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Abstract

The asymptotic behaviour of solutions to the generalized Becker-Döring
equations is studied. It is proved that solutions converge strongly to a unique
equilibrium if the initial density is sufficiently small.

1 Introduction

The mathematical theory of the coagulation-fragmentation equations has attracted
considerable interested in recent years [1]-[7]. These equations are a model for
the kinetics of cluster growth: denoting by cj = cj(t) ≥ 0 the concentration of
a cluster of j identical particles at time t ≥ 0, (j = 1, 2, 3, . . .), and assuming
the only reactions among clusters are elementary biparticle coagulation and bi-
nary monoparticle fragmentation, one gets the following kinetic equations, the
coagulation-fragmentation equations,

ċj(t) = 1
2

j−1∑
k=1

Wj−k,k(c(t))−
∞∑
k=1

Wj,k(c(t)), j = 1, 2, 3, . . . (1.1)

where Wj,k(c) = aj,kcjck − bj,kcj+k, and aj,k, bj,k are the coagulation and the
fragmentation rate coefficients, respectively, which are nonnegative constants sat-
isfying aj,k = ak,j , bj,k = bk,j , for all j, k. The first sum in the right-hand side of
(1.1) is defined to be zero if j = 1.

With the physical interpretation of the phase variables cj given above, the

quantity ρc(t) :=
∞∑
j=1

jcj(t) is the density of the system at time t, and physical con-

siderations sugest the study of (1.1) in the Banach space of finite density sequences
∗This work was done with the financial support of Fundação Calouste Gulbenkian.
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X :=
{
c = (cj) : ‖c‖ := ‖(jcj)‖`1 <∞

}
. In fact, the only physically important so-

lutions are the nonnegative ones and this is reflected in the definition of solution
to (1.1), that includes the restriction c(t) ∈ X+ := X ∩ {(cj) : cj ≥ 0} for all t
in its domain of definition [2]. In X+ we have ‖c(t)‖ = ρc(t). We usually drop the
subscript c in ρc(·).

Naturally, properties of solutions to (1.1) dependent of the assumptions on
the rate coefficients aj,k and bj,k. One of the best understood and more interesting
cases is obtained when aj,k = bj,k = 0 if min{j, k} > 1 : the Becker-Döring
system. This system has been extensively studied [1, 3, 6, 7] and, under convenient
assumptions on the nonzero rate coefficients, it has been proved that solutions
exhibit an asymptotic behaviour when t→∞ that can be physically interpreted as
a dynamic phase transition [1, 3, 7]: there exists a critical density ρs ∈ (0,∞) such
that solutions to the Becker-Döring system with initial density ρ0 ≤ ρs converge
strongly in X to a unique equilibrium with density ρ0, c

ρ0 , as t → ∞ and if
ρ0 > ρs solutions converge weak∗ in X (but not strongly) to an equilibrium cρs

with density ρs. The interpretation of this result as a phase transition is based on
the fact that the excess density ρ0−ρs is transfered to larger and larger clusters as
t increases, corresponding in the limit t→∞ to the “condensation” of an infinite
(macroscopic) cluster with that density. Two key ingredients to prove this result
are the finite time density conservation of solutions, i.e., ρ(t) = ρ0 for all t ≥ 0, and
the existence of a Lyapunov function Vzs which is sequentially weak∗ continuous
in X [3].

This kind of asymptotic behaviour is expected to hold for the general coagu-
lation-fragmentation equations (1.1) under convenient assumptions on the rate
coefficients. Motivated by the Becker-Döring case, it is natural to impose that, for
all j and k,

aj,k ≤ Ka(jα + kα) (1.2)

for some constants Ka > 0, α ∈ [0, 1), since this condition ensures coagulation does
not lead to a breakdown of density conservation [2].

Concerning the fragmentation coefficients, Carr and da Costa [5] considered
the following “weak fragmentation” assumption

∃Kf > 0 : ∀r > 1,
h(r)∑
j=1

jbj,r−j ≤ Kfr (1.3)

where h(r) = [(r+1)/2] and [x] denote the integer part of x. Assuming aj,k and bj,k
satisfy (1.2), (1.3), and some other hypoteses mainly concerning relations between
these two type of coefficients (such as a “detailed balance” condition stating the
existence of a positive sequence Qj such that aj,kQjQk = bj,kQj+k) it was proved
in [5] that (i) system (1.1) possesses a Lyapunov function, (ii) there exists a critical
density ρs such that for each 0 ≤ ρ ≤ ρs there exists a unique equilibrium cρ of
(1.1) with density ρ and there is no equilibria with ρ > ρs, and (iii) solutions c(t)
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to (1.1) with density ρ0 converge in the weak∗ sense as t → ∞ to an equilibrium
cρ with ρ ∈ [0,min{ρ0, ρs}], (see Theorems 5.2, 5.3 and 6.4 of [5]).

These results are direct extensions of what happens in the Becker-Döring
system (compare with Theorem 4.7, Proposition 4.1 and Theorem 5.5 of [3], re-
spectively), and, thus, they are a strong sugestion that the same type of phase
transition behaviour should occur for (1.1), i.e., the convergence of c(t) to an
equilibrium cρ as t→∞ should hold also in the strong topology of X if ρ0 ≤ ρs.

With this generality the problem is still open. Some progress in this direction
was done in [5] by considering special cases of (1.1) for which aj,k = bj,k = 0
if and only if min{j, k} > N, for some positive integer constant N. The case
N = 1 is the Becker-Döring system, and cases with N > 1 were called in [5]
the generalized Becker-Döring equations. These are more general than the Becker-
Döring equations but still considerably simpler than the coagulation-fragmentation
system (1.1). It was proved in [5, Theorem 6.5] that solutions to the generalized
Becker-Döring equations do exhibit the phase transition behaviour refered to above
provided the initial data is rapidly decreasing (for some physically interesting

coefficients the condition on the initial data is
∞∑
j=1

eλj
µ

cj(0) <∞, where λ > 0

and µ ∈ (0, 1) are constants, see [5, Remark 6.7]). This result is an extension of
what was proved for the Becker-Döring system in [3, Theorem 5.6].

The decay restriction on the initial data was removed for the Becker-Döring
system in [1], and it is expected that the same can be done for the generalized
Becker-Döring equations. In this paper we prove that this is true if the initial
density ρ0 is sufficiently small, namely, we prove that, under convenient hypotheses,
solutions to the generalized Becker-Döring equations with initial data c0 ∈ X+

with density ρ0, converge strongly in X to the unique equilibrium cρ0 with density
ρ0 if ρ0 < ρN for a constant ρN ∈ (0, ρs] satisfying ρN ∼ O(N−1) as N →∞.

The method used to prove this result is a modified version of the one intro-
duced by Ball and Carr for the Becker-Döring [1] and is based on estimates on the

decay rates of xn(t) :=
∞∑
j=n

jcj(t). In order to prove that solutions converge strongly

in X to some equilibrium state we need to prove precompactness of the orbit of
the associated generalized dynamical system, i.e., we must show that xn(t)→ 0 as
n → ∞ uniformly in t. We prove that if ρ0 < ρN there exists a sequence λn → 0
as n→∞ such that xn(t) ≤ λn for all t > 0, provided xn(0) ≤ λn. The sequences
(λn) are defined in a way similar to what was done in [1] and the fact that for
each initial condition c0 with small enough density a sequence (λn) can be found
satisfying xn(0) ≤ λn follows from arguments analogous to the ones in that paper.

It was not possible to extend the method in order to deal with solutions with
density larger than ρN , so the result for general ρ0 ∈ [0, ρs] (if true) seems to require
a new approach. Similarly, the result cannot be extended to the general equation



26 Fernando Pestana Da Costa NoDEA

(1.1): the proofs require N <∞ and (1.1) is obtained, formally, by making N =∞
(note also that ρN → 0 as N →∞).

Nevertheless, although the general phase transition problem remains open,
the result in this paper shows that the assumption on the decay rate of the initial
data for the generalized Becker-Döring equations made in [5] is not necessary
to obtain strong convergence to equilibria, at least when the initial density is
sufficiently small.

The paper makes frequent use of ideas and results from [1, 5], and is organized
as follows:

In Section 2 we briefly state the assumptions and basic results from [5] that
are needed afterwards.

Section 3 contains the statement and proof of the main result (Theorem 3.1).

2 Preliminaries

In this section we state the results on the asymptotic behaviour of solutions that
are needed in Section 3. For results on existence, uniqueness, density conservation,
and regularity we refer to [2, 5].

Consider the following hypotheses

(H1) aj,k ≤ Ka (jα + kα) for some constants Ka > 0 and α ∈ [0, 1).

(H2) For some constants Kf , κf > 0 and 0 < β < 1 such that, for all r > 1,

1.
h(r)∑
j=1

jbj,r−j ≤ Kfr

2.
h(r)∑
j=1

bj,r−j ≤ κfrβ

(H3) For all k ≥ 1, a1,k, b1,k > 0.

(H4) There exists a sequence (Qj) such that

1. Q1 = 1 and aj,kQjQk = bj,kQj+k for all j, k ≥ 1.

2. There exists a constant KQ > 0 such that |logQj − logQk| ≤ KQ|j −
k|, for all j and k.

3. For all j and k, − logQj+k ≤ − logQj − logQk.

4. 0 < lim inf
j→∞

Q
1/j
j ≤ lim sup

j→∞
Q

1/j
j < +∞.

By an equilibrium we mean a time independent solution of (1.1). It follows

from (H4−1) that c̄=
(
Qjz

j
)

are equilibria of (1.1) provided ‖c̄‖=
∞∑
j=1

jQjz
j <∞.
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Hypothesis (H4−4) implies this series has a finite and positive radius of conver-

gence zs =
(

lim sup
j→∞

Q
1/j
j

)−1

. Hence, for each 0 ≤ z < zs, there is one equilibrium

solution of the above form. The densities of these equilibria are

F (z) =
∞∑
j=1

jQjz
j (2.1)

and the critical density of (1.1) is defined by ρs := sup0≤z<zs F (z) ∈ (0,∞].
If ρs < ∞ then ρs = F (zs). It is clear that no equilibria of the type under
consideration has density larger than ρs. The problem of existence of equilibria
not of the form c̄ =

(
Qjz

j
)

is negatively settled as an easy consequence of the
fact that (1.1) has a Lyapunov function that satisfies a certain evolution equation.
This important result also sets in motion the study of the asymptotic behaviour
of solutions. We now turn our attention to it: Let c ∈ X+ and define V : X+ → IR
by

V (c) :=
∞∑
j=1

cj

(
log

cj
Qj
− 1
)
,

where the summand is defined to be zero when cj = 0. Then the following result
holds true

Proposition 2.1 [5, Theorem 5.2]
Assume (H1)-(H4). Let T ∈ (0,+∞] and let c be a solution to (1.1) on [0, T ) with
initial data c0 6= 0. Then, for all t ∈ [0, T )

V (c(t)) = V (c(0))−
∫ t

0
D(c(s))ds (2.2)

where

D(c) =
∞∑

j, k=1

Wj,k(c) [log(Qj+kcjck)− log(QjQkbj+k)] ≥ 0 (2.3)

From (2.2) and (2.3) it follows that V is non-increasing along solutions, and if

c = c̄ is an equilibrium then
∫ t

0
D(c̄)ds = 0 for all t, which, by (H4−1) implies

that c̄ is of the form considered above.
In order to prove convergence to equilibria of solutions to (1.1) we need to

assume

(H5) bj,k ≤ o(j)o(k) as j, k →∞,

and to substitute (H4−4) by the following stronger hypothesis
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(H4−4a) The sequence
(
Q

1/j
j

)
converges to a positive number as j →∞.

Since a strongly bounded set in X is weak∗ compact, and since the assumptions
imply the apriori estimate ‖c(t)‖ = ‖c(0)‖ = ρ0 holds true [2], it is natural to
study first the convergence to equilibria in the weak∗ topology of X. We need
the Lyapunov function to be weak∗ continuous in X, which the function V defined
above is not. However, using the fact that solutions conserve density, the functional
Vzs(c) := V (c) − ‖c‖ log zs is also a Lyapunov function for (1.1), satisfies the
energy equation (2.3), and has the required continuity properties [3, 5]. Using this
Lyapunov function we can then prove the following

Proposition 2.2 [5, Theorem 6.4]
Assume (H1)-(H5)1. Let c be a solution of (1.1) on [0,∞) with initial data c(0) =
c0, ‖c0‖ = ρ0. Let cρ be the equilibrium of (1.1) with ‖cρ‖ = ρ. Then c(t) converges
weak∗ in X to cρ as t→∞ for some ρ ∈ [0,min{ρ0, ρs}].

As pointed out in the Introduction, the identification of the density ρ of the
limit point (i.e., the distinction between weak and strong convergence) has not
been accomplished in full generality, and, namely, to the best of our knowledge,
nothing is known for the general equations (1.1).

Results in this direction were obtained in [5] under the following restriction:

(H6) There exists a positive integer N > 1 such that aj,k = bj,k = 0 if and only
if min{j, k} > N.

The case N = 1 transforms (1.1) into the Becker-Döring equations, for which the
problem was completely solved in [1, 3].

Assuming (H6) system (1.1) becomes the following generalized Becker-Döring
system 

ċ1 = −
∞∑
k=1

W1,k(c)

ċj = 1
2

j−1∑
k=1

Wj−k,k(c)−
∞∑
k=1

Wj,k(c), 2 ≤ j ≤ N

ċj = 1
2

j−1∑
k=1

Wj−k,k(c)−
N∑
k=1

Wj,k(c), N + 1 ≤ j ≤ 2N

ċj =
N∑
k=1

Wj−k,k(c)−
N∑
k=1

Wj,k(c), j ≥ 2N + 1.

(2.4)

We then have

1With (H4−4) changed to (H4−4a).
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Proposition 2.3 [5, Theorem 6.6] In addition to the assumptions of Proposi-
tion 2.2 consider (H6). Suppose there exists a constant M > 0 and a positive
integer k0 such that, for all ` = 1, . . . , N and all i > k0,

0 ≤ bi,` − ai,`Q`z`s ≤ M (2.5)
0 ≤ bi−`,` − ai,`Q`z`s (2.6)

Let ρs < ∞ and suppose c0 ∈ X+ satisfies
∞∑
j=1

c0 j ·
(
Qjz

j
s

)−1
< ∞. Suppose also

that c is the only solution of (2.4) on [0,∞) with initial data c0. Then:

(i) If 0 ≤ ρ0 ≤ ρs then c(t) → cρ0 strongly in X as t → ∞ and lim
t→∞

V (c(t)) =

V (cρ0).

(ii) If ρ0 > ρs then c(t) ∗⇀ cρs as t→∞, but not strongly in X, and lim
t→∞

V (c(t))

= V (cρs) + (ρ0 − ρs) log zs.

In this paper we need to change some of the above assumptions into slightly
stronger ones, namely, we substitute (H5) by

(H5a) There exists constants Ku ≥ K` > 0 and 0 ≤ γ < 1 such that, for all
k = 1, . . . , N and all j ≥ 1,

K`j
γ ≤ bj,k ≤ Kuj

γ .

Define KB := K`/Ku.
We need also to change (H4−4a) into the stronger hypothesis

(H4−4b) The sequence (Qj+1/Qj) converge to a positive number as j →∞.

Note that if this holds then (H4−4a) also holds and

z−1
s = lim

j→∞
Q

1/j
j = lim

j→∞
(Qj+1/Qj).

3 Results

The main result of the paper is the following

Theorem 3.1 Assume (H1)-(H6)2. Suppose there exists an integer r0 such that,
for all z ∈ [0, zs), all ` = 1, . . . , N, and all i > r0,

bi−`,` − ai,`Q`z` ≥ 0. (3.1)

2With (H4−4) changed to (H4−4b) and (H5) to (H5a).
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Let c(·) be the only solution of (2.4) on [0,∞) with initial data c0 ∈ X+, and
ρ0 = ‖c0‖. Let ρN be the unique positive solution of F−1(ρ) = zsKBN

−1, where
F−1 is the inverse function of F defined by (2.1). Consider ρ0 ∈ [0, ρN), then
c(t) −→ cρ0 strongly in X as t→∞ and lim

t→∞
V (c(t)) = V (cρ0).

To prove Theorem 3.1 we need a result which is a generalization of [1, Theo-
rem 2] and is given in Theorem 3.2 below. First we fix some notation: for z ∈ (0, zs)
define

µ̃j,k := 1− kQkz
kaj,k

jbj−k,k
(3.2)

µj :=
(

min
1≤k≤N

µ̃j,k

)−1

(3.3)

βj := max
1≤k≤N

bj−k,k (3.4)

χj := max
1≤k≤N

jQjz
j

(j − k)Qj−kzj−k
(3.5)

σn :=
n+N−1∑
j=n

βjχj (3.6)

νn := β−1
n µnσn (3.7)

Theorem 3.2 Assume (H1)-(H6)3, and (3.1). Let (λj) be a positive nonincreas-
ing sequence such that, for all r ≥ r0,

λj − λj+1 ≥ νj(λj−1 − λj). (3.8)

Let c be the unique solution of (2.4) on [0,∞) with initial data c(0) = c0 ∈ X+,
ρ0 = ‖c0‖ < ρs. Then

H(t) := max{ sup
n≥r0+1

λ−1
n xn(t), λ−1

r0
ρ0}

is nonincreasing on [0,∞), where xn(t) :=
∞∑
j=n

jcj(t).

Proof: We start by considering the finite m-dimensional truncation of (2.4)
obtained by making aj,k = bj,k = 0 if j + k > m. Let

H(m)(t) := max{ sup
r0+1≤n≤m

λ−1
n x(m)

n (t), λ−1
r0
ρ

(m)
0 }

3With (H4−4) changed to (H4−4a).



Vol. 5, 1998 Low density solutions to the generalized Becker-Döring equations 31

where x(m)
n (t) =

∑m
j=n jc

(m)
j (t), c(m)(·) is the solution of the truncated problem,

and ρ
(m)
0 =

∑m
j=1 jc0 j . It suffices to prove that, if H(m)(0) < ∞ and T > 0,

then H(m)(t) ≤ H(m)(0) + ε for all ε > 0 and all t ∈ [0, T ]. Suppose this is
false. Since H(m)(·) is continuous, there exist an ε > 0 and a least s ∈ [0, T ] such
that H(m)(s) = Kε := H(m)(0) + ε. Since H(m)(0) ≥ λ−1

r0 ρ
(m)
0 we conclude that

H(m)(s) > λ−1
r0 ρ

(m)
0 , which implies that g(s) := supr0+1≤n≤m λ

−1
n x

(m)
n (s) = Kε.

Thus, there exists a smallest n satisfying r0 + 1 ≤ n ≤ m such that

λ−1
n x(m)

n (s) = Kε (3.9)

λ−1
n−1x

(m)
n−1(s) < Kε (3.10)

λ−1
n+1x

(m)
n+1(s) ≤ Kε (3.11)

and

ẋ(m)
n (s) ≥ 0 (3.12)

Without loss of generality, let r0 ≥ 2N. Then, by the definition of x(m)
n we have

ẋ(m)
n =

N∑
k=1

n−1∑
j=n−k

(j + k)Wj,k(c(m)) +
N∑
k=1

m−k∑
j=n

kWj,k(c(m))

=
N∑
k=1

n−1∑
j=n−k

(j + k)Wj,k(c(m))−
N∑
k=1

m∑
j=m−k+1

kbj−k,kc
(m)
j +

+
N∑
k=1

n+k−1∑
j=n

kaj,kc
(m)
j c

(m)
k +

m−k∑
j=n+k

kaj,kc
(m)
j c

(m)
k −

−
m−k∑
j=n+k

kbj−k,kc
(m)
j


≤

N∑
k=1

n−1∑
j=n−k

(j + k)(aj,kc
(m)
j c

(m)
k − bj,kc(m)

j+k) +
N∑
k=1

n+k−1∑
j=n

kaj,kc
(m)
j c

(m)
k

+
N∑
k=1

k
m−k∑
j=n+k

(aj,kc
(m)
k − bj−k,k)c(m)

j . (3.13)

By Proposition 2.2, cj(t)−→
t →∞

Qjz(ρ)j for some ρ ≤ ρ0 < ρs. Also c
(m)
j → cj as

m → ∞. Thus, since z(ρ) < z(ρs) = zs, we can choose T > 0 and z < zs such
that, for all k = 1, . . . , N, and all t ≥ T, c

(m)
k (t) < Qkz

k, for all sufficiently large
m. Using this information and (3.1) the last double sum in (3.13) can be bounded
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above by zero:

N∑
k=1

k
m−k∑
j=n+k

(aj,kc
(m)
k − bj−k,k)c(m)

j ≤
N∑
k=1

k
m−k∑
j=n+k

(aj,kQkzk − bj−k,k)c(m)
j ≤ 0.

Hence, we conclude that

ẋ(m)
n ≤

N∑
k=1

n+k−1∑
j=n

kaj,kc
(m)
j Qkz

k +
n−1∑
j=n−k

(j + k)(aj,kc
(m)
j Qkz

k − bj,kc(m)
j+k)

 .
By definition of x(m)

n we have c(m)
j =

(
x

(m)
j − x(m)

j+1

)
/j and thus, after some rear-

rangements,

ẋ(m)
n ≤

≤
N∑
k=1

n+k−1∑
j=n

[
jaj−k,kQkz

k
x

(m)
j−k − x

(m)
j−k+1

j − k −

−(jbj−k,k − kQkzkaj,k)
x

(m)
j − x(m)

j+1

j

]

=
N∑
k=1

n+k−1∑
j=n

bj−k,k

[
jQjz

j

(j − k)Qj−kzj−k
(x(m)
j−k − x

(m)
j−k+1)− µ̃j,k(x(m)

j − x(m)
j+1)

]

Observing that
(
x

(m)
j

)
is nonincreasing with j and that, by (3.1), µ̃j,k > 0 we

have

ẋ(m)
n ≤

N∑
k=1

n+k−1∑
j=n

βj [χj(x
(m)
j−k − x

(m)
j−k+1)− µ−1

j (x(m)
j − x(m)

j+1)]

=
n+N−1∑
j=n

N∑
k=j−n+1

βj [χj(x
(m)
j−k − x

(m)
j−k+1)− µ−1

j (x(m)
j − x(m)

j+1)]

=
n+N−1∑
j=n

βj [χj(x
(m)
n−1 − x

(m)
j−N+1)− µ−1

j (x(m)
j − x(m)

j+1)(N − j + n)]

≤ −
n+N−1∑
j=n

βjµ
−1
j (x(m)

j − x(m)
j+1) + (x(m)

n−1 − x(m)
n )

n+N−1∑
j=1

βjχj

≤ −βnµ−1
n (x(m)

n − x(m)
n+1) + σn(x(m)

n−1 − x(m)
n ).

By (3.9)-(3.12) we have

x
(m)
n−1(s)− x(m)

n (s) = x(m)
n (s)

(
x

(m)
n−1(s)

x
(m)
n (s)

− 1

)
<
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< x(m)
n (s)

(
λn−1

λn
− 1
)

= Kε(λn−1 − λn),

and

x(m)
n (s)− x(m)

n+1(s) = x(m)
n (s)

(
1−

x
(m)
n+1(s)

x
(m)
n (s)

)
≥

≥ x(m)
n (s)

(
1− λn+1

λn

)
= Kε(λn − λn+1).

Thus, using (3.8),

0 ≤ ẋ(m)
n (s) < Kε[σn(λn−1 − λn)− βnµ−1

n (λn − λn+1)] ≤ 0

and this contradiction proves that H(m)(t) ≤ H(m)(0) + ε, for all ε > 0, and
t ∈ [0, T ]. Since H(m)(0) ≤ H(0) it follows that, for all t ∈ [0, T ], n ≥ r0 + 1, and
m sufficiently large,

λ−1
n

m∑
j=n

jc
(m)
j (t) ≤ H(0) + ε.

Letting m→∞ and taking the supremum over n ≥ r0 + 1 gives the result.
Before starting the prove Theorem 3.1 we need the following estimate

Lemma 3.1 Assume (H4−4b), (H5a) and (3.1). Then, for all K > 1, there exists
a R0 ≥ r0 such that, for all r ≥ R0,

νr ≤ KK−1
B N

z

zs
.

Proof: From (3.7) we have

νr = β−1
r µrσr =

r+N−1∑
k=r

(
max

1≤p≤N
bk−p,p

)
max

1≤p≤N

kQkz
k

(k − p)Qk−pzk−p(
max

1≤k≤N
br−k,k

)
· min

1≤k≤N

(
1− kQkz

kar,k
rbr−k,k

) . (3.14)

Observing that[
min

1≤k≤N

(
1− kQkz

kar,k
rbr−k,k

)]−1

= max
1≤k≤N

(
1− kQkz

kar,k
rbr−k,k

)−1

= max
1≤k≤N

rbr−k,k
rbr−k,k − kQkzkar,k

≤
r max

1≤k≤N
br−k,k

min
1≤k≤N

(rbr−k,k − kQkzkar,k)
,
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the product of the first two terms in (3.14) satisfy

β−1
r µr ≤ r

min
1≤k≤N

(rbr−k,k − kQkzkar,k)

=
r

min
1≤k≤N

[(r − k)br−k,k + k(br−k,k −Qkzkar,k)]

≤ r

r −N

(
min

1≤k≤N
br−k,k

)−1

.

For σr we have the following

σr =
r+N−1∑
k=r

( max
1≤p≤N

bk−p,p)
(

max
1≤p≤N

kQkz
k

(k − p)Qk−pzk−p

)

≤
r+N−1∑
k=r

k

k −NQkz
k

max
1≤p≤N

bk−p,p

min
1≤p≤N

Qk−pz
k−p

≤ r

r −N

r+N−1∑
k=r

( max
1≤p≤N

bk−p,p) max
1≤p≤N

Qk
Qk−p

zp

≤ rN

r −N max
r≤k≤r+N−1

(
( max
1≤p≤N

bk−p,p) max
1≤p≤N

Qk
Qk−p

zp
)

≤ rN

r −N

 max
r≤k≤r+N−1

1≤p≤N

bk−p,p

 ·
 max
r≤k≤r+N−1

1≤p≤N

Qk
Qk−p

zp

 .
Hence

νr ≤

≤ N

(
r

r −N

)2

·

 max
r≤k≤r+N−1

1≤p≤N

bk−p,p

 ·
·
(

min
1≤p≤N

br−p,p

)−1

·

 max
r≤k≤r+N−1

1≤p≤N

Qk
Qk−p

zp

 (3.15)

Using (H5a) max
r≤k≤r+N−1

1≤p≤N

bk−p,p

 · ( min
1≤p≤N

br−p,p

)−1

≤ K−1
B

(
r +N − 2
r −N

)γ
, (3.16)
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and since Qj+1/Qj → z−1
s as j →∞ we obtain

lim sup
r→∞

max
r≤k≤r+N−1

1≤p≤N

Qk
Qk−p

zp ≤ lim sup
k→∞

max
1≤p≤N

Qk
Qk−p

zp

= max
1≤p≤N

zp lim sup
k→∞

p∏
j=1

Qk−j+1

Qk−j


= max

1≤p≤N
(z/zs)

p

= z/zs. (3.17)

By (3.15)-(3.17) we have
lim sup
r→∞

νr ≤ NK−1
B

z

zs

which proves the Lemma.
We need to recall from [1] the following definition and lemmas: Let νj > 0

for all j ≥ r0, and define the set

S := {(λj) : λj ≥ λj+1 ≥ 0 ∀ j, and λj − λj+1 ≥ νj(λj−1 − λj) ∀ j ≥ r0} .

Then we have

Lemma 3.2 [1, Lemma 3] The set S is closed under addition, multiplication by
a nonnegative constant, and taking of infima.

Lemma 3.3 [1, Lemma 4] Suppose there exists a positive sequnce (ηj) ∈ S such
that ηj → 0 as j → ∞. Let (ψj) be any nonnegative sequence converging to zero.
Then there exists a strictly positive sequence (λ̂j) ∈ S such that λ̂j ≥ ψj for all j,
and λ̂j−→

j →∞
0.

Proof of Theorem 3.1: We prove that c(t) ∗⇀ cρ as t → ∞ for some ρ < ρs
implies c(t) → cρ strongly in X, provided ρ < ρN where ρN is the only positive
solution of F−1(ρ) = zsKBN

−1. Suppose cj(t) < Qjz
j for some z < zs, all t ≥

0, and all j = 1, . . . , N. By the argument following Eq.(3.13) in the proof of
Theorem 3.2, we can always choose a new time origin for which this holds.

Define

ηj =
∞∑
r=j

rγr

where γr = 1 for r ∈ {0, . . . , r0 − 1} and rγr = νr(r− 1)γr−1 for r ≥ r0. We prove
that ηj → 0 as j →∞, and (ηj) ∈ S :

By Lemma 3.1

rγr = (r0 − 1)
r∏

k=r0

νr ≤ (r0 − 1)
(

z

zsκ

)r−r0+1

,
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where κ = KKBN
−1. For z < zsκ, the series

∑
j(z/zsκ)j converges, which proves

that (γr) ∈ X and thus ηj → 0 as j →∞. Furthermore,

ηj =
∞∑
r=j

rγr ≥
∞∑

r=j+1

rγr = ηj+1

and for j ≥ r0

ηj − ηj+1 = jγj = νj(j − 1)γj−1 = νj(ηj−1 − ηj).

Hence (ηj) ∈ S.
Since c(t) ∈ X we have xn(0) → 0 as n → ∞, for all t ≥ 0. In particular,

defining ψn = xn(0), we have ψn ≥ 0 for all n and ψn → ∞ as n → ∞. Let λ̂ be
the corresponding sequence given by Lemma 3.3. By Theorem 3.2 we have, for all
n > r0,

λ̂−1
n xn(t) ≤ sup

n≥r0+1
λ̂−1
n xn(t) ≤ H(t)

≤ H(0) = max{ sup
n≥r0+1

λ̂−1
n xn(0), λ̂−1

r0
ρ0}

≤ max{1, λ̂−1
r0
ρ0}.

Hence, for all t ≥ 0 and all n > r0,

∞∑
j=n

jcj(t) ≤ λ̂n max{1, λ̂−1
r0
ρ0},

and hence c(t)→ cρ0 strongly in X as t→∞. The asymptotic behaviour of V (c(t))
as t→∞ follows by the continuity properties of the Lyapunov function [3].

Note 3.1 With F (z) given by (2.1) we have F (z)/z → 1 as z → 0. Since ρN =
F
(
zsKBN

−1
)
, it follows that ρN = zsKBN

−1 + o(N−1) as N →∞.
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basic properties and asymptotic behaviour of solutions, Commun. Math. Phys.
104, 657–692 (1986)

[4] J. CARR, Asymptotic behaviour of solutions to the coagulation-fragmenta-
tion equations. I. The strong fragmentation case’, Proc. Royal Soc. Edinburgh
Sect. A 121, 231–244 (1992)

[5] J. CARR, F.P. da COSTA, Asymptotic behavior of solutions to the
coagulation-fragmentation equations. II. Weak fragmentation, J. Statist.
Phys. 77, 89–123 (1994)

[6] O. PENROSE, Metastable states for the Becker-Döring cluster equations,
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