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Asymptotic Behaviour
of Nonlinear Dirichlet Problems in Perforated Domains (*).

GIANNI DAL MASO - IGOR V. SKRYPNIK

Abstract. — The asymptotic behaviour of the solutions of nonlinear second order elliptic equa-
tions with Divichlet boundary conditions in performated domains is studied under very
mild assumptions on the capacity of the holes.

0. - Introduction.

In this paper we study the asymptotic behaviour of the solutions of nonlinear second
order elliptic equations with Dirichlet boundary conditions in perforated domains.

Let 2 be a bounded open set in the n-dimensional Euclidean space R" and let 2,
s=1,2, ..., be an arbitrary sequence of open subsets of 2. We consider the sequence
of boundary value problems

n

(0.1) > ai aj(x, u,(2), 8u;(ac)) =a0(m, u, (2), aus(x)) in Q,,
x

j=1 o%; ox

0.2) u(x) =f(x) in 09;.

We assume (see conditions A, Ay, and A; in Section 1) that the functions a,;(x, u, p),
j=0,1,...,n, and f(x) satisfy the usual conditions which ensure that, for every s,
problem (0.1), (0.2) has a solution u,(x) in WL(R,). If we extend u,(x) to 2 by setting
us () = f(x) on 2\Q, then our assumptions imply that the sequence u,(x) is bounded
in WL(2). For simplicity of exposition we consider only the case 2 <m <.

The aim of this paper is to study the asymptotic behaviour of u,(x) as s— o« under
very weak assumptions on the sets € ,. Our main hypothesis is the following condition
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B,, where K(x, r) denotes the closed cube of centre x and side 2r, and C,,(F) is the m-
capacity of F with respect to a given bounded open set 2 containing Q.

CONDITION B,. — There exist a non-negative bounded measure v(B), defined for
every Borel set BC Q, and a sequence v, > 0, tending to zero as s— oo, such that the
tnequality

0.3) C,,(K(x, \Q,) < v(K(x, r+71,))
holds for every xe Q and for every r=r, with K(x, v+ 1) c Q.

Using the subadditivity of the m-capacity, it is easy to see that condition B, is satis-
fied when the sets £2, are obtained from 2 by removing an increasing number of small
closed sets with diameters less than s =%/ ~"™ and mutual distances larger that s . In
this case v is a suitable multiple of the Lebesgue measure.

Another situation where condition B, is trivially satisfied is when all closed sets
considered in the previous construction have a non-empty intersection with a given
compact smooth manifold ¥ c £ of dimension d > n — m. In this case, if we assume that
the diameters of the closed sets removed from £ are less than s %™ ~™ and the mutual
distances are larger that s !, then it is easy to see that B, is satisfied with v equal to a
suitable multipie of the d dimensional Hausdor{f measure on 2.

Using the estimates obtained in [6] it is possible to prove that condition B, is satis-
fied also when £2, is obtained from £ by removing an increasing number of closed balls
of the appropriate size, whose centers are «uniformly distributed» in a self-similar frac-
tal set of dimension larger than n —m.

When v is a multiple of the Lebesgue measure the problem considered in the
present paper is studied in[59]. Similar problems under suitable geometric assump-
tions on the sets 2, are considered also in [54]-[58], [60], and [7]. When the equation
(0.1) is linear, the problem has been studied in [33]-[35], {38], [39], 52}, and [53] by an
orthogonal projection method, in [52], [10], [11] by Brownian motion estimates, in [44]-
[46] by Green’s function estimates, in [12]-[14] by the energy method, in [48] and [27]
by the point interaction approximation, in [5] by probabilistic and capacitary methods.
The case of partially perforated domains is considered in [30] and [31]. For weakly con-
nected domains we refer to [50]. The case of random sets 2, is studied in [32], [51], [47],
[49], (26], [9], [3]. For general compactness results with no geometric hypotheses in the
linear case we refer to[2], [1], [20], [15], [43], [18], [19].

In the nonlinear case the problem is studied by I-convergence techniques in [17}
and [36], provided that (0.1) is the Euler equation of a suitable minimum problem. The
special case where a;(x, u, p) = |p|m‘2pj, j=1, ..., n,is studied in{2], [37], and [42]
under suitable geometric assumptions on the sets £,. When the functions a;(x, u, p),
j=1,...,n, do not depend on % and are odd and homogeneous of degree m — 1 with
respect to p, the asympotic behaviour of the solutions of (0.1), (0.2) is studied in [21]
and [22] without geometric hypotheses on the sets £2,. The general compactness result
in the non-homogeneous case is proved in[8].

Our main result (Theorem 1.5) allows us not only to predict, in a qualitative way, the
form of the boundary value problem satisfied by the limit u,(x) of the sequence u,(x) of
the solutions of (0.1}, (0.2), but also to construct the function C(«, ¢) which appears in
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the limit problem in terms of suitable nonlinear capacities associated with equation
(0.1) (see condition C). Moreover we obtain (Theorem 1.4 and Section 5) a very precise
asymptotic expansion of the sequence u,(x) in terms of the solution u,(x) of the limit
problem and of suitable nonlinear capacitary potentials associated with equation
(0.1).

1. — Statement of the results.

We assume that the functions a;(x, u, p), j=0,1, ..., n, are defined for xe @,
ueR!, peR" and satisfy the following conditions.

CONDITION A;. — The functions a;(x, u, p) are continuous in (u, p) for almost all
re Q and measurable in x for all ueR', peR"; moreover

(1.1 a;(x,u,0)=0 forj=1,..,n
for all xe 2, ueR'.
CONDITION A,. — There exist positive constants g, 01, Ao, M, My, With

mn
1.2) O<ap<a;<a,, 2sm<n, msEm < ,
n—m

and a function y(x) in L.(Q), with r>n/m, such that for every xeQ, u,veR’,
p, geR" we have

1.3) (2, u, p) U= —aq [p|™—y@)(1+ |u]),
(1.4) 2 o, 0, p) p = ar(1+ |p])" 2 |p|?,
i~
(1.5) _21 (a;(x, u, p) — a;(x, u, P)p;—g) Zay |p—q|™,
i
(1.6) |ag(x, u, p)| S ag(|u|™+ |[p|™)™~D/m 4 y(x),

N9 él la;(x, w, p) —a;(2, v, Q)| Sazbu, v, p, )(lu—v| + |p—q|),
where b(u, v, p, @) = (L + |u|™+ [v]™ + |p|™ + |q|™)™ 2/,

Note that from (1.1) and (1.7) it follows that
(1.8) la;(xe, u, p)| Sa @+ |u|™+ |p|™)™ =B/ (|u| + |p|)

for every xe 2, ucR!, peR", j=1, ..., n. .

Let us fix a bounded open set Q,cR" such that 2c Q,. We can extend the func-
tions a;(x, u, p) to 2, X R' x R preserving all properties mentioned above by setting,
e.g., a;(x, u, p) = (meas(Q))‘IJ’aj(y, u, p)dy for xe Q,\2, ucR!, peR".

Q2
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The assumption 2 €m <n is introduced only to simplify the exposition of the re-
sults. By similar arguments we can obtain analogous statements also in the case
1 <m <2 or m = n, under slightly modified hypotheses. For m > n the problem is sim-
plified in view of the compactness of the imbedding of W1(Q) in C%(Q).

ReEMARK 1.1. — Conditions A; and A, are satisfied when ay(x, u, p) = g(x), with
9(x) e L,(2), »>n/m, and

a;(w, u, p) =a(xX1+ |p|H™ Prp,  forj=1,..,n,

where a(x) is a function in L. (2) such that a(x) = a for some constant o > 0.
It is possible to replace condition A, by a weaker condition, in particular to replace
(1.7) by the inequality

7
‘21 la;(x, u, p) — a;(, u, )| Sazblu, p, Q) |p—q| .
s

In this case the boundary value problem (1.15) has to be changed as in [60], and our re-
sults can be partially extended, with minor changes, also to the case

a/j(xy %, p) = a/(xa u)(l + |p12)(m_2)/2 pj’ ] = 17 ey N

REMARK 1.2. — In condition A, inequality (1.4) can be replaced by the weaker
inequality

1.9) ,21 a;(x, 0, p) p; = ay |p|™,
P

if b(u,v,p,q) in (1.7) is rveplaced by bo(u, v, p, @) =(u|™+ |v|™+ |p|™+
+ |g|™)" =2/ This allows us to consider also the model case of the m-Laplacian, which
corresponds to the choice

oj(, u,p)=|p|™ %p; forj=1,...,n.

Note that in this case inequality (1.4) is not satisfied, while condition (1.9) holds, and
(1.7) is satisfied with b(u, v, p, q) replaced by by(u, v, p, @).

Given f(x) e WL(£), a solution of the boungdary value problem (0.1), (0.2) is a func-
tion w(x) e W,L(R2,), satisfying u(x) — f(x) e Wi,(2,), such that the integral identi-
ty

(1.10) [ a (ac u(), 8u(ac) ) A j ao(:)c,u(x), a@;—(j))(p(x) dz =0

8xj

s

holds for an arbitrary function ¢(x) € W2,(2 ).

Using methods of the theory of monotone operators it is easy to prove the existence
of a solution of problem (0.1), (0.2) when f(x) e W, (). For every s we denote by u,(x)
one of the possible solutions of problem (0.1), (0.2) and we extend u,(x) to £ by setting
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us(x) = f(x) for er\Qs. By condition A, the estimate

m

dr<R

(111) j oty () | ™ s + j ‘ a“;;”)
Q 2

holds with a constant R independent of s.
We suppose, in addition, that the following condition is satisfied.

CONDITION Ag. — The function f(x) belongs to W2(Q) for some o> n.

Then the function f(«) is bounded and Holder continuous in £, ie., there exists a
constant H such that

1.12) |fle)| <H, |fle)—fly)| sH|e—-y|" forx,yel,

where n=1-mn/o.
It is easy to prove, by Moser’s method, that the sequence u,(x) is uniformly bound-
ed. More precisely, the following result holds.

THEOREM 1.3. — Assume that conditions A, A,, and A; are satisfied. Let u,(x) be a
sequence of solutions of problem (0.1), (0.2) satisfying condition (1.11). Then there
exists a constant M independent of s, such that the estimate

(1.13) ess sup |us(x) | s M
ref
holds for all s.
ProoF. — For the proof of this theorem see, e.g.,[56], § 2, Chapter 9. =

By (1.11) the sequence u,(x) contains a weakly convergent subsequence, therefore
we may assume that u,(x) converges weakly in W(2) to a function wu,(x).

Our main assumption on the sequence £, in condition B;, which was formulated in
the introduction in terms of the m-capacity C,,(F). For every compact set F contained
in 2, the m-capacity C, (F) of F with respect to 2, is defined by

m

’

) Op(x)
. F) = inf
(1.14) C,.(F) .mQOH -

where the infimum is taken over all functions ¢(x) € Cy” (22 ) which satisfy the equality
@(x) =1 for xeF.

A crucial role in our paper is played by some special auxiliary functions v(x, F, q),
which are defined as the solutions of some model boundary value problems in the do-
mains Q,\F. Let F be a compact set contained in Q2 , and let {(x) be a function of class
Cy” (£24) equal to 1 in F. For every real number ¢ we define v(x, F', q) as the unique
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funetion belonging to q(x) + ﬁ%(QO\F) which satisfies the integral identity

dp(x)

~
m@

de=0

L 3
(1.15) ]21 f aj(x,o,g—g;v(x,[«’, q))

Qo\F

for every @(x) e WL,(2,\F).

By conditions A; and A, the existence and uniqueness of v(x, F, ¢) follow from the
theory of monotone operators. We extend v(x, F', q) to 2, by setting v(x, F, q) =¢q
in F. '

For every weR" and for every >0 let K(x,r)={yeR": |y;—;|<r, j=
=1, ..., n} be the closed cube of side 27 and centre x = (1, ..., 2,). In Section 4 we shall
introduce a special decomposition of the domain £ of the form

9=“{mw@¢ﬁum,

where 4, and g, are sequences of positive real numbers such that 1 ,—» », g ,—0, and
A0s—0ass—> 0, 1 =2 +24,0,a,a=(ay, ..., a,) is a multi-index with integer
coordinates, x{® is a suitable point in the cube K(0, 1,0,), I, is the set of all multi-in-
dices a such that K(x®, 30 ,4,) c 2, and U, is the complement of U K(z!?, 0,1 ,) with
respect to Q. ach

We define v(x, q) =v(x, F, q) for F =K@, (A,~2)0,)\2,. Next, we intro-
duce a family of cut-off functions ¢ (x) equal to 1 for x e K(x, (4, —2) 0,)\R, and
equal to 0 outside K(x(®, 1,0,) (see (4.15) for the precise definition). Then we intro-
duce the averaging function for uy(x) defined by

1
1.1 (1) = ——
(.16 ww as@s)"J K(

fiﬁi%mwd%
As0s
where K(t) is an averaging kernel, with K(¢) = 0 for |¢| =1, and uy(%) is the weak limit
of u,(x) in Q. Finally, by £ and %.® we denote the mean values of the functions f(x)
and u{®(x) in the cube K(x¥, A,0,).

In Section 5 we construct the following asymptotic expansion, which is fundamental
in our analysis:

1.1n us () = ud®@) + 2 v, £ - ul) ¥ (x) + R, (x).

ael;

To study the asymptotic behaviour of the remainder R (x) we need the following
assumption.

CONDITION B, — There exists an increasing continuous function w(g), sotisfying

! 1/tm—1)
(1.18) J( @(e) ) L
0

e ™ 0
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such that
(1.19) v(K(z, 0) N Q) < w(p)
for every cube K(x, o).

From (1.18) it follows that (Lemma 3.1)

w(o) _

n—m

(1.20) lim

e—=0 o

0.

In Section 5 we shall prove the following result.

THEOREM 1.4. — Assume that conditions A;, As, As, By, By are satisfied, and let
R (x) be the remainder in the asymptotic expansion (1.17). Then for every function
g(x) in C(RQ) the sequence g(x) R,(x) converges to zero stromgly in WL(2) as
§—> 00,

In order to formulate a result about the boundary value problem for the function
1o (%) we introduce a capacity connected with the differential equation (0.1), defined for
every compact set F'c 2, and for every real number q by

" 3 5
1.21) Ca(F, ) = > J' oz, 0, = v, F, )| - oz, F, ) do,
j=19 " ax 3:)(:]
0

where v(x, F', q) is the solution of (1.15). For the main properties of this capacity we re-
fer to [23].
We assume that the following condition is satisfied.

ConprtioN C. — There exists a Borel function C(x, q), continuous in qeR!, such
that

C,(K(x, Q.
(1.22) lin%](ligrl)glf A( (x, )\ Q))z

qv(K(zx, 7))

C4 (K Q
=1im(limsup 4Kz, D\2,, ) =0z, )

T e qv(K(z, 1))
Sfor v-almost every xe Q and for every q #0.

Condition C is very weak. We shall prove that every sequence £, which satisfies
condition B; has a subsequence which satisfies condition C (see (6.7), (6.22), and (6.23)).
Moreover we shall prove that

C(x, 0)=0 and IC(x’ q)l SK(l-’r |q|m—1)

for v-almost every x e Q and for every geR' (see (6.25) and (6.26)).
Every function «(z) in W} (£2) will be identified with its C,,-quasi continuous repre-
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sentative, which is defined for all x € 2, except for a set of m-capacity zero. For the def-
inition and properties of C,-quasi continuous representatives of Sobolev functions we
refer to [25], Section 4.8, [29], Section 4, [40], Section 7.2.4, and [61], Chaper 3. By con-

dition B, the measure v belongs to the dual of the Sobolev space W2,(Q) (see [61], Theo-
rem 4.7.5). Consequently for every x e £ and for every compact set F'c £ the equality
C,(F) =0 implies v(F) = 0. Therefore the pointwise values of each function u(x) in
WL(Q) are defined almost everywhere with respect to the measure v.

The main result of the paper, proved in Section 7, is the following theorem.

THEOREM 1.5. — Assume that conditions Ay, Ay, Ag, By, B, C are satisfied. Let u (x)
be a sequence of solution of problems (0.1), (0.2) which converges weakly in W,,(2) to a
function ug(x). Then wuy(x) belongs to f(x)+ Wh(Q) and satisfies the integral
identity

azm 3| aj<x,%(m)’ 8uo(x)) 0 4o [ g )
j=1
2 2

90, uﬂ(x),

) @(x) de =

- j Cle, () - uo(@)) (@) dv(x)
jo]

for every (p(x)eﬁfin(Q)ﬂLw(Q), where C(x, q) is the function defined by (1.22).
Moreover the sequence u,(x) converges to ug(x) stromgly in W,(R2) for every
p <M.

We shall say that a function uy(x) which satisfies the integral identity (1.23) is a
(weak) solution of the equation

j=1

z d
(124) X 2 a;fx, u(x), o) + Clx, fle) —u(@)) v = ag| 2, ulx), )
ou; dx ox

in the domain £2.

2. - Pointwise estimates for solutions and for averaging functions.

In this section we establish some results on integral and pointwise estimates for the
auxiliary functions v(x, F, q) introduced in Section 1 as solutions of problem (1.15). We
will also obtain some estimates for the averaging functions of the form (1.16).

Throughout the paper, in the proof of the estimates, we shall use the notation ¢;,
j=1,2,..., to indicate a constant which depends only on n, m, a;, a;, R, H, M,
and v(Q) (see (1.2), (1.11), (1.12), and (1.13)).

Let us fix a compact set F' contained in 2 and let v(x, q) = v(x, F, q). For 0 <u <
< |q| we introduce the set E, = {xe2,: |v(z, @) | Su}.
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LEMMA 2.1. — Assume that conditions A; and Ay are satisfied, and that diam(F) <
<. Then there exists a constant k;, depending only on a1, ay, n, m, such that

m—2
@.1) J(1+ vz, 9) ’)
E

ox
i

2

vz,
V@, 9) de < kyp|q|(r + |q| )" 2 C(F)

ox

for every qeR' and for every u with 0 <u < |q|.

REMARK 2.2. — It is easy to see that the inequality 0 < (1/q) (%, ¢) <1 holds for
every ¢ # 0 and for a.e. xe Q, (see[59], Lemma 2.1). So we obtain an estimate of the
norm of the function v(x, q) in Wy, (2,) if we put u=|q| in 2.1).

Proor oF LEMMA 2.1. — First we prove the estimate for = |q|. Let % be a point

such that F'c K(y, r/2). Since m <n, there exists a constant ¢, > 0, depending only on
7 and m, such that

. ‘ J |8¢(x)
inf
ox
H(y, )

where H(y, r) = Iof(y, r) N Q2 (see[56], Chapter 8, Lemma 2.1). Therefore for every
£ >0 there exists a function ¢(x) in Cy° (H(y, 7)) such that g(x) =1 for xeF and

m

dx: oeCy" (H(y, 1), o(x) =1VxeF| < ¢, C,F),

m

de<¢ (C,(F) +¢).

@2) | Op(x)

ox

Hy,n

Let z(x) = (2¢(x) — 1), where we use the notation a. = max{a, 0} for an arbitrary
real number a, and let G = {x e H(y, ): 2(x) >0} = {e e H(y, 7): ¢(x) >1/2}. Using
(2.2) and Poincaré’s inequality we obtain

(23) meas(G)<=2" f lp(x) |™ doe <
Hy, 7

m

o
(@) de < 4™r™ e, (C,,(FY +¢€).

ox

< 4mpm ’

H(y, r)

If we use the test function v(x, ¢) — gz(x) in the integral identity (1.15), from (1.4), (1.8),
and Young’s inequality we obtain

m—2
@2.4) j (1+| oute, 4) )
Q¢

2

ov(x,
v(x, q) g <

ox

sCzJ’(|‘I|2
G

ox

()

ox

dz(x)
ox

2+|q|m|

)dx,
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where ¢, depends only on a ¢, a, %, m. Estimating the right hand side of (2.4) by Héld-
er’s inequality and uvsing (2.2) and (2.3) we get

As £—0 we obtain (2.1) for x4 = |q].

In order to prove inequality (2.1) for 0<u<|q|, we use test function
min{ [v(x, @) |, u} — (u/q) |v(x, @) | in the integral identity (1.15). Then estimate (2.1)
for 0 <u < |q| can be obtained by a standard computation, using the estimate already
proved for u=|q|. =

2

vz, q) de <k [q)? (r+ |g])" "2 (Co(F) +£).

Jv(x, q) l m-2
ox

We base our study of the behaviour of the sequence u,(x) on the pointwise esti-
mates of the function v(x, ¢q) given by the following lemma.

LEMMA 2.3. - Assume that conditions A; and A, are satisfied, and that F is con-
tained in a cube K(y, r). For every x e R" let o(x, K(y, r)) be the distance from x to
K(y, 7). Then there exists a constant ky, depending only on a., ag, n, and m, such
that

n—1 CmF 1/(m—~1)

olx, K(y, 7)) o
for every xe 2, such that o(x, K(y, r)) <.
ProOOF. ~ See[59], Theorem 2.5. =

In order to obtain the limit boundary value problem we need also some integral es-
timates of the auxiliary functions v(x, ).

LEMMA 2.4. — Assume that conditions A, and A, are satisfied, and let N be a positi-
ve real nuwmber. Then there exist two constants ks and k4, depending only on a1, as, n,
m, and N, such that

(2.6) j

Qo

ov(x,q') vz, q"
ox ox

) l dxskglq!_qﬂlm/(m**l) Cm(F),

1 . 1
@ ! = CulF 4) = — CulF, ) [ <ki|q' —gq" [V Cu(F),

1
28) ! L, g <k lq" YD ()
q
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for every compact set Fc Q and for every pair of real numbers q' and q" such that
0<|q|, |¢"| €N.

PROOF. — Inequality (2.6) can be proved by using the integral identities correspond-
ing to v(x, q') and v(x, ¢"), with test function ¢(x) =z, ¢') — vz, ¢") — (¢’ — ¢") 2(x),
where z(x) is the function introduced in the proof of Lemma 2.1. Subtracting one of the
resulting inequalities from the other one and estimating by means of condition A, we
obtain

2.9) J

29

m—2
<c|g' —q"| J(1+ )
Q9

where v'(x) = v(x, ¢') and v"(x) = v(x, ¢"). In the proof of this lemma the constants
C3, ..., Cg depend only on a,, ay, %, m, N.
From (2.9) we obtain

dxsc4lq;_qlr1m/(m—l)(J‘ ‘ ( ) d%) .
ox
2 20

v’ (x) v"(x)
ox ox

=

(%)
ox

" (x)
ox

'(x) '(x)
ox ox

dx

oz(x)
| ox

' (x) N " (x)
ox ox

v’ (x)
ox

" (x)
ox

. meas(G)+J(

Qg

m \(m-2)jm-1)
dx )

and inequality (2.6) follows from (2.1)-(2.3) and from the choice of z(x).

In order to prove (2.7), in the integral identities for v(x, ¢') and v(x, ¢") we use the
test functions (1/q') v(w, ¢') —2(x) and (1/¢") v(x, ¢") — 2(x) respectively, with the
same function z(x) used in the first part of the proof. Subtracting one of the resulting
equalities from the other one we obtain

2.10) f(-a( v (w)) @ _ iaj(x, W(x)) () )d = I2),
z 3

ox ox; q ox ;

where

' (x) "(x) dz(x)
I .
() = I( ( ) a](x, o )) £ de .
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We estimate /(z) by using condition (1.7) and we obtain

, " m—2 ! 7"
|1<z>i<C5f(1+j 2D |4 22 ) @) W
2y

ox o

2z(x)
dx

dx <

o | ox

o' (x) B v"(x)

m l/m a m l/m
< ¢ f dx f l ) del -
o Jx dx o ox
a i ” m (m~2)/m
[ meas(@) + | ( ”a(”) | a”a(”) ) ,
x 2

0

and inequality (2.7) follows from (2.1)-(2.3), (2.6), and from the choice of z(z). Since
(1/q") Cao(F, ¢") tends to zero as ¢"— 0 by Theorem 6.10 of [23], inequality follows from
@27. =

We shall now study some properties of the averaging function u,(x) defined by

2.11) () = L K(lx—;yi— wy) dy ,

h?*
2

where K(t) is an infinitely differentiable function on R, equal to zero for |t| =1, such
that

fK(]x[)dle
7

and 0 < K(t) < c¢(n) for a suitable constant c¢(n) depending only on 7.

LEMMA 2.5. — Let u(x) be a function in W (). Then there exists a constant ks,
depending only on n and m, such that the inequality

2.12) | S (@)
I Oz

m

dy

m_, 1 f‘au(y)

S —
h* 3
B(w, ) Y

holds for every point x € 2 and for every h > 0 such that the open ball B(x, k) of radius
h and centre x 18 contained in L.

PROOF. — See[59], Lemma 3.1. m
LEMMA 2.6. — Let w(x) be a function in WL(RQ). Then there exists o constant kg,
depending only on n and m, such that the inequality
ufx) |™
ox

213) j (up (@) — () |™ div < hgh™ J

Ky, v) Ky, r+h)
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holds for every point y e Q and for every pair of positive numbers r and h such that
Ky, r+h)cf.

Proor. - See[59], Lemma 3.2. =

Given z;eR™ and >0, let us consider the family of points x, =% + 2ra in R",
where a = (a1, ..., a,) is a multi-index with integer coordinates. Let I(r, h) be the set of
multi-indices a such that K(x,, 2r+ h)c Q2 and, for every integrable function w(x), let

be the mean value of u,(x) with respect to the cube K(x,, 7), where w,,(2) is defined by
(2.11).

LEMMA 2.7. — Let u(x) be a function in W5 (), let g,(x), a € I(r, k), be a family of
functions in L,,(Q, 1), where 1 is a positive Borel measure on 2, and let q be a con-
stamt with 1 < q<2. Assume that, for some positive constant Q, the inequalities

2.14) j 9.()|"™ dA(x) <Q Vael(r, h)

K(xg, qr)
are satisfied. Then there exists a constant k;, depending only on n and m, such that
the estimate

2.15) %‘,h) f 0 (@) = up(a, qr) |™ |ga(®) |™ dA(z) <
. ,

holds whenever 0 <r<h.

Proor. — Using (2.12) and (2.14) we obtain

;(:m J |un (@) — up(a, gr) |™ |ga(@) |™ dA(e) <
" Ky, qr)

m

dt | |g. (@) |™ dice) <

1
<@Vag) Z J’ J ‘ Ouy, (tx + (1 —t) Ea, 1))

ael(r, b) ke o ox
L G7.
pm oulx) |™
< — z dx j |gq (@) |™ dA(x) <
h™ acltr b ox ¢
aefr K(z,, qr+h) K2y, g
™ oulx) |™
<S¢ —

h" el h) o

Kz, gr+ k)
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Here £,{a, r) is a suitable point belonging to the cube K(x,, gr) and ¢; is a constant de-
pending only on # and m. Inequality (2.15) follows from these estimates and from the
fact that

hn
> 29 @) <e — for 0<r<h,
asl(r, k) e

where X(q‘i)m(%) is the characteristic function of the set K(x,, gr + k) and cg is a con-
stant depending only on n. =
3. - A Poincaré-Wirtinger inequality.

In this section we shall prove a Poincaré-Wirtinger inequality for measures satisfy-
ing condition B,. We begin with two lemmas concerning the function (o).

LEMMA 3.1. — Assume that condition (1.18) is satisfied. Then

V;.
B 1/0m~1) 1/m—1)
gy ™! (wm ) < j (a;(g;) d |
0 0

n—m\r* " ;

1
(0 =m) f@m = 1)) J( (o) )1/(m~1) do
0

1__2(mwn)/(m—1) Qn—m 0

for every r<1/2. In particular we have

(3.2) im 2 _y.

P ,,.'n—m

PROOF. - For every r<1/2 we have

vr Vr
w(e) |V 4 _ 1 d
j nf)m e = (w(r))H/m l)j =) fm 1) = =
J\o 0 J oo 0
m—1 vomens | 1 1
— [lm—1) —_
() (T(n—m>/<m~1> Fn-mem-1) |’

This implies

n—m

\/;
w(@) V"V dp L m-1 (w(r))H/m =D
0 m—m pm-m/@mn-D)

_ 1/(m 1)
@y 71 (ﬂ(f;) <
n—m\7r )

r
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On the other hand we have

1

1 _
n—m — =lr n-mfm—-1
e : e e o

r r

1 - 2(m—n)/(M~1)

’

m—1 1 = 1 m—1 -
_ fm-vy |+ Ym-1 — ~
n—m (wr) (ﬂr‘”—m)/(m‘” 1) - n—m () pln-m/m=1

where, in the last inequality, we use the fact that »<1/2. Therefore we obtain

(3.4)

n-—m

1 "
M1 oy g T | o) \" ™V do
n—1m 1_2(m—n)/(m—1) 0 0

0
Inequality (3.1) follows now from (3.3) and (3.4), while (3.2) is a consequence of (3.1) and
(1.18). =

Let 7(r) be the non-decreasing function defined for every r>0 by

Vr
w(@) "V do  ple-m/@m-1) 1 w(e) /" Y do
85 ()= 2o s £,
; e 1-2 0 o

n-—m n—m

0
By (1.2) and (1.18) we have
(3.6) lin% t(r)=0.

For every pair a, b of real numbers we set a Ab=min{a, b}.
LEMMA 3.2. — Assume that condition (1.18) is satisfied. Then

+e 1/tm~1)
3.7 | j (M) % <om

o " 0

0

Jor every r<1/2.
PROOF. — For every r<1/2 we have

:,tco w(Q/\'}") 1/(m—1) d_Q _ j"‘ w(@) l/(m—l) @ . m—l Cl)(’r) 1/(m—~1)
Qn—-m 0 . Qn—m 0 w—m \ pr—m

0

The conclusion follows now from Lemma 3.1. »
We prove now a Poincaré inequality for measures satisfying condition B..

PRrOPOSITION 3.3. — Assume that condition B, is satisfied and let 1(r) be the func-
tion defined in (3.5). Then there exists a constant kg, depending only on m and n, such
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that
oulzx)

38) J (@) |™ dv(e) < ke ()™ j '
R'ﬂ

K(xg, )N 2

for every cube K(ig,r) and for every fumction wu(x) in W, (R") with compact
Support.

PROOF. — Let us fix a cube K(,, ) and a function u(x) in W} (R") with compact sup-
port. It is well known that

3.9) (o) | <cg ' ay) } ly— ' dy

for C,,-almost every x € R" (see, e.g., [28], Lemma 7.16). By condition B, the measure »

belongs to the dual of the Sobolev space ITV;(Q) (see, e.g.,[61], Theorem 4.7.5). There-
fore inequality (8.9) holds for v-almost very x e K(xy, ) N 2. Thus we have

(3.10) jf lule) |™ dv(x) <
K(xg, mNQ
<cy }‘ fuda) | ) ouly) i ly —x)' ™ dy | dw(@) =
Klzg, N2
m—1 A
J‘ i Suly) [u(oc)ln_1 (@) | dy <
K, r)ﬂ.Q fy~;{;!

- n—1
R \K(xg, nNK \y ﬂ?‘

%

duly) |™ . \H™
{J12ra

m-1 mf(m —1) (m—1)/m

By using Hélder’s inequality we obtain

! tm—1 mf{im—1)
@.11) f j DD ) dy <
R \Klxg, N2 Iy

x}n 1

m 1/m~-1)
s[ [ N e j S P dy <
R U X ly—zl"

Ky, N2 (29, T)N 2
( 3 1 1/m -1
< we) | | —— (o) dy | dv(@).
. & ly—ef" ( J =" )

Ky, )N 2 Klzg, 1 2
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The estimate proved in Theorem 6.1 of [41] gives

1/tm-1)
(8.12) f I——l——— f ——1n— dv(z)) dy <

-1
R* Y ‘ K(xg, )N Q

T 1/tm~1)
, d
= Gy I (a)(:—‘i)) = ’
J\e 0
where w(r, 0) = sup v(K(x,y, r) N 2 N B(x, ¢)). Since w(r, ¢) < w(rAp), from (3.7),
(3.11), and (3.12) we obtain

m—1 mf(m~1)
%ﬁj%ll_n_—l dv(x) dy < ¢y 7(1) J ) |™ dv(z),

R" \K(xg, )N Kxg, N2

which, together with (3.10), implies (3.8). =

We shall use the following Poincaré-Wirtinger inequality, where

1
= d .
- 2 w(x) dx

Ky, m)

U,

PROPOSITION 3.4. — Assume that condition B, is satisfied and let 1(r) be the func-
tion defined in (3.5). Then there exists a constant ky, depending only on m and n, such
that

(3.13) J |u(x) — uy, , |™ dv(a) < ko (z(r))™ !

| ulx)
Ky, 7 K(y, )

for every cube K(y, r) contained in Q2 and for every function w(x) in WL(Q).

Proor. — For simplicity we assume % = 0 and we set K(r) = K(O ) and Uy = Uo, 7 for
every r> 0. Let us fix a bounded extension operator T: W, (K(l))—> W1 (K(2)), and
for every >0 let us define the extension operator T,: W,}L(K(r)) — W,ln (K(27'))

by (T,u)(@) = (Tu,)(x/r), where u,(2) = u(rx). It is easy to see that the boundedness of
T implies that there exists a constant ¢y, depending only on m and %, such that

3.14) j '___a(:r (@) dac\Cn( j ‘8%(:}0)

K(27r)
for every function w«(x) in WV}L(K(’V‘)).
Assume now that u(x) belongs to W, () and that K(r) is contained in £. Note that
w(x) — u, = (T, (u — u,) )(x) C,-almost everywhere (hence v-almost everywhere) in K(7),

dr+ — j |u(@) |™ do
r K(r)
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smce both functions are C,-quasi continuous and coincide C,-almost everywhere m
K(r) From (3.8) and (3.14) we obtain

f () ~ 0, |™ dv(z) = j (T~ 1,))@) | dv (@) <

K(r) K(r)

AT (u —

Skg(x(r))y"? f (T, — u)@) dx <
ox
K(2r)

o 1

Sep(r(r)y"? J ' ) ™ de+ — f |u(@) — u, |™ di |.
K(r) .’XJ r K(r)

The conclusion follows now from this inequality and from the classical version of the
Poincaré-Wirtinger inequality

Julx)

— f lue) ~—u, |™ x<cl3f l

K()

(see, e.g.,[28], formula (7.45)). =

4. - Decomposition of the domain and construction of cut-off functions.

In the rest of the paper u,(x) is a sequence of solutions of problem (0.1), (0.2), which
satisfies estlmates (1.11) and (1.13) and converges weakly in W,1(2) to a function uy(x)
in flx)+ W},,(Q). We shall always assume that conditions A;, A, As, By, B, are
satisfied.

In this section we consider a decomposition of the domain € and a family of cut-off
functions depending on three sequences @, ty, 4.

Choice of 0,. Let 0, be a sequence of real numbers such that

' / 1/m
(4.1) Q=7+ f | s (@) — up() |™ do )
Q
(4.2) SILI% 0.,=0,

where 7, is the sequence which appears in condition B,.

Choice of A ,. Let w(o) be the function which appears in condition By, and let ¢, be
the solution of the equation

1/m—1)
“.3) ts”“(i’@) " =gt

n—-m
s
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we define A, to be the odd integer number which satisfies

¢
(4.4) 1,2 <A,+2.

Qs

Choice of u,. We define u; by

~ . w(lst) 1/tm—1) ) (l)(t) 1/m 1 1/2m
(4.5) ys—max{is(——————) ,(A50,)", sup el ’

Ao )" ™ 0<t<1,0s
where 7 =1—n/o is the exponent in condition (1.12).

LEMMA 4.1. — Assume that conditions Ay, A,, As, By, B, are satisfied. Then the se-
quences @, A,, ts satisfy the following properties:
4.6) sli)rrgois=+w, slingolsgs=0, Jim p,=0.

Proor. — By (4.2) the sequence t, defined by (4.3) tends to zero as s— . So from

the first inequality in (4.4) we obtain the second equality in (4.6).
From (3.2) and (4.3) it follows that

ts 'IL+1_ tsn—m 1/(m~1)
0s w(t,)

tends to infinity and consequently from the second inequality in (4.4) we obtain the first
equality in (4.6).

The last equality in (4.6) follows from the other equalities in (4.6), from (3.2), and
from the estimate

nf _@ses) Hm =y
|\ G

<1 g+l w(t) \Y" V1, +2 momfoe= [ p 42 \mmm/emmb
Chert e i Ao\ A ’

which is a consequence of (4.3) and (4.4). m

<

==

- (As0)"+? w0, /™Y
Agoltl TT? Y

We introduce now a subdivision of the domain £ that will be useful for our esti-
mates. Given a point «® in K(0, 1,0,), we shall consider the cubic lattice composed of
the points " = #§® + 21,0, a, where a = (a, ..., a,) is 2 multi-index with integer co-
ordinates, and the set

%) Fo=UE@P, 1,00 \K@P, (2, - 6) 0,)

where the union is over all possible multi-indices o with integer coordinates.
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LEMMA 4.2. — There exists a point zi® in K(0, A,0,) such that

4.8) vF,NQ2)< :;.ﬁ v(82).

8

ProoF. — We introduce the strips
ny = {@, ..., x,)eR": 20,(k—3) <x;~2ih,0,<20,(k +3)}

forj=1,..,n,k=1,...,1,1=0, =1, =2, ..., Itis easy to see that for every x in R*
and for every j we have

As +
E 2 D@ <7,
k= .
where 5 is the characteristic function of the strip IT,. It follows that for every j there
exists an integer number k;, with 1 <k;<4,, such that
+ x

> Wine) s ;—v(!))

j= —o L s

Define the point x® by z’ = (2k1 — A, 04, (2ks — A ) 04, .., (2k, — 1) 0,). Inequali-
ty (4.8) is now an easy consequence of the inclusion

n
c]U g U_O° H(,f)“

which follows from the definition of H and from the choice of z{¥. m

The domain 2 will be decomposed as
(4.9) Q= UI Kz, A0 |V U,

where #89 = x” + 24,0, a and x® is defined in Lemma 4.2. In (4.9) I is the set of all
multi-indices a such that K(x'¥, 84,0, ¢ 2, and U, is the complement in 2 of the set
U K, 1,00,

aels

Moreover we introduce the notation
K (o) =Kx, As0,),
(4.10) KJ(a) =K@, (A, ~2) 0,),
| K@) =K@®,(,-Do,).
Let us define the function
4.11) v @, @) = vz, K ()\2, @),
where v(z, F, q) is the function which satisfies the integral identity (1.15). In particular
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we have v9(x, q) = q for xe K, (a)\L2,. By (4.6) we can assume that the inequali-
ties

(4.12) cAs>4,  3l0.<1, uy<1

are satisfied for all s.

Let u{®(x) be the averaging of the function u¢(x) defined by (1.16) and let ¥ and
u{® be the values of the functions f(x) and u¢”(x) in the sube K ().

Let I, and I be the sets of multi-indices defined by

={ael: |f(8) (S)|>2#s},

(4.13)
{I"— {ael: |f¥—uld| <2u,}.

Let w®(x) be the function defined by the equalities

w(ff)(w) — ,v(s)(x’ o(LS) _ u¢58>) for acl’ ,
(4.14) { @ . s

w () = v, 2u,) for ael!.

For every function g(x) we denote its positive part by (g(x)), = max{gv(m), 0}. Let
us define the cut-off function ¢ (x) by

(S)(gc) me[(lw(s)(x” luzs )+, %}’

and let G be the set where the function ¢ (x) is different from zero. Note that
P (x) =1 for xe K, (a)\Q,.
Some properties of the functions ¢(x) will play an important role in the
sequel.

LEMMA 4.3. — Assume that conditions Ay, As, Ag, By, By are satisfied. Then there
exists an integer s; such that

4.16) G&n Gf) =0

for every s = s, and for every a, yel, with a#vy.
Proor. — 1t is sufficient to verify that the inclusion

.17 GEcK!(a)

holds for s large enough. Usisng the pointwise estimate (2.5) and conditions B; and B,
we obtain the inequality

Con (K Q 1/m=D A 1/tm—1)
(4.18) 1w§8>(x)|sCl4zgl(_£M) ScM/v;—l( (4,0,)

(As0)" ™™ (Aso" ™™

if x € K, (o). By the maximum principle the same inequality holds for every x ¢ K. (a).
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From (4.5) and (4.6) we have the inequality
CMAn_l w(/lst) 1/(m—1)< C14 Hs
(As0)" ™™

for sufficiently large s, Consequently from (4.18) we obtain
( K
ﬁ\]w“’(m){ 23 =0 for x¢K/(a),
+

which implies (4.17). =

Fors=1, 2, ... and a e/, we define a set of multi-indices I;(a) with integer coordi-
nates and a set of points {m(s) Bel(a)} such that xl) = xg ® +20,p and

4.19) K ()\K;(a) = U K@), Kl p)=Kal e

We define also the functions

{w;‘?(x, Q) =va F,q for F=K(a, H\Q,,

(4.20) '
v, @) =v(x, F,q) for F=K/(a, )\2,,

where v(x, F, ¢) is the function defined in (1.15) and
(4.21) K/(a, )= K(xéj,’, 20,)-

Let |[,]| and |I,(a)| be the numbers of multi-indices of the sets /; and I;(a) re-
spectively. It is easy to see that

11| <(24,0,) " meas(Q), |L(a)|<2nA}™'.
Let us define the cut-off functions ¢%)(x) by

s 2 ‘ Hs | Hs
(4.22) o)) = o mm{(w;g(x, 1)- —é—)+, ?}

8

fors=1,2, ..., ael,, Bel(a), and let G be the set where ¢'$}(x) is different from
zero. By (4. 12) we have qv(s)(x) =1 for xeK (a, BH\2,.
For future use we state the following estimates for the functions ¢'’(x) and
(s) (90)

LEMMA 4.4. — Assume that conditions A;, Ay, Ag, By, By are satisfied. Then for
every ael, and fel(a) we have

(4.23) dw < kyoul " v(KJ(@) € ko "o(A50,),

|2z

G
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3 (s)
4.24) J‘ v @) dekxlﬂsTlV(Ks"(a)),
G(S)
Ap&i(x) |m
(4.25) H (pa’: do < kol " v(K, (@, ) <kl "w(2e,),

G

with constants ky, ki, ki depending only on n, m, a,, as, H, and M.
PrOOF. — Let E®(u) = {x € Q4: |wiP(®)| <u}. Using Lemma 2.1 we have

<2V | |aw$>(x)
de< | —
| Hs ox

E&Nus)

dx < Cmﬂi—mCm(KS’(a)\Qs) )

J | 3 ‘8)(90)

and we obtain (4.23) from conditions B, and B,. The other inequalities are proved in a
similar way. ®

LEMMA 4.5. — Assume that conditions Ay, Ay, Ag, By, By are satisfied. Then

(4.26) Jlim Y, meas (G®) =

—® qel,

ProOF. — We introduce the auxiliary functions

_(s)(w) — ;Ll;mln [(|’w(s)(9€)l 43 )+’ %] )

As in (4.17) we can prove that % (x) = 0 for & ¢ K,(a) and s large enough. Since (4.23)
holds also for g% (x), from Poincaré inequality we obtain

3PP (x)
ox

de <

(4.27) J |qo<8>(ac)|mdx$(2ls@s)”’f i
K(a) Ky(a)

ey A0 vE] ()

Observing that ¢¥(x) =1 for xe G, from the last inequality and from (4.5) we
obtain

(428) 2 meas(Gés))scmﬂi_m(lsgs)’” 2 V(K;(a))SCHILCS(),SQS)(I_")MV(Q),

ael; ael;

and the right hand side of (4.28) tends to zero as s— © by Lemma 4.1. =

LEMMA 4.6. — Assume that conditions A, Ay, A, By, B, are satisfied. Then there
exists an integer sy, that we may assume larger than the constant $; in Lemma 4.8,
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such that
4
(4.29) G;;QCK(xésg, 3 Qs>

for every s = s,, for every ael,, and for every fel,(a).

PrOOF. — As in the proof of (4.18) it is possible to obtain the estimate

[ w(20,) |/ 4
wgp (@, 1><cls( e )) for ¢ ¢ K| 2,5, = €.,
0 3

n—m
8

and by (4.5) and (4.12) we have

n—m 2

w 2 ) 1/(m~1)
Clg( Q( Qs ) Sz(n-m)/(m—l)clsﬂgn/(m—l)< _'L_t_i
8

for sufficiently large s. This implies that w3 («, 1) <u, /2 for » ¢ K(x3,(4/3) 0,), and
the conclusion follows from (4.22). =

REMARK 4.7. — From the inclusions (4.17) and (4.29) it follows that
(4.30) Py (m) @ () =0

for s=zs,, a,yel, fella), azy.

<9, &) the characteristic function of the set G.j}'. Then

REMARK 4.8. —~ Denote by (G
from (4.29) we obtain

2 2 (GY w2

ael; fella)
for every x e £2 and for every s=s,.
REMARK 4.9. - For ael, and fel (a) let I,(a, 8) be the set of all pairs (y, &) of
multi-indices such that y el,, d eI (y), and G NG =, and let [I,(a, B)| be the

number of elements of the set I,(a, ). The from (4.29) we have |I(a, f)| <3" for
§ = 8.

LEMMA 4.10. — Assume that conditions Ay, As, As, By, B, ave satisfied. Then there
exists a positive constant k3, depending only on n, m, o, ag, such that, if s is suffi-
ciently large,

(4.31) meas(Gé}?) <kigomul "v(K/,(a, )
for every ael, and for every (el (a). Moreover

(4.32) lim > 2 meas(G¥))=0.

87> ® gel, Bella)
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ProoF. — We introduce the auxiliary functions

4 # 2
9@ = —min{[w@, 1)- 2], 224
§0a5( ) U m [( aﬂ( ) 4 )+ 4 }

8

As in the proof of (4.27) we ovtain the inequality

m

ACH)
p dxscngZLMé_mV(Ks’(a7ﬁ))'

—(s) m d < (4 m 3@
|Z (@) |™ doe < (4o,) —
Ki(a, ) K (o, )

As g% (x) =1 for every xe G, from the last inequality we obtain (4.31). Using Lem-
ma 4.2 and the choice of u, we get

1
2 2 meas(GEE) < el uy ™" —— W(@) Seu, 07 TVATTMINR),

S

and the right hand side of this inequality tends to zero as s— « by (4.2) and
(46). =

LEmMMA 4.11. — Assume that conditions A, A;, As, By, By are satisfied. Then there
extist three positive constants kyy, ks, and kg, depending only onn, m, o, as, H, and
M, such that the inequalities

S (w) ™
433) [ ‘ g”ax (@@ d < ey~ ™ WKL (7, 8)) ,
6 '
@, ) ™, -
430) [ St | (@@ do < kst~ WE (7, 8)),
G
wE(x, q) |m
(4.35) | ‘—ﬁa;—— (@S @)™ de < kygpes ™ WK (y, 8)),
Gy

kold for s large enough a, fel,, fel(a), dely), |¢| <H+M.

PrROOF. — Let w () be the function defined in (4.14) and let ES ={xe
eGY: |w(x) | Su,}. By the definition of I, and I} given in (4.13) we have u, <
<|wP(x)| in K/(a)\Q,. This implies that the function v (x)=pu,—
—min{|wS (x) |, u,} vanishes in K, (a)\Q,. Consequently we can use the test function
@5 @) =9 () (9% @)™ in the integral identity (1.15) for the function w " (). Since
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0 <yp¥®@) <u,, using (1.4) and (1.8) we obtain

Sw'S () 12 5w (x) |™

= + - S )" dae <
EJ (l " E or (@ys@)" du
ayd

3w () ow®(x) |m-1 3¢S ()
o ] (|52 | 22 22 o
21 4 ( % T 3 (@ihx)) @
£y
which, by Young’s inequality, implies
5@0(3)(%) 2 ] aw(8>(x) m
a + 12 O ()™ de <
[ (l ol R Rl [T TE)
£
A9 (x) 12 3 (x) |m
\022/"3 f M dm+022#§nj 1_.?_}{_6_(__)_ dx .
dx ox
G(s) GG)

Using (4.25), (4.31), and Holder’s inequality we obtain

wP @) (™
f l 5 l (@84(@))™ dow < conpt (K, (y, 0)) + ezt ™™ 0% (K (v, 6)) .
E(s) x
By (4.5) and (4.12) we have ¢, <1,0,< (4,0,)" Sy, so that

m

a,w(s)(x)
f ————‘;—;— (@' ()™ da < 2cq5u , V(K (v, 6)) .

Es)

Since 8¢ /31 = 0 a.e. in G \EL) and [9p'P /8| = (2 /u,) | 6w /8| a.e. in Egy, in-
equality (4.33) follows easily from the previous estimate.

Let us prove (4.34). In the integral identity (1.15) for the function v (x, q) we use
the test function @(x) = (0 (x, ) — Q@3(@))". Using (1.4), (1.8), and Young’s in-

equality we obtain the estimate

WOz, q) 12 | WP, q) |
a s Y/ [ ’ (s)(x))mdws
j)( E™ E» l @55
6
3 (s) T 2 3 (s) x m
scmj | ?y0@) +| 270 1™\ g
ox ox
G(S)

Inequality (4.34) follows now from this estimate, by using (4.25), (4.31), and Hoélder’s in-
equality. The proof of (4.35) is analogous. ®



GIANNI DAL Maso - Icor V. SKRYPNIK: Asymptotic behaviour, efc. 39

Let us construct now a sequence of functions x(s)(w) such that

(4.36) 0<y%x) <1 for zeR",
4.37) @) =0 for x¢G{Y,
(4.38) 2 2 x<s>(x)—1 for xe U » U (K (a, H\R,).

To this aim we order the set J of all pairs (a, 8) of multi-indices with a e I, f e I (@) in
a lexicographic way. We write (a, ) < (y, 9) if, in the sequence of numbers

Y1701y ees Y= Oy, 61—ﬂ1"'-:6n_:6n9

the first non-zero difference is positive.

If (@, B) is the minimum element of J, then we put x(s)(ac) @ (). Assume, by in-
duction, that for every (a, B) e J with (a, 8) < (y, 6) we can deﬁne a function x(s’ ()
such that (4.36) and (4.37) hold, and

(S) —
(4.39) (a,ﬂzw) hx)=1 for we, ﬂ) o (K, (a, B\R,)

(4.40) 0<s 2 %@ <1 for xeR".
(a,ﬁ)<<y,6)

We define now the function y)(x) by the equality

(4.41) 28 (@) = <s><w>(1— > x%(x)>.

(a, By <(y,9d)

Then (4.36) and (4.37) hold for x)(x). Let us prove that

4-42 S) =1 f U Ks : Q
(442) 55 L@ orae U (K P\R),

(4.43) 0s 2 xS x)<1  for xeR".
(a,ﬁ)S(y,é)

Ifze ( ﬁ)U( 6)(Ks(a, A\Q,), then from (4.39) and (4.41) we obtain x 3}(x) = 0 and
a, p) <y,

consequently equality (4.42) follows from (4.39). If xe K. (y, 6)\Q,, then

(4.44) S (B@= 3 (s)(OU)-I—(p 2;(x)(1~ hX (s)(w)>—1

(e, By (y,0) (a,B)<(y,o (a, B) < (y,6)

since ¢$)(2) =1 in K,(y, 6)\2,. This proves (4.42). Inequalities (4.43) follows from
(4.40) and (4.44).

Proceeding by induction we construct a sequence x(s) () such that (4.36), (4.37), and
(4.38) hold for every (a, f)eJ.
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REMARK 4.12. - Since y &} («) = 0 for x ¢ G“’ by (4.37), from the inclusions (4.17) and
(4.29) it follows that

(4.45) Xap@) @3 (@) =0
for s= sy, a,yel,, fel(a), a=y.

LEMMA 4.13. — Assume that conditions A;, Ay, As, By, By are satisfied. Then there
exist two positive constants ky; and ki, depending only on n, such that

j (S) (90) < k17 Z (s) (9(:),

(v, 8) elg(a, ﬂ)
(446) (s) (90)

o

3 3 ()

8
(v, 0 ela, B ' ox

<k,

for every s = sy, for every ael;, and for every fel,(a).

PROOF. — From the construction of the function x‘s)(oc) it follows that x ) (x) is equal
to a sum of terms of the form

(4.47) r(p(j?nﬁu)(ﬂ(:) ...q[)(j?zv)ﬁ(M(:E) ,

where (a?, ) = (a?, 9 if 1#j. From Remark 4.8 it follows that the function in
(4.47) is identically zero if N > 2". Therefore we have the estimate

Sk X

yel, dely(y)

(s) (90)

(4.48) 890

E 25y ()

890

with a constant k3 depending only on n. By (4.37) the left hand side of (4.48) is equal to
zero outside G(g) and consequently, by Remark 4.9, in the right hand side of (4.48) we
can omit the terms with (y, 6) ¢ I,(a, 8). The proof of the first inequality in (4.46) is
analogous. B

Let us consider now the functions 1/)< (x) defined by the equality
(4.49) P& =@ 1 - 9P @) .

Then 0 <9 (@) <1 in R” and p$)(2) =0 for x¢Gf3. Let us verify that

(4.50) Z¢(S)(x)+2 > y&@) =1 for xealEJIs(Ks(a)\Qs).

aely ael, fella)

First of all we note that by (4.30) and (4.41) we have

vels

(4.51) wapa) = x5} (x)(l— > <P(3)(90))-



GIANNT DAL Mago - Icor V. SKRYPNIK: Asymptotic behaviour, etc. 41

If xe U[ (K, () \K/ (a))\R2,), then from (4.38) and (4.51) we obtain

2 PP+ 2 2 v8w = 2 PP(w) + > Z X ,é(x)(l— > ¢(s)(w))=1

aelg aely Bella) aely aely Bella) vel,
For x e K,(a)\2, we have
(4.52) @@y =1, @P@) =0 fory#a

in virtue of (4.15) and (4.17). So we obtain from (4.51)
458)  p&h(x) =2¥) (x)(l - 2 <0(‘°')(96)) =0 for ve U (K;(0)\2,),

and hence identity (4.50) is proved.

LEMMA 4.14. — Assume that conditions A;, Ay, Az, By, By are satisfied. Then there
exists a positive constant ki, depending only on n, m, oy, ay, H, and M, such
that

(S) (90) 1-m (s) 1-m
as) [ | 2L < bt B, 40.0) < k"ot

ox

G
for every s = s,, for every ael,, and for every el (a).

PRrOOF. — From the definition of ¢%)(x) given in (4.49) and from Lemma 4.13 we

obtain
v @) | @) 99 P ()
H——— de<cy J |—— +e8@ || 22" e
e (v, O)ely(a, B) o ox
ey G

The first inequality in (4.54) is now a consequence of (4.25), (4.33), and of the
inclusion

4.55 U , ®
(4.55) T K/ (y, 0)c Kz, 40,),

which follows from (4.29). The second inequality in (4.54) is a consequence of condi-
tion B,. m
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5. — Asymptotic expansion of the sequence of solutions.

In this section we investigate an asymptotic expansion of the solutions u,(x) that
will be fundamental in our study:

5
(5.1) ug(2) = ud®(xx) + '21 0 () + w, (),

i=

where

@) = 2 (f@) ~ ) = (@) - ) o P (@),

ael,

K@@= 3 3 (f@) -1 - @@ -u) v,

ael, fella)

rP@) = 2 v, [P - ul) o (@),

ael

W) — (s) (s) (s) (s)
r @)=Y 2 v, £ - ul) pChx)
s J o pe T ap ,faﬁ aff waﬁ ’

@) =2 2 (fF-ul) - oP @, [P - ul) of @) x i),
aely Bela)

and w;,(x) is the remainder. Here u{¥(x) is the averaging of the function u,(x) defined
in (1.16), £\ and u'® are the mean values of the functions fz) and u§”(x) in the cube
K, () defined in (4.10), f¢) and «% are the mean values of the same functions in the
cube K, (a, B) defined in (4.21), va@e(x, q) and v 3 (x, q) are the functions introduced in
(4.11) and (4.20), %) (x) are the functions introduced in (4.15), x)(x) are the functions
introduced in (4.41), and () are the functions introduced in (4.49).

The study of the behaviour of the terms of the asymptotic expansion (5.1) is the
main purpose of this section.

LeEmMaA 5.1, — Assume that conditions A, As, As, By, By are satisfied. Let g(x) be o
Sfunction in C;°(Q2) and let w,(x) be the remoinder of the asymptotic expansion (5.1).
Then there exists a number s;, depending on g(x), such that g(x) w,(x) belongs to

ﬁ’}n(Qs) for s =ss.
PROOF. — See [59], Lemma 4.6. =

LEMMA 5.2. — Assume that conditions Ay, Ay, Ag, By, By are satisfied. Then the se-
quences (@), riP(x), ri(x), and r (x) converge to zero stromgly in WiL(2) as
§-—> o,

PROOF. — Since the functions ) and u,(x) are bounded, from Lemmas 4.5 and 4.10
we obtain immediately that the sequence 7" (%), i =1, 2, 4, 5 converge to zero strong-
ly in L, () as s— .
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Let us estimate the norm of the gradient of r®P(x) in L,(Q). For i=1 we

have
arM(x) Jr af(x) |m Bug() |™
) | — |de+
J ax 26 ags | ax l ax v
Q )
du® b m
+ea5 2, J ‘ @ @ "
aeI el
dop® m
+ 35 2, J (f@) —f9 ™+ |ud @) —u® |™ <P;(w) .
ael '—'—x

The first term in the right hand side of the previous inequality tends to zero as s —
by Lemma 4.5 and by the absolute continuity of the integral. The second term tends to
zero by the properties of the averaging functions.

Since the function f{z) belongs to the space C* 1(Q) with # > 0, Lemma 2.7, togeth-
er with (4.17) and (4.23), yields

(S)
5.2 J (| flx) - f(s) |™+ lué”(oc) u(s’ |™) e (x) dac <
ael 8G(s) L
A0 2
S el ™ (A50)™ W(RQ) + cuus ™ (;(Q )i_)m ug;x) dx <
s 8 Ie)
Sy ()
S027P‘3V(Q)‘|'027/lsj ’ : ,
7]

where in the last inequality we use tlie definition of x4, given in (4.5). Both terms in the
last line of (5.2) tend to zero as s— « by Lemma 4.1. This completes the proof of the
strong convergence to zero of the gradient of 7V (x).

Let us estimate now the norm of the gradient of r* (z) in L,,(2). Recalling that the
function ¥ ) (x) is zero outside Gy, we have

or®
J | @) dx <
[ 8 m 2 m (S) m\
<o 2 f | S +| o (%) +| @ _ om@ 1™ bt
ael, Bel, (a)G@) ‘ ox ox ox ox

of

ron 2 3 (@ -F3 1"+ w0 @) - u|”

ael Bel(a)
[e3y)

) l aw(s) (90)
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The first sum in the right hand side of the previous inequality tends to zere by (4.32), by
the absolute continuity of the integral, and by the properties of the averaging
functions.

By using (4.54), Lemma 2.7, and the Holder continuity of the function flz), we
obtain

Ay ()
ox

2 3 [ -1 @ - ud ") "o <

ael; fella)
G

ap

r =

Scpps QW 2 5 ;( )V(K(x;?’ 40)) + Cogpty”
ael; fela

a)(4g ) J’ ' Oy ()

Juy ()

’

< AN+ s, | |
2

where in the last inequality we use (4.12) and the definition of x4, given in (4.5). Both
terms in the last line tend to zero ag s— » by Lemma 4.1.

Let us estimate now the norm of the gradient of {* (%) in L,,(R). Using (4.12),
(4.33), (4.35), (4.46), (4.49), (4.54), and (4.55) we obtain

(6.3) j
2

ar{Y (@) <

&)@, £~ ul))

(fp ©) (o)™ da +
ox

w3 3 3

ael; Bel(a) {y, 8)ela, B)
G

dﬂ(} = ng#éym 2 2 V(K(.’,USB), 49 s)) .

ael; Bella)

(S) )
+C312 2 J‘ o@

ael, Bella) ox
ey

It is easy to verify that the following inclusion holds

(5.4) U U Kzb), 40,)cF,NQ,

acl; fella) ap’

where F, is the set defined in (4.7). Consequently, from (4.5), (4.8), (5.3), and (5.4) we
obtain

(6.5) j’
Q

and the right hand side of this inequality tends to zero by Lemma 4.1.

rH(x) |m
sa( ) i da < cggut ™A V(Q) S e I(Q),
4
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For the gradient of 7{°)(x) we have the estimate

m By )
de0342 (JI % ap ()

3r ()
ox

|

ael; Bely(a)

J

+ ( )( Gy dw)-
G

Using (4.46), (4.25), (4.33), (4.34), (4.55), (54), (4.8), and (4.5), we obtain

w0, £ —u?) }m +| Pl @)
o o

r® (x)

de<epul™ > X X w(K!(y,d)<
aels Bela) (y, 8) el (a, B)

(5.6) J
2

Seguy " EI , ;( )V(K(xé‘}), 40,)) S Tnegsut ™A1 v(Q2) < Tnegs u™ 1 w(Q),

and the right hand side of this inequality tends to zero as s— « by Lemma
41. =

LEMMA 5.3. — Assume that conditions A, Ay, A, By, By are satisfied. Then the se-
quence 1> (x) is bounded in W,,(Q) and converges to zero strongly in WH(RQ) for
p<m.

PROOF. — The strong convergence to zero of ¥ (x) in L,,(R) follows from Lemma
4.5 and from the estimate

|v(§s)(ac,fés)—ués))| sH+M for zeQ,,

which is a consequence of (1.12) and (1.13) and Remark 2.2. We estimate the derivative
of r®(x) in L,(2) by means of Lemmas 2.1 and 4.4. Taking B, into aceount we
obtain

or® a (s) x, (8) __ 5, (8)
®7) j ‘ - (@) 0 (e, £~ ul?)
ox
Q

de < Csg 2 a0

ael;

dx +

3 (S)(x) m
—g'i;w— dx < ey > v(K! (@) < ey v(Q),

ael;

v [, 0 - u)|”

ael;

E& )

where B9 (u) = {x € Q¢: |wP (@) | sul. Consequently in the third integral in (6.7) we
have majorized |v(x, f ©) — 49| by 2u, in both cases acl, and ael! (see (4.13)
and (4.14)).

Observing that the function »(®(x) vanishes outside U1 G and applying Holder’s
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inequality, we obtain for 1 <p<m

p
de < f
Q

The right-hand side of this inequality tends to zero thanks to (4.26) and (5.7). This con-
cludes the proof of the lemma. =

87'3(3)(95)
ox

[ i ¥ (w)

ox

) (Z meas(G(s))) e

ael;

LEMMA 5.4. - Assume that conditions Ay, As, As, By, By are satisfied. Let w,(x) be
the remainder of the asymplotic expansion (5.1) and let g(x) be a function in Cy” (£2).
Then the sequence g(x) w,(x) converges strongly to zevo in WL(2).

PrOOF. - We may assume that |g(x) | <1 for every x e 2. By Lemma 5.1 the fune-

tion g(x) w,(x) belongs to Wk, (£2,) for s large enough. Moreover, we shall assume that
s = s, and s = s3, where s, and s are the constants in Lemmas 4.6 and 5.1. So we can
take |g(x) |™w;(x) as test function in the integral identity (1.10) corresponding to the
boundary value problem (0.1), (0.2), obtaining

o o
5.8 [ o (x Uy (), ;x) ) — (lgt@) | w, (@) do =
'j

- - j ao(x, (), @) ) |g(@) |™ w, () dee .
O

Q

Let us investigate the behaviour of the integrals on the left-hand side of (5.8) as s— .
From Lemmas 5.2 and 5.3 and from (5.1) it follows that w,(x) converges to zero strong-
ly in L,,(€2). This convergence is also in L,.(£2) for every r > 1, since the sequence w,(x)
is uniformly bounded (Theorem 1.3). By (1.8) and (1.11) this implies that

lim (Z a(% s (), e ;w) ) 2 lg(oc)l’”+ao(w, (), a(x))l € )lm)
2

§-> 0 ax]

~w () de=10

and consequently

g 5 5
(5.9) lim jr o) | > aj(x, s (), ”;(x)) RICUPRY
§—> > =1
Q

% ox;

We rewrite the integral in (5.9) in the form

2 5 E
(5.10) f @™ S ol e, uy@, 228 D g po g e 1o 1,
j=1 o ox;

Q
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where

10~ [ gt |-
2

e Ju(x) ux) Sw,(x) Jw, ()
. ; — -0 - dx ,
;Zl (aj (x, s ), A ) % (x, ), o o )) Bu; v

19~ [ lg |-
Q

z du,(x)  Sw,(x) oug()  r(x) \\ ow,(x)
. . _ —a da
le (aj (oc, s @), o A ) % (ac, (@), dx " dx O; v

1= [ 19t |-
0

N ®) @
# (aj(x’ (%), LI ) )_aj(x, s (), ors” (@) )) ow, () dae
i=1

ox Ox ox ou;

n ® ®
1= j 9@ ™ 2 (%‘(90, us (), aTsax(x) )—aj(x, 0, W )) o) d

b i=1 ox ou;

n 9 (3) 3
1g8>=j 9@ ™ D aj(x,o, s (x)) LACIPN
i=1
k)

890_7'

By (1.5) we have the following estimate for I{:

ow,(x)
1o

m

(.11) ¥2aq, j Ig@) | de .
2

The convergence to zero of I3¥, I§¥, and I{® is proved as in Theorem 4.9 of [59]. There-

fore (5.9), (5.10), and (5.11) imply that
ow, ()
ox

m

1
dee < — lim sup | I ] .
al s— ®©

(5.12) lim sup f |g(x) |™
R

To study the behaviour of I we introduce the function () defined by the
equality

1
(5.13) ED(@) = — min {(|w (@) | —p,)s, 0}

8
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As for the function ¢'¥(x) we can prove (Lemma 4.4) the estimate

(s)
(5.14) j ! % “ax(x)

(8)
HP

dx < kyoul ™ v(K!(a)),

where H'® is the set of points x such that {(x) # 0. Moreover we have H'c G
and

(5.15) e@@) =1 in HY

for every ael,. Using this property and Lemma 4.3 we obtain

(5.16) IO =19+ 1P + I,
where
av (x) )
I = 2, j Za(x 0, )79;<|g<x)imcﬁi)(x>ws<ac>)dx,
ae H(s) 7

(3) m
() — _ o @)\ olg@) |
I @<, f E ( o )@a (@ w,(@) 3 e,

]

2 o
=3 [ g 2 a0, 2 900w | == (@) (1~ €9 @) d .
j=1 ox 2

ael A
sg(e) 7

Here v (x) = v (%, £ — u'"). By the definition of the function v (x, £ — u*) we
obtain that 1§ = 0. Since ws(x) converges to zero strongly in L,.(Q) for every r>1,
Lemma 5.3 implies that I{* tends to zero as s— . So we have

617 I =0, lim 1§ =0.

§—> ®©

In order to estimate I{¥ we introduce the sets
E®={xeQ: lw() | <2u,} NGY.

Since 1 -¢¥(x) =0 in G\E, from (1.8) we obtain the inequality

/ 5 m \m-2)/m
(5.18)  |I{V | <css| 2 f(1+ l — (P )w) ) da :
aeIsE(§S> (990
1/m
s | !-C%W oo | do| 3 j |—(w3<1—c<s>>)<x> du
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Ifael,,then [0 (x)| = |wP(x) | <2u,in B . If ael!, then [v¥(2)| < |[f¥ -
—u®| <2u,in Q. Therefore |v(s)(x) | <2u,in E¥ for every a e I,. Consequently Lem-
ma 2 1, condition By, and inequality (4.23) yield

a m
(5.19) f l Z e @ | du<
ox
EW®
ol (s) (s)
S G0 J e 2 s @) decmusv(Ks”(a)),
ox ox

(s)
E}

which, together with (4.12) and (4.28), gives

(5.20) J (1 + l (v(8>cp(s>)(x)
aEI

) dﬂc$04lﬂsv(§2).

For the last integral of the right-hand side of (5.18) we have the estimate

dx$

(5.21) j \ 2 (,(1 - 29))@)

ae[

dx

(s)
<o, Haws@a) LS lws<x>|”| ALY (x)
ox

aely ox
H(s)

a

By (5.1) and by Lemmas 5.2 and 5.3 there exists a constant cg, such that

(5.22) j ‘ oW, (@)

de < Cy43 .

We shall now evaluate the last integral in (5.21). By (5.15) for x € H'® we have ¢¥(x) =
= 1 and, consequently, from (4.49) we get v (x) = 0. Therefore from the asymptotic ex-
pansion (5.1) we obtain

w, () = us () — u®” (@) — rP @) —r& (@) = rP(x)  for e HY,

and

do < ey IO+ I + IV + 1Y),

3
62 3 | |w5<x)|m‘ c;c(m

aely
H®
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where

95 ()

dx ,
ox

1“’—2; (@) — ug (@) |

aes

) V(@) |m
=3 [ @ —r0 s e - | LD | g,
aelsH((is} "
ac® m
=3, [ s - LD " g,
act X

di .

W
W= 3 j |x(8><>m| ca;w

ael; fella)
HE)

In order to estimate I§® we fix a function 0¥ () of class Cg° (), equal to one on
K,(a) and to zero outside K(x'”, 21,0,), and satlsfymg |96 /x| <2 /(As0,). Then
we take the test function

Jts () — ug™ (@) | min { |w (@) | —2u,, 0} (0§ (@)™

in the integral identity corresponding to the boundary value problem for the function
w® (1) defined by (4.14), and we obtain

3w (x) i
(5.24) J{ 2, () — ug® () | —“—(—2 ] da <
3%
E®

Ou,(x dug® 2

$C45,u§ j i ®) - 0 @) dx +

dx ox
K(%u(f), 2'1393)

O Sul®

K=, 24,0,

2
+%(”S) [ |y () — ud? () |2 e +
4505

K™, 2400,

+c45( Ko ) j [ (20 — g™ () |™ doz .

AsQs ©
K@, 23505)
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Using Lemma 2.6, (4.12), (5.24), and the choice of o, we have

2
(5.25) |Ig§s)|$C46‘u;m(/t%R2/m+‘u7snR+(;{#s ) J|us(x)—u0(x)|2dx+
SQS 0

o j|us<x>—uo<x>|’"dx <cqui ™,
AsQs ) ;

where R is the constant in inequality (1.11).
The estimate for 11§ is similar to (5.2) and can be obtained by the same arguments,
using (5.14) instead of (4.23):

_ m 0A504)
(5.26) 11 | S casps ™(Rs0 )™ W) +eagpy™™ m}%smﬂs.

As 3¢® Jox =0 1in HY \E® and |0z, ) —u'?)| <2u,in E®, from (5.14) we
obtain

(5.27) 1P| < espu,n(82).

The estimate for Iy is similar to (5.6) and can be obtained by the same argu-
ments:

(5.28) IS | Sesius ™A v(R) < et
Using (5.25)-(5.28) we obtain
O+ I + IP + 19 | < cqpi™™ + Cogths -
Therefore (4.12), (5.18), and (5.20)-(5.23) imply that
[ 1§ | S eoapp "™ (g + Capy ™™ + Gt )7 S Csspa ™
and by virtue of Lemma 4.1 we have
(5.29) Jim I =0.

From (5.12), (5.26), (5.17), and (5.29) it follows that the sequence g(x) w,(x) converges
to zero strongly in WL(Q). =

Proor oF THEOREM 1.4. — If we compare the asymptotic expansions (1.17) and (5.1)
we obtain

(5.30) R, (%) = v (@) + 78 (x) + v (@) + v () + w, ().

Therefore Theorem 1.4 follows Lemmas 5.2 and 54. =
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6. — Choice of the decomposition.

So far ¢, is an arbitrary sequence which converges to zero and satisfies (4.1). In or-
der to conclude the proof of Theorem 1.5 we need a very precise choice of ¢ ;. We begin
with some lemmas about subadditive functions.

LEMMA 6.1. — Let S(B) be a non-negative increasing subadditive function defined
for every Borel set Bc 2. Assume that there exists a bounded Borel measure u(B) such
that B(B) < u(B) for every Bovel set Bc 2. Then

6.1) B(B) = sup { B(&): E compact, EcB}
Jor every Bovel set Bc £.

ProoF. — Let us fix a Borel set Bc 2 and let S be the right hand side of (6.1). By
monotonicity it is enough to prove that g(B) < S. Since u(B) is a bounded Borel mea-
sure, for every ¢ >0 there exists a compact set EcB such that u(B\E) <e. As
B(B\E) < w/B\E), by subadditivity we have

B(B) < B(E) + BB\E) <S +u(B\E) <S +¢,
and letting ¢ tend to zero we obtain (B)<S. =

LEMMA 6.2. — Let B(B) be a non-negative increasing function defined for every
Borel set Bc 2, and let A(B) be the function defined by

6.2) MB) = sup EI B(By),

where the supremum is over all finite families {B;};.; of disjoint Borel sets contained
in B. Then M(B) is the smallest superadditive function such that A(B) = B(B) for every
Borel set Bc . If, in addition, B(B) is countably subadditive, then A(B) ts a Borel
measire.

ProoF. — It is clear from (6.2) that A(B) is superadditive and that A(B) = S(B) for
every Borel set Bc Q. Let n(B) be another superadditive function such that #(B) =
= B(B) for every Borel set Bc Q. Then n(B) is non-negative, increasing, and

n(B) = ZEI n(B;) = Z‘] B(B)

for every finite family {B;};.; of disjoint Borel sets contained in B. By (6.2) this implies
that #(B) = A(B) for every Borel set Bc Q.

If B(B) is countably subadditive, it is easy to see that A(B) is countably subadditive
too. Since A(B) is non-negative, increasing, and superadditive, we conclude that it is
countably additive. Therefore A(B) is a Borel measure. ™

LEMMA 6.3. — Let B(B) be a non-negative increasing subadditive function defined
for every Borel set Bc Q, and let A(B) be the function defined by (6.2). Assume thal
(6.1) holds for every Borel set Bc Q. Then for every Borel set BCQ and for every
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t < AM(B) there exists & >0 such thot

(6.3) t< -21 B(B;) < A(B)
for every finite Bovel partition {B;};c; of B such that diam(B;) <6 for every

iel.

Proor. — Let us fix a Borel set Bc 2 and a real number ¢ < A(B). By (6.2) there
exists a finite family {A;};., of disjoint Borel sets contained in B such that

i< 2 B(4;).
jed

By (6.1) there exists a finite family {E;};.; of compact sets such that E;c 4; for every
jed and

t< 2 BE).
jed

As the compact sets E; are pairwise disjoint, there exists 6 > 0 such that dist(&;,, E}) >
> 206 for j; # j;. Let {B;};; be a finite Borel partition of B with diam(B;) < ¢ for every
1el. By subadditivity for every jeJ we have

BE) < Z B(B),
1€l
where I; = {iel: B;N E;= @}. Since dist(&; , E},) > 20 for j; # j;, the sets I; are pair-

wise disjoint, hence

t< X B(B;) < ZIﬁ(Bi)'

jediel;

The second inequality in (6.3) follows from (6.2). =

Condition B, is expressed in terms of cubes. The following lemma shows that it im-
plies an inequality for every compact set.

LEMMA 6.4. — Assume that condition B, is satisfied. Then
(6.4) lim sup C,,(E\R,) < v(F)
Jfor every compact set Ec Q.

Proor. — Let us fix a compact set £c Q2. For every ¢ > 0 there exists a finite fam-
ily of closed cubes K(#;, 0;), 1 <1<k, such that

k k
Ec il=J1 K(x;,0;) and 2 v(K(x;, 0)) <v(E) +e.

i=1

We may assume that K(x;, 20,) ¢ Q. By the subadditivity of the capacity C,, and by con-
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dition B; we have

k

k
Cm(E\Qs) = 'Zl Cm(K(xia Ql)\Qs) = E V(K(wiy Qi + Ts))

i=1
for every s such that 7, < 1mAinin. Since r, tends to zero as s—> » we obtain
s1€

k
lim sup C,(B\Q,) < 2 v(K(x;, 0,) <w(E) +¢.

=1

As ¢ tends to zero we obtain (6.4). =

For every compact set £c Q and for every real number ¢ we define

65 B'(E, ) =lminf C4,(E\Q,, ¢), B"(E, ¢) =lim sup Co(E\Qy, q).

By Theorem 4.3 of [23] the functions C,(F\2;, q) are increasing with respect to K.
Therefore the functions 8'(E, q) and S'(¥, q) are increasing with respect to £. By
Lemma 2.4 there exists a constant k, such that

{1 1
rg CalBN2,, ¢ pe Ca(B\RQ,, ¢") | Skylg' —q" [V C(B\Q,),

E
(6.6) | )
l—CA(E\qu/) Skzllq,ll/(m_l) Cm(E\Qs)’

!

q

for every compact set E'c Q2 and for every pair of real numbers ¢’, ¢", with 0 < |q’|,
|¢"| <H +M. By (64) this implies that for every compact set Ec € the functions
C4(E\R2,, q) are equi-continuous with respect to ¢ in [~H — M, H + M]. Therefore,
from Theorem 8.15 of [24] we deduce that there exist a subsequence, still denoted by
Q,, and a function (U, q) such that

6.7) sup B' (&, q) = sup §"(E, q) = (U, q)
EcU EcU

for every real number g and for every open set Uc 2. The same result can also be ob-
tained by applying Proposition 5.9 and Theorem 16.9 of [16], with X = R'. Let us extend
B(U, q) to every Borel set Bc 2 by

(6.8) B(B, q) =inf {B(U, ¢): U open, U>B}.
Note that
(6.9) B'(E,q)<p"E,q)spE, q

for every compact set £ ¢ . By Theorem 5.7 of [23] the functions C4(E\£2, q) are sub-
additive with respect to E, hence 8"(E, q) is subadditive with respect to E. This implies
that B(B, ¢) is countably subadditive with respect to B (see, e.g.,[16], Propositions
14.19 and 14.22). By Proposition 6.6 of [23] for every compact set £ c £ we have

(6.10) CalB\Q,, ) <kg |g] (L + [g]™ ) Cul(B\Q,),
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where ks, is a constant depending only on a4, a,, m, #, and diam(£2). By Lemma 64
this implies

(6.11) B(E,q) <B"(E,q) <ky|q|A+ g™ ")nE)
for every compact set £ c £, hence
(6.12) BB, @) <kx |q| (1 + g™ )w(B)

for every Borel set Bc 2 and for every real number q. Moreover, (6.6) implies
that

1 1
‘ — BB, q¢")— — BB, q") ' <ks|q' —q"|"" "V uB),
(6.13) 1 g
1 ' r11/(m—-1)

for every Borel set Bc Q and for every pair of real numbers ¢', ¢" such that 0 < |¢'|,
l¢"| <=H+M.
For every real number g and for every Borel set Bc Q2 we define

(6.14) MB, q) =sup EI B(B;, ¢),

where the supremum is over all finite families {B;};.; of disjoint Borel sets contained in
B. Since B(B, q) is countably subadditive with respect to B, for every g the set function
B> A(B, q) is the smallest Borel measure on Q such that A(B, q) = (B, q) for every
Borel set Bc 2 (Lemma 6.2).

By (6.3), (6.12), and (6.13) we have

(6.15) A(B, q) < ky ]q] 1+ |q|"’”‘1)v(B),
1 1 L m—1
(6.16) , B, 4" = B, q”), <k lq —g¢" [/ D u(B),
1
(6.17) | — B0 ' <l |g' |V D w(B),

for every Borel set Bc Q, for every real number ¢, and for every pair of real numbers
q', q" such that 0 < |¢'|, |¢"| <H + M. By the Radon-Nikodym Theorem for every ra-
tional number g =0 there exists a Borel function g(x, q), defined for xe 2, such
that

1
(6.18) B0 [ g6, gy dnia,
B
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for every Borel set Bc 2. By (6.15), (6.16), and (6.17) we have

(6.19) 9@, @) | Sk (1+ g™ 1),
620 9, g0 =gz, ¢ | <hylg'—q"[™7Y,
(6.21) lg(x, q") | $k4lq/[1/(m—1),

for v-almost every x € Q, for every rational number g # 0, and for every pair of rational
numbers ¢’, ¢" such that 0 < |¢’|, |¢"| < H + M. This allows us to extend g(x, q) to a
Borel function defined on £ x R! such that (6.18), (6.19), and (6.20) hold also for real
numbers ¢, ¢', and ¢".

By Theorem 3.1 of [4] we have

BEw, 1), q)

(6.22) = K, 1)

oz, q)

for v-almost every x € 2 and for every g = 0. Let us fix ge R'. By (6.7) for every x e Q
there exists a countable set N(x)c R! such that

(6.23) B (B(x, ), ¢) = B"(K(x, r), 9) = pK(, 7), @)

for every r¢ N(x) (see Proposition 4.8 of [24] or Proposition 14.15 of [16]). Since the
function r+~> B(K(x, 7), q)/v(K(x, 7)) is right continuous, hypothesis (1.22), together
with (6.22) and (6.23), implies that g(x, q) = C(x, q) for v-almost every x € 2. Therefore
(6.18) gives

1
(6.24) S B9 = [ 0@, @ dvie)
B

for every Borel set Bc £ and for every g =0, while (6.19), (6.20), and (6.21) imply
that

(6.25) Cla, 0) =0,
(6.26) 1, )| Sk 1+ |q[™7Y),
(6.27) [Clx, ") — Cla, ¢ | Shglq'—q |V,

for v-almosty every x € £2, for every real number g, and for every pair of real numbers
q', ¢" such that 0 < |q'|, |¢"| <H + M.
Let us define the sequence g; by

s=1

(6.28) 0= sup (27”3 + ( j | us () — up () |™ dw)l/m),
2

and let Z; be the corresponding sequence constructed using (4.3) and (4.4). By Lemma
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4.1 we have

(6.29) lim 4,= +» and ,lim 2,0:=0.

7,-—)(!3

For every i we fix a point Z{” which satisfies Lemma 4.2 with 1, and ¢, replaced by 2
and g ;. For every multi-index a with integer coordinates we define 20 =2 +21,0,0
we consider the sets

Ki(a) =K@®,1,8,),
(6.30) K () =K@®,(3,-2)8,),
Kim(a) K(x(l) (21_3)’9\1),

The set (resp. the number) of all multi-indices a such that K(z(”, 31,8, c Q is denoted
by I; (resp. by |Iz|). For every j =i and for every y eI, we define

(6.31) I9) = {ael: (o) cKi(y)}.

It is clear that

- (632) 1;0,<0=K/(c U Kla).

aelj(’)(y)
By (6.7) for every j =i and for every y eI, we have
(6.33) iminf 3 Ci(K/(@\2,, 902 3 AE"@),0q.

aefjm(y) ae[ (y)

As B(B, q) is subadditive with respect to B, by (6. 12) we have
630 3 pR @< 3 PE @, Qroslgl Z vE@\K"(@)

aeI i €2 aeI (y) aEIj(z)(y)

for every j =1, for every y el;, and for every q with |g| <=H + M. From (6.33) and
(6.34) we obtain

635) lminf X Ci(E/(@\Q,, 9=

aelP(y)

> 3 BE(@,-cslgl X vE(a)\K"(@)

ael(”(y) aeljl(y)

for |¢| < H + M. Similarly form (6.9) and (6.14) we obtain
(6.36)  lim sup Z CaK (@)\2,, 9 <

5% eIy

< 3 pE @ s 3 pE (@), 9 <ME ), ).

ae fj(i)(y) a eI (y)

Given a positive integer ¢ and a real number ¢, with |¢| < H + M, by Lemma 6.3 and
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by (6.32) for every £ >0 there exists d(e, ¢, ¢) > 0 such that

637 MR (), )= l‘ L S R, 0

I; acl®y)
for every y el; and for every j such that
(6.38) 2Vni;6,<0(e,i,q) and 1;0,<8;.
By (6.35) and (6.37) we have

639) lmint X Cu(K/(@)\Q, 9)>

aelj(”(y)
AR - —ele] S & @\E @)
|7 | acIP()

for every y e I, and for every j satisfying (6.38). Let us fix ¢ > 0 and j satisfying (6.38).
By (6.36) and (6.39) there exists s(¢, i, ¢, j) such that

6.40) 2K (), @ —¢ wlgl 2 vE(@\E (@) <

‘ i! aelj(l)(y)
f
< 3 & @\2, 9<iEG), Q) +e L
ael(l)(y) !Il l

for every y e I; and for every s = s(e, i, g, j). We may assume that s(e, ¢, ¢,j +1) >
> s(e, 1, ¢, ).

We want to prove that condition (6.40) is uniform with respect to ¢, for |¢| <H +
+ M. By (0.3), (6.6), and (6.28) we have

1 = 1 =
(6.41) P Ca(K/ (a)\24,9') — 7 Ca(K/ (@\R2,, 9")

<k g —q" V"V v(RE@Y,A;-1)8,)

for every aefj, for every s = j, and for every q’, " with 0 < |¢'|, |¢"] < H + M. This
implies

(6.42) >

aeij(i)(y)

Pl = 1 =
P Ca(K/ ()\25, ") — P Ca (K ()\25, ¢")

<kylg —q" |V v(Ei(y)

y eI, for every for every s =7 =i, and for every ¢/, ¢’ with 0 < |¢'|, |¢"| SH + M.
Given an integer i and £ >0, we fix a finite sequence qq, qi, ..., g; of non-zero real
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numbers such that

-H-M=q,<q¢,<..<q,=H+M,
(6.43)

Ky |Gy — G |0 w(Bi()) < _I;T for r=1, ... k.

Let 6(¢, 1) = 1/\/% min 6(e, 1, ¢,), where d(eg, 1, q) is defined before formula (6.37).
By (6.29) there exist§ 5Té, i) = i such that for every j = j(e, 1)

(6.44) 2Vni;0;<6(e, i) and 1,5,<0;.

For every j = j(e, i) we set s(e, 1, j) = max{j, max s(e, i, ¢, )} If | SH + M, by
(6.43) there exists g, such that osrsk

€

feu|g— g [V v (K (p)) < T

)i

From (6.16), (6.40), and (6.42) we obtain

645 AR/ (), q) -3¢ A1) —eslg] 2 vE()\K;"(@) <
lIi l aelf(y)
< 3 & @\Q, ) <iE(), g +3e 2L
aelj“)(y) )Ii]

for every yel;, j=j(e, i), s = se, 1, j), and g with |¢| <H+ M.

Choice of o,. Let us fix ¢ with 0 <¢ < 1. By (6.29) there exists an integer i such
that

(6.46) <e¢ and A;0;<¢.

>)>i —

i

If ¢ is large enough we have

V(Q\y';JIi K(?’)) <

P o

By Lemma 4.2 we have also

U B\ U K/ £
V(vefi l(y)\yefi ' (y)) = 2

for 1 large enough. Therefore we may assume that

(6.47) ”(Q\yyzi ¢, (y)) <e.
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Let s(e, 1) =s(e, 1, j(g, 1)). Since s(e, t,7+ 1) > s(e, ¢,7) for every j=j(e, 1), we
define

(6.48) 0:=0;, As=1;,, aP=30

a

for s(e, i,7) <s<sfe, 1,j+1) and j = s(e, ). Moreover we set 9, =01, A; =41, and
x® =z for s < s(e, 7). Then g is non-inereasing and tends to zero as s— . More-
over, condition (4.1) follows from (6.28). It is easy to see that 4, and g, satisfy (4.3) and
(4.4). For every y e, we define

(6.49) IO(y) ={ael,: K(a)cK(y)}.
Then I (y) = fjm(y) for s(e, i, j) <s<s(e, i,j+1). By (6.44) this implies
(6.50) 2Vni0,<6(e,1) and d,0,<0;,
for every s = s(e, ). For every a el we define
K, "(a) =K, (A,—3) 0,) .
Then, by (6.45), we have

650 B/ -3¢ I Coplal D vE(@)\K,(0) <
1| aeI®y)

=

< D CalK(a)\2,, ) <MK (), g) + 3¢

a1 |;

)‘

..

for every yefi, s=s(e, 1), and ¢ with |g| <H + M.

7. — The limit boundary value problem.

In this section we shall prove Theorem 1.5 about the boundary value problem satis-
fied by the limit function u(x). Let us fix 0 <& <1 and an integer ¢ satisfying (6.46).
We shall use the sequences ¢, and A, defined by (6.48) and the sequence u , defined by
4.5).

Proor orF THEOREM 1.5. — The strong convergence of u,(x) to u(x) in Wa(Q') for
p <m and for subdomains Q' such that 2'c Q is a consequence of the asymptotlc ex-
pansion (5.1) proved in Section 5 together with Lemmas 5.2, 5.3, and 5.4. Since the se-
quence u,(x) is bounded in W} (Q), we immediately obtain the strong convergence of
u(x) in W) () for every p <m.

Let g(x) be an arbitrary function of class C}(£2) such that

og(x)

(7.1) max lg(x) | + max ' s1.
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Let us introduce the sequence

5
(1.2) 9,(x) = g(x) + _El 0¥ (),
2
where
oM (x) = 2 9 = g(x)) 0¥ (@),
0P@) =2 2 @9-g@) v,
aely Bela)

0® w® ®) 9" @ )
@==2 f@ o @ 9@ - 2 o W@ @),

W@ ==~ 2 X I DY@,

aely Belia)

aely (s) eli{a)

0P@) =— > (s)( f() (@) ) (s)(x) Z 18)(@) -

> (s)( wz()) © () 2 2op(®).

aelf s Belya)

Here ¢/ and g% are the mean values of the function g(x) in the cubes K,(a) and
K,(a, B), while w(s)(x), @@ (@), ¥ (x) and y ) (x) are the functions defined by (4.14),
(4.15), (4.49), and (4.41).

LEmMA T.1. - Assume that conditions Ay, Ay, Az, B;, B, are satisfied. Then there

exists a number s, depending on g(x), such that g(x) g,(x) belongs to I;)V}n(!)) for every
§ = 84.

PRrOOF. — See Lemma 5.2 in [59].

LEMMA 7.2. — Assume that conditions Ay, A,, Ag, By, By are satisfied. Then the se-
quences oV (x), 0@ (@), oM (x), 0 (x) converge to zero strongly in WL(RQ) as

§— o,

PROOF. - The strong econvergence of 0¥ (x),j =1, 2, 4, 5, in W, () can be obtained
as in the proof of the convergence of ¥’ in Lemma 5.2. For the estimate of the deriva-
tives of ¢’ (x) we use the inequality |f® —u| >2u, for ael,, which follows from
(4.13). Using also the arguments which lead to (5.6) we obtain

J | 39(5)(.%‘)

dx < C41,u'i_zmls_1-v(9) S‘l,tsV(.Q),

where the last inequality follows from (4.5). =

f
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LEMMA 7.3. — Assume that conditions Ay, Ay, As, By, Bs are satisfied. Then the se-

quence ¢ () is bounded in W, (2) and converges strongly to zero in Wi(Q) for

p<m.

ProOF. — The strong convergence of ¢ () in L,,(x) follows from (4.26) and from
the inequality (Remark 2.2)

(7.3) vz, )| <|q| for xeQ.

We estimate the derivative of 0¥ (x) in L,,(2) by using (4.15) and we obtain

| 80P (x) ™
ay [|=2 9 1" e <
i ox
2
/ {s) ) ™ (s)
1 ow ¥ (x) |m w e gy (x) |™
<cgz 2 J PRENOI . w () dx+ j ](s)" ( ()s)l - ¢ @) dw |+
aels o |fa U, ] o g ‘fa — U, ’ o
©uy)
1 | dw®(x) |™ lw (@) |™ | 3 (x) |m
—i—cmE [ ‘:9() dx + J |wg” (@) | (pa() di |,
aely w 1z " 49
Q # Eés)(#s) s

where £ (u) = {xe Q4: |w”(x) | <u}. Thus in the first integral over E ¥ (u,) we can
majorize |w ' (x)| by u,.
Since 4,0, < (1,0, <u, by (4.5) and (4.12), from Lemma 2.1 we obtain
dw(x) [\ 2
(1.5) 4{ 1+ ’
Ec(tS)(r“) '\

2

) (s)
@) da <

ox

ox

SCSSM(maX{iféS)—uéS) i ’ 2#8})7”_1 Cm(Ks’(a)\'Qs)

for every u with 0 <4 < max{|f\ — »”|, 2u}. From condition B, and from (7.4) and
(7.5) we obtain

dx < cs > V(K] (a)) < csov(2).

asl

[ 50 @)
i ox

The proof of the strong convergence of ¢¥(x) in W, (R) is totally analogous with the
proof of the same property for »*(x) in Lemma 53. m

Proor orF THEOREM 1.5 (Continuation). — According to Lemma 7.1 we can take the
test function @(x) =g(x) g,(x) in the integral identity (1.10) corresponding to the
boundary value problem (0.1), (0.2). We obtain that

(7.6) JI(S) + JZ(S) 4+ JS(S) — 0 ,
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where
( d du () \ 9
(s) — . s - 2
Jl ];1 J’ G/] (xs us(x)y 8.70 ) 390] (g(x)) dw +
+f ao(x,us(m, M)(gm))z e,

ox

Q

< aus(x) (k

(.7 4 I = Jaj @, u, (), > — (g(x)g '(x)) dx +

=1 O | k=3 Ox;

+ J CLU(.’XJ, us(x); S(x) ) 2 (9(90) Q<k)(96))d96',

Q

J(s>_ Ja (m uy (), O () ) 2 (9(x) 0P (w)) da.
o

.

The above mentioned strong convergence of u,(x) to u(x) in Wl(Q) for p <m al-
lows us to pass to the limit in J* and to obtain

n

@y 10=2 | aj(w,uom), (@) ) —a%- (g(@))? dee +
f]

ox

+ I o (ac, o (), au;;x) ) (g(@))? do + yiV,

Q

where y{" tends to zero as s— o . Taking into account Lewmmas 7.2 and 7.3, the
boundedness of us(x) in W(2), and the boundedness in L. (£2) of the sequences
o¥(), k , 5, we infer that

(7.9) hm J§ =

It remains to study the behaviour of J§*. Using the asymptotic expansion (5.1) for
u,(x) we obtain

(7.10) Jg(S) =J4(5)—}—J5(8)+Jé3)+,]7(8),

where

(3)
I = J' 2 (a (x e (), A, (x) )—aj(x, (@), Aty (1) N Iry* () ))
ox ox ox

— (g(m 0¥ (x))de,
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n o) ( ) 3 s(3)( P! S(3)
Jé”=9f ]_Zl(aj(x, u@), 2=+ x))—aj 7, Uy @), ax(”) ))

ox
— (q(x) 0¥ (@) dx,

n ®) @)
I = f Z(aj(x,us(x), o (x))—aj(x,O, M)) ° (9(@) 0P (x)) dar,
EER ox ox

(3)
(s) _ J' 2 o (9{', , a’)"ax(x) ) i (g(x)Q(S)(%))d%

It is easy to prove that
(7.11) lim ([0 ] + |72 + | I ) =0

Since ¢ ¥ (x) is bounded in W} (2) (Lemma 7.3) and w, (x) converges to zero strongly in
WL(Q') for every open set Q' such that supp(g) c'ccQ (Lemma 5.4), the esti-
mate for J* is analogous with the estimate for 75 in the proof of Lemma 5.4 (see [59],
Theorem 4.9). The estimate of J{* is analogous with the estimate of I* in (5.10), while
the estimate for J{* is analogous with the estimate for 1.

We deal now with J;*, writing this term in the form

n (s)y2 (s) (s) 6
(1.12)  J® = - Z Z M___ J'aj(x, 0, 3’0,18 (00)) ov, (90) Z R® .

acl,j=1 f — uf)Q % o

where

2 (802 Ap® p®
R=2 2 e )<s) Jaj(%,O, i (w)) Ve (%) dx ,

ISR o
(s)
R(S) _ 9, j (.70)
N TE T
av(S) x av(s) 2
la. w’ (’U(S)QD(S))(QC) (v(s)q)(s))(x)_aj :)0,0, ;o ( ) o ( ) dx,
’ 890] o ij

(S>

R?ES)_ 2 E —(s)_ J’ (g(s)__g(x))a

aelf j= 1f(8)_u 6o

3 (s) 3 (s)
2,0, v, (2) | v, (x) i
ox amj

[24
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(g@)? wNx) \ @ (x)
(8) _va a a
aé; ]21 f(s w'® f %\ * 0, o 3, “,
s a a \Gf) 7
g(S)
RP=- 2 > 5 I 9(®) a;|®, 0, (v(s)w‘s))(x) (w<‘”¢(“”)(x) da,
aelij=1 'usG(s) ]

" B (x 3g(x
re= 3 [afe,0, T2 ) owiam 22 4
j J B 8acj
In (7.12) and in the definition of R® the function v\ (x, f¥ —u”) is denoted by

v (x), while w®(x) is the function defined by (4.14). “As in Section 4, GY is the set
where ¥ (x) is different from zero.

LEMMA 74. — Assume that conditions Ay, As, As, By, B, are satisfied. Then

(7.13) lim R; =

s— ®

fork=1,..., 6.

Proor. - We first prove (7.13) for k=2, 3, 4. Since go(s)(x) =1if ael] and
v (@, )~ ul)| 2 u,, the integral in the definition of R{* can be replaced by an in-
tegral on the set E®(u,) NG, where E¥(u,) is the set defined after (7.4). Since
[v(x) | Su, in E(s)(y ) from (1.8), (7.5), and B; we obtain

() 1\ 2
s)l < ¢gy 2 j 1+ ' a
1 | f(s) 1l | o) O

< Corfhs Z Con (K, () \2,) < oy Y(R2) .

aely

v (x)
ox

dr <

By Lemma 4.1 this implies (7.13) for k =2. The proof for k=4 is similar. For k=3
the result follows from (7.1) and from the estimate obtained in (7.5) with u=
=1 —u?|.

Since A,0,< (A,0,)"<u, by (4.5) and (4.12), from Lemma 2.1 we obtain

m—2
(7.14) (1 + )
J

for every a €l . Using (1.8), (7.14), condition B;, and Lemma 4.1 we obtain (7.13) for
k=1.

' (x)
o

81)058)(90) 2
ox

dx <

=z

S Ce2 'f(iS) _uo(f) l/‘gn_lcm(Ksl(a)\Qs)
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Since|w P (x) | <2u, for ael!, by (4.15) we have

ow (x)
ox

(7.15)

J _é_g; (w(s) (s‘ NED) { < Cgg

for every ael/. From (1.8) and (7.15) we obtain that |R{®| is less than or equal to

ap® S (m—1)/m
s 31122 e 222 o)
W aelf ax
G
3 (8) ( m 1/m
(jl e (@) dx) +
oz
2
[ (s) @' i/2 ) 2 1/2
e s (|22 (”l l<s>(>|| @ 1) g j|a”“’ @ 1 |
U acly hd ox
GF 2

3

Using (7.5) with 4 = 2 ,, together with the estimates (4.23), (4.24), (7.14), and recalling
that |0 (x, ¥ —ul)| <2u, for ael], we obtain

R )i $665(ﬂ(m 1)/m+lu(m 1)/2) E V(K”((l))<066/l(m 1>/m1/(.9),

ael}

and the right hand side of the last inequality tends to zero as s— « by Lemma 4.1.
Therefore (7.13) holds for k=5.

Finally the convergence of R{* to zero follows from (1.8), from Lemmas 5.3 and 7.3,
and from the fact that the sequence ¢¥(x) is bounded in L. (). =

Now we return to (7.12) and we study the behaviour of the first term of the right
hand side as s— o, Let E, be the sequence of real numbers defined by the
equality

(8)\2 (s) (s)
(7.16) 2 Z (g, )(s) J’aj(x, 0, v, (90)) o, (%) i

aslj=1 f© — ! ol ox oz,

J

- j Clee, £() — uo(@)Ng(@) V dv(x) + E, .
ko]

LEMMA 7.5. — Assume that conditions Ay, As, Ag, By, Bo, C are satisfied. Then there
exists a constant ke, independent of the constants ¢ and i used in (6.48) n the defini-
tion of the sequences o, and A, such that for every s = s(e, i) we have

(7.17) |Ey | Skape™ ™D 4 koo (n(e)) ™+ yP,

where 1(r) is the function defined in (3.5) and y'> tends to zero as s— .
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PROOF. — By the definition of capacity given in (1.21) we have

(s)y2 (s) (s)
i S S @ Jaj(x,O, o (m)) wP@

aelyj= 1f(3> ua(f)g dx O;
gy
=2 2 ]ﬁ—@CA(K;(a>\93,f;S>—u$>)+E;”,
veliaeIl®(y) J, ' — U
where
<g(s))2
EM= 3 = (K (@\R,, [P~ ul)
ael@® fa - U,
and

JO =1\ U 19(y).

vel;

By (0.3) and (6.10) for every s = s(e, i) we have

(119) EWN<cq D C (K (a)\Q2,)Sce X V(K"(a))< i T (Q),

aeJ® ozeJ1 i

where, in the last inequality we use Lemma 4.2 and the inclusion

(7.20) U K (@) cU &G, 1,60\KE?,(1;-6)2:)

aeJ®

which follows from (6.50). From (6.46) and (7.19) we obtain
(7.21) ED < Tneg ev(Q)

for every s = s(e, 1).
Let g, £, @* ¥ be the mean values of the functions g(2), f(x), u{*(x) in the cube
K; (). Then we have

(g )
@22 2 X 7o Ca @\ 7 ) =

)’EIz aeI(”(y) f(s)

(g(z))Z L )
=2 2 e G @\Q F ) + B
}’Eliaels(”(y)f; - ,,’

where, by Lemma 2.4 and condition B,,

|BS | SkyH+MV"0 20 D [(g0F = GPF | vK (@) +

vel; ae1®(y)

+k, z Z (lf(s) f(z)ll/(m 1)_1_’“(3) u(s 1)]1/(m l))V(Ku(a))

veli aeI®(y)
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As g(wx) is Lipschitz continuous, from (0.3), (1.12), and (6.46) we get
IE( ) l <068 ;LZQ )n/(m D 'V(Q) +

ael

1/tm{m — 1))
+ g (V(Q)) 1>/<m<m—”)( 2 j | = ud® (@) |™ dv(x)) +
Ks(a)

ael; _
Ky(a)

s 1/(m(m - 1))
+c68(v(sz))“”z‘”‘W(m(m—l))(Z | Ju;s>-u;s'“<x>|’"dv<x>) .

From the Poincaré-Wirtinger inequality proved in (3.13) and from (6.46) we ob-

tain
m 1/(m(m - 1))
dx

@;i) )2 (1) __ 55(s,0)
124 2, > CalK (@\Q,, fP — il ?) =

vl 0= WP

Suy(x)
ox

(7.23) | B2 | < oy &/ + cog (2(e))/™ ( [ '
2

for every s = s(e, 7). Let B be defined by

_ E GOY f e, 9 = @) dv () + BS .

veh b 4eo)
By (6.15), (6.24), and (6.51) for every s = s(e, 1) we have
|ES® | <86+ cq v(Fy N Q)+ cr v(F; N Q),
where F\, is the set defined in (4.7) and F is the set which appears in the right hand side
of (7.20). By Lemma 4.2 and by (6.46) we have

(7.25) IE® | <cpe+ %

8

for every s =s(e, i). Since the function g(x) is Lipschitz continuous by (7.1), we
have

(1.26) Z(g‘”)2 j Clae, 0 — a V) dw(z) =

veld;
R ()

-3 f Cla, 2 — ™ ) (g(@)  dv(z) + EP,
yel; __
{(y

where, by (6.26) and (6.46),
(7.27) |EXD | Senldiov(RQ) <cpe
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for every s = s(e, 7). We now write

128 j O, 9 — 5 9) (g(a) P dv(w) =
yel;
K (y) .

- j Cle, () — u® (@) Ng(x) P dv () + BS).
2

Since C(z, f(x) — u{¥(x)) is bounded uniformly with respect to s, by (1.12), (3.13),
(6.27), (6.46), (6.47) we have

(7.29) |EP | <cy X j(1f;i>~f(x)|1/<m—1>+m;sv”—u&)(m)|1/<m—1>)dv(x)+c74ss
yel;

S C75(Zi’0\i)"/(m_l) + C75(2 J

e 1 fm(m — 1))
[ D — ud® () |™ dv(a) +eye<

Aun(x) |™ 1 /(m(m — 1))
Sc%-s”/(m‘”+c76(r(e))1/m(J l (@) dx)
g ox

for every s = s(e, ). Finally we write

(7.30) f Cx, f(x) —u® (2))(g(x) ) dv(e) = j Clae, f(x) — ug(2))(g(x) )? dv(x)+ E® |
2 Q

As ug(x) is C,,-quasi continuous, u® () converges to uy(x) for all x e Q except for a set
of m-capacity zero (see [61], Theorem 3.3.3). By condition B, the measure v belongs to
the dual of the Sobolev space W () (see[62], Theorem 4.7.5), thus it vanishes on all
sets of m-capacity zero. Therefore u{® (x) converges to uq(z) almost everywhere with
respect to the measure v and, consequently,

(7.31) lim E® =0

by (6.26), (6.27) and by the dominated convergence theorem. Inequality (7.17) follows
now from (4.6), (7.18), and (7.21)-(7.31). =

ProoF or THEOREM 1.5 (Conclusion). — Let us define £ by the equality

Buy(x) \ a(g(x))?
ox

aacj

Sy ()
18

(132) > J aj(x, o (), da+ J ao(oc, o (),
j=19

Q2

) (9(®))? da=

- [ O, o) — uo(@)g(@))? dv(x) + E .
02
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Using (7.6)-(7.13), (7.16), and (7.17) for every s = s(e, 1) we obtain
(7.33) |E| Skgpe™ Dt by (z(e))/m+ 9P,

where y® tends to zero as s— o . In this inequality the left hand side is independent
of ¢ and s, while the right hand side can be made arbitrarily small for sufficiently large
s and sufficiently small e. This shows that &' =0 and that identity (1.23) is satisfied if
@)y = (g(x))?, with g(x) in Cy*(2). By a standard approximation argument we can es-
tablish (1.23) for every g(x) in WL(Q) N L (Q).

Finally, u,(x) belongs to the set f(x) + ﬁ/}n(Q), since this is true for u,(x) for every
s. This shows that u,(x) is a solution of the boundary value problem (1.23) and con-
cludes the proof of Theorem 1.5. =
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