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ASYMPTOTIC BEHAVIOUR
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BEHZAD DJAFARI ROUHANI

(Communicated by Palle E. T. Jorgenson)

Abstract. We introduce the notion of firmly nonexpansive sequences in a Ba-

nach space and present several results concerning their asymptotic behaviour

extending previous results and giving an affirmative answer to an open ques-

tion raised by S. Reich and I. Shafrir [Proc. Amer. Math. Soc. 101 (1987),
246-250]. Applications to averaged mappings are also given.

1. Introduction

Let X be a real Banach space and D a nonempty subset of X ; the norms

of both X and X* are denoted by | | ; we denote weak convergence in X

by -» and strong convergence by -». A mapping T: D —y X is said to be
firmly nonexpansive [2, 3] if for each x and y in D, the convex function

/: [0, 1] -► [0, oo[ defined by f(t) = |(1 - t)(x - y) + t(Tx - Ty)\ is nonin-
creasing. Equivalently, T is firmly nonexpansive if and only if \Tx - Ty\ <

\t(x -y) + (l- t)(Tx - Ty)\ for all x , y £ D and t £[0, I], or, if and only
if T is the resolvent (I + A)~X for some accretive operator A c X x X. Note

also that any linear projection of norm one is firmly nonexpansive. Properties

of such mappings, as well as averaged mappings, were studied by Reich [15],

Brück and Reich [4], Bâillon, Brück, and Reich [1]; and their results were ex-

tended by Plant and Reich [14] and Reich and Shafrir [16]. We refer also to the
two textbooks on the subject by Goebel and Reich [11] and Goebel and Kirk

[10] without recalling the basic concepts.
In this paper we introduce the notion of firmly nonexpansive sequences in

a Banach space, and by using our previous methods in [5, 6] for bounded se-

quences and in [7, 8] for unbounded sequences we study the asymptotic be-
haviour of such sequences, extending the previous results mentioned above and,

in particular, giving an affirmative answer to an open question raised by Reich

and Shafrir [16, p. 249]. Applications to averaged mappings are also given,

extending previous results in [1, 16].

2. Preliminaries

(a) The sequence (xn)n>o in X is nonexpansive if \xi+x - Xj+X\ < \x¡ - x¡\
for all i, j > 0.

Received by the editors May 28, 1993; presented at the ICTP, Trieste, Italy, in May 1993.
1991 Mathematics Subject Classification. Primary 47H09.

© 1995 American Mathematical Society
0002-9939/95 $1.00+ $.25 per page

771

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



772 B. D. ROUHANI

(b) (x„)„>o is a firmly nonexpansive sequence (abbreviated F.N.E.S.) if the

function /: [0, 1] -+ [0, oo[ defined by f(t) = \(l -t)(x,- Xj) + t(xi+x -Xj+X)\
is nonincreasing for all i, j > 0.

(c) (xn)n>o is an odd firmly nonexpansive sequence (abbreviated O.F.N.E.S.)

if it is a F.N.E.S. and \x¡+\ + Xj+x | < \x¡ + Xj\ for all i, j > 0.
(d) (x„)n>o is asymptotically regular (resp. weakly asymptotically regular) if

Xn+l ~ Xn —*n—»oo 0   (resp.  Xn+X — Xn —'■n—»oo 0) .

(e) If D is a nonempty subset of X, we denote by clco D the closed convex

hull of D in X and, for x £ X, d(x, D) — infz6£> \x - z\. We denote by D
the strong closure of D in X. We say that D has the minimum property if

d(0, D) = d(0, clcoZ)). For an operator (possibly multivalued) A c X x X,
R(A) will denote the range of A.

(f) For a sequence (x„)„>o in X, we denote by F((x„)n>0) or for simplicity

by F the following subset (possibly empty) of X: F = {q e X/lim„_+00 |x„-c7|

exists}. Note that if F ^ 0, then the sequence (xn)n>o is bounded. Similarly

we denote Fx = {q e X/ the sequence (\xn - q\)„>o is nonincreasing} c F.

(g) Given a bounded sequence (xn)„>o in X and a nonempty closed subset

K of X, the asymptotic radius of (x„)„>o in K is the number r(K, (x„),,>o) =

infxefc(ii^supn_t+0O \xn - x\). The asymptotic centre of (x„)„>o in K is the

(possible empty) set defined by

A(K, (xn)n>o) = {x£K/ lim sup \x„ - x\ = r(K, (x„))„>0}.
n—>+oo

If K is weakly compact, then A(K, (x„)„>o) ^ 0; if K is convex, then

A(K, (x„)„>o) is convex. In a Hubert space H, for K D clco{(x„)„>o},
A(K, (x„)n>o) is a singleton and independent of K (see [10, 11]).

(h) We recall that if X is reflexive and strictly convex and £ a nonempty
closed convex subset of X, the nearest point projection map Pk of X onto

K is well defined, i.e., K isa Chebyshev set; see [10, 11].
(i) The norm of X is Fréchet differentiable if for each x £ S — {z £ X/\z\ =

1}, lim,^o \x+tyj~\x\ exists uniformly for y £ S. We recall also that the dual

space X* has Fréchet differentiable norm if and only if X is reflexive, strictly

convex, and satisfies the following property: if xn -^„-,00 x and \xn\ —yn-><x> \x\,

then \xn - x\ —>,¡->oo 0 (see [9]).

(j) Throughout the paper we will use the following notation:

C = clco{(x„+i -x„)„>o}.

3. Some basic results

First we recall the following theorem, which is the same as Theorem 3.1 in
[8], thus omitting its proof.

Theorem 3.1. Let (xn)n>o be a nonexpansive sequence in X. Then

\Xn — XqIlim
n—>+oo

Xn

n
inf
n>l

= d(0,C).
n

Now we prove some additional results which will be used in the sequel.
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Proposition 3.2. Let (xn)n>o be a nonexpansive sequence in X. Then

xn+k ~ Xn

773

lim
n—>+oo

= d(0, C) = lim lim
k—>oo n—>oo

= inf lim
jt>l n->oc

= inf lim
k>ln>\

Xn+k      Xn

k

Xn+k ~ Xn

Proof. We have

i   k

T = r ¿J<Xn+i ~ Xn+i-X) € C .

Hence V« > 0, Vfc > 1,

i=i

d(0,C)< Xn+k      Xn
<

Xk — Xo

Now all the above equalities follow from Theorem 3.1.

Our next theorem extends Theorem 1 in [16].

Theorem 3.3. // (xn)n>o is a F.N.E.S. in X, then in addition to the conclusions

of Theorem 3.1 and Proposition 3.2 we have: Vfc > 1,

lim  \xn+i - xn\ =  lim
n—»+oo n—>+oo

Xn+k      Xn =  lim
n—t+oo

Xn

n
= d(0,C).

Proof. Let Rk = lim„_+00 \xn+k - xn\ for k > 1. We have Vfc > 1,

«     A:
-''•n+lt      -^n

- T / j \xn+i - x„+j-X\ —»/t-f+cx.   Hm  |x„+i - Xn\ — Rl ■
K L—d n—»+oo

;=1

Hence Rk < kRx for all k > 1. To complete the proof, by Proposition 3.2,
all we need to show is the converse inequality Rk > kRx for all k > 1. The
proof is similar to that of Theorem 1 in [ 16] and we use induction on k . Since

the case k = 1 is clear, we assume that Rj = jRx for all 1 < j < k and prove

that Rk+X >(k + l)Rx.
Given e > 0, we can find an integer A^e) such that Rx < \xn+j - xn\/j <

Rx + e for all 1 < j < k and n > N(e). But since (x„)„>0 is a F.N.E.S., we

have

\xn+i — xn+k+xI < 2\(xn — xn+k) + (xn+x — Xn+k+X)\

Hence,

< 2\Xn      Xn+k+X\ + 2\Xn+l      Xn+k\.

\Xn — Xn+k+l\  ^ 2|Xn+i — Xn+k+X\ — \Xn+l — Xn+k\

> 2kRx -(k- l)(Rx +e) = (k + l)Rx-(k- l)e

for all n > N(e).
Therefore, Rk+X > (k + l)Rx since e > 0 is arbitrary, and the proof of the

theorem is now complete.
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4. Asymptotic behaviour of firmly nonexpansive sequences

We have the following theorem concerning the convergence of the sequence

y„ — xn+x - xn which extends Theorem 2 in [16] and gives an affirmative

answer to an open question posed in [16, p. 249] concerning the sufficiency of
the Fréchet differentiability of the norm of X* for the convergence of y„ .

Theorem 4.1. Let (x„)n>o be a F.N.E.S. in X and yn = xn+x - x„ .

(i) If X is reflexive and strictly convex, then yn -^„_+0o PcO. Moreover,

limn^+oo\yn\ = \PcO\.

(ii) If X* has Fréchet differentiable norm, then yn ^„^+00 PcO.

Proof. X being reflexive, yn contains a weakly convergent subsequence; let

y„k ^ài—oo p £ C. X being also strictly convex, we have d(0, C) - \PcO\.

Therefore, |p| < liminf^+00 \y„k\ = lim„_,+00 \y„\ = \PC0\ by Theorem 3.3.
Hence, we must have p = PcO; this shows that y„ converges weakly to PcO

with lim„_+00 \y„\ = |Pc0| and completes the proof of (i).

Now (ii) is an immediate consequence of (i) and the characterization of X

given in §2(i).

Remark 4.2. The example of [13] can be used to show that the assumptions

made on X in (i) or (ii) are also necessary for the respective conclusion to

hold.

Corollary 4.3. Let (x„)„>o be a F.N.E.S. in X. Then the following are equiva-

lent:

(i) (x„)„>o is asymptotically regular.

(ii) (x„)„>o is weakly asymptotically regular.

(iii) yn — xn+x - x„ has a weakly convergent subsequence to zero.

Proof. Assume y„k = x„k+x - x„k ^k-><x> 0. Then 0 £ C ; hence, d(0, C) =
0 = lim„_+00 \x„+\ -xn\ by Theorem 3.3. Therefore, (xn)n>o is asymptotically

regular, and the proof is complete.

Corollary 4.4. Let (x„)„>o be a F.N.E.S. in X. Then (xn)n>o is asymptotically

regular if liminf„_+CX) |x„| < +oo.

Proof. This follows directly from Theorem 3.3 since in this case lim„_+00 \x„/n\
= 0.

Example 4.5. The following example shows that the converse does not hold in

Corollary 4.4 even in one dimension. Let xo = 0 and xn = ^=1 £ for « > 1.

Then it is easily verified that (x„)„>o is a F.N.E.S. of real numbers satisfying

Xn —¥n—>+oo +0O  and  Xn+X — Xn = ^7 —*n—»+oo 0 .

Now we study the convergence of x„ in a Hubert space. Our next theorem

extends (for the case of a Hubert space) Corollary 4 in [16].

Theorem 4.6. Let (xn)n>o be a F.N.E.S. in a real Hubert space H. Then the

following are equivalent:

(i) \x„\ is bounded.
(ii) liminf„^+00 \x„\ < +oo.

(iii) Fx # 0.
(iv) F/0.
(v) x„ converges weakly in H.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



asymptotic behaviour of firmly nonexpansive SEQUENCES 775

Moreover, the weak limit in (v) can be identified as lim„_+00 Pf,x„ and also

as the asymptotic center of the sequence (x„)n>o.

Proof. We note that by Corollary 4.4 (x„)„>o is asymptotically regular. Hence,

the proof is completed by applying Proposition 2.10 and Theorem 2.11 in [5]

and Theorem 3.4 and Corollary 3.10 in [6].

Remark 4.7. Example 3.5 in [6] shows that the sequence Ppx„ may not be
convergent in H.

Remark 4.8. The conclusions of Theorem 4.6 seem to be still open problems in
a Banach space setting.

Now we give some conditions for the strong convergence of a F.N.E.S. in a

Banach space. Our next theorem is simple.

Theorem 4.9. Let (xn)n>o be a F.N.E.S. in X satisfying \x¡+m-x¡\ ->/-,+0o am

uniformly in m>0. Then x„ converges strongly to some p £ Fx if and only if
liminf„_+00 |x„| < +00.

Proof. By Corollary 4.4 we have ax = 0 ; hence, by Theorem 3.3, am = max =

0 for all m > 1. This shows that (xn)n>o is a Cauchy sequence in X and,

hence, strongly convergent to some p £ X. We have \xi+m+x -x¡+x \ < \x¡+m-x¡\

for all i, m > 0 ; letting m —y +00 we get \xi+x — p\< \x¡ - p\ for all i > 0.
Thus p £ Fx and the proof is complete.

Remark 4.10. Obviously the strong limit of any sequence is its asymptotic centre

with respect to any set containing the limit.

Our next theorem is similar to Theorem 1.1 in [1].

Theorem 4.11. Let (xn)n>o be an O.F.N.E.S. in a uniformly convex Banach

space X. Then xn converges strongly as n —> +00 to some p £ Fx.

Proof. The oddness implies that lim„^+00 \xn\ = d exists, and hence, by Corol-

lary 4.4 (x„)„>o is asymptotically regular. Now we have 2d < 2\x„\ <

\x„ + xn+m\ + \x„ - xn+m\ for all n, m > 0. But for fixed m > 0, we have

\x„ - xn+m\ ->n-.+oo 0, hence, 2d < lim„^+00 \x„ + x„+m\ for all m > 0, and

therefore 2d < \x„ + x„+m\ < \x„\ + \xn+m\ for all n, m > 0. This implies that

lim„_+00 \xn + xn+m\ = 2d uniformly in m > 0. By uniform convexity, we

deduce that lim„_+00 \x„ - x„+m\ = 0 uniformly in m > 0; hence, (Jt„)„>o is

a Cauchy sequence in X, thus strongly convergent. The same argument as in

Theorem 4.9 shows that the limit belongs to Fx and completes the proof.

5. Asymptotic behaviour of averaged mappings

Let A' be a nonempty closed convex subset of X and T : K —- K a nonex-

pansive mapping (i.e., \Tx - Ty\ <\x-y\ for all x , y £ K). By an averaged
mapping U: K -> K we mean a mapping of the form U = (1 -X)I + XT where

0 < A < 1 and / is the identity. It is clear that U is nonexpansive and has the

same fixed-point set as T and that U is odd if and only if T is odd. Ishikawa

[12] has shown that U is asymptotically regular if K is bounded. Combining

Theorem 3.1 with Theorem 2.1 in [1] and Corollary 2 in [16] and denoting

Cx = clco{(Un+xx - U"x)„>o} for x £ K, we get the following theorem.
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Theorem 5.1. For all k > 1 and x £ K we have

Unx
lim  \Un+xx-U"x\ = T  lim  \Un+kx - Unx\ =   lim

n—»+oo K n—>+oo «—»+00 77

= ¿(0, Ç,) = inf \y -Uy\=k inf |v - 7>|.
yefc yeK

Now the same argument as in §4 gives the following theorem for averaged
mappings which extends Corollary 2.3 in [1] and its extensions made in [16, p.

249].

Theorem 5.2. Let U : K -- K be an averaged mapping and x £ K.

(i) If X is reflexive and strictly convex, then Un+Xx - Unx --„-,+oc Pcx0.

Moreover lim„_+00 \Un+xx- U"x\ = |Pcx0| and Pcx0 is independent of x e K.

If in addition R(I - T) has the minimum property, then -\PCx0 is the element

of minimum norm in R(I - T).

(ii) If X* has Fréchet differentiable norm, then U"+Xx - U"x —>„_+00 P^O

and -jPcx0 is the element of minimum norm in R(I - T).

Proof. It is similar to that of Theorem 4.1 by using Theorem 5.1. Concerning

the statements about R(I - T), it is clear in (i), and in (ii) the argument is

similar to Theorem 2 in [16] using the fact that (/ - T) is accretive. We

therefore omit the details.

Corollary 5.3. Let U : K -» K be an averaged mapping and x £ K. Then the

following are equivalent:

(i) U is asymptotically regular at x £ K.
(ii) U is weakly asymptotically regular at x £ K.

(iii) The sequence (Un+Xx - Unx)„>o has a weakly convergent subsequence

to zero.

Proof. It is similar to that of Corollary 4.3 by using Theorem 5.1.
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