriction of $\varphi_{j, \gamma}$ to M_{j} belongs to the linear span of the K_{j}－finite matrix coefficients of certain classes $\omega_{1}, \ldots, \omega_{r}$ from $\mathcal{E}_{2}\left(M_{j}\right)$ ，whose infinitesimal characters can be computed from a knowledge of $O_{\mathrm{I}}(\S 7)$ ．In particular，$\varphi_{j, \bar{\gamma}}=0$ if P_{j} is not cuspidal．Moreover，by carefully following up the various estimates，we obtain the following estimate

$$
\begin{equation*}
\left|\varphi(h)-d_{j}(h)^{-(1+\bar{\gamma})} \varphi_{j, \bar{\gamma}}(h)\right| \leqslant \text { const. } \Xi(h)^{1+\bar{\gamma}+\beta_{0} \mu} \tag{2.6}
\end{equation*}
$$

for all $h \in A_{j}^{+}(\mu)$ ；here $0<\mu<1, A_{j}^{+}(\mu)$ is the sectorial region defined by（7．2），and $\beta_{0}>0$ is a constant independent of λ, μ, φ（Theorem 7．3）．

Suppose now that λ satisfies（1．4）．Then $\left|\Lambda\left(H_{j}\right)\right| \geqslant \gamma \varrho\left(H_{3}\right)$ for all $\Lambda \in O_{\mathrm{l}}$ and j for which P_{i} is cuspidal（Lemma 8．3）．Let $\bar{\gamma}$ be the supremum of all $\gamma^{\prime}>0$ for which ω is of type γ^{\prime} ．

If $\bar{\gamma}<\gamma$, an examination of the differential equations satisfied by the $\varphi_{j, \bar{\gamma}}$ shows that $\varphi_{j, \bar{\gamma}}=0$ for cuspidal P_{j}, hence for all $j=1, \ldots, d$. (2.6) then implies that ω is of type γ^{\prime} for some $\gamma^{\prime}>\bar{\gamma}$, a contradiction. So $\bar{\gamma} \geqslant \gamma$, and a simple argument based on an induction on $\operatorname{dim}(G)$ completes the proof that ω is of type γ.

Suppose that $\omega \in \mathcal{E}_{p}(G)$ for some $p(1 \leqslant p<2)$. Then ω is of type $\bar{\gamma}=(2 / p)-1$ (Corollary 3.4) and (2.6) is valid for any K-finite matrix coefficient φ of ω. It follows from this that $\varphi_{j, \bar{\gamma}}=0,1 \leqslant j \leqslant d$, and hence that ω is of type $\gamma^{\prime}>\bar{\gamma}$ (Theorem 7.5).

We then consider the converse problem. Let $\omega \in \mathcal{E}_{2}(G)$ be of type $\gamma>0$, let Θ be the character of ω, and let π be a unitary representation belonging to ω. Denoting by $\mathcal{E}(K)$ the set of all equivalence classes of irreducible unitary representations of K, we obtain the following estimate from the work in $\S 3$ and elementary properties of the discrete series (Lemma 5.6): there exist constants $C>0, r \geqslant 0$ such that for all $x \in G, \mathcal{D} \in \mathcal{E}(K)$, and unit vectors e, e^{\prime} in the space of π that transform under $\pi(K)$ according to D,

$$
\begin{equation*}
\left|\left(\tau(x) e, e^{\prime}\right)\right| \leqslant C c(\mathfrak{D})^{r} \Xi(x) \tag{2.7}
\end{equation*}
$$

(here $c(\mathrm{D})$ is defined as in [14], §3). Using (2.7) as uniform initial estimates in the differential equations for the functions $x \mapsto\left(\pi(x) e, e^{\prime}\right)$, and employing a method that is essentially one of successive approximation, we improve (2.7) and obtain the following: given any $\varepsilon>0$, we can find constants $C_{\varepsilon}>0, r_{\varepsilon} \geqslant 0$ such that

$$
\begin{equation*}
\left|\left(\pi(x) e, e^{\prime}\right)\right| \leqslant C_{\varepsilon} c(\delta)^{r_{\varepsilon}} \Xi(x)^{1+\gamma-\varepsilon} \tag{2.8}
\end{equation*}
$$

for all $x \in G, \delta \in \mathcal{E}(K), e, e^{\prime}$ as before (Theorem 7.3). From (2.8) we obtain the following continuity property of Θ (Lemma 8.4): for each $\varepsilon>0$ we can find $\xi_{\varepsilon} \in \mathfrak{K}$ such that for all $f \in C_{c}^{\infty}(G)$

$$
\begin{equation*}
|\Theta(f)| \leqslant \sup _{G} \Xi^{-1+\gamma-\varepsilon}\left|\xi_{\varepsilon} f\right| . \tag{2.9}
\end{equation*}
$$

We now imitate the arguments of $\S 19$ of [14] to pass from (2.9) to estimates for the values of Θ on the various Cartan subgroups of G (Lemma 8.7); these lead to (1.7) in a direct manner.

3. Some estimates of the Sobolev type

In this section we obtain estimates for certain supremum norms of a function $f \in C^{\infty}(G)$ in terms of the L^{p}-norms of f and its derivatives (Theorem 3.3). These are analogous to the classical Sobolev estimates. Our proofs make no use of the assumption that $\mathrm{rk}(G)=\mathrm{rk}(K)$. We put

$$
\begin{equation*}
J(h)=\prod_{\lambda \in \Delta^{+}}\left(e^{\lambda(\log h)}-e^{-\lambda(\log h)}\right)^{\operatorname{dim}\left(\mathfrak{g}_{\lambda}\right)} \quad\left(h \in A^{+}\right) . \tag{3.1}
\end{equation*}
$$

Then we can normalize the Haar measures on G and A so that $d x=J(h) d k_{1} d h d k_{2}$, i.e., for all $f \in L^{1}(G)$,

$$
\begin{equation*}
\int_{G} f d x=\int_{K \times A^{+} \times K} f\left(k_{1} h k_{2}\right) J(h) d k_{1} d h d k_{2} . \tag{3.2}
\end{equation*}
$$

In Lemmas 3.1 and $3.2 V$ will denote a real Hilbert space of finite dimension d, with norm denoted by $\|\cdot\| \cdot d x$ is a Lebesgue measure on V. For $x \in V$ and $r>0, B(x, r)$ denotes the closed ball with center x and radius r. We fix p with $l \leqslant p<\infty$, a nonempty open set $U \subseteq V$ and a $w \in C^{\infty}(U)$ such that $w(x)>0$ for all $x \in U .\|\cdot\|_{p}$ denotes the usual norm on $L^{p}(V, d x)$. S is the symmetric algebra over the complexification of V; elements of S act in the usual manner as differential operators on $C^{\infty}(U)$, and for $\xi \in S, j \mapsto \xi f$ denotes the corresponding differential operator. For $\xi \in S$ and $f \in C^{\infty}(U)$, let

$$
\begin{equation*}
\mu_{\xi}(f)=\left(\int_{U}|\xi f|^{p} w d x\right)^{1 / p} \tag{3.3}
\end{equation*}
$$

H_{w} is the space of all $f \in C^{\infty}(U)$ with $\mu_{\xi}(f)<\infty$ for all $\xi \in S$. Each μ_{ξ} is a seminorm on H_{ξ}. We write η for the collection of all finite sums of the μ_{ξ}. Since w is bounded away from 0 on compact subsets of U, the usual form of Sobolev's lemma implies that for any compact set $W \subseteq U$ and any $\xi \in S, f \mapsto \sup _{x \in W}|f(x ; \xi)|$ is a seminorm on H_{w} that is continuous in the topology induced by η. It follows easily from this that H_{w}, equipped with the topology induced by η, is a Frechet space. Let H_{0} be the space of all $f \in C^{\infty}(U)$ with $\sup _{x \in U}|f(x ; \xi)|<\infty$ for each $\xi \in S$. H_{0} is also a Frechet space under the collection of seminorms $f \mapsto \sup _{x \in U}|f(x ; \xi)|(\xi \in \mathbb{S})$.

Lemma 3.1. Let notation be as above. Fix a real function ε on U such that $0<\varepsilon(x) \leqslant \mathbf{1}$, and $B(x, \varepsilon(x)) \subseteq U$, for all $x \in U$. Let

$$
\begin{equation*}
\omega(x)=\inf \{w(y): y \in B(x, \varepsilon(x))\} . \tag{3.4}
\end{equation*}
$$

Then, there exists an integer $k \geqslant 0$, and seminorm $\nu \in \mathfrak{n}$, such that for all $f \in H_{w}$, and all $x \in U$,

$$
\begin{equation*}
|f(x)| \leqslant \varepsilon(x)^{-k} \omega(x)^{-1 / p} \nu(f) . \tag{3.5}
\end{equation*}
$$

Proof. For any $a>0$ let $u_{\alpha} \in C_{c}^{\infty}(V)$ be the function

$$
u_{a}(x)= \begin{cases}c a^{-a} \exp \left(-a^{2} /\left(a^{2}-\|x\|^{2}\right)\right) & \text { if }\|x\|<a \\ 0 & \text { if }\|x\| \geqslant a\end{cases}
$$

where c is such that $\int_{V} u_{d} d x=1$ for all $a>0$. For $x \in V$ and $r>0$ let $\varphi_{x, r}=1_{B\left(x, \frac{1}{2} r\right)} * u_{r / 4}$ (here 1_{E} is the characteristic function of E, and $*$ denotes convolution). Then $\varphi_{x, r} \in C_{c}^{\infty}(V)$,
$0 \leqslant \varphi_{x, r} \leqslant 1, \varphi_{x, r}=1$ on $B(x, r / 4)$ and $\operatorname{supp} \varphi_{x_{r} r} \subseteq B(x, 3 r / 4) ;$ moreover, it is easy to see that, for any homogeneous element $\zeta \in S$ of degree m, there is a constant $c(\zeta)>0$, such that, for all $x, y \in V$ and all $r>0$,

$$
\begin{equation*}
\left|\varphi_{x, r}(y ; \zeta)\right| \leqslant c(\zeta) r^{-m} \tag{3.6}
\end{equation*}
$$

By the classical Sobolev's lemma, we can find $\zeta_{1}, \ldots, \zeta_{q} \in S$ such that, for all $\psi \in C_{c}^{\infty}(V)$ and all $y \in V$,

$$
|\psi(y)| \leqslant \sum_{1 \leqslant i \leqslant q}\left\|\zeta_{i} \psi\right\|_{\mathcal{D}}
$$

Replacing ψ by $f \varphi_{x, \varepsilon(x)}$ we find, for $f \in H_{w}$ and $x \in U$,

$$
\begin{equation*}
|f(x)| \leqslant \sum_{1 \leqslant i \leqslant q}\left\|\zeta_{i}\left(f \varphi_{x, \varepsilon(x)}\right)\right\|_{p} . \tag{3.7}
\end{equation*}
$$

By Liebniz's formula, we can find homogeneous elements $\xi_{i j}, \eta_{i j} \in S(1 \leqslant i \leqslant q, 1 \leqslant j \leqslant r)$ such that, for all $u, v \in C^{\infty}(U), \zeta_{i}(u v)=\Sigma_{1 \leqslant j \leqslant r}\left(\xi_{i j} u\right)\left(\eta_{i j} v\right)$ for $1 \leqslant i \leqslant q$. We use this in (3.7) with $f=u, \varphi_{x, \varepsilon(x)}=v$. Setting

$$
c=\max _{i, j} c\left(\eta_{i j}\right), \quad k=\max _{i, j} \operatorname{deg}\left(\eta_{i j}\right)
$$

and observing that $w(y) \geqslant \omega(x)$ for all $y \in \operatorname{supp}\left(\eta_{t,} \varphi_{x, \varepsilon(x)}\right)$, we get, from (3.6) and (3.7),

$$
|f(x)| \leqslant c \varepsilon(x)^{-k} \omega(x)^{-1 / p} \sum_{1 \leqslant i \leqslant q} \sum_{1 \leqslant j \leqslant r} \mu_{\xi_{i j}}(f) .
$$

Lemma 3.1 follows at once from this.
Lemma 3.2. Let notation be as above. Suppose there are nonzero real linear functions $\lambda, \ldots, \lambda_{N}$ on V, and constants $c>0, r \geqslant 0$, such that, $U=\left\{x: x \in V, \lambda_{j}(x)>0\right.$ for $\left.1 \leqslant i \leqslant N\right\}$, and

$$
\begin{equation*}
w(x) \geqslant c\left(1+\left(\min _{1 \leqslant i \leqslant N} \lambda_{i}(x)\right)^{-1}\right)^{-r} \quad(x \in U) . \tag{3.8}
\end{equation*}
$$

Then $H_{w} \subseteq H_{0}$, and the natural inclusion is continuous. This is in particular the case, if, $w(x)=\Pi_{1 \leqslant 1 \leqslant N}\left(1-e^{-\lambda_{i}(x)}\right) \quad(x \in U)$.

Proof. We begin the proof with the following remark. Suppose φ is a C^{∞} function on $(0, \alpha), \alpha>1$, and that, for suitable constants $L_{m}>0(m=0,1, \ldots)$ and an integer $q \geqslant 0, \varphi$ satisfies the inequalities

$$
\left|\varphi^{(m)}(t)\right| \leqslant L_{m} t^{-q} \quad(0<t \leqslant 1, m=0,1, \ldots) ;
$$

we may then conclude that

$$
\begin{equation*}
\left|\varphi^{(m)}(t)\right| \leqslant 2_{0 \leqslant i \leqslant q+1}^{q} L_{m+i} \quad(0<t \leqslant 1, m=0,1, \ldots) \tag{3.9}
\end{equation*}
$$

This is trivial if $q=0$. Now, for $0<t \leqslant 1$,

$$
\begin{equation*}
\left|\varphi^{(m)}(t)\right| \leqslant \int_{t}^{1}\left|\varphi^{(m+1)}(s)\right| d s+\left|\varphi^{(m)}(1)\right| \tag{3.10}
\end{equation*}
$$

If $q=1,(3.10)$ gives $\left|\varphi^{(m)}(t)\right| \leqslant L_{m}+L_{m+1}|\log t|, 0<t \leqslant 1, m=0,1, \ldots$; applying (3.10) again with these estimates, we get (3.9). If $q>1$, (3.10) gives $\left|\varphi^{(m)}(t)\right| \leqslant\left(L_{m}+L_{m+1}\right) t^{-(q-1)}$, $0<t \leqslant 1, m=0,1, \ldots$; induction on q now proves (3.9).

This said, we come to the proof of the lemma. Write $c_{1}=2 \max _{1 \leqslant i \leqslant N}\left(1+\left\|\lambda_{i}\right\|\right)$ and define

$$
\begin{equation*}
\varepsilon(x)=\frac{1}{c_{1}} \min \left(1, \lambda_{1}(x), \ldots, \lambda_{N}(x)\right) \quad(x \in U) . \tag{3.11}
\end{equation*}
$$

Then, for $x \in U$ and $y \in B(x, \varepsilon(x)),\left|\lambda_{i}(y-x)\right| \leqslant \frac{1}{2} \lambda_{i}(x)$ for $1 \leqslant i \leqslant N$, so that $\lambda_{i}(y) \geqslant \frac{1}{2} \lambda_{i}(x)$ for $\mathbf{l} \leqslant i \leqslant N$. It follows from this that $B(x, \varepsilon(x)) \subseteq U$ for $x \in U$ and that, with $c_{2}=c \cdot 2^{-\tau}$,

$$
\begin{equation*}
\omega(x) \geqslant c_{2} \varepsilon(x)^{r} \quad(x \in U) \tag{3.12}
\end{equation*}
$$

We now apply Lemma 3.1. Let k and ν be as in that lemma. Put $\nu_{1}=c_{2}^{-1 / p} \nu$ and let b any integer $\geqslant k+r / p$. Then (3.12) and (3.5) imply that $|f(x)| \leqslant \varepsilon(x)^{-b} \nu_{1}(f)$ for all $f \in H_{w}, x \in U$. For $\xi \in S$, let $\nu_{\xi}(f)=v_{1}(\xi f)\left(f \in H_{w}\right)$. Then $\nu_{\xi} \in \boldsymbol{\eta}$, and we have, for all $f \in H_{w}, x \in U$,

$$
\begin{equation*}
|f(x ; \xi)| \leqslant \varepsilon(x)^{-p} v_{\xi}(f) \tag{3.13}
\end{equation*}
$$

Choose and fix $u_{0} \in U$. Let $f \in H_{w}, \xi \in S, x \in U$, and let φ be the function defined by $\varphi(t)=f\left(x+t u_{0} ; \xi\right)$ for $t \geqslant 0$ (note that $x+t u_{0} \in U$ for all $\left.t \geqslant 0\right)$. Clearly $\varphi \in C^{\infty}(0, \infty)$ and $\varphi^{(m)}(t)=f\left(x+t u_{0} ; u_{0}^{m} \xi\right)(t>0, m=0,1, \ldots)$. On the other hand it is easy to see from (3.11) that $\varepsilon\left(x+t u_{0}\right) \geqslant t \varepsilon\left(u_{0}\right)$ for all t with $0<t \leqslant 1$. Hence, by (3.13),

Let

$$
\left|\varphi^{(m)}(t)\right| \leqslant \varepsilon\left(u_{0}\right)^{-b} \nu_{u_{0}^{m} \xi}(f) t^{-b} \quad(0<t \leqslant 1, m=0,1, \ldots)
$$

$$
\overline{\boldsymbol{\nu}}_{\xi}=\varepsilon\left(u_{0}\right)^{-b} 2^{b} \sum_{0 \leqslant m \leqslant b+1} v_{u_{0}^{m}} .
$$

Then the remark made at the beginning of the proof implies

$$
\begin{equation*}
|f(x ; \xi)| \leqslant \bar{v}_{\xi}(f) \quad\left(f \in H_{w}, x \in U\right) . \tag{3.14}
\end{equation*}
$$

(3.14) gives the first assertion of the lemma. If $w=\Pi_{1 \leqslant 1 \leqslant N}\left(1-e^{-\lambda_{i}}\right)$, w satisfies (3.8) with $c=1, r=N$. This proves the lemma.

Fix $p, 1 \leqslant p<\infty$. Let $\mathcal{H}^{p}=\mathcal{H}^{p}(G)$ be the space of all $f \in C^{\infty}(G)$ such that $b f a \in L^{p}(G)$ for all $a, b \in \mathfrak{G}$. Exactly as in the case of the space H_{w} considered above, we use the classical Sobolev lemma to conclude that $\mathcal{F l}^{p}$ is a Frechet space under the seminorms $f \mapsto\|b f a\|_{p}\left(a, b \in(\mathfrak{G}) . \mathcal{H}_{0, p}=\mathcal{H}_{0, p}(G)\right.$ is the space of all $f \in C^{\infty}(G)$ with $\sup _{G} \Xi^{-2 / p}|b f a|<\infty$
for all $a, b \in \mathfrak{G}$; it is a Frechet space with respect to the seminorms $f \mapsto \sup _{G} \Xi^{-2 / p}|b f a|$ ($a, b \in \mathfrak{G}$).

Theorem 3.3. Let \mathcal{H}^{p} and $\mathcal{H}_{0, p}$ be as above. Then $\mathcal{H}^{p} \subseteq \mathcal{H}_{0, p}$, and the natural inclusion is continuous.

Proof. Let J be as in (3.1). For any continuous function g on A^{+}, let $\|g\|_{J, p}$ denote the L^{p}-norm of g with respect to the measure $J d h$. Let H_{J} denote the space of all $g \in C^{\infty}\left(A^{+}\right)$ for which $\|a g\|_{J, p}<\infty$ for all $a \in \mathfrak{A}$. Let w be the function $\Pi_{\lambda \in \Delta^{+}}\left(1-e^{-2 \lambda}\right)^{\operatorname{dim}\left(\mathfrak{g}_{\lambda}\right)}$ on \mathfrak{a}^{+}. Then, for any $\varphi \in C^{\infty}\left(a^{+}\right)$and $a \in \mathfrak{Y}$, with $a^{\prime}=e^{(2 / p) \rho} \circ a \circ e^{-(2 / p) \varrho}$,

$$
\int_{a^{+}}|\varphi(H ; a)|^{p} J(\exp H) d H=\int_{\mathfrak{a}^{+}}\left|\left(e^{(2, p) \rho} \varphi\right)\left(H ; a^{\prime}\right)\right|^{p} w(H) d H .
$$

Lemma 3.2 (with $V=\mathfrak{a}, U=\mathfrak{a}^{+}, w$ as above) and the above formula then give us the following: there exist $a_{1}, \ldots, a_{r} \in \mathfrak{A}$ such that

$$
|g(h)| \leqslant e^{-(2 / p) e(\log h)} \sum_{1 \leqslant i \leqslant r}\left\|a_{i} g\right\|_{J, p} \quad\left(g \in H_{J}, h \in A^{+}\right) .
$$

From (2.1) we then obtain

$$
\begin{equation*}
|g(h)| \leqslant \Xi(h)^{(2 / p)} \sum_{1 \leqslant i \leqslant r}\left\|a_{i} g\right\|_{J, p} \quad\left(g \in H_{J}, h \in A^{+}\right) \tag{3.15}
\end{equation*}
$$

For any $g \in C^{\infty}(G), k_{1}, k_{2} \in K$, let $g_{k_{1}, k_{2}}(h)=g\left(k_{1} h k_{2}\right)\left(h \in A^{+}\right)$. Given $a \in \mathfrak{N}$, we can find $c_{1}, \ldots, c_{m} \in\left(\mathcal{G}\right.$ and analytic functions $\beta_{1}, \ldots, \beta_{m}$ on K such that

$$
\begin{equation*}
a g_{k_{1}, k_{3}}=\sum_{1 \leqslant i \leqslant m} \beta_{i}\left(k_{2}\right)\left(c_{i} g\right)_{k_{1}, k_{2}} \tag{3.16}
\end{equation*}
$$

for all $g \in C^{\infty}(G), k_{1}, k_{2} \in K$. (3.16) and (3.2) show that if $f \in \mathcal{H}^{p}, f_{k_{1}, k_{2}} \in H_{g}$ for almost all $\left(k_{1}, k_{2}\right) \in K \times K$. Applying (3.15) to the $f_{k_{1}, k_{2}}$ and using (3.16) with $a=a_{i}$ we get the following result: we can find a constant $c>0$, and $b_{1}, \ldots, b_{q} \in\left(\mathbb{G}\right.$, such that for any $f \in \mathcal{H}^{p}$, the inequality

$$
\begin{equation*}
\sup _{h \in A^{+}} \Xi(h)^{-2 / p}\left|f\left(k_{1} h k_{2}\right)\right| \leqslant c \sum_{1 \leqslant j \leqslant q}\left\|\left(b_{j} f\right)_{k_{1}, k_{2}}\right\|_{J, p} \tag{3.17}
\end{equation*}
$$

is satisfied for almost all $\left(k_{1}, k_{2}\right) \in K \times K$. Replacing f by $\xi f \eta(\xi, \eta \in \mathfrak{N})$ in (3.17), we get, after an integration over $K \times K$, the following result: for any $\xi, \eta \in \Omega, f \in \mathcal{H}^{p}$ and $h \in A^{+}$,

$$
\begin{equation*}
\left(\iint_{K \times K}\left|f\left(\eta ; k_{1} h k_{2} ; \xi\right)\right|^{p} d k_{1} d k_{2}\right)^{1 / p} \leqslant c \Xi(h)^{2 / p} \sum_{1 \leqslant j \leqslant q}\left\|b_{j} \xi f \eta\right\|_{p} . \tag{3.18}
\end{equation*}
$$

On the other hand, from the harmonic analysis on $K \times K$ we have the following
familiar result: there are $\xi_{i}, \eta_{i} \in \mathfrak{\Re}(1 \leqslant i \leqslant r)$ such that for all $\varphi \in C^{\infty}(K \times K),\left(u_{1}, u_{2}\right) \in K \times K$,

$$
\left|\varphi\left(u_{1}: u_{2}\right)\right| \leqslant \sum_{1 \leqslant i \leqslant r}\left(\iint_{K \times K}\left|\varphi\left(\eta_{i:} k_{1}: k_{2} ; \xi_{i}\right)\right|^{p} d k_{1} d k_{2}\right)^{1 / p}
$$

Combining this and (3.18) we then have

$$
\left|f\left(k_{1} h k_{2}\right)\right| \leqslant c \Xi(h)^{2 / p} \sum_{1 \leqslant i \leqslant r} \sum_{1 \leqslant j \leqslant q}\left\|b_{j} \xi_{i} f \eta_{i}\right\|_{p}
$$

for all $f \in \mathcal{H}^{p}, k_{1}, k_{2} \in K, h \in A^{+}$. So, for $f \in \mathcal{H}^{p}$ and $u, v \in \mathbb{B}$,

$$
\begin{equation*}
\sup _{G} \Xi^{-2 \mid p}|u f v| \leqslant c \sum_{1 \leqslant i \leqslant r} \sum_{1 \leqslant j \leqslant q}\left\|b_{j} \xi_{i} u f v \eta_{i}\right\|_{p} \tag{3.19}
\end{equation*}
$$

Theorem 3.3 follows at once from (3.19).
Corollary 3.4. If $1 \leqslant p<2$, then any $\omega \in \mathcal{E}_{p}(G)$ is of type $(2 / p)-1$. If $1 \leqslant p^{\prime} \leqslant p$, then $\mathcal{E}_{p^{\prime}}(G) \subseteq \mathcal{E}_{p}(G) \subseteq \mathcal{E}_{2}(G)$.

Proof. Let $1 \leqslant p<2, \omega \in \mathcal{E}_{p}(G)$, and f, a K-finite matrix coefficient of ω. By Theorem 1 of [14] we can find $\alpha, \beta \in C_{c}^{\infty}(G)$ such that $f=\alpha * f * \beta$. Consequently, given $a, b \in \mathcal{G}$, there exist $\alpha^{\prime}, \beta^{\prime} \in C_{c}^{\infty}(G)$ such that $b f a=\alpha^{\prime} * f * \beta^{\prime}$. So $f \in \mathcal{H}^{p}$ and hence $\sup _{G} \Xi^{-2 / p}|f|<\infty$. This proves that ω is of type (2/p)-1. The second statement follows now on noting that for $\mathrm{I} \leqslant q^{\prime}<q \leqslant 2, \Xi^{2 / q^{\prime}} \in L^{q}(G)$.

Remark. Let $\mathcal{C}^{p}=\mathcal{C}^{p}(G)$ be the space of all $f \in C^{\infty}(G)$ for which $\sup _{G} \Xi^{-2 / p}(1+\sigma)^{r}|b f a|<\infty$ for all $a, b \in \mathscr{G}$ and $r \geqslant 0$, topologized in the obvious way. It is then not difficult to deduce from Theorem 3.3 the following result: \mathcal{C}^{ρ} is precisely the space of all $f \in C^{\infty}(G)$ for which $(1+\sigma)^{r}(b f a) \in L^{p}(G)$ for all $a, b \in(\mathscr{F}, r \geqslant 0$, and its topology is exactly the one induced by the seminorms $f \mapsto\left\|(1+\sigma)^{r}(b f a)\right\|_{p}(a, b \in \mathscr{S}, r \geqslant 0)$. We do not prove this here since we make no use of it in what follows.

4. Differential operators on $C^{\infty}(G: V: \tau)$

Let φ be a K-finite eigenfunction (for 3), and $P_{F}=M_{1 F} N_{F}(F \subsetneq \Sigma$), a parabolic subgroup. For studying the behavior of $\varphi(m a)$, when $\alpha \in A_{F}^{+}$and tends to infinity, while m varies in $M_{1 F}$, we use Harish-Chandra's idea, of replacing the differential equations on G, by differential equations on $M_{1 F}$. We shall find it convenient to work with vector valued functions.

Let V be a complex finite dimensional Hilbert space, the scalar product and norm of which are denoted by (\cdot, \cdot) and $\|\cdot\|$. By a unitary double representation of K in V we mean
a pair $\tau=\left(\tau_{1}, \tau_{2}\right)$ such that (i) τ_{1} (resp. $\left.\tau_{2}\right)$ is a representation (resp. antirepresentation) of K in V, and $\tau_{j}(k)$ is unitary for all $k \in K, j=1,2$ (ii) $\tau_{1}\left(k_{1}\right)$ and $\tau_{2}\left(k_{2}\right)$ commute for all $k_{1}, k_{2} \in K$. We allow the $\tau_{1}(k)$ to act on vectors of V from the left, and the $\tau_{2}(k)$ to act from the right. We write τ_{1} (resp. τ_{2}) for the corresponding representation (resp. antirepresentation) of \curvearrowleft. A map $f: G \mapsto V$ is called τ-spherical if $f\left(k_{1} x k_{2}\right)=\tau_{1}\left(k_{1}\right) f(x) \tau_{2}\left(k_{2}\right)$ for all $x \in G$, $k_{1}, k_{2} \in K ; C^{\infty}(G: V: \tau)$ denotes the space of all τ-spherical f of class C^{∞}. Note that $C^{\infty}(G: V: \tau)$ is invariant under 8.

Recall that \mathfrak{g} is a Hilbert space. If we write x^{\dagger} for $\theta\left(x^{-1}\right)(x \in G)$, then $\operatorname{Ad}(x)$ and $\operatorname{Ad}\left(x^{\dagger}\right)$ are adjoints of each other.

Fix $F_{\ddagger} \subset_{\ddagger}$. For $m \in M_{1_{F}}$, let $\gamma_{F}(m)=\left\|\operatorname{Ad}\left(m^{-1}\right)_{n_{F}}\right\|$.Then $\gamma_{F}(m)=\left\|\operatorname{Ad}(\theta(m))_{\mathfrak{n}_{F}}\right\|$ also. Put

$$
\left\{\begin{array}{l}
M_{1 F}^{\prime}=\left\{m: m \in M_{1 F},\left(A d\left(m^{-1}\right)-\operatorname{Ad}\left(m^{\dagger}\right)\right)_{n_{F}} \text { is invertible }\right\} \tag{4.1}\\
M_{1 F}^{+}=\left\{m: m \in M_{1 F}, \gamma_{F}(m)<1\right\} .
\end{array}\right.
$$

Define $b_{F}(m)$ and $c_{F}(m)$ for $m \in M_{1 F}^{\prime}$ by

$$
\begin{equation*}
b_{F}(m)=\left(\operatorname{Ad}\left(m^{-1}\right)-\operatorname{Ad}\left(m^{\dagger}\right)\right)_{\boldsymbol{n}_{F}}^{-1}, c_{F}(m)=\operatorname{Ad}\left(m^{-1}\right)_{\mathfrak{n}_{F}} b_{F}(m) . \tag{4.2}
\end{equation*}
$$

It is easily verified that $M_{1 F}^{+} \subseteq M_{1 F}^{\prime}$, and that for $m \in M_{1 F}^{+}$,

$$
\begin{equation*}
c_{F}(m)=-\sum_{r \geqslant 1}\left(\operatorname{Ad}\left(m^{\dagger} m\right)_{\mathfrak{n}_{F}}\right)^{-r}, b_{F}(m)=-\operatorname{Ad} \theta(m)_{\mathfrak{n}_{F}} \sum_{r \geqslant 0}\left(\operatorname{Ad}\left(m^{\dagger} m\right)_{\mathfrak{n}_{F}}\right)^{-r}, \tag{4.3}
\end{equation*}
$$

the series converging since $\left\|\operatorname{Ad}\left(m^{\dagger} m\right)_{\mathfrak{n}_{F}}^{-1}\right\| \leqslant \gamma_{F}(m)^{2}<1$ (cf. [8] §2). Note that $\gamma_{F}(\exp H)=$ $e^{-\beta_{\left.F^{(}\right)}(H)} \quad\left(H \in C \mathbf{l}\left(\mathfrak{a}^{+}\right)\right)$.

Lemma 4.1. Let E be the projection of \mathfrak{g} on \mathfrak{f} modulo \mathfrak{Z}. Then for all $X \in \mathfrak{H}_{F}, m \in M_{1 F}^{\prime}$, we have

$$
\theta X=-2 \operatorname{Ad}\left(m^{-1}\right) E b_{F}(m) X+2 E c_{F}(m) X
$$

Proof. Let $h \in M_{1 F}^{\prime} \cap A, \lambda \in \Delta^{+} \backslash \Delta_{F}^{+}, X \in g_{\lambda}$. Write $X=Y+Z, Y \in \mathfrak{f}, Z \in \mathfrak{Z}$. A simple calculation shows that

$$
\left(e^{\lambda(\log h)}-e^{-\lambda(\log h)}\right) \theta X=2 Y^{h^{-1}}-2 e^{-\lambda(\log h)} Y .
$$

This gives the result we want when $m=h$. The general case follows from the above special case, since $M_{1 F}^{\prime}=K_{F}\left(A \cap M_{1 F}^{\prime}\right) K_{F}$, while $c_{F}\left(u_{1} m u_{2}\right)=\operatorname{Ad}\left(u_{2}^{-1}\right)_{\mathfrak{n}_{F}} c_{F}(m) \operatorname{Ad}\left(u_{2}\right)_{\mathfrak{n}_{F}}$ and $b_{F}\left(u_{1} m u_{2}\right)=\operatorname{Ad}\left(u_{1}\right)_{\mathrm{r}_{F}} b_{F}(m) \operatorname{Ad}\left(u_{2}\right)_{\mathrm{n}_{F}}$, for $u_{1}, u_{2} \in K_{F}, m \in M_{1 F}$.

Lømma 4.2. Let $\left\{Y_{1}, \ldots, Y_{p}\right\}$ be a basis for $\left(\mathfrak{n}_{F}+\theta\left(\mathfrak{n}_{F}\right)\right) \cap$ l. Let $S_{0, F}$ be the algebra generated (without 1) by the matrix coefficients of c_{F} and b_{F}. Then, given $X \in \mathfrak{n}_{F}$, we can find $f_{i}, h_{i} \in S_{0, F}(1 \leqslant i \leqslant p)$ such that $\theta X=\Sigma_{1 \leqslant i \leqslant p}\left(f_{i}(m) Y_{i}^{m^{-1}}+h_{i}(m) Y_{i}\right)\left(m \in M_{1 F}^{\prime}\right)$.

Proof. Let $\left\{X_{1}, \ldots, X_{q}\right\}$ be a basis for \mathfrak{n}_{F}, and $\left(c_{\alpha \beta}(m)\right),\left(b_{\alpha \beta}(m)\right)$ the matrices of $c_{F}(m)$ and $b_{F}(m)$ respectively, with respect to it. Let $E X_{\alpha}=\Sigma_{1 \leqslant i \leqslant p} a_{\alpha i} Y_{i}, X=\Sigma_{1 \leqslant \alpha \leqslant Q} x_{\alpha} X_{\alpha}$. We obtain Lemma 4.2 from Lemma 4.1 by routine calculation with $f_{i}=-2 \Sigma_{1 \leqslant \alpha . \beta \leqslant q} x_{\beta} a_{\alpha i} b_{\alpha \beta}$ and $h_{i}=2 \Sigma_{1 \leqslant \alpha, \beta \leqslant q} x_{\beta} a_{\alpha i} c_{\alpha \beta}(1 \leqslant i \leqslant p)$.

Write $\mathfrak{1}_{F}=\mathfrak{m}_{1 F} \cap \mathfrak{f}, \mathfrak{\zeta}_{F}=\mathfrak{m}_{1 F} \cap \mathfrak{S}$. Then $\mathfrak{g}=\mathfrak{f}+\mathfrak{\zeta}_{F}+\theta\left(\mathfrak{n}_{F}\right)$ is a direct sum. Let λ be the symmetrizer map of $S\left(\mathfrak{g}_{c}\right)$ onto \mathfrak{G} and let $\mathfrak{S}_{F}=\lambda\left(\mathcal{S}\left(\mathfrak{g}_{F}\right)\right)$. Then $\left(\mathfrak{G}=\theta\left(\mathfrak{n}_{F}\right)\left(\mathfrak{G}+\mathfrak{S}_{F} \mathfrak{A l}+\mathfrak{S}_{F}\right.\right.$ is also a direct sum. For $b \in\left(\mathbb{G}\right.$, let $\nu_{i}(b)(i=0,1,2)$ be the respective components of b in $\theta\left(\mathfrak{n}_{F}\right)\left(\mathcal{G}, \mathfrak{S}_{F} \mathfrak{\Re f}\right.$ and \mathfrak{S}_{F}. Define $\boldsymbol{\nu}_{F}(b)=\boldsymbol{\nu}_{1}(b)+\nu_{2}(b)$. It follows easily from the Poincaré-Birkhoff-Witt theorem that $\operatorname{deg} \nu_{i}(b) \leqslant \operatorname{deg}(b)(i=0,1,2)$, and that we can write $\nu_{F}(b)=$ $\Sigma_{1 \leqslant j \leqslant r} \eta_{j} \zeta_{j}$, where $\eta_{j} \in \mathfrak{S}_{F}, \zeta_{j} \in \Omega, \operatorname{deg}\left(\eta_{j}\right)+\operatorname{deg}\left(\zeta_{j}\right) \leqslant \operatorname{deg}(b)(1 \leqslant j \leqslant r)$.

Lemma 4.3. Let $b \in \mathscr{S}$ and $\operatorname{deg}(b)=r$. Define $S_{0, F}$ as in Lemma 4.2. Then we can select $\xi_{i}, \zeta_{i} \in \Re, \quad \eta_{i} \in \mathfrak{M}_{1 F}, \quad g_{i} \in \mathcal{S}_{0 . F}(1 \leqslant i \leqslant s)$ such that (i) $\operatorname{deg}\left(\eta_{i}\right) \leqslant r-1, \operatorname{deg}\left(\xi_{i}\right)+\operatorname{deg}\left(\eta_{i}\right)+$ $\operatorname{deg}\left(\zeta_{i}\right) \leqslant r(1 \leqslant i \leqslant s)$ (ii) for all $m \in M_{1 F}^{\prime}$,

$$
\begin{equation*}
b=\nu_{F}(b)+\sum_{1 \leqslant i \leqslant s} g_{i}(m) \xi_{i}^{m^{-1}} \eta_{i} \zeta_{i} . \tag{4.4}
\end{equation*}
$$

Proof. We use induction on r. The case $r=0$ is trivial. Let $r=1, b=Y \in g$. If $Y \in \mathfrak{l}+\mathfrak{Z}_{F}$, then $\nu_{F}(Y)=Y$ and we have (4.4) with $g_{i} \equiv 0$; if $Y=\theta X$ for some $X \in \mathfrak{n}_{F}$, then $\nu_{F}(Y)=0$, and Lemma 4.2 implies what we want. Let $r \geqslant 2$ and assume that the lemma has been proved for elements of degree $\leqslant r-1$. If $b \in \Im_{F} \mathfrak{\Omega}$, then $v_{F}(b)=b$ and we have (4.4) with $g_{i} \equiv \mathbf{0}$. So it is enough to consider the case $b \in \theta\left(\mathfrak{n}_{F}\right)(\mathbb{G}$. We may obviously assume that $b=\theta X \cdot \bar{b}$ where $X \in \mathfrak{1}_{F}$ and $\operatorname{deg}(\bar{b}) \leqslant r-1$. Note that $\boldsymbol{v}_{F}(b)=0$. By the induction hypothesis, we can find $\bar{\xi}_{j}, \bar{\zeta}, \in \Re, \bar{\eta}_{j} \in \mathfrak{M}_{1 F}, \bar{g}_{j} \in S_{0, F}$ such that the appropriate conditions on degrees are satisfied, and for all $m \in M_{1 F}^{\prime}$,

$$
\bar{b}=\nu_{F}(\bar{b})+\sum_{1 \leqslant j \leqslant s} \bar{g}_{j}(m) \bar{\xi}_{j}^{m-1} \bar{\eta}_{j} \bar{\xi}_{j} .
$$

Write $v_{F}(\bar{b})=\Sigma_{1 \leqslant k \leqslant q} u_{k} v_{k}$ where $u_{k} \in \mathbb{S}_{F}, \quad v_{k} \in \mathfrak{\Re}, \quad \operatorname{deg}\left(u_{k}\right)+\operatorname{deg}\left(v_{k}\right) \leqslant r-1$ for $1 \leqslant k \leqslant q$. Substituting for θX from Lemma 4.2 we find, after a simple calculation, the following result, valid for $m \in M_{1 F}^{\prime}$:

$$
\begin{aligned}
b=\sum_{1 \leqslant i \leqslant p} h_{i}(m)\left[Y_{i}, \bar{b}\right] & +\sum_{1 \leqslant i \leqslant p} \sum_{1 \leqslant k \leqslant q}\left(f_{i}(m) Y_{i}^{m-1} u_{k} v_{k s}+h_{i}(m) u_{k} v_{k} Y_{i}\right) \\
& +\sum_{1 \leqslant i \leqslant p} \sum_{1 \leqslant i \leqslant s} \bar{g}_{j}(m)\left\{f_{i}(m)\left(Y_{i} \bar{\xi}_{j}\right)^{m^{-1}} \bar{\eta}_{j} \bar{\zeta}_{j}+h_{i}(m) \bar{\xi}_{j}^{m^{-1}} \bar{\eta}_{j} \bar{\zeta}_{j} Y_{i}\right\} .
\end{aligned}
$$

Applying the induction hypothesis to [$\left.Y_{i}, \bar{b}\right]$ (which is permissible as $\operatorname{deg}\left(\left[Y_{i}, \bar{b}\right]\right) \leqslant r-1$), and substituting in the above expression for b, we obtain (4.4) without much difficulty. 17-722902 Acta mathematica 129. Imprimé le 5 Octobre 1972

Lemma 4．4．For $z \in 马, v_{F}(z)=d_{F}^{-1} \circ \mu_{F}(z) \circ d_{F}$ ．
Proof． $\boldsymbol{v}_{F}(z)$ is the unique element of $\mathfrak{S}_{F} \mathfrak{\Re}$ such that $z-\nu_{F}(z) \in \theta\left(\mathfrak{n}_{F}\right)(\mathfrak{G}$ ．On the other hand，$d_{F}^{-1} \circ \mu_{F}(z) \circ d_{F} \in \mathfrak{M}_{1 F} \subseteq \Im_{F} \mathfrak{R}$ ，while $z-d_{F}^{-1} \circ \mu_{F}(z) \circ d_{F} \in \theta\left(\mathfrak{n}_{F}\right)\left(\mathfrak{S n}_{F}\right.$ ，for $z \in 马$ ．This proves the lemma．

We choose and fix elements $v_{1}=1, v_{2}, \ldots, v_{r_{F}} \in 马_{F}$ such that

$$
\begin{equation*}
\left.3_{F}=\sum_{1 \leqslant i \leqslant r_{F}} \mu_{F}(3) v_{i} \quad \text { (direct sum }\right) \tag{4.5}
\end{equation*}
$$

Let $S_{0 . F}$ be as in Lemma 4．2．We denote by S_{F} the algebra generated（without 1）by functions of the form ηg（ $\eta \in \mathfrak{M}_{1 F}, g \in S_{\mathrm{O} . F}$ ）．The following is then the main result of this section．

Theorem 4．5．（i）Let $b \in(G)$ and let $g_{i}, \xi_{i}, \eta_{i}, \zeta_{i}$ be as in Lemma 4．3．Write $\boldsymbol{v}_{F}(b)=$ $\Sigma_{1 \leqslant j \leqslant r} \eta_{j} \xi_{j}\left(\eta_{,} \in \mathfrak{M}_{1 F}, \bar{\zeta}_{j} \in \mathfrak{\Re}\right)$ ．Then for arbitrary V, τ and $\varphi \in C^{\infty}(G: V: \tau)$ we have，for $m \in M_{1 F}^{\prime}$ ，

$$
\varphi(m ; b)=\sum_{1 \leqslant j \leqslant r} \varphi\left(m ; \eta_{j}\right) \tau_{2}\left(\bar{\zeta}_{3}\right)+\sum_{1 \leqslant i \leqslant s} g_{i}(m) \tau_{1}\left(\xi_{i}\right) \varphi\left(m ; \eta_{i}\right) \tau_{2}\left(\zeta_{i}\right) .
$$

（ii）Fix $v \in 马_{F}$ and let $z_{i}\left(1 \leqslant i \leqslant r_{F}\right)$ be the unique elements of 8 such that $v=\Sigma_{1 \leqslant i \leqslant r_{F}} v_{i} \mu_{F}\left(z_{i}\right)$ Then，there exist $\xi_{j}, \zeta, \in \mathfrak{\Re}, \eta_{j} \in \mathfrak{M}_{1 F}, g_{j} \in S_{F}(1 \leqslant j \leqslant q)$ with the following property：for arbitrary $V, \tau, \varphi \in C^{\infty}(G: V: \tau)$ ，and $m \in M_{1 F}^{\prime}$ ，

$$
\varphi\left(m ; v \circ d_{F}\right)=\sum_{1 \leqslant i \leqslant r_{F}} \varphi\left(m ; v_{i} \circ d_{F} \circ z_{i}\right)+\sum_{1 \leqslant j \leqslant q} g_{j}(m) \tau_{1}\left(\xi_{j}\right) \varphi\left(m ; \eta_{j} \circ d_{F}\right) \tau_{2}\left(\zeta_{j}\right) .
$$

Proof．If $\varphi \in C^{\infty}(G: V: \tau), \xi, \zeta \in \zeta \in \Re, \eta \in \mathscr{G}, x \in G$ ，then $\varphi\left(x ; \xi^{x^{-1}} \eta \zeta\right)=\tau_{1}(\xi) \varphi(x ; \eta) \tau_{2}(\zeta)$ ． （4．4）then leads at once to（i）．We shall now prove（ii）．By Lemmas 4.3 and 4.4 we can select $\xi_{i j}, \zeta_{i .} \in \mathfrak{\Re}, \eta_{i j} \in \mathfrak{M}_{1 F}, g_{i j} \in S_{0, F}$ such that for all $m \in M_{1 F}^{\prime}, 1 \leqslant i \leqslant r_{F}$ ，

$$
\begin{equation*}
z_{i}=d_{F}^{-1} \circ \mu_{F}\left(z_{i}\right) \circ d_{F}-\sum_{1 \leqslant j \leqslant s} g_{i j}(m) \xi_{i j}^{m-1} \eta_{i j} \zeta_{i j} \tag{4.6}
\end{equation*}
$$

so that，for arbitrary $V, \tau, \varphi \in C^{\infty}(G: V: \tau)$ ，and m, i as above，

$$
\varphi\left(m ; d_{F} \circ z_{i}\right)=\varphi\left(m ; \mu_{F}\left(z_{i}\right) \circ d_{F}\right)-d_{F}(m) \sum_{1 \leqslant j \leqslant s} g_{i j}(m) \tau_{1}\left(\xi_{i j}\right) \varphi\left(m ; \eta_{i j}\right) \tau_{2}\left(\zeta_{i j}\right)
$$

From this we calculate $\varphi\left(m ; v \circ d_{F}\right)$ to be

$$
\begin{equation*}
\sum_{1 \leqslant i \leqslant r_{F}} \varphi\left(m ; v_{i} \circ d_{F} \circ z_{i}\right)+\sum_{1 \leqslant i \leqslant r_{F}} \sum_{1 \leqslant j \leqslant s} \tau_{1}\left(\xi_{i j}\right) \varphi\left(m ; v_{i} \circ g_{i j} \circ \tilde{\eta}_{i j} \circ d_{F}\right) \tau_{2}\left(\zeta_{i j}\right) \tag{4.7}
\end{equation*}
$$

where $\tilde{\eta}_{i j}=d_{F} \circ \eta_{i j} \circ d_{F}^{-1}$ ．By the definition of S_{F} ，we can find $w_{k} \in \mathfrak{M}_{i F}, h_{i j k} \in S_{F}(1 \leqslant k \leqslant t)$ such that $v_{i} \circ g_{i j}=\Sigma_{1 \leqslant k \leqslant t} h_{i j k} \circ w_{k}$ for all i, j ．Substituting in（4．7）we get the required result；

Remarks 1．We note that，in（ii），$g_{j}, \xi_{j}, \eta_{j}, \zeta_{j}$ do not depend on V and τ ．This enables us to keep track of the way in which our subsequent estimates for φ vary with V and τ ．

2．The results of this section do not need the assumption rk $(G)=\mathrm{rk}(K)$ for their validity．

5．The differential equations for Ψ and certain initial estimates

We fix $F \subsetneq \Sigma$ ．We select a complex Hilbert space T of dimension r_{F} ，an orthonormal basis $\left\{e_{1}, \ldots, e_{r_{F}}\right\}$ of it，and identify endomorphisms of T with their matrices in this basis． Given V and $\tau=\left(\tau_{1}, \tau_{2}\right)$ as in $\S 4$ ，we define $\underline{V}=V \otimes T_{,} \underline{\tau}_{1}(k)=\tau_{1}(k) \otimes 1, \underline{\tau}_{2}(k)=\tau_{2}(k) \otimes 1$ $(k \in K) . \underline{V}$ is a Hilbert space in the usual way，and $\underline{\tau}=\left(\underline{\tau}_{1}, \underline{\tau}_{2}\right)$ is a unitary double representa－ tion of K in $\underline{V} \cdot \tau_{F}$ and $\underline{\tau}_{F}$ are the double representations of K_{F} obtained by restricting τ and $\underline{\tau}$ respectively to K_{F} ．

Given $v \in \mathcal{Z}_{F}$ ，there are unique $z_{v: 15} \in B$ such that

$$
\begin{equation*}
v v_{j}=\sum_{1 \leqslant i \leqslant r_{F}} \mu_{F}\left(z_{v: i j}\right) v_{i} \quad\left(1 \leqslant j \leqslant r_{F}\right) . \tag{5.1}
\end{equation*}
$$

For $\Lambda \in I_{c}^{*}$ let $\Gamma(\Lambda: v)$ be the endomorphism of T with matrix $\left(\mu_{\mathrm{g} / \mathrm{f}}\left(z_{v: j i}\right)(\Lambda)\right)_{1 \leqslant i, j \leqslant r_{F}}$ ；then $\Gamma(s \Lambda: v)=\Gamma(\Lambda: v)\left(s \in W\left(\mathbf{l}_{c}\right)\right)$ and $v \mapsto \Gamma(\Lambda: v)$ is a representation of $马_{F}$ in T ．It is known that $\Gamma(\Lambda: v)$ has the numbers $\mu_{\mathrm{m}_{1 F} / f}(v)(s \Lambda)\left(s \in W\left(l_{c}\right)\right)$ as its eigenvalues，and that it is semisimple if Λ is regular．Let $l_{c}^{*^{\prime}}$ be the set of all regular $\Lambda \in \mathfrak{l}_{c}^{*}$ ．Since $\mathfrak{a}_{F} \subseteq \beta_{F}$ ，it is then clear that for $\Lambda \in ⿺_{c}^{* \prime}$ and $H \in \mathfrak{a}_{F}, \Gamma(\Lambda: H)$ is semisimple with eigenvalues $(s \Lambda)(H)$ $\left(s \in W\left(\ell_{c}\right)\right)$ ．In fact，the following lemma is valid（cf．［7］§3，［8］Lemma 19）．

Lemma 5．1．Let \bar{P} be a positive system of roots of $\left(g_{c}, \mathfrak{l}_{c}\right)$ and \bar{P}_{F} the subset of \bar{P} vanishing on \mathfrak{a}_{F} ．Write $\varpi=\prod_{\alpha \in \bar{P}} H_{\alpha}, \varpi_{F}=\Pi_{\alpha \in \bar{P}_{F}} H_{\alpha}$ ．Let $s_{1}=1, s_{2}, \ldots, s_{r_{F}}$ be a complete system of representatives of $W\left(\mathfrak{l}_{c}\right) / W\left(\mathrm{l}_{c}\right)_{F}$ ．Let $u_{j}=\mu_{\mathrm{m}_{1^{\prime}} / \mathrm{I}}\left(v_{j}\right), 1 \leqslant j \leqslant r_{F}$ and let $e_{k}(\Lambda)$ be the element $\Sigma_{1 \leqslant j \leqslant r_{p}} u_{j}\left(s_{k}^{-1} \Lambda\right) e_{j}$ of T ．Then，if $\Lambda \in I_{c}^{*^{\prime}}$ ，the $e_{j}(\Lambda)$ form a basis of T ，and $\Gamma(\Lambda: v) e_{j}(\Lambda)=$ $\mu_{\mathrm{m}_{1 F} / \mathrm{l}}\left(s_{j}^{-1} \Lambda\right) e_{j}(\Lambda)\left(v \in 马_{F}, 1 \leqslant j \leqslant r_{F}\right)$ ．Moreover，there is an $r_{F} \times r_{F}$ matrix E with entries in the quotient field of $I\left(W\left(\mathfrak{l}_{c}\right)_{F}\right)$ having the following properties：（i）$\left(\varpi / \omega_{F}\right) E$ has entries in $I\left(W\left(\mathfrak{l}_{c}\right)_{F}\right)$（ii）for $\Lambda \in Y_{c}^{*,}, E\left(s_{k}^{-1} \Lambda\right)$ are the projections $T \rightarrow \mathbf{C} \cdot e_{k}(\Lambda)$ corresponding to the direct $\operatorname{sum} T=\Sigma_{1 \leqslant k \leqslant r_{F}} \mathbf{C} \cdot e_{k}(\Lambda)$ ．

Fix $v \in \bigotimes_{F}$ ．By Theorem 4.5 we can choose $\xi_{j k}^{v}, \zeta_{j k}^{v} \in \mathfrak{\Re}, \eta_{j k}^{v} \in \mathfrak{M}_{1 F}, g_{j k}^{v} \in \varliminf_{F}\left(1 \leqslant j \leqslant r_{F}\right.$, $1 \leqslant k \leqslant q$ ）such that for arbitrary $V, \tau, \varphi \in C^{\infty}(G: V: \tau)$ ，and $m \in M_{1 F}^{\prime}$ ，

$$
\begin{equation*}
\varphi\left(m ; v v_{j} \circ d_{F}\right)=\sum_{1 \leqslant i \leqslant r_{F}} \varphi\left(m ; v_{i} \circ d_{F} \circ z_{v: i j}\right)+\sum_{1 \leqslant k \leqslant q} g_{j k}^{v}(m) \tau_{1}\left(\xi_{j k}^{v}\right) \varphi\left(m ; \eta_{j k}^{v} \circ d_{F}\right) \tau_{2}\left(\zeta_{j k}^{v}\right) . \tag{5.2}
\end{equation*}
$$

We now define the differential operator D_{v}^{τ} on $C^{\infty}\left(M_{1 p}^{\prime}: \underline{V}\right)$ by setting，for all $\underline{f}=$ $\sum_{1 \leqslant j \leqslant r_{F}} f_{j} \otimes e_{j} \quad\left(f \in C^{\infty}\left(M_{1 F}^{\prime}: V\right)\right)$,

$$
\begin{equation*}
D_{v, \underline{v}}^{\tau} f=\sum_{1 \leqslant i \leqslant r_{F}} D_{v: i}^{\tau} f_{1} \otimes e_{i} \tag{5.3}
\end{equation*}
$$

where, for $f \in C^{\infty}\left(M_{1 F}^{\prime}: V\right)$ and $m \in M_{1 F}^{\prime}$,

$$
\left(D_{v: i}^{\tau} f\right)(m)=\sum_{1 \leqslant k \leqslant \varnothing} g_{i k}^{v}(m) \tau_{1}\left(\xi_{i k}^{v}\right) f\left(m ; \eta_{i k}^{v}\right) \tau_{2}\left(\zeta_{i k}^{v}\right) .
$$

The following lemma is then immediate.
Lemma 5.2. Let notation be as above. For $\varphi \in C^{\infty}(G: V: \tau)$ let

$$
\Phi(m)=\Sigma_{1 \leqslant j \leqslant r_{F}} \varphi\left(m ; v_{j} \circ d_{F}\right) \otimes e_{j}
$$

Assume that for some $\Lambda \in I_{c}^{*}, z \varphi=\mu_{\mathrm{g} / 1}(z)(\Lambda) \varphi$ for all $z \in 马_{3}$. Then, for $v \in \mathcal{Z}_{F}$ and $m \in M_{1 F}^{\prime}$,

$$
\begin{equation*}
\Phi(m ; v)=(1 \otimes \Gamma(\Lambda: v)) \Phi(m)+\Phi\left(m ; D_{v}^{\tau}\right) \tag{5.4}
\end{equation*}
$$

Moreover, let $\gamma \geqslant 0$ and let $\Psi=d_{F}^{\gamma} \Phi$. For $\eta \in \mathfrak{M}_{1 F}$ and $v \in ß_{F}$, let ' $\eta=d_{F}^{-\gamma} \circ \eta \circ d_{F}^{\gamma}, ' D_{v, \eta}^{\tau}=$ $d_{F}^{\gamma} \circ\left(' \eta D_{r_{v}}^{\tau}\right) \circ d_{F}^{-\gamma}$. Then, for $m \in M_{1 F}^{\prime}$,

$$
\begin{equation*}
\Psi(m ; v \eta)=\left(1 \otimes \Gamma\left(\Lambda:^{\prime} v\right)\right) \Psi^{\prime}(m ; \eta)+\Psi\left(m ;{ }^{\prime} D_{v, \eta}^{\tau}\right) \tag{5.5}
\end{equation*}
$$

If $m \in M_{1 F}^{+}, H \in \mathfrak{a}_{F}^{+}$, then $m \exp t H \in M_{1 F}^{+}$for $t \geqslant 0$; also ${ }^{\prime} H=H+\gamma \varrho(H) 1$. So Lemma 5.2 gives

Lemma 5.3. Let notation be as above. Fix $H \in \mathcal{a}_{F}^{+}, \eta \in \mathfrak{M}_{1 F}$. For $m \in M_{1 F}^{+}$let $F_{m}=F_{m, H, \eta}$ and $G_{m}=G_{m, H, \eta}$ be the functions on $[0, \infty)$ defined by

$$
\begin{equation*}
F_{m}(t)=\Psi(m \exp t H ; \eta), \quad\left(G_{m}(t)=\Psi^{\prime}\left(m \exp t H ; \quad ' D_{H, \eta}^{\tau}\right)\right. \tag{5.6}
\end{equation*}
$$

Then, on $(0, \infty)$

$$
\begin{equation*}
\frac{d F_{m}}{d t}=\{1 \otimes(\Gamma(\Lambda: H)+\gamma \varrho(H) 1)\} F_{m}+G_{m} \tag{5.7}
\end{equation*}
$$

Choose an orthonormal basis $\left\{X_{1}, \ldots, X_{a}\right\}$ of \mathcal{f}, Put

$$
\begin{equation*}
\Omega=1-\left(X_{1}^{2}+\ldots+X_{a}^{2}\right), \quad|\tau|=\left(1+\left\|\tau_{1}(\Omega)\right\|\right)\left(1+\left\|\tau_{2}(\Omega)\right\|\right) \tag{5.8}
\end{equation*}
$$

Lemma 5.4. Fix $v \in \mathcal{B}_{F}, \eta \in \mathfrak{M}_{1 F}$. Then there exist $r=r_{v, \eta} \geqslant 0, \omega_{k}=\omega_{k, v, \eta} \in \mathfrak{M}_{1 F}$ $\left(1 \leqslant k \leqslant q=q_{v, \eta}\right)$ such that for arbitrary V, τ, and $f \in C^{\infty}\left(M_{1 F}^{+} ; V\right)$, and all $m \in M_{1 F}^{+}$,

$$
\left\|\underline{f}\left(m ; \eta \circ D_{v}^{\tau}\right)\right\| \leqslant \gamma_{F}(m)\left(1-\gamma_{F}(m)\right)^{-r}|\tau|_{1 \leqslant k \leqslant q}^{r} \sum_{L} \| f\left(m ;\left(m ; \omega_{k}\right) \|\right.
$$

Proof. It is clear from the definition of $D_{v: i}^{\tau}$ and D_{v}^{τ} that for f, m as above,

$$
\left\|f\left(m ; \eta \circ D_{v}^{\tau}\right)\right\| \leqslant \sum_{1 \leqslant i \leqslant r_{F}} \sum_{1 \leqslant k \leqslant q}\left\|\tau_{1}\left(\xi_{i k}^{v}\right)\right\|\left\|\tau_{2}\left(\zeta_{i k}^{v}\right)\right\|\left\|f_{1}\left(m ; \eta \circ g_{i k}^{v} \circ \eta_{i k}^{v}\right)\right\| .
$$

Now we can select $\eta_{i k j}^{v} \in \mathbb{M}_{1 F}, g_{i k j}^{v} \in \mathcal{Z}_{F}$ such that $\eta{ }^{\circ} \mathrm{g}_{i k}^{v} \circ \eta_{i k}^{v}=\sum_{1 \leqslant j \leqslant t} g_{i k j}^{v} \circ \eta_{i k j}^{v}$ for all i, k. So we get

$$
\begin{equation*}
\left\|\underline{f}\left(m ; \eta \circ D_{v}^{\tau}\right)\right\| \leqslant \sum_{i, j, k}\left|g_{i k j}^{v}(m)\right|\left\|\tau_{1}\left(\xi_{i k}^{v}\right)\right\|\left\|\tau_{\mathbf{2}}\left(\zeta_{i k}^{v}\right)\right\|\left\|f\left(m ; \eta_{i k j}^{v}\right)\right\| \tag{*}
\end{equation*}
$$

Observe now that given any $g \in S_{F}$, there are constants $c(g)>0, q(g) \geqslant 0$ such that for all $m \in M_{1 F}^{+}$

$$
\begin{equation*}
|g(m)| \leqslant c(g) \gamma_{F}(m)\left(1-\gamma_{F}(m)\right)^{-q(g)} \tag{5.9}
\end{equation*}
$$

Indeed, this is immediate from Lemma 7 of [8] if $g=v \hbar$ for some $v \in \mathfrak{M}_{1 F}$ and some matrix coefficient h of c_{F}. On the other hand, we see from (4.3) that $b_{F}(m)=-\operatorname{Ad}(\theta(m))_{\mathfrak{n}_{F}}\left(1-c_{F}(m)\right)$, so that our claim is true for derivatives of matrix coefficients of b_{F} also. The estimate (5.9) now follows from the definition of S_{F}. Furthermore, we have the following elementary result from the representation theory of K : given $\xi \in \Omega$ of degree s, there is a constant $a(\xi)>0$ such that, for any finite dimensional unitary representation β of $K,\|\beta(\xi)\| \leqslant a(\xi)\|\beta(\Omega)\|^{s / 2}$. Using this and (5.9) in (*) we get the lemma.

Let $\|\cdot\|$ be a norm on \mathfrak{l}_{c}^{*}. Given $\Lambda \in \varliminf_{c}^{*}$ and τ, put

$$
\begin{align*}
& |\tau, \Lambda|=\left(1+\left\|\tau_{1}(\Omega)\right\|\right)\left(1+\left\|\tau_{2}(\Omega)\right\|\right)(1+\|\Lambda\|) \\
& \mathcal{E}(\Lambda: G: \tau)=\left\{\varphi: \varphi \in C^{\infty}(G: V: \tau), z \varphi=\mu_{\mathrm{g} / \mathrm{l}}(z)(\Lambda) \varphi \quad \text { for all } z \in ß\right\} \tag{5.10}
\end{align*}
$$

As usual, $L^{2}(G: V)$ is the Hilbert space of functions $f: G \rightarrow V$ with $\|f\|_{2}^{2}=\int_{G}\|f(x)\|^{2} d x<\infty$. Note that $\mathcal{E}(\Lambda: G: \tau) \cap L^{2}(G: V) \neq\{0\}$ if and only if $\Lambda \in \mathcal{L}_{l}^{\prime}$ [14]. Also it follows from Theorem 1 of [14] that if $f \in \mathcal{E}(\Lambda: G: \tau) \cap L^{2}(G: V)$, then $b f a \in L^{2}(G: V)$ for all $a, b \in \mathfrak{G}$.

Lemma 5.5. Let $r \geqslant 0 ; a, b \in \mathscr{F}$ such that $\operatorname{deg}(a)+\operatorname{deg}(b) \leqslant r$. Then $\exists a$ constant $C=C_{a, b}>0$ such that for arbitrary $\tau, \Lambda \in \mathcal{L}_{\mathfrak{l}}^{\prime}$, and $f \in \mathcal{E}(\Lambda: G: \tau) \cap L^{2}(G: V)$,

$$
\begin{equation*}
\|b f a\|_{2} \leqslant C|\tau, \Lambda|^{r}\|f\|_{2} \tag{5.11}
\end{equation*}
$$

Proof. Extend $\left\{X_{1}, \ldots, X_{a}\right\}$ to an orthonormal basis $\left\{X_{1}, \ldots, X_{n}\right\}$ for g, and let $q=-\left(X_{1}^{2}+\ldots+X_{n}^{2}\right), \omega=-\left(X_{1}^{2}+\ldots+X_{a}^{2}\right)+\left(X_{a+1}^{2}+\ldots+X_{n}^{2}\right)$. Then ω is the Casimir of $G, g=-\omega+2 \Omega-2$, and $\mu_{\mathfrak{g} / f}(\omega)(\Lambda)=\left\langle H_{\Lambda}, H_{\Lambda}\right\rangle-c$ for all $\Lambda \in \mathcal{L}_{1}^{\prime}, c$ being a constant. So we can select a $c_{0} \geqslant 1$ such that $2+\left|\mu_{\mathfrak{g} / f}(\omega)(\Lambda)\right| \leqslant c_{0}^{2}(1+\|\Lambda\|)^{2}$ for all $\Lambda \in \mathcal{L}_{\mathbf{I}}^{\prime}$. Now, if π is any unitary representation of G in a Hilbert space \mathscr{S}^{\prime} and ψ is a differentiable vector for $\pi,-\left(\pi\left(X_{i}\right)^{2} \psi, \psi\right)=\left\|\pi\left(X_{i}\right) \psi\right\|^{2} \geqslant 0 \quad(1 \leqslant i \leqslant n)$, so that $\left\|\pi\left(X_{i}\right) \psi\right\|^{2} \leqslant(\pi(q) \psi, \psi)$. We apply this to the case when $\mathfrak{S}=L^{2}(G: V), \pi$ is the right regular representation of G in \mathfrak{F}, and $\psi=f \in \mathcal{E}(\Lambda: G: \tau) \cap \mathscr{F}$; as $f=\alpha * f * \beta$ for suitable $\alpha, \beta \in C_{c}^{\infty}(G)$ by Theorem 1 of [14], f is surely differentiable for π. Thus, for $1 \leqslant i \leqslant n,\left\|X_{i} f\right\|_{2}^{2} \leqslant-(\omega f, f)-2(f, f)+2(\Omega f, f) \leqslant(2+$ $\left.\left|\mu_{\mathrm{g} / 1}(\omega)(\Lambda)\right|\right)\|f\|_{2}^{2}+2|(\Omega f, f)|$. But $|(\Omega f, f)|=\left|\int_{G}\left(f(x) \tau_{2}(\Omega), f(x)\right) d x\right| \leqslant\left\|\tau_{2}(\Omega)\right\|\|f\|_{2}^{2}$. So we get the estimate $\left\|X_{i} f\right\|_{2} \leqslant c_{0}|\tau, \Lambda|\|f\|_{2}$ from which we get $\|X f\|_{2} \leqslant n\|X\| c_{0}|\tau, \Lambda|\|f\|_{2}$
for all $X \in \mathfrak{g}$. A similar estimate holds for $\|f X\|_{2}$. We have thus proved the lemma when $\operatorname{deg}(a)+\operatorname{deg}(b) \leqslant 1$.

Assume the lemma for $r=m$. Let $a^{\prime}, b^{\prime} \in \mathfrak{F}$. with $\operatorname{deg}\left(a^{\prime}\right)+\operatorname{deg}\left(b^{\prime}\right) \leqslant m$. Let \mathfrak{G}_{1} (resp. $\left(5_{2}\right)$ be the subspace of (3_{5} of all elements of degree $\leqslant \operatorname{deg}\left(a^{\prime}\right)$ (resp. $\operatorname{deg}\left(b^{\prime}\right)$), and let $\left(a_{i}\right)_{1 \leqslant i \leqslant R}$ (resp. $\left.\left(b_{j}\right)_{1 \leqslant j \leqslant s}\right)$ be a basis of G_{1} (resp. \mathfrak{G}_{2}) such that the matrices $\left(\alpha_{i j}(k)\right)$ (resp. $\left.\beta_{i j}(k)\right)(k \in K)$ of the adjoint representation of K in \mathscr{G}_{1} (resp. $\left(\mathfrak{G G}_{2}\right)$ are unitary. Let U be a Hilbert space with an orthonormal basis $\left(u_{i j}\right)_{1 \leqslant i \leqslant R, 1 \leqslant j \leqslant s}$, and define the unitary double representation $\nu=\left(\nu_{1}, v_{2}\right)$ of K in U by setting $v_{1}(k) u_{p q}=\Sigma_{1 \leqslant i \leqslant R} \alpha_{p i}\left(k^{-1}\right) u_{i q}, u_{p q} \nu_{2}(k)=$ $\Sigma_{1 \leqslant j \leqslant s} \beta_{q j}(k) u_{p j}(k \in K, \quad 1 \leqslant p \leqslant R, \quad 1 \leqslant q \leqslant S)$. Given V, τ, f as above, let $\tilde{V}=V \otimes U$, $\tilde{\tau}=\tau \otimes \boldsymbol{v}$, and $F(x)=\Sigma_{1 \leqslant i \leqslant R, 1 \leqslant j \leqslant s}\left(\left(a_{i} ; x ; b_{j}\right) \otimes u_{i j}(x \in G)\right.$. It is easily seen that $F \in \mathcal{E}(\Lambda: G: \tilde{\tau}) \cap$ $L^{2}(G: \tilde{V})$. So by the earlier result, $\|X F\|_{2}+\|F X\|_{2} \leqslant c_{X}|\tilde{\tau}, \Lambda|\|F\|_{2}$ for $X \in \mathfrak{g}, c_{X}>0$ depending only on X. Thus, for $1 \leqslant i \leqslant R, 1 \leqslant j \leqslant S, X \in g$,

$$
\left\|X b_{j} f a_{i}\right\|_{2}+\left\|b_{j} f a_{i} X\right\|_{2} \leqslant c_{X}|\tilde{\tau}, \Lambda|_{1 \leqslant p \leqslant R, 1 \leqslant q \leqslant s}\left\|b_{q} f a_{p}\right\|_{2}
$$

We estimate the right side of this inequality by the induction hypothesis applied to $\left\|b_{q} f a_{p}\right\|_{2}$, and by the (easily proved) fact that for a suitable constant $c^{\prime}>0,|\tilde{\tau}, \Lambda| \leqslant c^{\prime}|\tau, \Lambda|$ for all Λ, τ. This gives the lemma for $r=m+1$.

From Lemma 5.5 and Theorem 3.3 we get
Lemma 5.6. Given $a, b \in\left(\mathcal{G}\right.$, there are constants $C=C_{a, b}>0$ and $r=r_{a, b} \geqslant 0$ such that for arbitrary $V, \tau, \Lambda, f \in \mathcal{E}(\Lambda: G: \tau) \cap L^{2}(G: V)$,

$$
\begin{equation*}
\left\|f\left(a_{t}^{*} x ; b\right)\right\| \leqslant C|\tau, \Lambda| r \Xi(x)\|f\|_{2} \quad(x \in G) \tag{5.12}
\end{equation*}
$$

Lemma 5.7. Given $\eta \in \mathbb{M}_{1 F}$, there are constants $C=C_{\eta}>0, r=r_{\eta} \geqslant 0$ such that for arbitrary $V, \tau, \Lambda, m \in M_{1 F}^{+}, \varphi \in \mathcal{E}(\Lambda: G: \tau) \cap L^{2}(G: V)$ and Φ as in Lemma 5.2,

$$
\begin{equation*}
\|\Phi(m ; \eta)\| \leqslant C|\tau, \Lambda|^{r} d_{F}(m) \Xi(m)\|\varphi\|_{2} \tag{5.13}
\end{equation*}
$$

Proof. Let $\left(\eta v_{j}\right)^{\prime}=d_{F}^{-1} \circ\left(\eta v_{j}\right) \circ d_{F}$. The lemma follows from Lemma 5.6 and the inequality

$$
\begin{equation*}
\|\Phi(m ; \eta)\| \leqslant d_{F}(m) \sum_{1 \leqslant j \leqslant r_{F}}\left\|\varphi\left(m ;\left(\eta v_{j}\right)^{\prime}\right)\right\| . \tag{5.14}
\end{equation*}
$$

Lemma 5.8. (i) There are constants $c_{1}>0, r_{1} \geqslant 0$ such that for all $m \in M_{1 F}^{+}, d_{F}(m) \Xi(m) \leqslant$ $c_{1} \Xi_{F}(m)\left(1+\sigma(m)^{r_{1}}\right.$; (ii) given $H \in_{\mathfrak{a}_{F}^{+}}^{+}$, there is a constant $c_{2}(H)>0$ such that $m \exp t H \in M_{1 F}^{+}$ for any $m \in M_{1 F}$ and $t \geqslant c_{2}(H) \sigma(m)$; (iii) given $H \in \mathfrak{a}_{F}^{+}, \gamma \geqslant 0,0<\varepsilon<1$, there are constants $a=a_{H, \gamma}, 0<a<1$, and $c(\varepsilon)=c_{H, \gamma}(\varepsilon)>0$, such that, for $m \in M_{1 F}^{+}$and $t \geqslant 0$,

$$
\begin{equation*}
d_{p}(m \exp t H)^{1+\gamma} \Xi(m \exp t H)^{1+\gamma-\varepsilon a} \leqslant c(\varepsilon) d_{F}(m)^{1+\gamma} \Xi(m)^{1+\gamma-\varepsilon} e^{\varepsilon t} . \tag{5.15}
\end{equation*}
$$

Proof. (i) and (iii) follow quickly from (2.1) and the relation $M_{1 F}^{+} \subseteq K_{F} C l\left(A^{+}\right) K_{F}$. For (ii) see [14], p. 69.

Lemma 5.9. Let $H \in \mathfrak{a}_{F}^{+}, \eta \in \mathfrak{M}_{1 F}$. Then we can select $r=r_{H, \eta} \geqslant 0, q=q_{H, \eta} \geqslant 1$ and $\omega_{s} \in \mathfrak{M}_{1_{F}}(1 \leqslant s \leqslant q)$ such that for arbitrary $V, \tau, \Lambda, \varphi \in \mathcal{E}(\Lambda: G: \tau)$, the functions F_{m} and G_{m} defined by (5.6) satisfy the following inequalities, for all $m \in M_{1 F}^{+}$and $t \geqslant 0$:

$$
\begin{align*}
& \left\|F_{m}(t)\right\| \leqslant d_{F}(m \exp t H)^{1+\gamma} \sum_{1 \leqslant s \leqslant q}\left\|\varphi\left(m \exp t H ; \omega_{s}\right)\right\| \\
& \left\|G_{m}(t)\right\| \leqslant \gamma_{F}(m)\left(1-\gamma_{F}(m \exp t H)\right)^{-\tau}|\tau|^{r} e^{-t \beta_{F}(H)} d_{F}(m \exp t H)^{1+\gamma} \sum_{1 \leqslant s \leqslant q}\left\|\varphi\left(m \exp t H ; \omega_{s}\right)\right\| . \tag{516}
\end{align*}
$$

Proof. Write $e_{t}=\exp t H$. Then (5.14) gives, for m, t as above,

$$
\left\|F_{m}(t)\right\| \leqslant d_{F}\left(m e_{t}\right)^{1+\gamma} \sum_{1 \leqslant j \leqslant r_{p}}\left\|\varphi\left(m e_{t} ;\left({ }^{\prime} \eta v_{j}\right)^{\prime}\right)\right\| .
$$

Further, $G_{m}(t)=d_{F}\left(m e_{t}\right)^{\nu} \Phi\left(m e_{t} ;{ }^{\prime} \eta D_{H}^{\tau}\right)$ can be estimated by Lemma 5.4. Write, in the notation of that lemma, $\bar{q}=q_{H,{ }^{\prime} \eta}, \bar{r}=r_{t, \cdot \eta}, \zeta_{k}=\omega_{k, H,{ }^{\prime} \eta}$; then $\left\|G_{m}(t)\right\|$ is majorized by

$$
\gamma_{F}\left(m e_{t}\right)\left(1-\gamma_{F}\left(m e_{t}\right)\right)^{-\bar{r}}|\tau|^{\bar{r}} d_{F}\left(m e_{t}\right)^{\nu} \sum_{1 \leqslant k \leqslant \bar{q}}\left\|\Phi\left(m e_{t} ; \zeta_{k}\right)\right\| ;
$$

as $\gamma_{F}\left(m e_{t}\right) \leqslant e^{-t \beta_{F}(H)} \gamma_{F}(m)$, we find from (5.14) that $\left\|G_{m}(t)\right\|$ is majorized by

$$
\gamma_{F}(m)\left(1-\gamma_{F}\left(m e_{t}\right)\right)^{-r}|\tau|^{r} e^{-t \beta_{F}(H)} d_{F}\left(m e_{t}\right)^{1+\gamma} \sum_{j, k}\left\|\varphi\left(m e_{t} ;\left(\zeta_{k} v_{j}\right)^{\prime}\right)\right\| .
$$

Our lemma follows at once from these estimates.
Remark. Except Lemmas 5.5 and 5.6 , the results of this section do not need the assumption $\mathrm{rk}(G)=\mathrm{rk}(K)$ for their validity.

6. A lemma on ordinary differential equations

In this \S, X is a finite dimensional Banach space with norm $\|\cdot\| ; \Gamma$ is a semisimple endomorphism of X with only real eigenvalues; $S=S(\Gamma)$ is the set of eigenvalues of Γ, and [S] is the number of elements of S; for $c \in S, X_{c}$ is the eigensubspace and E_{c} is the spectral projection, corresponding to c. We define

$$
\begin{equation*}
C=\max _{c \in S}\left\|E_{\mathrm{c}}\right\| \quad \alpha=\min \left(\frac{1}{2}, \min _{c \in S, c \neq 0}|c|\right) . \tag{6.1}
\end{equation*}
$$

Lemma 6.1. Let f and g be functions of class C^{1} defined on an interval of the form $(-h, \infty)(h>0)$, with values in X. Suppose that $d f / d t=\Gamma f+g$ on $(0, \infty)$, and that, for each ε with $0<\varepsilon<1$, there is a constant $C_{\varepsilon}>0$ for which

$$
\begin{equation*}
\|f(t)\| \leqslant C_{\varepsilon} e^{\varepsilon t},\|g(t)\| \leqslant C_{\varepsilon} e^{\varepsilon t-t} \quad(t \geqslant 0) \tag{6.2}
\end{equation*}
$$

Then $f_{\infty}=\lim _{t \rightarrow+\infty} f(t)$ exists, lies in X_{0}, and for all $t \geqslant 0,0<\varepsilon \leqslant \frac{1}{2}$

$$
\begin{equation*}
\left\|f_{\infty}\right\| \leqslant 3 C C_{s},\left\|f(t)-f_{\infty}\right\| \leqslant 3[S] C C_{8} e^{e t-\alpha t} \tag{6.3}
\end{equation*}
$$

Proof. For $c \in S$ put $f_{c}(t)=E_{c} f(t), g_{c}(t)=E_{c} g(t)$. Then $d f_{c} / d t=c f_{c}+g_{c}$ on $(0, \infty)$, and we have, for $t \geqslant 0$ and $0<\varepsilon<1$,

$$
\begin{equation*}
\left\|f_{c}(t)\right\| \leqslant C C_{\varepsilon} e^{\varepsilon t},\left\|g_{c}(t)\right\| \leqslant C C_{s} e^{\varepsilon t-t} \tag{6.4}
\end{equation*}
$$

We consider three cases.
Case 1: $c>0$. Then, for $0 \leqslant t<t^{\prime}$, we have

$$
e^{-c t^{\prime}} f_{c}\left(t^{\prime}\right)-e^{-c t} f_{c}(t)=e^{-c t} \int_{0}^{t^{\prime}-t} e^{-c u} g_{c}(t+u) d u
$$

Taking $\varepsilon<\min (c, 1)$ in (6.4) we find that $e^{-c t^{\prime}} f_{c}\left(t^{\prime}\right) \rightarrow 0$ as $t^{\prime} \rightarrow+\infty$ while

$$
\int_{0}^{\infty} e^{-c u}\left\|g_{c}(t+u)\right\| d u<\infty
$$

So $f_{c}(t)=-\int_{0}^{\infty} e^{-c u} g_{c}(t+u) d u$, from which we get, on using (6.4),

$$
\begin{equation*}
\left\|f_{c}(t)\right\| \leqslant(1+\alpha-\varepsilon)^{-1} C C_{\varepsilon} e^{\varepsilon t-t} \quad(c>0, t \geqslant 0) \tag{6.5}
\end{equation*}
$$

Case 2: $c<0$. We have, for $t \geqslant 0$,

$$
f_{\mathrm{c}}(t)=e^{c t} f_{c}(0)+\int_{0}^{t} e^{c u} g_{c}(t-u) d u
$$

From (6.4) we find that the integrand is majorized by $C C_{\varepsilon} e^{\varepsilon t-t} e^{c u t u-\varepsilon u}$ which is $\leqslant C C_{\varepsilon} e^{\epsilon t-t} e^{(1-\alpha) u}$, as $c \leqslant-\alpha$. We then find

$$
\begin{equation*}
\left\|f_{c}(t)\right\| \leqslant(1+1 /(1-\alpha)) C C_{\varepsilon} e^{\varepsilon t-\alpha t} \quad(c<0, t \geqslant 0) \tag{6.6}
\end{equation*}
$$

Case 3: $c=0$. Since $d f_{0} / d t=g_{0}$ and $\int_{0}^{\infty}\left\|g_{0}(u)\right\| d u<\infty$, we see that $f_{\infty}=\lim _{t \rightarrow+\infty} f_{0}(t)$ exists, lies in X_{0}, and, for $t \geqslant 0$,

$$
\begin{equation*}
f_{\infty}=f_{0}(t)+\int_{0}^{\infty} g_{0}(t+u) d u \tag{6.7}
\end{equation*}
$$

Taking $t=0$ in (6.7) and using (6.4) we find easily that

$$
\begin{equation*}
\left\|f_{\infty}\right\| \leqslant(1+1 /(1-\varepsilon)) C C_{\varepsilon} \tag{6.8}
\end{equation*}
$$

moreover, for $t \geqslant 0,(6.7)$ and (6.4) give

$$
\begin{equation*}
\left\|f_{0}(t)-f_{\infty}\right\| \leqslant(1-\varepsilon)^{-1} C C_{\varepsilon} e^{\varepsilon t-t} \quad(0<\varepsilon<1) . \tag{6.9}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\left\|f(t)-f_{\infty}\right\| \leqslant\left\|f_{0}(t)-f_{\infty}\right\|+\sum_{c e S, c \neq 0}\left\|f_{c}(t)\right\| . \tag{6.10}
\end{equation*}
$$

From (6.5), (6.6), (6.8)-(6.10), we see that $f(t) \rightarrow f_{\infty}$ as $t \rightarrow+\infty$, and that (6.3) is true for $t \geqslant 0,0<\varepsilon \leqslant \frac{1}{2}$.
7. The functions $\varphi_{j, \gamma}$ associated with a φ of type (Λ, τ, γ)

Let $\gamma>0$ and V, τ as in $\S \S 4,5$. A function $\varphi: G \rightarrow V$ is said to be of type (Λ, τ, γ) if $\varphi \in \mathcal{E}(\Lambda: G: \tau)$ and if, given $b \in \mathscr{G}, \varepsilon>0$, we can choose a constant $B_{\varepsilon}=B_{\varepsilon}(b: \varphi)>0$ such that

$$
\begin{equation*}
\|\varphi(x ; b)\| \leqslant B_{\varepsilon} \Xi(x)^{1+\gamma-\varepsilon} \quad(x \in G) \tag{7.1}
\end{equation*}
$$

Such φ lie in $L^{2}(G: V)$; conversely, it follows from the work of [14] that any $\varphi \in \mathcal{E}(\Lambda: G: \tau) \cap$ $L^{2}(G: V)$ is of type (Λ, τ, β) for some $\beta>0$. In this \S we shall make a close study of functions of type (Λ, τ, γ).

We recall the sets F_{j} and the parabolic subgroups $P_{j}=M_{j} A_{j} N_{j}$ defined in $\S 2$ $(1 \leqslant j \leqslant d)$. For any $\mu>0$ we put

$$
\begin{equation*}
A_{j}^{+}(\mu)=\left\{h: h \in A^{+}, \alpha_{j}(\log h)>\mu \varrho(\log h)\right\} \tag{7.2}
\end{equation*}
$$

for $1 \leqslant j \leqslant d$. Then $A_{j}^{+}(\mu) \subseteq A_{j}^{+}\left(\mu^{\prime}\right)$ if $0<\mu^{\prime} \leqslant \mu$, and $A+\subseteq \cup_{1 \leqslant j \leqslant d} A_{j}^{+}(\mu)$ for sufficiently small μ. To see the latter, let Q be the compact set $\left\{h: h \in C l A^{+},\|\log h\|=1\right\}$, and let $c_{1}=\inf _{h \in Q} \varrho(\log h), \quad c_{2}=\sup _{h \in Q} \varrho(\log h)$, and $c_{3}=\Sigma_{1 \leqslant i \leqslant d} \varrho\left(H_{i}\right)$; if $h \in A^{+}$, then $\log h=$ $\Sigma_{1 \leqslant j \leqslant d} \alpha_{j}(\log h) H_{j}$, so that for $h \in Q \cap A^{+}$one has $c_{1} \leqslant c_{3} \max _{1 \leqslant j \leqslant d} \alpha_{j}(\log h)$, proving that $\alpha_{f}(\log h)>\left(c_{1} / 2 c_{2} c_{3}\right) \varrho(\log h)$ for some j. In other words,

$$
\begin{equation*}
A^{+} \subseteq \bigcup_{1 \leqslant i \leqslant d} A_{j}^{+}(\mu) \quad\left(0<\mu<c_{1} / 2 c_{2} c_{3}\right) \tag{7.3}
\end{equation*}
$$

As mentioned in $\S 2$, we write $d_{j}=d_{F_{j}}, r_{j}=r_{F_{j}}$ etc.
Theorem 7.1. Let $\Lambda \in \mathcal{L}_{\mathfrak{l}}^{\prime}, \gamma>0, V, \tau$ as usual, and let φ be of type (Λ, τ, γ). Let $1 \leqslant j \leqslant d$. Then, for any $m \in M_{1 j}$

$$
\varphi_{j, \gamma}(m)=\lim _{t \rightarrow+\infty} d_{j}\left(m \exp t H_{j}\right)^{1+\gamma} \varphi\left(m \exp t H_{j}\right)
$$

exists. Moreover, we can write $\varphi_{j, \gamma}=\sum_{1 \leqslant i \leqslant r_{j}} \varphi_{j, \gamma, i}$ where $\varphi_{j, \gamma, i}(m a)=\varphi_{j, \gamma, i}(m)$ for $m \in M_{j}$, $a \in A_{j}$, and $\varphi_{j, \gamma, i} \mid M_{j}$ is of type $\left(s_{i} \Lambda \mid \ \cap \mathrm{~m}_{j}, \tau_{F_{j}}, \gamma\right)\left(^{1}\right)\left(1 \leqslant i \leqslant r_{j}\right)$; in particular,

$$
\mu_{F_{j}}(z)\left(d_{j}^{-\gamma} \varphi_{j, \gamma}\right)=\mu_{\mathfrak{g} / \mathrm{n}}(z)(\Lambda)\left(d_{j}^{-\gamma} \varphi_{j, \gamma}\right) \quad(z \in 马)
$$

$\varphi_{j, \gamma}=0$ if P_{j} is not cuspidal. If $\varphi_{j, \gamma} \neq 0$, we can find $s \in V\left(l_{c}\right)$ such that $(s \Lambda)\left(H_{j}\right)=-\gamma \varrho\left(H_{j}\right)$.
Proof. Define Ψ as in Lemma 5.2. For any $\eta \in M_{1 j}$ and $m \in M_{1 j}^{+}$, let F_{m} and G_{m} be as in Lemma 5.3, with $F=F_{j}$ and $H=H_{j}$. Then $d F_{m} / d t=A_{j} F_{m}+G_{m}$ on ($0, \infty$) where $A_{j}=1 \otimes\left(\Gamma\left(\Lambda: H_{j}\right)+\gamma \varrho\left(H_{j}\right) 1\right)$. We obtain easily from (5.15), (5.16) and (7.1) the following result (note that $\beta_{F_{j}}\left(H_{j}\right)=1$): if $Q \subseteq M_{1 j}^{+}$is a compact set and $0<\varepsilon<1$, there is a constant $C_{Q, \varepsilon}>0$ such that

$$
\begin{equation*}
\left\|F_{m}(t)\right\| \leqslant C_{Q, \varepsilon} e^{\varepsilon t}, \quad\left\|G_{m}(t)\right\| \leqslant C_{Q, \varepsilon} e^{\varepsilon t-t} \tag{7.4}
\end{equation*}
$$

for $m \in Q, t \geqslant 0$. Further, as $\Lambda \in \mathcal{L}_{\mathfrak{l}}^{\prime}, A_{j}$ is a semisimple endomorphism of V whose eigenvalues are the real numbers $(s \Lambda)\left(H_{j}\right)+\gamma \varrho\left(H_{j}\right)\left(s \in W\left(\varliminf_{c}\right)\right)$. Let $T_{0}=\left\{u: u \in T, \Gamma\left(\Lambda: H_{j}\right) u+\gamma \varrho\left(H_{j}\right) u=0\right\}$. Then, by Lemma 6.1, we can find $\Theta_{\eta}(m) \in V \otimes T_{0}$ such that $F_{m}(t)=\Psi\left(m \exp t H_{j} ; \eta\right) \rightarrow \Theta_{\eta}(m)$ as $t \rightarrow+\infty$, for each $m \in M_{1 j}^{+}, \eta \in \mathfrak{M}_{1 j}$. Moreover, using (7.4), we infer from that lemma the existence of a constant $\alpha>0$ such that, for any compact set $Q \subseteq M_{1 j}^{+}$and any $\varepsilon\left(0<\varepsilon \leqslant \frac{1}{2}\right)$, we have

$$
\begin{equation*}
\left\|\Psi\left(m \exp t H_{j} ; \eta\right)-\Theta_{\eta}(m)\right\| \leqslant D_{Q, \varepsilon} e^{\varepsilon t-\alpha t} \quad(t \geqslant 0, m \in Q) \tag{7.5}
\end{equation*}
$$

for suitable constants $D_{Q, \varepsilon}$. Let $\Psi_{t}(m)=\Psi\left(m \exp t H_{j}\right)$. Then the estimates (7.5) show that for any $\eta \in \mathfrak{M l}_{1 j}, \eta \Psi_{t}^{\prime} \rightarrow \Theta_{\eta}$ uniformly on compact subsets of $M_{1 j}^{+}$. Thus Θ_{1} is of class C^{∞} and $\Theta_{\eta}=\eta \Theta_{1}$ for $\eta \in \mathfrak{M}_{1 j}$.

Now $\Theta_{1}\left(m \exp t H_{j}\right)=\Theta_{1}(m)$ for $m \in M_{1 j}^{+}, t \geqslant 0$. On the other hand, given any compact set $Q \subseteq M_{1 j}$, there is $t_{0}>0$ such that $m \exp t H_{j} \in M_{1 j}^{+}$for $m \in Q, t \geqslant t_{0}$ (Lemma 5.8). It follows easily from this that we can extend Θ_{1} uniquely to a function $\Theta \in C^{\infty}\left(M_{1 j}: V \otimes T_{0}\right)$ such that $\Theta(m a)=\Theta(m)$ for all $m \in M_{1 j}, a \in A_{j}$. Obviously

$$
\begin{equation*}
\Theta(m ; \eta)=\lim _{t \rightarrow+\infty} \Psi\left(m \exp t H_{j} ; \eta\right) \quad\left(m \in M_{1 j}, \eta \in \mathbb{M}_{1 j}\right) . \tag{7.6}
\end{equation*}
$$

From (7.6) we see that Θ is $\tau_{F_{j}}$-spherical. Suppose $\Theta \neq 0$. Since the values of Θ are in $V \otimes T_{0}$, we have $T_{0} \neq\{0\}$. So, for some $s \in W\left(I_{c}\right),(s \Lambda)\left(H_{j}\right)+\gamma \varrho\left(H_{j}\right)=0$. Let $v \in \beta_{j}, m \in M_{1 j}$. Then we get from (5.5) (with $\eta=1$), for all sufficiently large t,

$$
\begin{equation*}
\Psi\left(m \exp t H_{j} ; v\right)=\left(1 \otimes \Gamma\left(\Lambda:^{\prime} v\right)\right) \Psi^{\prime}\left(m \exp t H_{j}\right)+\Psi\left(m \exp t H j ; d_{j}^{\gamma} \circ D_{v}^{\tau} \circ d_{j}^{-\gamma}\right) . \tag{7.7}
\end{equation*}
$$

(1) The s_{i} are as in Lemma 5.1 with $F=F_{j}$. Also M_{j}, is in general neither connected nor semisimple, and we should remember the remarks made in § 2 .

A simple argument based on Lemma 5.4 shows that the second term on the right of (7.7) tends to 0 as $t \rightarrow+\infty$. Changing v to $d_{j}^{\gamma} \circ v \circ d_{i}^{-v}$, we get from (7.6) and (7.7),

$$
\begin{equation*}
v\left(d_{j}^{-\gamma} \Theta\right)=(1 \otimes \Gamma(\Lambda: v))\left(d_{j}^{-\gamma} \Theta\right) \quad\left(v \in \partial_{j}\right) \tag{7.8}
\end{equation*}
$$

Observe that, if $v=\mu_{F_{g}}(z)(z \in 马)$, then $z_{v: r s}=\delta_{r s} z$ in (5.1), so that $\Gamma\left(\Lambda: \mu_{F_{j}}(z)\right)=\mu_{\mathfrak{G} / \Lambda}(z)(\Lambda) \cdot 1$. (7.8) then gives

$$
\begin{equation*}
\mu_{F_{j}}(z)\left(d_{j}^{-\gamma} \Theta\right)=\mu_{\Theta / l}(z)\left(d_{j}^{-\gamma} \Theta\right) \quad(z \in 马) . \tag{7.9}
\end{equation*}
$$

Let $E\left(s_{k}^{-1} \Lambda\right)$ be as in Lemma 5.1, and let $\Theta_{k}=\left(1 \otimes E\left(s_{k}^{-1} \Lambda\right)\right) \Theta$. Then $\Theta=\sum_{1 \leqslant k \leqslant r_{j}} \Theta_{k}$; moreover, from (7.8) we have

$$
\begin{equation*}
v\left(d_{j}^{-\gamma} \Theta_{k}\right)=\mu_{\mathfrak{m}_{1 / j} / 2}(v)\left(s_{k}^{-1} \Lambda\right)\left(d_{j}^{-\gamma} \Theta_{k}\right) \quad\left(v \in Z_{j}, l \leqslant k \leqslant r_{j}\right) . \tag{7.10}
\end{equation*}
$$

We shall now estimate Θ. Fix $\eta \in \mathfrak{M}_{1 j}$. Let E_{0} be the spectral projection $V \rightarrow V \otimes T_{0}$: Then from (5.6), (5.7), and (6.7) (with $t=1$) we have, for all $m \in M_{1 j}^{+}$,

$$
\begin{equation*}
\Theta(m ; \eta)=E_{0} F_{m}(1)+\int_{1}^{\infty} E_{0} G_{m}(u) d u \tag{7.11}
\end{equation*}
$$

Estimating the right side of (7.11) using (5.16), we easily obtain the following result: let $\omega_{k}(1 \leqslant k \leqslant q)$ be as in Lemma 5.9; then there is a constant $C>0$ such that for all $m \in M_{1 j}^{+}$,

$$
\begin{aligned}
\|\Theta(m ; \eta)\| \leqslant & C d_{j}\left(m \exp H_{j}\right)^{1+\gamma} \sum_{1 \leqslant k \leqslant q}\left\|\varphi\left(m \exp H_{j} ; \omega_{k}\right)\right\| \\
& +C \sum_{1 \leqslant k \leqslant q} \int_{1}^{\infty} e^{-u} d_{j}\left(m \exp u H_{j}\right)^{1+\gamma}\left\|\varphi\left(m \exp u H_{j} ; \omega_{k}\right)\right\| d u .
\end{aligned}
$$

If we now use (5.15) and (7.1) to estimate the right side of this inequality, we get the following result: given δ with $0<\delta<1$, there is a constant $A_{\eta, \delta}>0$ such that

$$
\begin{equation*}
\left\|\Theta\left(m^{+} ; \eta\right)\right\| \leqslant A_{\eta, \delta} d_{j}\left(m^{+}\right)^{1+\gamma} \Xi\left(m^{+}\right)^{1+\gamma-\delta} \quad\left(m^{+} \in M_{1 j}^{+}\right) . \tag{7.12}
\end{equation*}
$$

On the other hand, if c_{1} and $c_{2}=c_{2}\left(H_{j}\right)$ are as in (i) and (ii) of Lemma 5.8, then, for any $m \in M_{j}, m^{+}=m \exp c_{2} \sigma(m) H_{j} \in M_{1}^{+}{ }_{j}$ and $\Theta(m ; \eta)=\Theta\left(m^{+} ; \eta\right)$; so, from (7.12) we get, for all $m \in M_{j}$, writing $A_{\eta, \delta}^{\prime}=A_{\eta, \delta} c_{1}^{1+\gamma}$ and $r_{2}=r_{1}(1+\gamma)$,

$$
\begin{equation*}
\| \Theta m ; \eta) \| \leqslant A_{\eta, \delta}^{\prime} \Xi_{j}\left(m^{+}\right)^{1+\gamma-\delta}\left(1+\sigma\left(m^{+}\right)\right)^{r_{2}} d_{j}\left(m^{+}\right)^{\delta} . \tag{*}
\end{equation*}
$$

But $\Xi_{j}\left(m^{+}\right)=\Xi_{j}(m), d_{j}\left(m^{+}\right)=e^{c_{2}^{\prime} \sigma(m)}\left(c_{2}^{\prime}=c_{2} \varrho\left(H_{j}\right)\right)$, and there are constants $c_{3}>0, c_{4}>0$, such that $\Xi_{j}(m) \leqslant c_{3} e^{-c_{4} \sigma(m)},\left(1+\sigma\left(m^{+}\right)\right) \leqslant c_{3}(1+\sigma(m))^{2}\left(m \in M_{j}\right)$. Let $0<\varepsilon<1$. Then, writing $A_{\eta, \varepsilon, \delta}=c_{3}^{\varepsilon / 2+r_{3}} A_{\eta, \delta}^{\prime}$, we get from (*), for all $m \in M_{j}$ and $0<\delta<\varepsilon / 2$,

$$
\|\Theta(m ; \eta)\| \leqslant A_{\eta, \varepsilon, \delta} \Xi_{j}(m)^{1+\gamma-\varepsilon}\left\{e^{-(\beta / 2) c_{4} \sigma(m)}(1+\sigma(m))^{2 r_{1}} e^{\delta c_{2} \sigma(m)}\right\}
$$

It is clear that there is a $\delta=\delta(\varepsilon)$ with $0<\delta<\varepsilon / 2$, such that the supremum of the expression within $\{\ldots\}$, as m varies in M_{y}, is finite. Choosing $\delta=\delta(\varepsilon)$, we find the following: given $\varepsilon, 0<\varepsilon<1$, there is $B_{\eta, \varepsilon}>0$ such that

$$
\begin{equation*}
\|\Theta(m ; \eta)\| \leqslant B_{\eta, \varepsilon} \Xi_{j}(m)^{1+\gamma-\varepsilon} \quad\left(m \in M_{j}\right) . \tag{7.13}
\end{equation*}
$$

Let $\Theta(m)=\Sigma_{1 \leqslant s \leqslant r_{j}} \theta_{s}(m) \otimes e_{s}, \Theta_{i}(m)=\Sigma_{1 \leqslant s \leqslant r_{j}} \theta_{i . s}(m) \otimes e_{s}\left(m \in M_{1 j}\right)$, and put $\varphi_{j, \gamma}=\theta_{1}$, $\varphi_{j . \gamma, i}=\theta_{i .1}\left(l \leqslant i \leqslant r_{j}\right)$. Then it is obvious that $d_{j}\left(m \exp t H_{j}\right)^{1+\gamma} \varphi(m \exp t H j) \rightarrow \varphi_{\text {ر. }}(m)$ as $t \rightarrow+\infty$, for each $m \in M_{1 j}$. From the properties of Θ and Θ_{1} it is moreover immediate that $\varphi_{j, \gamma, i}(m a)=\varphi_{j, \gamma, i}(m)$ for $m \in M_{j}, a \in A_{j}$, that $\varphi_{j, \gamma}=\Sigma_{1 \leqslant i \leqslant r_{j}} \varphi_{j, \gamma, i}$, and that the $\varphi_{j, \gamma, i}$ are $\tau_{F_{j}}$-spherical. If we remember that $d_{j}=1$ on M_{j}, we may conclude from (7.10) and (7.13) that $\varphi_{j, \gamma, i} \mid M_{j}$ is of type $\left(s_{i} \Lambda \mid \mathfrak{m}_{j} \cap \mathfrak{l}, \tau_{F_{j}}, \gamma\right)\left(1 \leqslant i \leqslant r_{j}\right)$. Finally (7.9) leads to the required differential equations for $d_{j}^{-\gamma} \varphi_{j, \gamma}$.

Now, if P_{j} is not cuspidal, M_{j} cannot admit any nonzero eigenfunction (for the center of \mathbb{M}_{j}) in $L^{2}\left(M_{j}\right)$. So, in this case, we must have $\varphi_{j, \gamma, i}=0$ for $1 \leqslant i \leqslant r_{j}$, proving that $\varphi_{j, \gamma}=0$. If $\varphi_{\text {f. } \gamma} \neq 0$, then $\Theta \neq 0$ and so, as we saw earlier, $\left(s(\Lambda)\left(H_{j}\right)+\gamma \varrho\left(H_{j}\right)=0\right.$ for some $s \in W\left(\mathfrak{l}_{c}\right)$. This completes the proof of the theorem.

We now turn to the problem of obtaining estimates for $\varphi-\varphi_{j, \gamma}$. With later applications in mind we shall formulate the estimates so as to take into account the variation of τ and Λ.

Lemma 7.2. Fix $j(1 \leqslant j \leqslant d)$. Then (i) $\left\{\Lambda\left(H_{j}\right): \Lambda \in \mathcal{L}_{\mathfrak{l}}\right\}=\mathcal{D}_{i}$ is a discrete additive subgroup of \mathbf{R} (ii) there are constants $C_{0}>0, q_{0} \geqslant 0$ with the following property: if $E\left(s_{k}^{-3} \Lambda\right)$ are as in Lemma 5.1,

$$
\begin{equation*}
\sum_{1 \leqslant k \leqslant r_{j}}\left\|E\left(s_{k}^{-1} \Lambda\right)\right\| \leqslant C_{0}(1+\|\Lambda\|)^{q_{0}} \quad\left(\forall \Lambda \in \mathcal{L}_{1}^{\prime}\right) \tag{7.14}
\end{equation*}
$$

Proof. If $\Lambda \in \mathcal{L}_{\mathfrak{l}}, \Lambda$ is a linear combination with rational coefficients of the roots of $\left(g_{c}, \mathfrak{l}_{c}\right)$. Hence $\Lambda \mid \mathfrak{a}$ is a linear combination with rational coefficients of $\alpha_{1}, \ldots, \alpha_{d}$, proving that $\Lambda\left(H_{j}\right)$ is rational. As \mathcal{L}_{1} is finitely generated, we may conclude that \mathcal{D}_{j} is a finitely generated subgroup of the rationals. Hence D_{j} is discrete. To prove (ii) observe that $\left(w^{\sigma} / w_{F_{j}}\right) E$ has polynomial entries (Lemma 5.1), and so there are constants $C_{1}>0, q_{0} \geqslant 0$ such that

$$
\left|\varpi(\Lambda) / w_{F j}(\Lambda)\right|\|E(\Lambda)\| \leqslant C_{1}(1+\|\Lambda\|)^{q_{0}} \quad\left(\Lambda \in l_{c}^{*}\right) .
$$

On the other hand, there is a constant $c_{1}>0$ such that $|\langle\Lambda, \beta\rangle| \geqslant c_{1}>0$ for all roots β of (g_{c}, \mathfrak{l}_{c}) and all regular $\Lambda \in \mathcal{L}_{\mathrm{I}}$, and so there is a constant $c_{2}>0$ such that $\left|\varpi(\Lambda) / \varpi_{F_{j}}(\Lambda)\right| \geqslant$ $c_{2}>0$ for all $\Lambda \in \mathcal{L}_{1}^{\prime}$. This leads to (ii).

Theorem 7.3. (i) Let $\gamma>0$. Given any $\varepsilon>0$, and $a, b \in \mathbb{S}$, there are constants $D_{\varepsilon}=D_{\varepsilon, a, b, \gamma}>0$, and $q_{\varepsilon}=q_{\varepsilon, a, b, \gamma} \geqslant 0$, such that, for arbitrary V, τ, and φ of type (Λ, τ, γ), we have

$$
\begin{equation*}
\|\varphi(a ; x ; b)\| \leqslant D_{\varepsilon}|\tau, \Lambda|^{q_{\varepsilon}}\|\varphi\|_{2} \Xi(x)^{1+\gamma-\varepsilon} \quad(x \in G) \tag{7.15}
\end{equation*}
$$

(ii) Let $\gamma>0$. Then there exists $\beta_{0}=\beta_{0}(\gamma)>0$ with the following property: given any μ with $0<\mu<1$, we can select constants $L_{\mu, \gamma}>0$ and $p_{\mu, \gamma} \geqslant 0$ such that for $1 \leqslant j \leqslant d, h \in A_{j}^{+}(\mu)$, and for arbitrary V, τ, and φ of type (Λ, τ, γ), one has the following estimate

$$
\begin{equation*}
\left\|\varphi(h)-d_{j}(h)^{-(1+\gamma)} \varphi_{j, \gamma}(h)\right\| \leqslant L_{\mu, \gamma}|\tau, \Lambda|^{p_{\mu, \gamma}}\|\varphi\|_{2} \Xi(h)^{1+\gamma+\beta_{0} \mu} . \tag{7.16}
\end{equation*}
$$

Proof. We note first that it is enough to prove (i) with $a=b=1$. Suppose in fact that this has been done. Let $q_{\varepsilon}^{\prime} \geqslant 0$ and $D_{\varepsilon}^{\prime}>0$ be such that for arbitrary V, τ, Λ, and f of type (Λ, τ, γ),

$$
\|f(x)\| \leqslant D_{\varepsilon}^{\prime}|\tau, \Lambda|^{q_{\varepsilon}^{\prime}}\|f\|_{2} \Xi(x)^{1+\gamma-\varepsilon} \quad(x \in G)
$$

Let $a, b \in(\mathcal{F}$, and $\operatorname{deg}(a)+\operatorname{deg}(b) \leqslant p$. Given f of type (Λ, τ, γ), we define F as in Lemma 5.5 and use the notation therein (with $a=a^{\prime}, b=b^{\prime}, p=m$). Since F is of type ($\Lambda, \tilde{\tau}, \gamma$), we have, for each $\varepsilon>0$,

$$
\|F(x)\| \leqslant D_{\varepsilon}^{\prime}|\tilde{\tau}, \Lambda|^{q_{\varepsilon}^{\prime}}\|F\|_{2} \Xi(x)^{1+\gamma-\varepsilon} \quad(x \in G) .
$$

Let $a=\Sigma_{1 \leqslant i \leqslant R} c_{i} a_{i}, \quad b=\Sigma_{1 \leqslant j \leqslant S} d_{j} b_{j}\left(c_{i}, d_{j} \in \mathbb{C}\right)$ and let $Q=\left(\Sigma\left|c_{i} d_{j}\right|^{2}\right)^{\frac{1}{2}}$. Then $\left\|f\left(a_{i} x ; b\right)\right\| \leqslant$ $Q\|F(x)\|$, and so, for $x \in G$ and $\varepsilon>0$,

$$
\left\|f\left(a_{\mathrm{e}}^{*} x ; b\right)\right\| \leqslant Q D_{\varepsilon}^{\prime}|\tilde{\tau}, \Lambda|^{q_{\varepsilon}^{\prime}} \Xi(x)^{1+\gamma-\varepsilon}\left(\sum_{i, j}\left\|b_{j} f a_{i}\right\|_{2}^{2}\right)^{\frac{1}{2}} .
$$

This gives (7.15) in view of (5.11) and the fact that $|\tilde{\tau}, \Lambda| \leqslant c|\tau, \Lambda|$ for some constant $c>0$ independent of τ and Λ.

It is convenient to prove (i) and (ii) together. We begin by choosing a number $\gamma_{0}, 0 \leqslant \gamma_{0} \leqslant \gamma$, with the following property: given $b \in \mathbb{S}$ and $\varepsilon>0$, there are constants $L(b: \varepsilon)>0$ and $p(b ; \varepsilon) \geqslant 0$ such that for arbitrary Λ, τ, and φ of type (Λ, τ, γ), and each $\varepsilon>0$,

$$
\begin{equation*}
\|p(x ; b)\| \leqslant L(b: \varepsilon)|\tau, \Lambda|^{p(b: \varepsilon)}\|p\|_{2} \Xi(x)^{1+\gamma_{u}-\varepsilon} \quad(x \in G) \tag{7.17}
\end{equation*}
$$

It is clear from Lemma 5.6 that such numbers γ_{0} exist; for example, 0 . We now proceed as in the proof of Theorem 7.1. Let $\mathrm{l} \leqslant j \leqslant d$, Φ, as in Lemma 5.2, and $\Psi^{\mu_{0}}=d_{j}^{\gamma_{0}} \Phi$. For $v \in \mathcal{Z}_{j}$, put $\hat{v}=d_{j}^{-\gamma_{0}} \circ v \circ d_{j}^{\gamma_{0}}$. Define, for $m \in M_{1 j}^{+}$, the functions F_{m}^{0} and G_{m}^{0} on $(0, \infty)$ by

$$
F_{m}^{0}(t)=\Psi^{0}\left(m \exp t H_{j}\right), \quad G_{m}^{0}(t)=\Psi^{0}\left(m \exp t H_{j} ; d j_{j}^{\gamma_{\rho}} \circ D_{\hat{H}_{j, 1}}^{\tau} \circ d_{j}^{-\gamma_{0}}\right)
$$

Let $A_{j . \Lambda}=1 \otimes\left(\Gamma\left(\Lambda: H_{j}\right)+\gamma_{0} \varrho\left(H_{j}\right) 1\right)$. Then, we have, on $(0, \infty)$

$$
\frac{d F_{m}^{0}}{d t}=A_{j, \Lambda} F_{m}^{0}+G_{m}^{0}
$$

Arguing as in Theorem 7.1 we conclude that $\Theta^{0}(m)=\lim _{t \rightarrow+\infty} \Psi^{\circ 0}\left(m \exp t H_{j}\right)$ exists for each $m \in M_{1 j}$. Write $\Theta^{0}(m)=\Sigma_{1 \leqslant k \leqslant r_{j}} \theta_{k}^{0}(m) \otimes e_{k}$, and put $\varphi_{j, \gamma_{\mathrm{o}}}=\theta_{1}^{0}$.

We shall now estimate $\Psi^{0}-\Theta^{0}$ using (6.3) (with $A_{j, \Lambda}$ instead of Γ). To this end we shall find bounds for the constants $C, C_{\varepsilon}, \alpha$ defined in (6.1) and (6.2).

Let $S_{j, \Lambda}$ be the set of eigenvalues of $A_{j, \Lambda}$, and, for $c \in S_{j, \Lambda}$, let $E_{c, j, \Lambda}$ be the corresponding spectral projection. Then it follows from Lemmas 5.1 and 7.2 that $\mathcal{S}_{j, \Lambda} \subseteq \mathcal{D}_{\mathbf{j}}+$ $\gamma_{0} \varrho\left(H_{j}\right)$ and that for any $c \in S_{j, \Lambda}$

$$
\begin{equation*}
E_{c, j, \Lambda}=1 \otimes \sum_{k:\left(s_{k}^{-1} \Lambda+\gamma_{0} Q\right)\left(I_{j}\right)-c} E\left(s_{k}^{-1} \Lambda\right) \quad\left(\Lambda \in \mathcal{L}_{\mathfrak{l}}^{\prime}\right) . \tag{7.18}
\end{equation*}
$$

Since $U_{1 \leqslant j \leqslant d}\left(\mathcal{D}_{j}+\gamma_{0} \varrho\left(H_{j}\right)\right)$ is a discrete subset of \mathbf{R}, we can select $\alpha_{0}=\alpha_{0}\left(\gamma_{0}\right)$ such that (i) $0<\alpha_{0} \leqslant \frac{1}{2}$ (ii) if $c \neq 0$ and $c \in U_{1 \leqslant j \leqslant d}\left(\mathcal{D}_{j}+\gamma_{0} \varrho\left(H_{j}\right)\right)$, then $|c|>\alpha_{0}$. With this choice of α_{0}, we have

$$
\begin{equation*}
c \in S_{j, \Lambda}, c \neq 0 \Rightarrow|c|>\alpha_{0} \quad\left(\Lambda \in \mathcal{L}_{l}^{\prime}, 1 \leqslant j \leqslant d\right) \tag{7.19}
\end{equation*}
$$

Moreover, from (7.14) and (7.18), there are constants $C_{1}>0, q_{1} \geqslant 0$, such that

$$
\begin{equation*}
\left\|E_{c, j, \Lambda}\right\| \leqslant C_{\mathbf{1}}\left(\mathbf{1}+\|\Lambda\|^{q_{1}} \quad\left(\Lambda \in \mathcal{L}_{\mathfrak{l}}^{\prime}, \mathbf{1} \leqslant j \leqslant d, c \in S_{j, \Lambda}\right)\right. \tag{7.20}
\end{equation*}
$$

Also $\left[S_{j, \Lambda}\right] \leqslant r_{j}$.
It remains to determine bounds for the C_{e}. We use Lemma 5.9 with $H=H_{j}$, with F_{j} instead of F, and F_{m}^{0}, G_{m}^{0} and γ_{0} instead of F_{m}, G_{m} and γ. Let $q, r, \omega_{s}(1 \leqslant s \leqslant q)$ be as in that lemma; moreover, let $a_{0}=a_{H_{j}, \gamma_{0}}$ and $c_{0}(\varepsilon)=c_{H_{j}, \gamma_{0}}(\varepsilon)(0<\varepsilon<1)$ be the constants satisfying (5.15). Then (5.15), (5.16), and (7.17) give us the estimates

$$
\begin{equation*}
\left\|F_{m}^{0}(t)\right\| \leqslant C_{\varepsilon} e^{\varepsilon t}, \quad\left\|G_{m}^{0}(t)\right\| \leqslant C_{z} e^{\varepsilon t-t} \tag{7.21}
\end{equation*}
$$

for all $m \in M_{1 j}^{+}, t \geqslant 0,0<\varepsilon<1$, where $C_{\varepsilon}=C_{\varepsilon, m, j, \Lambda, \tau}$ is defined as follows, with $p_{\varepsilon}^{\prime}=r+$ $\max _{1 \leqslant s \leqslant q} p\left(\omega_{s}: \varepsilon \alpha_{0}\right):$

$$
\begin{equation*}
C_{\varepsilon}=c_{0}(\varepsilon)|\tau, \Lambda|^{p_{\varepsilon}^{*}}\left(\sum_{1 \leqslant s \leqslant q} L\left(\omega_{s}: \varepsilon a_{0}\right)\right)\left(1-\gamma_{j}(m)\right)^{-p_{\varepsilon}^{\prime}} d_{j}(m)^{1+\gamma_{0}} \Xi(m)^{1+\gamma_{0}-\varepsilon}\|\varphi\|_{2} \tag{7.22}
\end{equation*}
$$

We now observe that for any $m^{\prime} \in M_{1 j},\left\|\varphi_{j, \gamma_{0}}\left(m^{\prime}\right)\right\| \leqslant\left\|\Theta^{0}\left(m^{\prime}\right)\right\|$ and

$$
\left\|\varphi\left(m^{\prime}\right)-d_{j}\left(m^{\prime}\right)^{-\left(1+\gamma_{0}\right)} \varphi_{j, \gamma_{0}}\left(m^{\prime}\right)\right\| \leqslant d_{j}\left(m^{\prime}\right)^{-\left(1+\gamma_{0}\right)}\left\|\Psi^{0}\left(m^{\prime}\right)-\Theta^{0}\left(m^{\prime}\right)\right\|
$$

Define $p^{\prime \prime}(\varepsilon)=p_{s}^{\prime}+q_{1}$, where p_{ε}^{\prime} is as above and q_{1} is as in (7.20). Put

$$
\begin{equation*}
K(\varepsilon)=3 C_{1} c_{0}(\varepsilon) r_{j}\left(\sum_{1 \leqslant s \leqslant q} L\left(\omega_{s}: \varepsilon a_{0}\right)\right) \tag{7.23}
\end{equation*}
$$

where C_{1} is as in (7.20). From Lemma 6.1 we then get the following estimate (α_{0} is as in (7.19)): for arbitrary Λ, τ, φ of type ($\Lambda, \tau, \gamma), m \in M_{1 j}^{+}, t \geqslant 0$, and $0<\varepsilon<\frac{1}{2} \alpha_{0}$,

$$
\begin{align*}
\| \varphi\left(m \exp t H_{j}\right) & -d_{j}\left(m \exp t H_{j}\right)^{-\left(1+\gamma_{0}\right)} \varphi_{j_{.} \gamma_{0}}\left(m \exp t H_{j} \|\right. \\
& \leqslant K(\varepsilon)|\tau, \Lambda|^{p^{\prime \prime}(\varepsilon)}\left(\mathbf{1}-\gamma_{j}(m)\right)^{-p^{\prime \prime}(\varepsilon)} \Xi(m)^{1+\gamma_{0}-\varepsilon}\|\varphi\|_{2} e^{-\frac{1}{2} \alpha_{0} t-\left(1+\gamma_{0}\right) \varrho\left(H_{j}\right) t} \tag{7.24}
\end{align*}
$$

Moreover, as $\varphi_{j, \gamma_{0}}(m)=\varphi_{j, \gamma_{0}}\left(m \exp H_{j}\right)$, we obtain from (6.3) the following estimate for $\varphi_{j, \gamma_{0}}(m)$ let

$$
\begin{equation*}
K^{\prime}(\varepsilon)=K(\varepsilon)\left(1-\frac{1}{e}\right)^{-p^{\prime \prime}(\varepsilon)} d_{j}\left(\exp H_{j}\right)^{1+\gamma_{0}} \tag{7.25}
\end{equation*}
$$

then, for $m \in M_{1 j}^{+}, 0<\varepsilon<\frac{1}{2} \alpha_{0}$,

$$
\begin{equation*}
\left\|\varphi_{j, \gamma_{0}}(m)\right\| \leqslant K^{\prime}(\varepsilon) \mid \tau, \Lambda p^{p^{\prime \prime}(\epsilon)} \Xi\left(m \exp H_{j}\right)^{1+\gamma_{0}-\varepsilon} d_{j}(m)^{1+\gamma_{0}}\|\varphi\|_{2} \tag{7.26}
\end{equation*}
$$

We now convert (7.24) and (7.26) into uniform estimates for $\left\|\varphi(h)-d_{j}(h)^{-\left(1+\gamma_{0}\right.} \varphi_{i, \gamma_{0}}(h)\right\|$ as h varies over $A_{j}^{+}(\mu)$. Let ${ }_{j} \mathfrak{a}$ be the null space of α_{j}, so that $\mathfrak{a}={ }_{j} \mathfrak{a}+\mathfrak{a}_{j}$ is a direct sum. If $H \in \mathfrak{a}, H={ }_{j} H+\alpha_{j}(H) H_{j}$ where ${ }_{j} H \in{ }_{j} \mathfrak{a}$; if $H \in \mathfrak{a}^{+}$, then ${ }_{j} H \in C l\left(\mathfrak{a}^{+}\right)$. Suppose now $h=$ $\exp H \in A_{j}^{+}(\mu)\left(\mathrm{cf}\right.$. (7.2)), where $0<\mu<1$ and $\alpha_{j}(\log h)>2$. Then $h=m \exp t H$, where $t=\frac{1}{2} \alpha_{j}(H)>1$ and $m=\exp \left({ }_{j} H+\frac{1}{2} \alpha_{j}(H) H_{j}\right)$. Clearly $m \in M_{1, j}^{+}$and $\gamma_{j}(m) \leqslant 1 / e$. We now substitute these choices for m and t in (7.24). We also select, for any ε with $0<\varepsilon<\frac{1}{2}$, a constant $d(\varepsilon)>0$ such that $\Xi\left(h^{\prime}\right)^{1+\gamma_{0}-\varepsilon} \leqslant d(\varepsilon) e^{-\left(1+\gamma_{0}-2 \varepsilon\right) \varrho\left(\log h^{\prime}\right)}$ for all $h^{\prime} \in C l\left(A^{+}\right)$. Defining

$$
\begin{equation*}
K_{1}(\varepsilon)=K(\varepsilon)\left(1-\frac{1}{e}\right)^{-p^{\prime \prime}(\varepsilon)} d(\varepsilon) \tag{7.27}
\end{equation*}
$$

we obtain from (7.24) the following estimate: for arbitrary Λ, τ, φ of type (Λ, τ, γ), $h \in A_{j}^{+}(\mu)$ with $\alpha_{j}(\log h)>2$, and $0<\varepsilon<\frac{1}{2} \alpha_{0}$,

$$
\left\|\varphi(h)-d_{j}(h)^{-\left(1+\gamma_{0}\right)} \varphi_{j, \gamma_{0}}(h)\right\| \leqslant K_{1}(\varepsilon)|\tau, \Lambda|^{p^{\prime \prime}(\varepsilon)}\|\varphi\|_{2} e^{-\left(1+\gamma_{0}-2 \varepsilon+\left(\alpha_{0} \mu / 4\right)\right) e(\log h)} ;
$$

in deriving this we must remember that $t=\frac{1}{2} \alpha_{j}(\log h)>(\mu / 2) \varrho(\log h)$. So, remembering (2.1) we find, for arbitrary Λ, τ, φ of type (Λ, τ, γ), and ε with $0<\varepsilon \leqslant\left(\alpha_{0} \mu / 16\right)$,

$$
\begin{equation*}
\left\|\varphi(h)-d_{j}(h)^{-\left(1+\gamma_{0}\right)} \varphi_{j, \gamma_{0}}(h)\right\| \leqslant K_{1}(\varepsilon)|\tau, \Lambda|^{p^{\prime \prime}(\varepsilon)}\|\varphi\|_{2} \Xi(h)^{1+\gamma_{0}+\left(\alpha_{0} \mu / 8\right)} \tag{7.28}
\end{equation*}
$$

for all $h \in A_{j}^{+}(\mu)$ with $\alpha_{j}(\log h)>2$. On the other hand, let $Q_{\mu}=\left\{h: h \in A_{j}^{+}(\mu), \alpha_{j}(\log h) \leqslant 2\right\}$. Then $C l\left(Q_{\mu}\right)$ is compact, and so we can find, for each ε with $0<\varepsilon \leqslant\left(\alpha_{0} \mu / 16\right)$, a constant $K(\varepsilon: \mu)>0$ such that for all $h \in Q_{\mu}$,

$$
L(1: \varepsilon) \Xi(h)^{1+\gamma_{0}-\varepsilon}+K^{\prime}(\varepsilon) \Xi\left(h \exp H_{j}\right)^{1+\gamma_{0}-\varepsilon} \leqslant K(\varepsilon: \mu) \Xi(h)^{1+\gamma_{0}+\left(x_{0} \mu / 8\right)}
$$

Taking into account (7.17) $a=b=1$ we have, from (7.26) and the above inequality, for all $h \in Q_{\mu}$ and $0<\varepsilon \leqslant\left(\alpha_{0} \mu / 16\right)$,

$$
\begin{equation*}
\left\|\varphi(h)-d_{j}(h)^{-\left(1+\gamma_{0}\right)} \varphi_{j, \gamma_{0}}(h)\right\| \leqslant K(\varepsilon: \mu)|\tau, \Lambda|^{p_{\delta}}\|\varphi\|_{2} \Xi(h)^{1+\gamma_{0}+\left(\alpha_{0} \mu / 8\right)} \tag{7.29}
\end{equation*}
$$

where $p_{\varepsilon}=p(\mathrm{l}: \varepsilon)+p_{\varepsilon}^{\prime \prime}$. Let $\varepsilon_{\mu}=\left(\alpha_{0} \mu / 16\right)$ and write

$$
\begin{equation*}
\beta_{0}=\frac{1}{8} \alpha_{0}, p_{\mu}=p_{\varepsilon_{\mu}}, L_{\mu}=K\left(\varepsilon_{\mu} ; \mu\right)+K_{\mathbf{1}}\left(\varepsilon_{\mu}\right) \tag{7.30}
\end{equation*}
$$

Then, on combining (7.28) and (7.29), we obtain the following result. Given μ, with $0<\mu<1$, we have, for arbitrary Λ, τ, φ of type (Λ, τ, γ), and $h \in A_{j}^{+}(\mu)(1 \leqslant j \leqslant d)$,

$$
\begin{equation*}
\left\|\varphi(h)-d_{j}(h)^{-\left(1+\gamma_{0}\right)} \varphi_{j, \nu_{0}}(h)\right\| \leqslant L_{\mu}|\tau, \Lambda|^{p_{\mu}}\|\varphi\|_{2} \Xi(h)^{1+\gamma_{0}+\beta_{0} \mu} \tag{7.31}
\end{equation*}
$$

We must remember that (7.31) has been proved under the sole assumption that, for each $b \in(G)$ and $\varepsilon>0,(7.17)$ is satisfied by all φ of type (Λ, τ, γ). Note also that L_{μ} and p_{μ} depend on γ_{0} and γ.

We are now in a position to prove (i) with $a=b=1$. Let Z be the set of all numbers γ^{\prime} with $0 \leqslant \gamma^{\prime} \leqslant \gamma$ such that (i) is true for all φ of type (Λ, τ, γ) with γ^{\prime} replacing γ in the estimate (7.15). From Lemma 5.6 it follows that $0 \in Z$, so that Z is nonempty. Let $\gamma_{0}=\sup _{\gamma^{\prime} \varepsilon z} \gamma^{\prime}$. Then, for any $\varepsilon>0$, there is a $\gamma_{\varepsilon} \in Z$ such that $\gamma_{0}-\varepsilon / 2<\gamma_{\varepsilon} \leqslant \gamma_{0}$. A simple argument then proves that given $b \in \mathscr{G}$ and $\varepsilon>0$, we can select constants $L(b: \varepsilon)>0$, $p(b: \varepsilon) \geqslant 0$ such that (7.17), and hence (7.31), is true for all φ of type $(\Lambda, \tau, \gamma), \Lambda, \tau$ being arbitrary. If $\gamma_{0} \geqslant \gamma$, we already obtain (i) (with $a=1$ to be sure, but this is enough, in view of our earlier remarks). We shall now prove that $\gamma_{0}<\gamma$ leads to a contradiction. Suppose $0 \leqslant \gamma_{0}<\gamma$. If φ is of type (Λ, τ, γ), then we know from Theorem 7.1 that for any $m \in M_{1 j}$, $\varphi_{j . \gamma}(m)=\lim _{t \rightarrow+\infty} d_{j}\left(m \exp t H_{j}\right)^{1+\gamma} \varphi\left(m \exp t H_{j}\right)$ exists. On the other hand, as $\gamma-\gamma_{0}>0$, $d_{j}\left(m \exp t H_{j}\right)^{-\left(\gamma-\gamma_{0}\right)} \rightarrow 0$ as $t \rightarrow+\infty$, for each $m \in M_{1,}$. Therefore we have $\varphi_{j, \gamma_{0}}=0,1 \leqslant j \leqslant d$. So, from (7.31) we have, for arbitrary Λ, τ, φ of type $(\Lambda, \tau, \gamma), h \in A_{j}^{+}(\mu)(0<\mu<1,1 \leqslant j \leqslant d)$

$$
\begin{equation*}
\|\varphi(h)\| \leqslant L_{\mu}|\tau, \Lambda|^{p_{\mu}}\|\varphi\|_{2} \Xi(h)^{1+\gamma_{0}+\beta_{0} \mu} \tag{7.32}
\end{equation*}
$$

Choose μ_{0} with $0<\mu_{0}<1$ such that $A^{+} \subseteq \bigcup_{1 \leqslant j \leqslant d} A_{j}^{+}\left(\mu_{0}\right)$ (cf. (7.3)) and write $L_{0}=L_{\mu_{0}}$, $p_{0}=p_{\mu_{g}}, \delta_{0}=\beta_{0} \mu_{0}$. Then (7.32) gives us the following result: for arbitrary Λ, τ, and φ of type (Λ, τ, γ).

$$
\begin{equation*}
\|\varphi(x)\| \leqslant L_{0}|\tau, \Lambda|^{p_{0}}\|\varphi\|_{2} \Xi(x)^{1+y_{0}+\delta_{0}} \quad(x \in G) \tag{7.33}
\end{equation*}
$$

It is clear from (7.33) that $\gamma_{0}+\delta_{0} \in Z$, contradicting the definition of γ_{0}. The proof of (i) is thus complete.

By virtue of (i), estimates of the form (7.17) are now true with γ replacing γ_{0}. But then the estimates (7.31) are also true, with γ replacing γ_{0}. This gives (ii).

Theorem 7.3 is completely proved.
Corollary 7.4. Fix $\gamma>0$ and a p of type (Λ, τ, γ). Then, given $a, b \in \mathfrak{G}$, there are constants $C>0 ; q \geqslant 0$ such that

$$
\begin{equation*}
\|\varphi(a ; x ; b)\| \leqslant C \Xi(x)^{1+\gamma}(1+\sigma(x))^{q} \quad(x \in G) \tag{7.34}
\end{equation*}
$$

Proof. As usual we come down to the case $a=b=1$. We use induction on $\operatorname{dim}(G)$. Choose $\mu_{0}, 0<\mu_{0}<1$, such that $A^{+} \subseteq \bigcup_{1 \leqslant \ll d} A_{j}^{+}\left(\mu_{0}\right)$, and let $K_{0}=L_{\mu_{0}}|\tau, \Lambda|^{p_{\mu}}\|\varphi\|_{2}, \delta_{0}=\beta_{0} \mu_{0}$ where L_{μ} and p_{μ} are as in (7.31). Then (7.31) implies that for all $h \in A^{+}$

$$
\begin{equation*}
\|\varphi(h)\| \leqslant K_{0} \Xi(h)^{1+\gamma+\delta_{0}}+\sum_{1 \leqslant j \leqslant d} d_{j}(h)^{-(1+\gamma)}\left\|\varphi_{j, \nu}(h)\right\| \tag{7.35}
\end{equation*}
$$

Now $\varphi_{j, \gamma}=0$ if P_{j} is not cuspidal. Consider j such that P_{j} is cuspidal, and write $\varphi_{j, \gamma}=$ $\Sigma_{1 \leqslant i \leqslant \tau_{j}} \varphi_{j . \gamma, i}$ as in Theorem 7.1. Since $\varphi_{j, \gamma, i} \mid M_{j}$ is of type $\left(s_{i} \Lambda \mid \mathfrak{m}_{j} \cap \mathfrak{l}, \tau_{F_{j}}, \gamma\right)$ and $\operatorname{dim}\left(M_{j}\right)<\operatorname{dim}(G)$, the induction hypothesis is applicable $\left.{ }^{1}\right)$ and so we can find constants $C>0, q \geqslant 0$ such that

$$
\begin{equation*}
\left\|\varphi_{j, \gamma}(m)\right\| \leqslant C \Xi_{j}(m)^{1+\gamma}(1+\sigma(m))^{q} \quad\left(m \in M_{j}, \mathrm{l} \leqslant j \leqslant d\right) . \tag{7.36}
\end{equation*}
$$

If $h \in A^{+}$and we write $h=h_{1} h_{2}$ where $h_{1} \in M_{j} \cap A, h_{2} \in A_{j}$, then $\lambda\left(\log h_{1}\right) \geqslant 0$ for all $\lambda \in \Delta_{F_{j}}^{+}$, while there is a constant $c_{j}>0$ independent of h such that $1+\sigma\left(h_{1}\right) \leqslant c_{j}(1+\sigma(h))$. Therefore, as $\varphi_{j, \gamma}(h)=\varphi_{j, \gamma}\left(h_{1}\right)$, we find from (7.36) and (2.1) the following result: there are constants $C_{1}>0, q_{1} \geqslant 0$ such that for all $h \in A^{+}, 1 \leqslant j \leqslant d$,

$$
\begin{equation*}
\left\|\varphi_{j, \gamma}(h)\right\| \leqslant C_{1} e^{-\varrho_{F_{j}}(\log h)(1+\gamma)}(1+\sigma(h))^{\alpha_{\mathbf{1}}} \tag{7.37}
\end{equation*}
$$

From (7.37), (7.35) and (2.1) we obtain, for all $h \in A^{+}$

$$
\begin{equation*}
\|\varphi(h)\| \leqslant K_{0} \Xi(h)^{1+\gamma+\delta_{0}}+d C_{1} \Xi(h)^{1+\gamma}(1+\sigma(h))^{q_{1}} . \tag{7.38}
\end{equation*}
$$

This leads to the corollary easily.
Theorem 7.5. (i) Let $1 \leqslant p<2$ and $\bar{\gamma}=(2 / p)-1$. If $\varphi \in \mathcal{E}(\Lambda: G: \tau) \cap L^{2}(G: V)$, then $\varphi \in L^{p}(G: V)$ if and only if φ is of type ($\left.\Lambda, \tau, \gamma\right)$ for some $\gamma>\bar{\gamma}$.
(ii) Let $1 \leqslant p<2$. Then there is $\varepsilon_{0}=\varepsilon_{0}(p)>0$, and, for each $a, b \in \mathbb{G}$, constants $C_{a, b}>0$, $q_{a, b} \geqslant 0$, such that for arbitrary V, τ, Λ, and $\varphi \in \mathcal{E}(\Lambda: G: \tau) \cap L^{p}(G: V)$,

[^0]\[

$$
\begin{equation*}
\left\|\varphi\left(a_{\mathrm{t}} x ; b\right)\right\| \leqslant C_{a, b}|\tau, \Lambda|^{a_{a}, b}\left\|_{\varphi}\right\|_{2} \Xi(x)^{(2 / p)+\varepsilon_{0}} \quad(x \in G) \tag{7.39}
\end{equation*}
$$

\]

Proof. (i) If φ is of type (Λ, τ, γ) with $\gamma>(2 / p)-1$, then $\|\varphi(x)\|^{p} \leqslant$ const. $\Xi(x)^{\beta}$ for all $x \in G, \beta$ being a constant >2. So $\varphi \in L^{p}(G: V)$.

Conversely, let $\varphi \in \mathcal{E}(\Lambda: G: \tau) \cap L^{p}(G: V)$. Arguing as in Corollary 3.4 we see that $a \varphi b \in L^{p}(G: V)$ for all $a, b \in(G)$. Hence by Theorem 3.3, $\sup _{x \in G} \Xi(x)^{-2 / p}\|\varphi(a: x ; b)\|<\infty$ for all $a, b \in(3)$. So φ is of type $(\Lambda, \tau, \bar{\gamma})$.

We shall now prove that $\varphi_{j, \bar{\gamma}}=0,1 \leqslant j \leqslant d$. Fix j and write $\psi=\varphi_{j, \bar{\gamma}}$. Choose μ such that $0<\mu<1$ and $A_{j}^{+}(\mu)$ is nonempty. We then obtain from (7.16) (with $\bar{\gamma}$ replacing γ) the following result: there are constants $C>0, \delta>0$ such that, for all $h \in A_{j}^{+}(\mu)$,

$$
\begin{equation*}
d_{j}(h)^{-(2 / p)}\|\psi(h)\| \leqslant\|\varphi(h)\|+C e^{-((2 / p)+\delta) \varphi(\log h)} \tag{7.40}
\end{equation*}
$$

Let J be as in (3.1). Then $J(h) \leqslant e^{2 \varrho(\log h)}$ for all $h \in A^{+}$, and so, each of the functions appearing in the right of (7.40) belongs to $L^{p}\left(A^{+}, J d h\right)$. So, if we write $\mathfrak{a}_{\mu}=\left\{H: H \in \mathfrak{a}^{+}, \alpha_{\rho}(H)>\right.$ $\max (1, \mu \varrho(H))\}$, then \mathfrak{a}_{μ} is nonempty, and

$$
\begin{equation*}
\int_{a_{\mu}}\|\psi(\exp H)\|^{p} d_{j}(\exp H)^{-2} J(\exp H) d H<\infty \tag{7.41}
\end{equation*}
$$

$d H$ being a Lebesgue measure on \mathfrak{a}. On the other hand, if we put

$$
\begin{equation*}
{ }^{*} J(h)=\prod_{\lambda \in \Delta_{F_{j}}^{+}}\left(e^{\lambda(\log h)}-e^{-\lambda(\log h)}\right)^{\operatorname{dim}\left(g_{\lambda}\right)} \quad\left(h \in A^{+}\right), \tag{7.42}
\end{equation*}
$$

it is easily seen that there is a constant $c_{0}>0$ for which $J(\exp H) \geqslant c_{0} d_{j}(\exp H)^{2}{ }^{*} J(\exp H)$ for all $H \in \mathfrak{a}_{\mu}$. (7.41) then gives us

$$
\begin{equation*}
\int_{\mathfrak{a}_{\mu}}\|\psi(\exp H)\|^{p *} J(\exp H) d H<\infty \tag{7.43}
\end{equation*}
$$

Let ${ }_{j} \mathfrak{a}$ be the null space of α_{j}. Select $H_{0} \in \mathfrak{a}_{\mu}$, and write $H_{0}=H_{0}^{\prime}+s_{0} H_{\text {, }}$, where $H_{0}^{\prime} \epsilon_{j} \mathfrak{a}$. If we put

$$
U=\left\{H^{\prime}: H^{\prime} \in_{j} a, \alpha_{i}\left(H^{\prime}\right)>0 \text { for } i \neq j, \frac{1}{2} \varrho\left(H_{0}^{\prime}\right) \leqslant \varrho\left(H^{\prime}\right) \leqslant 2 \varrho\left(H_{0}^{\prime}\right)\right\}
$$

then an easy verification shows that U is a neighborhood of H_{0}^{\prime} in ${ }_{j} a$ and that $H^{\prime}+s H_{i} \in \mathfrak{a}_{\mu}$ whenever $H^{\prime} \in U$ and $s \geqslant 2 s_{0}$. Writing $d H^{\prime}$ for the Lebesgue measure on ${ }_{j} \mathfrak{a}$, we then get from (7.43)

$$
\begin{equation*}
\int_{U} \int_{2 s_{0}}^{\infty}\left\|\psi\left(\exp H^{\prime} \exp t H_{j}\right)\right\|^{p *} J\left(\exp H^{\prime} \exp t H_{j}\right) d H^{\prime} d t<\infty \tag{7.44}
\end{equation*}
$$

But the integrand in (7.44) is independent of t. So $\psi\left(\exp H^{\prime} \exp t H_{j}\right)=0$, for $H^{\prime} \in U$, $t \geqslant 2 s_{0}$. As ψ is analytic, $\psi \mid A=0$; and the fact that ψ is $\tau_{F_{i}}$-spherical then implies that $\psi=0$.

It now follows from (7.16) (with $\gamma=\bar{\gamma}$ and $\varphi_{3, \bar{\gamma}}=0$) that for suitable constants $C>0, \delta>0,\|\varphi(x)\| \leqslant C \Xi(x)^{2 / p+\delta}$ for all $x \in G$. (i) follows from this.

To prove (ii), select μ_{0} such that $0<\mu_{0}<1$ and $A^{+} \subseteq \mathrm{U}_{1 \leqslant j \leqslant d} A_{,}^{+}\left(\mu_{0}\right)$, and take $\gamma=\bar{\gamma}$, $\mu=\mu_{0}$ and $\varphi \in L^{p}(G: V) \cap \mathcal{E}(\Lambda: G: \tau)$ in (7.16). If $K_{0}=L_{\mu_{0}, \bar{\gamma}}, p_{0}=p_{\mu_{0}, \bar{\gamma}}, \varepsilon_{0}=\beta_{0} \mu_{0}$, we obtain the following result: for arbitrary $\Lambda, \tau, \varphi \in \mathcal{E}(\Lambda: G: \tau) \cap L^{p}(G: V)$

$$
\begin{equation*}
\|\varphi(x)\| \leqslant K_{0}|\tau, \Lambda|^{p_{0}}\|\varphi\|_{2} \Xi(x)^{(2 / p)+\varepsilon_{0}} \quad(x \in G) . \tag{7.45}
\end{equation*}
$$

This proves (ii) with $a=b=1$. The case of arbitrary $a, b \in \mathscr{G}$ is then deduced from this in the usual manner. This proves the theorem.

8. Estimates for the matrix coefficients of the discrete series

Let P, P_{n} and $k(\beta)(\beta \in P \cup-P)$ be as in $\S 1$. It is obvious that $k(\beta)=k(-\beta)=$ $k(s \beta)>0 \quad\left(s \in W\left(b_{c}\right)\right)$, and that $k(\beta)$ does not depend on P. Moreover, for fixed β, if $P^{\beta .+}\left(\right.$ resp. $\left.P^{\beta,-}\right)$ is the set of all $\alpha \in P$ with $\langle\alpha, \beta\rangle \geqslant 0$ (resp. $\langle\alpha, \beta\rangle<0$), $P_{\beta}=P^{\beta,+} U$ $\left(-P^{\beta,-}\right)$, and $\delta_{\beta}=\frac{1}{2} \Sigma_{\alpha \in P_{\beta}} \alpha$, then it is easily seen that P_{β} is a positive system and $k(\beta)=$ $\delta_{\beta}\left(\bar{H}_{\beta}\right)$. This shows that $k(\beta)$ is an integer for all β. For any Cartan subalgebra \mathfrak{h} of \mathfrak{g}, we define the function $D_{\mathfrak{h}}$ and the set $G_{\mathfrak{h}}$ as in [13] (p. 110). The function D is a in §1. If $\mathfrak{h}_{j}(j=1,2)$ are Cartan subalgebras of \mathfrak{g}_{c}, and O_{j} is a $W\left(\mathfrak{h}_{j}\right)$-orbit in \mathfrak{h}_{j}^{*}, we say that O_{1} and O_{2} correspond if there is a $y \in G_{c}$ such that $y \cdot \mathfrak{h}_{1}=\mathfrak{h}_{2}$ and $O_{2} \circ y=O_{1}$.

Let $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}$ and $\gamma>0$. Suppose π is a representation in $\omega(\lambda)$, and that, for some $q \geqslant 0$ and a pair $\psi_{0}, \psi_{0}^{\prime}$ of nonzero K-finite vectors in the space of π,

$$
\begin{equation*}
\sup _{x \in G} \Xi(x)^{-(1+\gamma)}(1+\sigma(x))^{-q}\left|\left(\pi(x) \psi_{0}, \psi_{0}^{\prime}\right)\right|<\infty ; \tag{8.1}
\end{equation*}
$$

then a simple argument, based on Theorem 1 of [14] and the irreducibility of π, shows that (8.1) is true when ψ_{0} and ψ_{0}^{\prime} are replaced by any other pair ψ, ψ^{\prime} of K-finite vectors, with the same choice of γ and q. Thus, in this case, $\omega(\lambda)$ is of type γ in the sense of the definition in § 1. The purpose of this section is to obtain proofs of the following theorems.

Theorem 8.1. Let $\lambda \in \mathcal{L}_{\mathfrak{E}}^{\prime}, \omega=\omega(\lambda)$, and let Θ_{ω} be the character of $\omega(\lambda)$. Fix $\gamma>0$. Then, in order that ω be of type γ, it is necessary that for each Cartan subalgebra \mathfrak{h} of \mathfrak{g},

$$
\begin{equation*}
\sup _{x \in G_{\mathfrak{G}}}\left|D_{\mathfrak{G}}(x)\right|^{\gamma / 2}|D(x)|^{\frac{1}{2}}\left|\Theta_{\omega}(x)\right|<\infty ; \tag{8.2}
\end{equation*}
$$

in particular, it is necessary that

$$
\begin{equation*}
\left|(\lambda)\left(\bar{H}_{\beta}\right)\right| \geqslant \gamma k(\beta) \quad\left(\forall \beta \in P_{n}\right) . \tag{8.3}
\end{equation*}
$$

Moreover, in order that $\omega(s \lambda)$ be of type γ for all $s \in W\left(\mathfrak{b}_{c}\right)$, it is necessary and sufficient that

$$
\begin{equation*}
\left|(s \lambda)\left(\bar{H}_{\beta}\right)\right| \geqslant \gamma k(\beta) \quad\left(\forall \beta \in P_{n}, \forall s \in W\left(\mathfrak{b}_{c}\right)\right) . \tag{8.4}
\end{equation*}
$$

Theorem 8.2. Fix $p, 1 \leqslant p<2$. If $\omega \in \mathcal{E}_{2}(G)$, then $\omega \in \mathcal{E}_{p}(G)$ if and only it it is of type γ for some $\gamma>(2 / p)-1$. Let $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}, \omega=\omega(\lambda)$. Then, in order that $\omega \in \mathcal{E}_{p}(G)$ it is necessary that for some $\gamma>(2 / p)-1$, (8.2) should be satisfied for all Cartan subalgebras \mathfrak{j} of \mathfrak{g}; in particular, it is necessary that

$$
\begin{equation*}
\left|\lambda\left(\bar{H}_{\beta}\right)\right|>\left(\frac{2}{p}-1\right) k(\beta) \quad\left(\forall \beta \in P_{n}\right) . \tag{8.5}
\end{equation*}
$$

In order that $\omega(s \lambda) \in \mathcal{E}_{p}(G)$ for all $s \in W\left(\mathfrak{b}_{c}\right)$, it is necessary and sufficient that

$$
\begin{equation*}
\left|(s \lambda)\left(\bar{H}_{\beta}\right)\right|>\left(\frac{2}{p}-1\right) k(\beta) \quad\left(\forall \beta \in P_{n}, \forall s \in W\left(\mathfrak{b}_{c}\right)\right) . \tag{8.6}
\end{equation*}
$$

We begin with the proof that (8.4) is sufficient for $\omega(s \lambda)$ to be of type γ for all $s \in W\left(\mathfrak{b}_{c}\right)$. We need a lemma.

Lemma 8.3. Let Q be the set of all j with $1 \leqslant j \leqslant d$ such that the parabolic subgroup P_{j} is cuspidal. Given $\beta \in P_{n}$ and $j \in Q$, let us write $\beta \sim j$, if there is some $y \in G_{c}$ and some $t \neq 0$ in \mathbf{R}, such that, $\mathfrak{b}_{c}^{y}=I_{c}, \bar{H}_{\beta}^{y}=t H_{j}$, and $k(\beta)=|t| \varrho\left(H_{j}\right)$. Then, for any $\beta \in P_{n}$, there is $j \in Q$ such that $\beta \sim j$; and, for any $j \in Q$, there is $\beta \in P_{n}$ such that $\beta \sim j$. In particular, if $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}, O_{\mathfrak{b}}=$ $W\left(\mathfrak{b}_{c}\right) \cdot \lambda$, and O_{I} is the $W\left(\mathfrak{I}_{c}\right)$-orbit in I_{c}^{*} that corresponds to $O_{\mathfrak{b}}$, then

$$
\left\{\left|\mu\left(\bar{H}_{\beta}\right)\right| / k(\beta): \mu \in O_{\mathfrak{b}}, \beta \in P_{n}\right\}=\left\{\left|\Lambda\left(H_{j}\right)\right| / \varrho\left(H_{j}\right): \Lambda \in O_{\mathfrak{l}}, j \in Q\right\} .
$$

Proof. Let $\beta \in P_{n}$. Let $\mathfrak{b}(\beta)$ be the null space of β. Select $H_{0} \in \mathfrak{b}(\beta)$ such that β is the only root in P that vanishes at H_{0}. Let \mathfrak{z} be the centralizer of H_{0} in \mathfrak{g}, and \mathfrak{z}_{1}, the derived algebra of z. Then $\operatorname{dim}\left(z_{1}\right)=3, \theta\left(z_{1}\right)=z_{1}$, and the noncompactness of β implies that z_{1} is isomorphic to $\mathfrak{g l}(2, \mathbf{R})$. It follows (cf. also [13], § 24) from this that we can find $H^{\prime}, X^{\prime}, Y^{\prime} \in_{\mathcal{Z}_{1}}$ such that (i) $\left[H^{\prime}, X^{\prime}\right]=2 X^{\prime},\left[H^{\prime}, Y^{\prime}\right]=-2 Y^{\prime},\left[X^{\prime}, Y^{\prime}\right]=H^{\prime}$ (ii) $H^{\prime} \in \mathfrak{Z}, Y^{\prime}=-\theta X^{\prime}, X^{\prime}-Y^{\prime}=i \bar{H}_{\beta}$. Since $\mathfrak{b}(\beta)$ is the center of $\mathfrak{z}, \mathfrak{b}$ and $\mathfrak{b}(\beta)+\mathbf{R} \cdot H^{\prime}=\mathfrak{h}$ are two θ-stable Cartan subalgebras of z (and \mathfrak{g}), and so, we can find $y_{0} \in G_{c}$ such that, y_{0} centralizes $\mathfrak{b}(\beta), y_{0} \cdot \mathfrak{b}_{c}=\mathfrak{h}_{c}$, and $\bar{H}_{\beta}^{y_{0}}=H^{\prime}$. Let Δ^{\prime} be the set of roots of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$, and $P^{\prime}=P \circ y_{0}^{-1}$. Then P^{\prime} is a positive system for Δ^{\prime} and $k(\beta)=\frac{1}{2} \Sigma_{\alpha^{\prime} \in P^{\prime}}\left|\alpha^{\prime}\left(H^{\prime}\right)\right|$, so that, we must have $k(\beta)=\frac{1}{2} \Sigma_{\alpha^{\prime} \in \Delta^{\prime} \cdot \alpha^{\prime}\left(H^{\prime}\right)>0} \alpha^{\prime}\left(H^{\prime}\right)$. On the other hand, let \mathfrak{m}^{\prime} be the centralizer of H^{\prime} in \mathfrak{g}, and let \mathfrak{n}^{\prime} be the space spanned by the eigensubspaces of ad H^{\prime} that correspond to its positive eigenvalues. It is easy to see that $\mathfrak{p}^{\prime}=\mathfrak{m}^{\prime}+\mathfrak{n}^{\prime}$ is a parabolic subalgebra of \mathfrak{g}; our previous expression for $k(\beta)$ now gives $k(\beta)=\frac{1}{2} \operatorname{tr}\left(\operatorname{ad} H^{\prime}\right)_{\mathfrak{n}^{\prime}}$. Also $\mathbf{R} \cdot H^{\prime}=\mathfrak{h} \cap \mathfrak{j}$ is the split component of \mathfrak{p}^{\prime}. Choose $F \underset{\mp}{\subset}$ and $k \in K$
such that $\left(\mathfrak{p}^{\prime}\right)^{k}=\mathfrak{p}_{F}$. Clearly $\mathfrak{a}_{F}=(\mathfrak{h} \cap \mathfrak{B})^{k}=\mathfrak{h}^{k} \cap \mathfrak{g}$. \mathfrak{p}_{F} is thus cuspidal and $\operatorname{dim}\left(a_{F}\right)=1$, so that $F=F_{j}$ for some $j \in Q$. It follows from the construction of \mathfrak{p}^{\prime} that $H^{k}=t H_{j}$ for some $t>0$, and so $k(\beta)=t \varrho\left(H_{j}\right)$. Write $\mathfrak{H}_{j}=Y_{j}^{k}$. Let $M_{g_{c}}$ be the complex analytic subgroup of G_{c} defined by $\mathbb{C} \cdot \mathfrak{m}_{j}$. Then there is $z \in M_{j c}$ such that $\mathfrak{h}_{j c}^{z}=\mathfrak{l}_{c}$. Define $y=z k y_{0}$. Then $\mathfrak{b}_{c}^{y}=\mathfrak{l}_{c}$, $\vec{H}_{\beta}^{y}=t H_{j}^{z}=t H_{j}$, and $k(\beta)=t \varrho\left(H_{j}\right)$. This proves that $\beta \sim j$.

Conversely, let $j \in Q$. Let \mathfrak{h}_{j} be a θ-stable Cartan subalgebra of $\mathfrak{m}_{\text {, }}$ such that $\mathfrak{h}_{j} \cap \mathcal{B}=\mathbf{R} \cdot H_{j}$. If $M_{j c}$ is as in the previous paragraph, we can find $z \in M_{j c}$ such that $\mathfrak{H}_{j c}^{z}=\mathfrak{l}_{c}$. As \mathfrak{h}_{j} is not conjugate to \mathfrak{b} in G, we can find a root α^{\prime} of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$ that is real valued on \mathfrak{h}_{j} ([6], Lemma 33). It is obvious that $H_{\alpha^{\prime}} \in \mathbf{R} \cdot H_{j}$, and so, replacing α^{\prime} by $-\alpha^{\prime}$ if necessary, we may assume that $\bar{H}_{\alpha^{\prime}}=t H_{j}$ for some $t>0$. It follows from the definition of \mathfrak{n}_{j} that $t \varrho\left(H_{j}\right)=\frac{1}{2} \sum_{\gamma^{\prime} \in \Delta^{\prime} \cdot\left\langle\gamma^{\prime}, x^{\prime}\right\rangle>0} \gamma^{\prime}\left(\bar{H}_{\alpha^{\prime}}\right)$, where Δ^{\prime} is the set of roots of $\left(g_{c}, \mathfrak{H}_{j c}\right)$. If P^{\prime} is a positive system in Δ^{\prime}, we have then $t \varrho\left(H_{j}\right)=\frac{1}{2} \Sigma_{\gamma^{\prime} \in P^{\prime}}\left|\gamma^{\prime}\left(\bar{H}_{\alpha^{\prime}}\right)\right|$. On the other hand, a simple argument, based on the facts that \mathfrak{h}_{j} is θ-stable and α^{\prime} is real valued on \mathfrak{h}_{j}, enables us to select nonzero $X_{ \pm \alpha^{\prime}} \in \mathfrak{g}$, such that, $X_{ \pm \alpha^{*}}$ are root vectors corresponding to $\pm \alpha^{\prime}, X_{-\alpha^{\prime}}=$ $-\theta X_{\alpha^{\prime}}$, and $\left[X_{\alpha^{\prime}}, X_{-\alpha^{\prime}}\right]=\bar{H}_{\alpha^{\prime}}$. Write $\mathfrak{b}_{1}=\left(\mathfrak{h}_{j} \cap \mathfrak{f}\right)+\boldsymbol{R} \cdot\left(X_{\alpha^{\prime}}-X_{-\alpha^{\prime}}\right)$. Then $\mathfrak{G}_{1} \subseteq \neq \mathfrak{F}_{1}$ and \mathfrak{G}_{1} and \mathfrak{H}_{j} are Cartan subalgebras of the centralizer of $\mathfrak{h}_{j} \cap \mathcal{E}$ in \mathfrak{g}. Select $y_{1} \in G_{c}$ centralizing $\mathfrak{h}_{j} \cap \neq$ such that $\mathfrak{b}_{1 c}^{y_{1}}=\mathfrak{h}_{j c}$. Then $\alpha_{1}=\alpha^{\prime} \circ y_{1}$ is a non compact root of $\left(\mathfrak{g}_{c}, \mathfrak{b}_{1 c}\right), P^{\prime \prime}=P^{\prime} \circ y_{1}$ is a positive system of roots of $\left(\mathfrak{g}_{c}, \mathfrak{b}_{1 c}\right)$, and, $\operatorname{t}_{\varrho}\left(H_{j}\right)=\frac{1}{2} \sum_{y \in P^{*}}\left|\gamma\left(\bar{H}_{a_{1}}\right)\right|$. Select $k \in K$ such that $\mathfrak{b}^{k}=\mathfrak{b}_{1}$ and write $\beta_{1}=\alpha_{1} \circ k$. Then β_{1} is noncompact and so $\beta=\varepsilon \beta_{1} \in P_{n}$ where $\varepsilon= \pm 1$. If $y=z y_{1} k$, then $\mathfrak{b}_{c}^{y}=Y_{c}, \bar{H}_{\beta}^{y}=\varepsilon H_{\alpha^{\prime}}^{z}=\varepsilon t H_{j}, k(\beta)=t \varrho\left(H_{j}\right)$. So $\beta \sim j$. The second statement of the lemma is an immediate consequence of the first.

At this stage we can complete the proof that (8.4) is sufficient for $\omega(s \lambda)$ to be of type γ for all $s \in W\left(\mathfrak{f}_{c}\right)$. Fix s, λ; let $O_{\mathfrak{b}}=W\left(\mathfrak{b}_{c}\right) \cdot \lambda$, and $O_{\mathfrak{l}}$, the corresponding $W\left(\mathfrak{l}_{c}\right)$-orbit in \mathfrak{l}_{c}^{*}; and let $\Lambda \in O_{\mathrm{I}}$. Let π be a representation in $\omega(s \lambda)$ acting in a Hilbert space \mathcal{H}. Let \mathfrak{b} be an equivalence class of irreducible representations of K that occurs in $\pi \mid K$. We write \mathcal{H}_{0} for the corresponding subspace of \mathcal{H} and denote by P_{0} the orthogonal projection $\boldsymbol{H} \rightarrow \mathcal{H}_{\mathfrak{b}}$. Denote by $V_{\mathfrak{b}}$ the algebra of endomorphisms of \mathcal{H}_{δ}, and, for $k \in K, v \in V_{\delta}$, let $\quad \tau_{b, 1}(k) v=\pi_{\mathfrak{\jmath}}(k) v, \quad v \tau_{\mathfrak{b}, 2}(k)=v \pi_{\emptyset}(k)$, where $\pi_{\mathfrak{b}}(k)=\pi(k) \mid \mathcal{H}_{\mathfrak{b}}$. Then $v \rightarrow\|v\|^{2}=\operatorname{tr}\left(v v^{\dagger}\right)$ (\dagger denotes adjoints) converts V_{b} into a Hilbert space, and $\tau_{\mathrm{b}}=\left(\tau_{\mathrm{b}, 1}, \tau_{\mathrm{b}, 2}\right)$ is a unitary double representation of K in $V_{\mathfrak{b}}$. If we define $\varphi_{\mathfrak{b}}(x)=\varphi(x)=P_{\delta} \pi(x) P_{\mathrm{b}}$ (considered as an element of V_{δ}) for $x \in G$, it is clear that $\varphi \in \mathcal{E}(\Lambda: G: \tau)$ in the notation of § 7. In view of Corollary 7.4 , it is sufficient to prove that φ is of type (Λ, τ, γ). Let γ_{0} be the supremum of all numbers $\gamma^{\prime} \geqslant 0$ such that p is of type $\left(\Lambda, \tau, \gamma^{\prime}\right)$. It is obvious from the definition in § 7 (cf. (7.1)) that φ is of type $\left(\Lambda, \tau, \gamma_{0}\right)$ also. We assert that for some j_{0} with $1 \leqslant j_{0} \leqslant d$, $\varphi_{j_{0}, \gamma_{0}} \neq 0$. Otherwise, if $\varphi_{i, \gamma_{0}}=0$ for $1 \leqslant j \leqslant d$, the estimates (7.16) (with $\gamma=\gamma_{0}$) would imply the existence of constants $C>0, \delta>0$ such that $|\|\varphi(x)\|| \leqslant C \Xi(x)^{1+\gamma_{0}+\delta}$ for all $x \in G$; this would
show that φ is of type $\left(\Lambda, \tau, \gamma_{0}+\delta\right)$, contradicting the definition of γ_{0}. From Theorem 7.1 we now conclude that $P_{j_{0}}$ is cuspidal, i.e., $j_{0} \in Q$, and that there exists $\Lambda^{\prime} \in O_{1}$ such that $\Lambda^{\prime}\left(H_{j_{0}}\right)=-\gamma_{0} \varrho\left(H_{j_{0}}\right)$. But then the last statement of Lemma 8.3 implies at once the existence of $\beta \in P_{n}$ and $\mu \in O_{6}$ such that $\left|\mu\left(\bar{H}_{\beta}\right)\right|=\gamma_{0} k(\beta)$. So, by (8.4), $\gamma_{0} \geqslant \gamma$. Since φ is of type ($\Lambda, \tau, \gamma_{0}$), it must be of type (Λ, τ, γ) also. This proves what we wanted.

We shall now fix $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}$, assume that $\omega=\omega(\lambda)$ is of type $\gamma>0$, and prove that (8.2) and (8.3) are satisfied. Put $\Theta=\Theta_{\omega} . \Omega$ is as in (5.8).

Lemma 8.4. Assume, as above, that ω is of type γ. Then, given any ε with $0<\varepsilon<\gamma$, we can find a constant $C=C_{\varepsilon}>0$ and an integer $p=p_{\varepsilon} \geqslant 0$ such that, for all $f \in C_{c}^{\infty}(G)$,

$$
\begin{equation*}
|\Theta(f)| \leqslant C \sup _{G} \Xi^{-1+\gamma-\varepsilon}\left|\Omega^{p} f\right| . \tag{8.7}
\end{equation*}
$$

Proof. Let π be a representation in ω acting in the Hilbert space \mathcal{H}, and let $\mathcal{E}(K)$ (resp. \mathcal{E}_{π}) denote the set of all equivalence classes of irreducible unitary representations of K (resp. occurring in the reduction of $\pi \mid K$). Given $\delta \in \mathcal{E}_{\pi}$, let $\mathcal{H}_{\mathrm{D}}, V_{\mathrm{D}}, P_{\mathrm{b}}, \tau_{\mathrm{b}}$ and $\varphi_{\mathfrak{p}}$ have the same meaning as in the preceding discussion, so that φ_{D} is of type $\left(\Lambda, \tau_{\mathfrak{d}}, \gamma\right)$. Write $n(\mathrm{D})=\operatorname{dim}\left(\mathcal{H}_{D}\right)\left(\mathrm{D} \in \mathcal{E}_{\pi}\right)$; then, there is a constant $c_{0}>0$ such that $n(\mathrm{D}) \leqslant c_{0} \operatorname{dim}(\mathrm{D})^{2}$ for all $\delta \in \mathcal{E}_{\pi}$. For $\delta \in \mathcal{E}(K)$, let $c(\delta)$ denote the scalar into which the element Ω is mapped by representations from \mathfrak{D}. Then $c(\mathbb{D})$ is real, $\geqslant 1$, and it is not difficult to show that there are constants $c_{1}>0, r_{1}>0$ for which

$$
\begin{equation*}
\sum_{D \in \mathcal{E}(K)} c(D)^{-r_{1}}<\infty, \operatorname{dim}(\delta) \leqslant c_{1} c(\delta)^{r_{1}} \quad(\forall \delta \in \mathcal{E}(K)) \tag{8.8}
\end{equation*}
$$

(cf. [14], §4). Since $\tau_{\mathrm{b}, 1}(\Omega)=\tau_{\text {§, } 2}(\Omega)=c(\delta) \cdot$ identity, $\left\|\tau_{\mathrm{b}, 1}(\Omega)\right\|=\left\|\tau_{\tau_{\mathrm{g}, 2}}(\Omega)\right\|=c(\delta)\left(\delta \in \mathcal{E}_{\pi}\right)$. So, in view of (5.10) we can choose a constant $c=c_{\Lambda}>0$ such that $\left|\tau_{\mathrm{D}}, \Lambda\right| \leqslant c c(\mathrm{D})^{2}$ for all $\delta \in \mathcal{E}_{\pi}$.

Given any ε with $0<\varepsilon<\gamma$, we can select by virtue of (i) of Theorem 7.3, constants $D_{\varepsilon}^{\prime}>0, q_{\varepsilon}^{\prime} \geqslant 0$ such that for all $D \in \mathcal{E}_{\pi}$ and all $x \in G$,

$$
\begin{equation*}
\left\|\varphi_{\delta}(x)\right\|\left\|\leqslant\left. D_{\varepsilon}^{\prime}\right|_{\tau_{\delta}},\left.\Lambda\right|^{\alpha_{\varepsilon}^{\prime}}\right\| \varphi_{\delta} \|_{2} \Xi(x)^{1+\gamma-(\varepsilon / 2)} . \tag{8.9}
\end{equation*}
$$

On the other hand, if $e_{1}, \ldots, e_{n(0)}$ is an orthonormal basis for \mathcal{H}_{D}, we have

$$
\left\|\left\|\varphi_{>}(x)\right\|^{2}=\sum_{1 \leqslant i, j \leqslant n(0)}\left|\left(\pi(x) e_{j}, e_{i}\right)\right|^{2} \quad(x \in G),\right.
$$

from which it follows that $\left\|\varphi_{\delta}\right\|_{2}=d_{\omega}^{-\frac{1}{3}} n(D), d_{\omega}$ being the formal degree of ω. From (8.8), (8.9), and the earlier estimates for $\left|\tau_{\delta}, \Lambda\right|$ and $n(b)$ we then obtain the following result: given any ε with $0<\varepsilon<\gamma$, we can find a constant $D_{\varepsilon}>0$ and an integer $q_{\varepsilon} \geqslant 0$ such that, for all $\mathfrak{D} \in \mathcal{E}_{\pi}$ and all $x \mathcal{E} G$,

$$
\begin{equation*}
n(\mathfrak{D})\left\|\varphi_{\mathfrak{D}}(x)\right\| \leqslant D_{\varepsilon} c(\mathfrak{D})^{a_{\varepsilon}} \Xi(x)^{1+\gamma-(\varepsilon / 2)} \tag{8.10}
\end{equation*}
$$

Let $f \in C_{c}^{\infty}(G)$. Then

$$
\Theta(f)=\sum_{\mathfrak{D} \in \mathcal{Y}_{n}} \int_{G} f(x) \operatorname{tr}\left(\varphi_{\mathfrak{v}}(x)\right) d x
$$

the series converging absolutely. Now, for any integer $p \geqslant 0$ and $x \in G, \varphi_{\mathrm{b}}\left(x ; \Omega^{p}\right)=$ $c(\mathfrak{D})^{p} \varphi_{\mathfrak{b}}(x)$; so, for such p,

$$
\Theta(f)=\sum_{\mathfrak{D} \in \mathcal{E}_{\boldsymbol{J}}} c(\mathbb{D})^{-p} \int_{G} f\left(x ; \Omega^{p}\right) \operatorname{tr}\left(\varphi_{\mathfrak{D}}(x)\right) d x .
$$

On the other hand, if $\delta \in \mathcal{E}_{\pi}$ and $x \in G,\left|\operatorname{tr}\left(\varphi_{D}(x)\right)\right| \leqslant n(\mathcal{D}) \mid\left\|\varphi_{\delta}(x)\right\|$, so that $\left|\operatorname{tr}\left(\varphi_{\delta}(x)\right)\right| \leqslant$ $D_{\varepsilon} c(\mathfrak{D})^{q_{\varepsilon}} \Xi(x)^{1+\gamma-(\varepsilon / 2)}$, by (8.10). Choosing $p=p_{\varepsilon}=q_{\varepsilon}+r_{1}$ in the last formula for $\Theta(f)$, and writing $C_{\varepsilon}^{\prime}=D_{\varepsilon}=\sum_{\mathrm{de} \varepsilon_{\boldsymbol{x}}} c(\mathrm{D})^{-r_{1}}$, we have,

$$
\begin{equation*}
|\Theta(f)| \leqslant C_{\varepsilon}^{\prime} \int_{G} \Xi(x)^{1+\gamma-(\varepsilon / 2)}\left|f\left(x ; \Omega^{p}\right)\right| d x \tag{8.11}
\end{equation*}
$$

Put $C_{\varepsilon}=C_{\varepsilon}^{\prime} \int_{G} \Xi(x)^{2+(\varepsilon / 2)} d x$. Then (8.11) leads to (8.7). This proves the lemma.
By a simple modification of the argument above that led to (8.10) we obtain the following result from (7.39): let $l \leqslant p<2$, and π, an irreducible unitary representation of G in a Hilbert space \mathcal{H} such that the equivalence class of π belongs to $\mathcal{E}_{p}(G)$. Then, there are constants $C>0, r \geqslant 0$ such that, with $\varepsilon_{0}>0$ as in (ii) Theorem 7.5,

$$
\begin{equation*}
\left|\left(\pi(x) \psi, \psi^{\prime}\right)\right| \leqslant C c(\mathbb{D})^{r} c\left(\mathcal{D}^{\prime}\right)^{r} \Xi(x)^{(2 / p)+\varepsilon_{0}} \tag{8.12}
\end{equation*}
$$

for all $x \in G$, all $\delta, \delta^{\prime} \in \mathcal{E}_{n}$, and arbitrary unit vectors $\psi \in \mathcal{H}_{\delta}, \psi^{\prime} \in \mathcal{H}_{\delta^{\prime}}$. The estimate (8.12) leads at once to the following two corollaries. For deducing the first of these we must recall that if $\psi \in \mathcal{H}$ is a differentiable vector for π, then $\Sigma_{\mathfrak{b} \in \varepsilon_{\pi}}\left\|P_{\mathfrak{D}} \psi\right\| c(\mathfrak{D})^{m}<\infty$ for every $m>0$ ([14], §3).

Corollary 8.5. Let $1 \leqslant p<2$. Let π be an irreducible unitary representation of G in a Hilbert space \mathcal{H} such that the equivalence class of π is in $\mathcal{E}_{p}(G)$. Then, if ψ, ψ^{\prime} are two differentiable vectors for π, and $\varepsilon_{0}>0$ is as in Theorem 7.5, (ii), we can find a constant $C=C_{y, w^{\prime}}>0$ such that

$$
\left|\left(\pi(x) \psi, \psi^{\prime}\right)\right| \leqslant C \Xi(x)^{(2 / p)+\varepsilon_{0}} \quad(x \in G) .
$$

In particular, the function $x \mapsto\left|\left(\pi(x) \psi, \psi^{\prime}\right)\right|$ lies in $L^{p}(G)$.
Corollary 8.6. Let $1 \leqslant p<2$. Let π be an irreducible unitary representation in a Hilbert space \mathcal{H} such that the equivalence class of π belongs to $\mathcal{E}_{p}(G)$. Then, there are constants $c>0, r \geqslant 0$, such that, for arbitrary $\mathfrak{D}, \mathfrak{D}^{\prime} \in \mathcal{E}_{\pi}$, and $\psi \in \mathcal{H}_{\mathfrak{D}}, \psi^{\prime} \in \mathcal{H}_{\mathfrak{D}^{\prime}}$, with $\|\psi\|=\left\|\psi^{\prime}\right\|=1$,

$$
\begin{equation*}
\int_{G}\left|\left(\pi(x) \psi, \psi^{\prime}\right)\right|^{p} d x \leqslant c c(\delta)^{r} c\left(\delta^{\prime}\right)^{r} \tag{8.13}
\end{equation*}
$$

Consider a θ-stable Cartan subalgebra \mathfrak{G} that is not conjugate to \mathfrak{b} under G. Let $A_{\mathfrak{G}}$ be the corresponding Cartan subgroup; $A_{\mathfrak{F}}^{\prime}$, the set of regular points of $A_{\mathfrak{F}} ; G_{\mathfrak{G}}=\left(A_{\mathfrak{F}}^{\prime}\right)^{G}$. Write $\mathfrak{H}_{2}=\mathfrak{G} \cap \mathfrak{B}, A_{1}=A_{\mathfrak{G}} \cap K, A_{2}=\exp \mathfrak{Y}_{2}$. Then $A_{\mathfrak{G}}=A_{1} A_{2}$ is a direct product, and we write a_{i}, for the component in A_{i}, of $a \in A_{\mathfrak{W}}$. Given $\mu \in \mathcal{C}_{\mathfrak{F}}, \xi_{\mu}$ denotes the corresponding character of $A_{\mathfrak{G}}$. Let A_{1}^{+}be a connected component of A_{1}, $\mathfrak{h}_{2}^{\prime}$ be the set of all $H \in \mathfrak{h}_{2}$ such that $\alpha(H) \neq 0$ for any root α of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$ that is not identically zero on \mathfrak{h}_{2}, and let \mathfrak{h}_{2}^{+}be a connected component of $\mathfrak{h}_{2}^{\prime} ;$ write $A_{2}^{+}=\exp \mathfrak{h}_{2}^{+}$. Fix a positive system Q^{+}of roots of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)$, such that, if α is a root and $\alpha \mid \mathfrak{h}_{2} \neq 0$, then $\alpha \in Q^{+}$if and only if $\alpha(H)>0$ for all $H \in \mathfrak{h}_{2}^{+}$. Let

$$
\begin{equation*}
\delta^{+}=\frac{1}{2} \sum_{\alpha \in Q^{+}} \alpha_{2} \quad \Delta_{\mathfrak{G}}^{+}=\xi_{-\delta^{+}} \prod_{\alpha \in Q^{+}}\left(\xi_{\searrow}-1\right) . \tag{8.14}
\end{equation*}
$$

$\delta^{+} \mid \mathfrak{h}_{2}$ actually depends only on \mathfrak{h}_{2}^{+}. In fact, let z be the centralizer of \mathfrak{G}_{2} in \mathfrak{g}, and, more generally, for any $\nu \in \mathfrak{G}_{2}^{*}$, let \mathfrak{g}_{v} be the space of all $X \in \mathfrak{g}$ with $[H, X]=\nu(H) X$ for all $H \in \mathfrak{K}_{2}$; if $\mathfrak{n}^{+}=\Sigma_{v: \nu(H)>0 \forall H \in \mathfrak{g}_{2}^{+}} \mathfrak{g}_{v}$, then $\mathfrak{p}^{+}=\mathfrak{z}+\mathfrak{n}^{+}$is a parabolic subalgebra, and

$$
\begin{equation*}
\delta^{+}(H)=\frac{1}{2} \operatorname{tr}(\operatorname{ad} H)_{\mathfrak{n}^{+}} \quad\left(H \in \mathfrak{h}_{2}\right) . \tag{8.15}
\end{equation*}
$$

Define the function $\Phi_{\mathfrak{h}}$ on $A_{\mathfrak{h}}^{\prime}$ by $\Phi_{\mathfrak{h}}(a)=\Delta_{\mathfrak{h}}^{+}(\alpha) \Theta(a)\left(a \in A_{\mathfrak{h}}^{\prime}\right), \Theta$ (and ω) being as in Lemma 8.4. If $\alpha \in Q^{+}$is real on \mathfrak{h}, it is not difficult to verify that $\xi_{\alpha}-1$ has no zero in $A_{1}^{+} A_{2}^{+}$. Writing $A_{\mathfrak{h}}^{+}=A_{1}^{+} A_{2}^{+} \cap A_{\mathfrak{h}}^{\prime}$ we may therefore conclude that $\Phi_{\mathfrak{h}} \mid A_{\mathfrak{j}}^{+}$extends to an analytic function on $A_{1}^{+} A_{2}^{+}$([12], Lemma 31). Let O_{6} be the $W\left(h_{c}\right)$-orbit in \mathfrak{G}_{c}^{*} that corresponds to $W\left(\mathfrak{b}_{c}\right) \cdot \lambda$. It is then clear that for suitable constants $c_{\mu}^{+}\left(\mu \in O_{\mathfrak{b}}\right)$ we have the following formula:

$$
\begin{equation*}
\Phi_{\mathfrak{G}}(a)=\sum_{\mu \in O_{\mathfrak{h}}} c_{\mu}^{+} \xi_{\mu}\left(a_{1}\right) e^{\mu\left(\log a_{2}\right)} \quad\left(a \in A_{\mathfrak{h}}^{+}\right) . \tag{8.16}
\end{equation*}
$$

Lemma 8.7. Let $\omega=\omega(\lambda)$ be of type $\gamma, \Theta=\Theta_{\omega}$, and let notation be as above. Then

$$
\begin{equation*}
\mu \in O_{\mathfrak{h}}, c_{\mu}^{+} \neq 0 \Rightarrow\left(\mu+\gamma \delta^{+}\right)(H) \leqslant 0 \text { for all } H \in \mathfrak{h}_{2}^{+} . \tag{8.17}
\end{equation*}
$$

Proof. It is clearly enough to prove the following implication:

$$
\begin{equation*}
\mu \in O_{\mathfrak{h}}, c_{\mu}^{+} \neq 0 \Rightarrow\left(\mu+(\gamma-\varepsilon) \delta^{+}\right)(H) \leqslant 0 \text { for all } H \in \mathfrak{h}_{2}^{+}, \tag{8.18}
\end{equation*}
$$

for every ε with $0<\varepsilon<\gamma$. In what follows we fix $\varepsilon(0<\varepsilon<\gamma)$, write $x=\gamma-\varepsilon$, and select $C>0, p \geqslant 0$ such that $|\Theta(f)| \leqslant C \sup _{G} \Xi^{-1+x}\left|\Omega^{p} f\right|$ for all $f \in C_{c}^{\infty}(G)$. Let $A_{\tilde{h}}$ be the normalizer of $A_{\mathfrak{h}}$ in G, and let W_{A} be the image of $A_{\mathfrak{F}}^{\tilde{h}} / A_{\mathfrak{y}}$ in $W\left(\mathfrak{h}_{c}\right)$.

Proceeding as in § 19 of [14] we construct a map $\beta \mapsto f_{\beta}$ of $C_{c}^{\infty}\left(A_{\mathfrak{h}}^{\prime}\right)$ into $C_{c}^{\infty}\left(G_{\mathfrak{h}}\right)$ with the following properties:
(i) for $\beta \in C_{c}^{\infty}\left(A_{\mathfrak{g}}^{\prime}\right)$ and $a \in A_{\mathfrak{h}}^{\prime}$, writing $\bar{G}=G / A_{\mathfrak{h}}$,

$$
\begin{equation*}
\Delta_{\mathfrak{h}}^{+}(a)^{\mathrm{conj}} \int_{\bar{G}} f_{\beta}\left(a^{\bar{x}}\right) d \bar{x}=\sum_{s \in W_{\mathcal{A}}} \varepsilon(s) \beta\left(a^{s}\right) ; \tag{8.19}
\end{equation*}
$$

here, $x \mapsto \bar{x}$ is the natural map of G onto $\bar{G}, d \bar{x}$ is an invariant measure on \bar{G}.
(ii) there is a compact set $X=X^{-1} \subseteq G$ such that $\operatorname{supp}\left(f_{\beta}\right) \subseteq(\operatorname{supp} \beta)^{x}$ for all $\beta \in C_{c}^{\infty}\left(A_{\mathfrak{j}}^{\prime}\right)$.
(iii) Let \Re be the algebra of functions on $A_{\mathfrak{b}}^{\prime}$ generated by 1 and all the $\eta_{\alpha}=\left(1-\xi_{\alpha}\right)^{-1}\left(\alpha\right.$ any root of $\left.\left(\mathfrak{g}_{c}, \mathfrak{h}_{c}\right)\right)$, and let \mathfrak{F} be the subalgebra of (5) generated by $(1, \mathfrak{G})$; then, given any $u \in \mathfrak{G}$, there exist $u_{i s} \in \mathfrak{F}, g_{i s} \in \Re\left(s \in W_{A}, l \leqslant i \leqslant q\right)$ such that, for all $\beta \in C_{c}^{\infty}\left(A_{\mathfrak{h}}^{\prime}\right), a \in A_{\mathfrak{h}}^{\prime}, x \in X$,

$$
\begin{equation*}
\left|f_{\beta}\left(a^{x} ; u\right)\right| \leqslant\left|\xi_{\delta}+(a)\right|^{-1} \sum_{1 \leqslant i \leqslant q} \sum_{s \in W_{A}}\left|g_{i s}(a)\right|\left|\beta\left(a^{s} ; u_{i s}\right)\right| . \tag{8.20}
\end{equation*}
$$

It follows from (8.19) that $\Theta\left(f_{\beta}\right)=\int_{A_{\mathfrak{h}}^{\prime}} \Phi_{\mathfrak{h}}(a) \beta(a) d a$ for all $\beta \in C_{c}^{\infty}\left(A_{\mathfrak{h}}^{\prime}\right)$, provided $d a$ is suitably normalized. On the other hand, by (ii) above, we have, for all $\beta \in C_{c}^{\infty}\left(A_{\mathfrak{j}}^{+}\right)$,

$$
\sup _{G} \Xi^{-1+x}\left|\Omega^{p} f_{\beta}\right|=\sup _{a \in A_{\mathfrak{h}}^{+}, x \in X} \Xi\left(a^{x}\right)^{-1+x}\left|f_{\beta}\left(a^{x} ; \Omega^{p}\right)\right|,
$$

and we can estimate the right side of this relation by (8.20). Observing that there is a constant $c>0$ with $c^{-1} \Xi(y) \leqslant \Xi\left(x_{1} y x_{2}\right) \leqslant c \Xi(y)$ for all $y \in G, x_{1}, x_{2} \in X$, we then get the following result: there are $v_{i s} \in \mathfrak{F}, h_{i s} \in \mathfrak{R}\left(1 \leqslant i \leqslant r, s \in W_{A}\right)$ such that for all $\beta \in C_{c}^{\infty}\left(A_{\mathfrak{h}}^{+}\right)$,

$$
\begin{equation*}
\left|\int_{A_{\mathfrak{h}}^{+}} \Phi_{\mathfrak{h}}(a) \beta(a) d a\right| \leqslant \sum_{i, s} \sup _{a \in A_{\mathfrak{h}}^{+}}\left(\Xi(a)^{-1+\chi}\left|\xi_{\delta^{+}}(a)\right|^{-1}\left|h_{i s}(a)\right|\left|\beta\left(a^{s} ; v_{i s}\right)\right|\right) . \tag{8.21}
\end{equation*}
$$

Now, each element of W_{A} is induced by some element of K, and hence $\Xi\left(a^{s}\right)=\Xi(a)$ $\left.\left(a \in A_{\mathfrak{g}}, s \in W_{A}\right){ }^{(1}\right)$. On the other hand, from (8.15), and the fact that the parabolic subalgebra \mathfrak{p}^{+}defined there is conjugate to some \mathfrak{p}_{F} through an element of K, we conclude that $1 \leqslant \Xi(\exp H) e^{\delta^{+}(H)} \leqslant c_{0}(1+\|H\|)^{r_{0}}$ for all $H \in \mathfrak{h}_{2}^{+}, c_{0}$ and r_{0} being as in (2.1). So

$$
\begin{equation*}
1 \leqslant\left|\xi_{\delta}+(a)\right| \Xi(a) \leqslant c_{0}(1+\sigma(a))^{r_{0}} \quad\left(a \in A_{\mathfrak{j}}^{+}\right) \tag{8.22}
\end{equation*}
$$

(${ }^{1}$) Suppose $x \in A_{\mathfrak{h}}$ induces $s \in W_{A}$. Writing $x=k \exp Z(k \in K, Z \in \mathfrak{G})$ one finds that $\exp 2 Z=$ $\theta\left(x^{-1}\right) x \in A_{\mathfrak{G}}^{\sim}$, so that $\tilde{Z} \in \mathfrak{h}_{\mathbf{2}}$. This shows that $k \in A_{\mathfrak{h}}$ and induces s.

Finally, since \Re is stable under the action of W_{A}, the functions $f_{i s}: a \mapsto h_{i s}\left(a^{s^{-1}}\right)\left(a \in A_{\mathfrak{b}}^{\prime}\right.$, $s \in W_{A}$) belong to \Re. Using these observations in (8.21) we find after a simple calculation, the following estimate, valid for $\beta \in C_{c}^{\infty}\left(A_{\mathfrak{b}}^{+}\right)$:

$$
\left|\int_{A_{\mathfrak{h}}^{+}} \Phi_{\mathfrak{G}}(a) \beta(a) d a\right| \leqslant c_{0}^{\alpha} \sum_{i, s} \sup _{a \in A_{\mathfrak{G}}^{+}}\left((1+\sigma(a))^{r_{0} \alpha}\left|\xi_{\delta^{+}}(a)\right|^{-x}\left|f_{i s}(a)\right|\left|\beta\left(a ; v_{i s}\right)\right|\right) .
$$

Since $\xi^{+}: a \rightarrow\left|\xi_{\delta^{+}}(a)\right|^{\kappa}$ is a character of $A_{\mathfrak{j}}$, it follows that $\xi^{+{ }^{-1}} \circ v_{i s} \circ \xi^{+}$are well defined elements of \mathfrak{F}. Replacing β by $\beta \xi^{+}$in the above estimate, we finally obtain the following result: there exist $m \geqslant 1, v_{j} \in \mathfrak{S}, h_{j} \in \mathfrak{R}(1 \leqslant j \leqslant r)$ such that, for all $\beta \in C_{c}^{\infty}\left(A_{\mathfrak{h}}^{+}\right)$,

$$
\begin{equation*}
\left|\int_{A_{\mathfrak{h}}^{+}} \Phi_{\mathfrak{h}}(a) \xi^{+}(a) \beta(a) d a\right| \leqslant \sum_{1 \leqslant j \leqslant r} \sup _{a \in A_{\mathfrak{h}}^{+}}\left((1+\sigma(a))^{m}\left|h_{j}(a)\right|\left|\beta\left(a ; v_{j}\right)\right|\right) . \tag{8.23}
\end{equation*}
$$

The estimate (8.23) is the analogue of Lemma 32 of [14] with the function

$$
\Phi_{\mathfrak{h}} \xi^{+}: a \mapsto \sum_{\mu \in O_{\mathcal{H}}} c_{\mu}^{+} \xi_{\mu}\left(a_{1}\right) e^{\left(\mu+x \delta^{+}\right.}\left(\log a_{2}\right)
$$

in the place of Φ. If we now argue as in [14]. we obtain (8.18) in exactly the same way as Lemma 34 is deduced from Lemma 32 in [14]. This proves the lemma.

It follows from (8.16) and (8.17) that, if $\omega=\omega(\lambda)$ is of type γ, and $\mathfrak{h}=\theta(\mathfrak{h})$ is as above, then there is a constant $c_{\mathfrak{g}}^{+}>0$ such that

$$
\begin{equation*}
|D(a)|^{\frac{1}{2}}|\Theta(a)| \leqslant c_{\mathfrak{h}}^{+}\left|\xi_{\delta}+(a)\right|^{-\gamma} \quad\left(a \in A_{\mathfrak{h}}^{+}\right) \tag{8.24}
\end{equation*}
$$

Let Q_{1}^{+}be the set of all roots $\alpha \in Q^{+}$with $\alpha \mid \mathfrak{h}_{2}=0$, and let ν be the number of elements in $Q^{+} \backslash Q_{I}^{+}$. If $a \in A_{\mathfrak{h}}^{+}$and $\alpha \in Q^{+} \backslash Q_{I}^{+}$, we have $\left|1-\xi_{-\alpha}(a)\right| \leqslant 1+e^{-\alpha\left(\log a_{2}\right)}<2$, while, for $a \in A_{\mathfrak{h}}$ and $\alpha \in Q_{1}^{+},\left|\xi_{\alpha}(a)\right|=1$. Hence, for $a \in A_{\mathfrak{j}}^{+}$,

$$
\begin{aligned}
\left|D_{\mathfrak{h}}(a)\right| & =\prod_{\alpha \in Q^{+} \backslash Q_{I}^{+}}\left|1-\xi_{\alpha}(a)\right|\left|1-\xi_{-\alpha}(a)\right| \\
& =\prod_{\alpha \in Q^{+} \backslash Q_{I}^{+}}\left|1-\xi_{-\alpha}(a)\right|^{2}\left|\xi_{\alpha}(a)\right| \leqslant 2^{2 \nu} \prod_{\alpha \in Q^{+}}\left|\xi_{\alpha}(a)\right|=2^{2 \nu}\left|\xi_{\delta}+(a)\right|^{2}
\end{aligned}
$$

Writing $c\left(A_{\mathfrak{h}}^{+}\right)=2^{\nu \gamma} c_{\mathfrak{h}}^{+}$, we then obtain from (8.24)

$$
\begin{equation*}
|D(a)|^{\frac{1}{2}}|\Theta(a)| \leqslant c\left(A_{\mathfrak{h}}^{+}\right)\left|D_{\mathfrak{h}}(a)\right|^{-\gamma / 2} \quad\left(a \in A_{\mathfrak{h}}^{+}\right) . \tag{8.25}
\end{equation*}
$$

Since there are only finitely many sets of the form $A_{\mathfrak{h}}^{+}$(for a given \mathfrak{h}), and since their union is dense in $A_{\mathfrak{b}}^{\prime}$; we conclude from (8.25) that for $\omega=\omega(\lambda)$ to be of type γ, (8.2) must be true for all \mathfrak{h}.

In order to complete the proof of Theorem 8.1 it remains to show how (8.3) may be obtained from (8.2) by choosing \mathfrak{h} suitably. Let β be a noncompact root of $\left(\mathfrak{g}_{c}, \mathfrak{b}_{c}\right)$. We now specialize the Cartan subalgebra \mathfrak{h} of the above discussion to be the one constructed at the beginning of the proof of Lemma 8.3. Let H^{\prime} be as in that lemma, $y=\exp (-1)^{\frac{1}{2}}(\pi / 4)\left(X^{\prime}+Y^{\prime}\right)$. Then $H^{\prime} \in \mathfrak{h}_{2}^{\prime}$, and on defining $\mathfrak{h}_{2}^{+}=\left\{t H^{\prime}: t>0\right\}$, we find at once that $\delta^{+}\left(H^{\prime}\right)=k(\beta)$. On the other hand, there are nonzero constants $c_{s}(s \in W(G \mid B))$ such that, for all $a \in A_{\mathfrak{j}}^{+}$,

$$
\begin{equation*}
\Delta_{\mathfrak{G}}^{+}(a) \Theta(a)=\sum_{s \in W(G / B)} c_{s} \xi_{(s i) \circ y^{-1}\left(a_{1}\right) e^{-\left|((s \lambda) \circ y-1)\left(\log a_{2}\right)\right|} .}^{\text {. }} \tag{8.26}
\end{equation*}
$$

This formula was established by Harish-Chandra in $\S 24$ of [13] in the special case when $\mathrm{rk}(G / K)=1$; in the more general case treated here, (8.26) can be established with only minor modifications in the arguments of [13]. In view of (8.26) and (8.24), we must have $\left|\left(\lambda \circ y^{-1}\right)\left(H^{\prime}\right)\right| \geqslant \gamma \delta^{+}\left(H^{\prime}\right)$, i.e., $\left|\lambda\left(\bar{H}_{\beta}\right)\right| \geqslant \gamma k(\beta)$.

Theorem 8.1 is therefore completely proved. Theorem 8.2 follows at once from Theorem 8.1, since an ω in $\mathcal{E}_{2}(G)$ belongs to $\mathcal{E}_{p}(G)$ if and only if it is of type γ for some $\gamma>(2 / p)-1$ (cf. Theorem 7.5).

9. Examples and remarks

We shall now complement the results of the preceding sections with some examples and remarks.

We begin with a discussion of the condition (cf. [10], [11]) of Harish-Chandra which is sufficient for $\omega(s \lambda)$ to belong to $\mathcal{E}_{\mathbf{1}}(G)$ for all $s \in W\left(\mathfrak{b}_{c}\right)$. Let $\lambda \in \mathcal{C}_{b}^{\prime}, O_{\mathfrak{b}}=W\left(\mathfrak{b}_{c}\right) \cdot \lambda, O_{\mathrm{l}}=$ the $W\left(\mathfrak{l}_{c}\right)$-orbit in I_{c}^{*} that corresponds to $O_{\mathfrak{b}}$; and let \mathfrak{o} be the subset of \mathfrak{a}^{*} obtained by restricting the elements of $O_{\mathfrak{l}}$ to \mathfrak{a}. Given $\nu \in \mathfrak{a}^{*}$ we write $\nu \prec 0$ to mean $\nu\left(H_{i}\right)<0$ for $1 \leqslant i \leqslant d$; here, the H_{i} are as in $\S 2$. Let \mathfrak{v}^{-}be the set of all $\nu \in \mathfrak{v}$ such that $\nu<0$. Then Harish-Chandra's result is as follows: In order that $\omega(s \lambda) \in \mathcal{E}_{1}(G)$ for all $s \in W\left(\mathfrak{b}_{c}\right)$ it is sufficient that $\nu+\varrho \prec 0$ for every $\nu \in 0^{-}$. To prove this it is enough to verify that this condition implies that $\left|(s \lambda)\left(\bar{H}_{\beta}\right)\right|>k(\beta)$ for all $s \in W\left(\mathfrak{b}_{c}\right), \beta \in P_{n}$, or equivalently, that $\left|\Lambda\left(H_{j}\right)\right|>\varrho\left(H_{j}\right)$ for all $\Lambda \in O_{\mathrm{l}}$ and $j \in Q$, by virtue of Lemma 8.3 (here Q is as in that lemma). This implication is an immediate consequence of the following lemma.

Lemma 9.1. Fix $\Lambda \in O_{\mathrm{l}}, j \in Q$. Then there exists $\Lambda^{\prime} \in O_{\mathrm{l}}$ such that (i) $\left|\Lambda^{\prime}\left(H_{j}\right)\right|=\left|\Lambda\left(H_{j}\right)\right|$ (ii) $\left(\Lambda^{\prime} \mid \mathfrak{a}\right) \in_{\mathfrak{D}^{-}}$.

Proof. We use the notation of $\S 2$. Let \mathfrak{h}_{j} be a θ-stable Cartan subalgebra of \mathfrak{g} such that $\mathfrak{h}_{j} \cap \mathfrak{j}=\mathfrak{a}_{j}\left(=\mathbf{R} \cdot H_{j}\right)$. As in the proof of Lemma 8.3 we can select a root α^{\prime} of $\left(\mathfrak{g}_{c}, \mathfrak{h}_{j c}\right)$
and an element $z \in G_{c}$ centralizing H_{j}, such that $\mathfrak{h}_{j c}^{z}=I_{c}$ and $\bar{H}_{\alpha^{\prime}}=c H_{j}$ for some $c \neq 0$. If $\alpha_{1}=\alpha^{\prime} \circ z^{-1}$, then α_{1} is a root of $\left(g_{c}, l_{c}\right)$ and $\bar{H}_{\alpha_{1}}=c H_{j}$. This shows that $\Lambda\left(H_{j}\right) \neq 0$ and $\left(s_{\alpha_{1}} \Lambda\right)\left(H_{j}\right)=-\Lambda\left(H_{j}\right)$. We may therefore assume without any loss of generality that $\Lambda\left(H_{j}\right)<0$.

Select a positive system Q^{+}of roots of $\left(\mathfrak{g}_{c}, \mathfrak{l}_{c}\right)$ with the property that, if α is any root and $\alpha \mid \mathfrak{a} \neq 0$, then $\alpha \in Q^{+}$if and only if $\alpha(\tilde{H})>0$ for all $H \in \mathfrak{a}^{+}$. Let Q_{j}^{+}be the set of all $\alpha \in Q^{+}$with $\alpha\left(H_{j}\right)=0$, and let $\delta_{j}^{+}=\frac{1}{2} \Sigma_{\alpha \in Q_{j}^{+}} \alpha Q_{j}^{+}$is then a positive system of roots of $\left(\mathbf{C} \cdot \mathrm{m}_{1 j}, \mathfrak{l}_{c}\right)$, and $\delta_{j}^{+} \mid \mathfrak{a}=\varrho_{F_{j}}$. Let $z=\left[\mathfrak{m}_{1 j}, \mathfrak{m}_{1 j}\right], \overline{\mathfrak{l}}=\mathfrak{z} \cap \mathfrak{Y}$, and $\overline{\mathfrak{a}}=\mathfrak{z} \cap \mathfrak{a}$. As $\mathfrak{a}_{j}=\operatorname{center}\left(\mathfrak{m}_{1 j}\right) \cap \mathfrak{z}$, it follows that $\overline{\mathfrak{a}}$ is precisely the orthogonal complement of \mathfrak{a}_{j} in \mathfrak{a}, so that $\overline{\mathfrak{a}}=\mathfrak{m}_{j} \cap \mathfrak{a}$ also. Now Λ is regular and integral, and so, we can find an $s \in W\left(l_{c}\right)_{F_{j}}$ such that $(s \Lambda)\left(\bar{H}_{\alpha}\right)$ is an integer <0 for all $\alpha \in Q_{j}^{+}$. Then $s \cdot H_{j}=H_{j}$, and we can write $-s \Lambda=\Lambda_{1}+\delta_{j}^{+}$where $\Lambda_{1}\left(\bar{H}_{\alpha}\right) \geqslant 0$ for every $\alpha \in Q_{j}^{+}$. On the other hand, if $\beta_{1}, \ldots, \beta_{r}$ are the simple roots in Q_{j}^{+}, it follows from a well known result that we can write $\Lambda_{1} \mid \bar{l}_{c}=\Sigma_{1 \leqslant j \leqslant r} m_{j}\left(\beta_{j} \mid \overline{1}_{c}\right)$ where the m_{j} are all $\geqslant 0$. In particular $\Lambda_{1} \mid \overrightarrow{\mathfrak{a}}=\Sigma_{1 \leqslant j \leqslant r} m_{j}\left(\beta_{j} \mid \overline{\mathfrak{a}}\right)$. But the β_{j} vanish on \mathfrak{a}_{j}, and $\varrho^{F_{j}}$ vanishes on $\overline{\mathfrak{a}}$; moreover, $(s \Lambda)\left(H_{j}\right)=\Lambda\left(H_{j}\right)$. So, on defining $t=-\Lambda\left(H_{j}\right) / \varrho^{F_{j}}\left(H_{j}\right)$, we find that $t>0$ and $s \Lambda \mid \mathfrak{a}=-\varrho_{F_{i}}-t \varrho^{F_{j}}-\Sigma_{1 \leqslant j \leqslant r} m_{j}\left(\beta_{j} \mid \mathfrak{a}\right)$. If $u=\min (1, t),(s \Lambda)(H) \leqslant-u \varrho(H)$ for all $H \in C l\left(\mathfrak{a}^{+}\right)$, so that $(s \Lambda)\left(H_{i}\right)<0, \mathrm{l} \leqslant i \leqslant d$. We then have (i) and (ii) with $\Lambda^{\prime}=s \Lambda$.

We assume next that G / K is Hermitian symmetric, and consider those members of $\mathcal{E}_{2}(G)$ which constitute the so-called holomorphic discrete series. For brevity, a positive system of roots of $\left(g_{c}, \mathfrak{b}_{c}\right)$ will be called admissible if every noncompact root in it is totally positive. We now assume that the positive system P is admissible. Let P_{c} be the set of compact roots in P. We write $\delta=\frac{1}{2} \Sigma_{\alpha \in P} \alpha$. Let $\lambda^{\prime} \in \mathcal{L}_{\mathfrak{L}}$ be such that $\lambda^{\prime}\left(\bar{H}_{\alpha}\right) \geqslant 0$ for all $\alpha \in P_{k}$ and $\left(\lambda^{\prime}+\delta\right)\left(\bar{H}_{\alpha}\right)<0$ for all $\alpha \in P_{n}$. Then $\lambda=\lambda^{\prime}+\delta \in \mathcal{L}_{\mathfrak{b}}^{\prime} ;$ moreover, if $\pi_{\lambda^{\prime}}$, is the representation associated with λ^{\prime} constructed by Harish-Chandra in [3], [4], [5], then $\pi_{\lambda^{\prime}} \epsilon \omega(\lambda)$. Our aim now is to examine under what circumstances $\omega(\lambda) \in \mathcal{E}_{1}(G)$.

Theorem 9.2. Let G / K be Hermitian symmetric and let λ, P be as described above. The following statements are then equivalent:
(i) $\omega(\lambda) \in \mathcal{E}_{1}(G)$
(ii) $\left|\lambda\left(\bar{H}_{\beta}\right)\right|>k(\beta)$ for all $\beta \in P_{n}$.
(iii) $\lambda\left(\bar{H}_{\beta}\right)<1-2 \delta_{n}\left(\vec{H}_{\beta}\right)$ for all $\beta \in P_{n}$, where $2 \delta_{n}=\Sigma_{\alpha \in P_{n}} \alpha$.

Proof. Theorem 8.2 gives the implication (i) \Rightarrow (ii). In his paper [5] (Lemma 30) Harish-Chandra established the implication (iii) \Rightarrow (i). It therefore remains to verify that (ii) \Rightarrow (iii). Let $P^{\prime}=-P_{k} \cup P_{n}$. If s_{0} is the element of the Weyl group of $\left(f_{c}, \mathfrak{b}_{c}\right)$ such that $s_{0} \cdot P_{k}=-P_{k}$, it is clear that $s_{0} \cdot P=P^{\prime}$. So P^{\prime} is a positive system of roots of $\left(\mathrm{g}_{c}, \mathfrak{b}_{c}\right)$. It is obvious that P^{\prime} is also admissible and that $P_{n}^{\prime}=P_{n}$. Let $\left(\beta_{1}, \ldots, \beta_{l}\right)$ be the simple system
of roots of P^{\prime}, and let notation be such that $\beta_{1}, \ldots, \beta_{t}$ are precisely the noncompact roots from among $\beta_{1}, \ldots, \beta_{l}$. It is known that every $\alpha \in P_{l c}^{\prime}$ is a linear combination with nonnegative integral coefficients of $\mathfrak{b}_{t+1}, \ldots, \mathfrak{b}_{l}\left([3]\right.$, Lemma 13), so that, $\alpha\left(\bar{H}_{\beta_{j}}\right) \leqslant 0$ whenever $\alpha \in P_{k}^{\prime}$ and $l \leqslant j \leqslant t$. It is also known that, for any $\beta^{\prime}, \beta^{\prime \prime} \in P_{n}, \beta^{\prime \prime}\left(\bar{H}_{\beta^{\prime}}\right) \geqslant 0$ ([5], Lemma 10).

Assume that λ satisfies (ii). Since $k(\beta)$ is an integer and $\lambda\left(\bar{H}_{\beta}\right)<0$ for $\beta \in P_{n}$, we have $\lambda\left(\bar{H}_{\beta}\right) \leqslant-k(\beta)-1$ for all $\beta \in P_{n}$. We assert that $\lambda\left(\bar{H}_{\beta_{j}}\right) \leqslant-2 \delta_{n}\left(\bar{H}_{\beta_{j}}\right)$ for $1 \leqslant j \leqslant l$. Suppose $j>t$. Then $\beta_{j} \in-P_{k}$ so that $\lambda\left(\bar{H}_{\beta_{j}}\right)<0$. But $s \delta_{n}=\delta_{n}$ for all s in the Weyl group of ($\mathcal{F}_{c}, \mathfrak{b}_{c}$), as P is admissible, so that $\delta_{n}\left(H_{\beta_{j}}\right)=0$. Thus our assertion is true in this case. On the other hand, let $1 \leqslant j \leqslant t$. Then $\beta_{j} \in P_{n}$ and so $\lambda\left(\bar{H}_{\beta_{j}}\right) \leqslant-k\left(\beta_{j}\right)-1$. Now

$$
l\left(\beta_{j}\right)=\frac{1}{2} \sum_{\alpha \in P^{\prime}}\left|\alpha\left(\bar{H}_{\beta_{j}}\right)\right|=\frac{1}{2}\left\{\sum_{\alpha \in P_{k}^{\prime}}\left(-\alpha\left(\bar{H}_{\beta_{j}}\right)\right)+\sum_{\alpha \in P_{n}^{\prime}} \alpha\left(\bar{H}_{\beta_{j}}\right)\right\}=-\frac{1}{2} \sum_{\alpha \in P^{\prime}} \alpha\left(\bar{H}_{\beta_{j}}\right)+2 \delta_{n}\left(\bar{H}_{\beta_{j}}\right) .
$$

But, as β_{j} is simple in $P^{\prime}, \frac{1}{2} \sum_{\alpha \in P^{\prime}} \alpha\left(\bar{H}_{\beta_{j}}\right)=1$. So

$$
\begin{equation*}
k\left(\beta_{j}\right)+1=2 \delta_{n}\left(\bar{H}_{\beta_{j}}\right) \quad(1 \leqslant j \leqslant t) . \tag{9.1}
\end{equation*}
$$

From (9.1) we obtain $\lambda\left(\bar{H}_{\beta_{j}}\right) \leqslant-2 \delta_{n}\left(\breve{H}_{\beta_{j}}\right)$ when $1 \leqslant j \leqslant t$. Our assertion is therefore proved.
We therefore have $\left\langle\lambda, \beta_{j}\right\rangle \leqslant-2\left\langle\delta_{n}, \beta_{j}\right\rangle, 1 \leqslant j \leqslant l$. This implies that $\langle\lambda, \beta\rangle \leqslant-2\left\langle\delta_{n}, \beta\right\rangle$ for all $\beta \in P^{\prime}$, in particular, for all $\beta \in P_{n}$. But then $\lambda\left(\bar{H}_{\beta}\right) \leqslant-2 \delta_{n}\left(\bar{H}_{\beta}\right)<1-2 \delta_{n}\left(\bar{H}_{\beta}\right)$ for all $\beta \in P_{n}$, proving (iii).

We shall now use Theorem 9.2 to construct examples of $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}$ such that $\omega(\lambda) \in \mathcal{E}_{1}(G)$, but $\omega(s \lambda) \notin \mathcal{E}_{1}(G)$ for some $s \in W\left(\mathfrak{b}_{c}\right)$. Let notation be as above. We shall assume that there are elements of $W\left(\mathfrak{b}_{c}\right)$ which transform a compact root into a noncompact root. (1) Let c_{1}, \ldots, c_{l} be integers >0 such that $0<-\delta\left(\bar{H}_{\beta_{j}}\right) \leqslant c_{j} \leqslant k\left(\beta_{j}\right)$ for $t<j \leqslant l$. Since $-\beta, \in P$ $(t<j \leqslant l)$ and $k(\beta) \geqslant \delta\left(\bar{H}_{\beta}\right) \forall \beta \in P$, it is possible to choose such c_{i}. Define $\lambda \in \mathfrak{b}_{c}^{*}$ by setting $\lambda\left(\bar{H}_{\beta_{j}}\right)=-c_{j}, l \leqslant j \leqslant l$. It is obvious that $\lambda \in \mathcal{L}_{b}^{\prime}$, and that $\lambda=\lambda^{\prime}+\delta$, where $\lambda^{\prime}\left(\bar{H}_{\alpha}\right) \geqslant 0$ for all $x \in P_{k}$; and so, (iii) of Theorem 9.2 shows that $\omega(\lambda) \in \mathcal{E}_{1}(G)$ if c_{1}, \ldots, c_{t} are all sufficiently large. But, if j and $s \in W\left(\mathfrak{b}_{c}\right)$ are such that $t<j \leqslant l$, and $s \beta_{j}=\beta$ is a noncompact root $\left|(s \lambda)\left(\bar{H}_{\beta}\right)\right|=\left|\lambda\left(\bar{H}_{\beta_{j}}\right)\right| \leqslant k\left(\beta_{j}\right)=k(\beta)$, so that $\omega(s \lambda) \notin \mathcal{E}_{1}(G)$.

Let us now return to the case of an arbitrary G. The estimates for the eigenfunctions for 3 which we have obtained have also taken into account the variation of the eigenvalues. We shall now indicate an application of these estimates.

Fix p with $1 \leqslant p<2$. Let $C(G)\left(=\mathcal{C}^{2}(G)\right.$ in the notation of the remark following Corollary 3.4) be the Schwartz space of G. Let $\left.{ }^{0} L^{2}(G)\right)$ (resp. ${ }^{0} L_{p}^{2}(G)$) be the smallest closed subspace of $L^{2}(G)$ containing all the K-finite matrix coefficients of the members

[^1]of $\mathcal{E}_{2}(G)$ (resp. $\mathcal{E}_{p}(G)$). Let ${ }^{0} E$ (resp. ${ }^{0} E_{p}$) be the orthogonal projection $L^{2}(G) \rightarrow{ }^{0} L^{2}(G)$ (resp. $\left.L^{2}(G) \rightarrow{ }^{0} L_{p}^{2}(G)\right)$. Harish-Chandra has proved ([15]) that if $f \in \mathcal{C}(G),{ }^{0} E f \in \mathcal{C}(G)$ also, and that $f \mapsto{ }^{0} E f$ is continuous in the Schwartz topology. We shall now obtain an extension of this result.

Theorem 9.3. Let notation be as above. Then, for any $f \in \mathcal{C}(G),{ }^{0} E_{p} f \in \mathcal{C}^{p}(G)$, and the map $f \mapsto E_{p} t$ is continuous from $\mathcal{C}(G)$ into $\mathcal{C}^{p}(G)$.

Proof. Let $\mathcal{L}(p)$ be the set of all $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}$ such that $\lambda\left(\bar{H}_{\alpha}\right)>0$ for all $\alpha \in P_{k}$ and $\omega(\lambda) \in \mathcal{E}_{p}(G)$. Then $\lambda \mapsto \omega(\lambda)$ is a bijection of $\mathcal{L}(p)$ onto $\mathcal{E}_{p}(G)$. For each $\lambda \in \mathcal{L}(p)$ we select a Hilbert space \mathcal{H}_{λ}, a representation $\pi_{\lambda} \in \omega(\lambda)$ acting in \mathcal{H}_{λ}, and an orthonormal basis $\left\{e_{\lambda, i}: i \in N_{\lambda}\right\}$ of \boldsymbol{H}_{λ}, such that, each $e_{\lambda, i}$ lies in a subspace invariant and irreducible under $\pi_{\lambda}(K)$. Let Ω be as in (5.8). Then there are numbers $c_{\lambda, i} \geqslant 1$ such that $\pi_{\lambda}(\Omega) e_{\lambda, i}=c_{\lambda, i} e_{\lambda, i}$ ($i \in N_{\lambda}$). Now, there is an integer $m \geqslant 1$ such that for any $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}$ and any equivalence class \mathfrak{d} of irreducible representations of K, the multiplicity of \mathfrak{d} in $\pi_{\lambda} \mid K$ is $\leqslant m \cdot \operatorname{dim}$ (δ). It follows from this and (8.8), that there are constants $a>0, r \geqslant 0$ with the following property:

$$
\sup _{\gamma \in \mathcal{L}(p)} \sum_{i \in N_{\lambda}} c_{\gamma, i}^{-r}=a<\infty
$$

Moreover, if ω is the Casimir of G, we have $\mu_{\mathfrak{g} / \mathfrak{b}}(\omega)(\lambda)=\|\lambda\|^{2}-\|\delta\|^{2}\left(\delta=\frac{1}{2} \sum_{\alpha \in P} \alpha\right)$ for all $\lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}$. So, if $z=\omega+\left(1+\|\delta\|^{2}\right)$, we have $z \in 马$, and $\mu_{\mathfrak{g} / \mathfrak{b}}(z)(\lambda)=1+\|\lambda\|^{2}, \lambda \in \mathcal{L}_{\mathfrak{b}}^{\prime}$.

Let d_{λ} be the formal degree of $\omega(\lambda)$. We define

$$
\begin{equation*}
a_{\lambda, i, j}(x)=d_{\lambda}^{\frac{1}{2}}\left(\pi_{\lambda}(x) e_{\lambda, j}, e_{\lambda, i}\right) \quad\left(x \in G, i, j \in N_{\lambda}\right) . \tag{9.3}
\end{equation*}
$$

Then $\left\{a_{\lambda, i, j}: \lambda \in \mathcal{L}(p), i, j \in N_{\lambda}\right\}$ is an orthonormal basis for ${ }^{0} L_{p}^{2}(G)$, and one has, for any $f \in L^{2}(G)$,

$$
\begin{equation*}
{ }^{0} E_{p} t=\sum_{\lambda \in \mathcal{K}(p) i, j \in N_{\lambda}} \sum_{\lambda, i, j}\left(f, a_{\lambda, i, j}\right) a_{\lambda, i} \tag{9.4}
\end{equation*}
$$

Suppose now that $f \in \mathcal{C}(G)$. If $q>0$ is sufficiently large, $\int_{G} \Xi(1+\sigma)^{-q}|g| d y<\infty$ for each $g \in L^{2}(G)$. It follows easily from this that the function $x \mapsto \int_{G} f(x y) g(y) d y$ is of class C^{∞} for each $g \in L^{2}(G) . f$ is thus a weakly, and hence strongly, differentiable vector for the left regular representation. A similar result is true for the right regular representation also. Since ${ }^{0} E_{p}$ commutes with both regular representations, ${ }^{0} E_{p} f$ is also differentiable for both. In particular ${ }^{0} E_{p} f$ is of class C^{∞}, and, for $u, v \in(3), v\left({ }^{0} E_{p} f\right) u={ }^{0} E_{p}(v f u)$; so

$$
\begin{equation*}
v\left(^{0} E_{p} f\right) u=\sum_{\lambda \in \mathcal{E}(p)} \sum_{i, j \in N_{\lambda}}\left(u f v, a_{\lambda, i, j}\right) a_{\lambda, i, j} \tag{9.5}
\end{equation*}
$$

We shall now estimate the terms on the right of (9.5). Since $z a_{\lambda, i, j}=\left(1+\|\lambda\|^{2}\right) a_{\lambda, i, j}$,
$\Omega^{m} \dot{a}_{\lambda, i, j} \Omega^{m}=c_{\lambda, i}^{m} c_{\lambda, j}^{m} a_{\lambda, i, j}$, and since both f and $a_{\lambda, i, j}$ are in $C(G)$, we have, for any integer $m \geqslant 0$,

$$
\begin{equation*}
\left(u f v, a_{\lambda, i, j}\right)=\left[c_{\lambda, i} c_{\lambda, j}\left(1+\|\lambda\|^{2}\right)\right]^{-m}\left(\Omega^{m} z^{m} u f v \Omega^{m}, a_{\lambda, i, j}\right) \tag{9.6}
\end{equation*}
$$

On the other hand, we obtain without much difficulty, the following estimate, from (7.39): there are constants $C>0, q \geqslant 0$ such that

$$
\begin{equation*}
\left|a_{\lambda, i, j}(x)\right| \leqslant C\left[c_{\lambda, i} c_{\lambda, j}\left(1+\|\lambda\|^{2}\right)\right]^{q} \Xi(x)^{(2 / p)+e_{0}} \tag{9.7}
\end{equation*}
$$

for all $\lambda \in \mathcal{L}(p), i, j \in N_{\lambda}, x \in G\left(\varepsilon_{0}>0\right.$ as in (7.39)). So, combining (9.6) and (9.7) we have, for any integer $m \geqslant q$ and λ, i, j, x as above,

$$
\begin{equation*}
\left|\left(u f v, a_{\left.\lambda_{, i, j}\right)}\right) a_{\lambda_{i}, j}(x)\right| \leqslant C\left[c_{i} c_{j}\left(1+\|\lambda\|^{2}\right)\right]^{-(m-a)} \Xi(x)^{(2 / p)+\varepsilon_{9}}\left\|\Omega^{m} z^{m} u f v \Omega^{m}\right\|_{2} \tag{9.8}
\end{equation*}
$$

Choose $m_{0}>q$ such that

$$
\begin{equation*}
C_{0}=C \sum_{\lambda \in \mathcal{C}(p)} \sum_{i, j \in N_{\lambda}}\left[c_{\lambda, i} c_{\lambda, j}\left(1+\|\lambda\|^{2}\right)\right]^{-\left(m_{0}-q\right)}<\infty \tag{9.9}
\end{equation*}
$$

which is clearly possible in view of (9.2). We then have, from (9.5) and (9.8)

$$
\begin{equation*}
\sup _{x \in G} \Xi(x)^{-\left((2 / p)+\varepsilon_{0}\right)}\left|\left({ }^{0} E_{p} f\right)\left(u_{\mathrm{e}} x ; v\right)\right| \leqslant C_{0}\left\|\Omega^{m} z^{m} u f v \Omega^{m}\right\|_{2} \tag{9.10}
\end{equation*}
$$

for all $f \in \mathrm{C}(G)$. Theorem 9.3 follows at once from (9.10).

References

[1]. Borel, A., Linear algebraic groups. Proceedings of Symposia in pure mathematics, IX (1966), 3-19.
[2]. Dixmier, J., Représentations intégrables due groupe de De Sitter. Bull. Soc. Math. France, 89 (1961), 9-41.
[3]. Harish-Chandra, Representations of semisimple Lie groups, IV. Amer. J. Math., 77 (1955), 743-777.
[4]. - Representations of semisimple Lie groups, V. Amer. J. Math., 78 (1956), 1-41.
[5]. - Representations of semisimple Lie groups, VI. Amer. J. Math., 78 (1956), 564-628.
[6]. - Fourier Transforms on a semisimple Lie algebra, I. Amer. J. Math., 79 (1957), 193-257.
[7]. -- Spherical functions on a semisimple Lie group, I. Amer. J. Math., 80 (1958), 241-310.
[8]. -- Spherical functions on a semisimple Lie group, II. Amer. J. Math., 80 (1958), 553-613.
[9]. - Some results on differential equations and their applications. Proc. Nat. Acad. Sci. USA, 45 (1959), 1763-1764.
[10]. - Some results on differential equations. (1960) (unpublished).
[11]. - Differential equations and semisimple Lie groups. (1960) (unpublished).
[12]. - Invariant eigendistributions on a semisimple Lie group. Trans. Amer. Math. Soc., 119 (1965), 457-508.
[13]. - Two theorems on semisimple Lie groups. Ann. Math., 83 (1966), 74-128.
[14]. - Diserete series for semisimple Lie groups, II. Acta Mathematica, 116 (1966), 1-111.
[15]. - Harmonic Analysis on semisimple Lie groups. Bull. Amer. Math. Soc., 76 (1970), 529-551.
[16]. Langlands, R. P., Dimension of spaces of automorphic forms. Proceedings of symposia in pure mathematics, IX (1966), 253-257.
[17]. Schmid, W., On a conjecture of Langlands. Ann. Math., 93 (1971), 1-42.
Received August 9, 1971

[^0]: ${ }^{(1)}$ Cf. the remarks made made in $\S 2$ concerning M_{F}. If $d=1, M_{j}$ is compact, $\Xi_{j}(m) \equiv 1$, and (7.36) is trivial. So the case $d=1$, which starts the induction, is simple to handle, and in fact, its proof is contained in the given proof.
 18-722902 Acta mathematica 129. Imprimé le 6 Octobre 1972

[^1]: $\left.{ }^{(}{ }^{1}\right)$ It is not difficult to show that this is always the case unless \mathfrak{g} is the direct sum of $[f, f, f]$ and a certain number of algebras isomorphic to $\mathfrak{B l}(\mathbf{2}, \mathbf{R})$.

