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Asymptotic Behaviour 

of Nonlinear Dirichlet Problems in Perforated Domains (*). 

GIANNI DAL MASO - IGOR V. SKRYPNIK 

A b s t r a c t .  - The asymptotic behaviour of the solutions of nonlinear second order elliptic equa- 
tions with Dirichlet boundary conditions in performated domains is studied under very 
mild assumptions on the capacity of the holes. 

O. - I n t r o d u c t i o n .  

In this paper we study the asymptotic behaviour of the solutions of nonlinear second 

order elliptic equations with Dirichlet boundary conditions in perforated domains. 

Let  t9 be a bounded open set in the n-dimensional Euclidean space R n and let ~ ,  

s = 1, 2, . . . ,  be an arbitrary sequence of open subsets of Q. We consider the sequence 

of boundary value problems 

( 2 =1 ~ aj X, Us(X), a-----~ : aO X, us(x), ~Us(X) 
�9 3 X  ' 

(0.2) u~(x) = f ( x )  in argo. 

We assume (see conditions A1, A2, and A8 in Section 1) that the functions aN(x, u, p), 
j = 0, 1, . . . ,  n ,  and f (x)  satisfy the usual conditions which ensure that, for every s, 

problem (0.1), (0.2) has a solution us(x) in W~(Qs). I f  we extend us(x) to ~9 by setting 

u s (x) = f ( x )  on t9\~2 ~, then our assumptions imply that the sequence u~(x) is bounded 

in W~(tg). For  simplicity of exposition we Consider only the case 2 ~< m < n.  

The aim of this paper is to study the asymptotic behaviour of u~(x) as s o  ~ under 

very weak assumptions on the sets ~9~. Our main hypothesis is the following condition 
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B1, where K(x,  r) denotes the closed cube of centre x and side 2r, and Cm(_F) is the m- 

capacity of F with respect to a given bounded open set t~ 0 containing t~. 

CONDITION B 1. - There exist a non-negative bounded measure v(B), defined for 

every Borel set B r ~ , and a sequence r~ > O, tending to zero as s ~ ~ , such that the 

inequality 

(0.3) C,~(K(x, r ) \ ~ )  ~ v(K(x,  r + r~)) 

holds for every x e t9 and for  every r >I r~ with K(x ,  r + r~) r $2. 

Using the subadditivity of the m-capacity, it is easy to see that condition B1 is satis- 

fied when the sets • s are obtained from ~9 by removing an increasing number of small 
closed sets with diameters less than s -~/(n-m) and mutual distances larger that s -1. In 

this case v is a suitable multiple of the Lebesgue measure. 
Another situation where condition B 1 is trivially satisfied is when all closed sets 

considered in the previous construction have a non-empty intersection with a given 

compact smooth manifold 2:r ~9 of dimension d > n - m. In this case, if we assume that 

the diameters of the closed sets removed from ~2 are less than s -~/(n-~) and the mutual 

distances are larger that s -1, then it is easy to see that B1 is satisfied with v equal to a 

suitable multiple of the d dimensional Hausdorff measure on ~:. 

Using the estimates obtained in [6] it is possible to prove that condition B1 is satis- 

fied also when ~9~ is obtained from ~9 by removing an increasing number of closed balls 

of the appropriate size, whose centers are ,,uniformly distributed, in a self-similar frac- 

tal set of dimension larger than n -  m. 
When v is a multiple of the Lebesgue measure the problem considered in the 

present paper is studied in [59]. Similar problems under suitable geometric assump- 

tions on the sets tg~ are considered also in [54]-[58], [60], and [7]. When the equation 

(0.1) is linear, the problem has been studied in [33]-[35], [38], [39], [52], and [53] by an 
orthogonal projection method, in [52], [10], [11] by Brownian motion estimates, in [44]- 

[46] by Green's function estimates, in [12]-[14] by the energy method, in [48] and [27] 
by the point interaction approximation, in [5] by probabilistic and capacitary methods. 
The case of partially perforated domains is considered in [30] and [31]. For weakly con- 

nected domains we refer to [50]. The case of random sets ~ s is studied in [32], [51], [47], 
[49], [26], [9], [3]. For general compactness results with no geometric hypotheses in the 

linear case we refer to [2], [1], [20], [15], [43], [18], [19]. 
In the nonlinear case the problem is studied by F-convergence techniques in [17] 

and [36], provided that (0.1) is the Euler equation of a suitable minimum problem. The 

special case where aN(x, u,  p) = Ipl'~-2pj, j = 1, . . . ,  n,  is studied in [2], [37], and [42] 
under suitable geometric assumptions on the sets ~9~. When the functions aj(x, u,  p), 
j = 1, ..., n, do not depend on u and are odd and homogeneous of degree m -  1 with 
respect to p, the asympotic behaviour of the solutions of (0.1), (0.2) is studied in [21] 
and [22] without geometric hypotheses on the sets ~9 ~. The general compactness result 

in the non-homogeneous case is proved in [8]. 
Our main result (Theorem 1.5) allows us not only to predict, in a qualitative way, the 

form of the boundary value problem satisfied by the limit uo(x) of the sequence u~(x) of 
the solutions of (0.1), (0.2), but also to construct the function C(x, q) which appears in 
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the limit problem in terms of suitable nonlinear capacities associated with equation 

(0.1) (see condition C). Moreover we obtain (Theorem 1.4 and Section 5) a very precise 

asymptotic expansion of the sequence us(x) in terms of the solution Uo(X) of the limit 
problem and of suitable nonlinear capacitary potentials associated with equation 

(0.1). 

1. - S t a t e m e n t  o f  t h e  resu l t s .  

We assume that the functions aj(x, u, p), j = 0 ,  1, ..., n, are defined for x~ t2 ,  
u �9 R 1, p e R ~ and satisfy the following conditions. 

CONDITION A1. - The functions aj(x, u, p) are continuous in (u, p) for  almost all 
x ~ Q and measurable in x for  all u ~ R  1, p e Rn; moreover 

(1.1) aj(x, u, O) = 0 for j = 1, ..., n 

for  all x ~ Q ,  u ~ R  1. 

CONDITION n 2. - There exist positive constants ao, a l ,  a2, m, ml, with 

m n  
(1.2) O < a o < a l < . a 2 ,  2 ~ m < n ,  m<~ml < - -  , 

n - m  

and a function y(x) in L,.(~9), with r > n / m ,  such that for every x e Q ,  u,  v e R  1, 
p, q ~ R n we have 

(1.3) ao(x, u, p) u >1 - a o  Ipl ~ -  y ( x ) ( l +  lu l ) ,  

(1.4) aj(x, O, p )p j>~a l ( l  + Ipl) m-2 Ipl ~, 
j = l  

(1.5) ~ (aj(x, u, p) - aj(x, u, q))(pj - qj) >I a l  IP - ql m , 
j = l  

(1.6) lao(x, u, p)[ ~< a2([ul  TM + Iplm) (m~-l)/ml + y(X), 

(1.7) ~ l a j ( x , u , p ) - a j ( x , v , q ) l < ~ a 2 b ( u , v , p , q ) ( l u - v l +  I P - q l ) ,  
j = l  

where b(u, v, p, q) = (1 + lul m~ + IVl ~ + [pl ~ + Iql~)(~-~)/~. 

Note that from (1.1) and (1.7) it follows that 

(1.8)  lay(X, u, p)t ~<a2(1 + lul mx+ ]plm)(m-2)/m(lU] + IP[) 

for every xe~2 ,  u e R  1, p e R  ~, j =  1, ..., n.  
Let us fix a bounded open set ~9 o r R~ such that ~9 r ~9 o. We can extend the func- 

tions aj(x, u, p) to t9 o • R 1 • R~ preserving all properties mentioned above by setting, 
e.g., aj(x, u, p) = (meas (p . ) ) - l j a j ( y ,  u, p) dy for x e f 2 o k Q ,  u e R  1, p e R  ~. 
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The assumption 2 ~< m < n is introduced only to simplify the exposition of the re- 

sults. By similar arguments we can obtain analogous statements also in the case 

1 < m < 2 or m = n, under slightly modified hypotheses. For m > n the problem is sim- 
plified in view of the compactness of the imbedding of WI(I2) in C~ 

REMARK 1.1. - Conditions A 1 and A2 are satisfied when a0(x, u, p )=g(x ) ,  with 
g(x) ~L~(I)), r> n/m, and 

aj (x ,u ,p )=a(x ) ( l  + IP12) ('~ 2)/2pj f o r j = l , . . . , n ,  

where a(x) is a function in L~ (~)  such that a(x) >I a for some constant a > 0. 

It is possible to replace condition A2 by a weaker condition, in particular to replace 

(1.7) by the inequality 

E laj(x, u, p ) -a j ( x ,  u, q) l <a2b(u, p, q) IP-q l  �9 
j = l  

In this case the boundary value problem (1.15) has to be changed as in [60], and our re- 

sults can be partially extended, with minor changes, also to the case 

as(x, u, p) =a(x, u ) ( l +  Ipt2) (m-2)/2 pj, j=  1, ..., n .  

REMARK 1.2. - In condition A2 inequality (1.4) can be replaced by the weaker 

inequality 

(1.9) ~ aj(x, O, p)pj>~al Ipl m, 
j=l 

if b(u ,v ,p ,q )  in (1.7) is replaced by bo(u,v ,p ,q)=(lul '~ l+lvlml+lpl '~+ 
+ i qlm)(,~-2)/,~. This allows us to consider also the model case of the m-Laplacian, which 

corresponds to the choice 

aN(x, u, p) = Iplm-2pj for j = 1, ..., n .  

Note that in this case inequality (1.4) is not satisfied, while condition (1.9) holds, and 

(1.7) is satisfied with b(u, v, p, q) replaced by bo(u, v, p, q). 

Given f ( x ) ~  WI(y2), a solution of the boungiary value problem (0.1), (0.2) is a func- 
tion u(x)eW~(t2s), satisfying u(x)-f(x)EW~(Y2s), such that the integral identi- 

ty 

(1.10) ~ aj x, u(x), 9u(x) 3cp(x) dx + a o x, u(x), ~ ~o(x) dx = 0 
j = 1 3 X  3 X j  

~2 s t~s 

o 

holds for an arbitrary function cp(x) e W~(t2s). 
Using methods of the theory of monotone operators it is easy to prove the existence 

of a solution of problem (0.1), (0.2) when f(x) e W~(I)). For every s we denote by us(x) 
one of the possible solutions of problem (0.1), (0.2) and we extend us(x) to t2 by setting 



GIANNI DAL MASO - IGOR V. SKRYPNIK: Asymptotic behaviour, etc. 17 

u~(x) =f(x)  for xE$2\$2~. By condition A2 the estimate 

(1.11) I lus(x) l'~dx + f I 9u~(x) m dx <~R 

Q Q 

holds with a constant R independent of s. 

We suppose, in addition, that the following condition is satisfied. 

CONDITION n 3.  - The function f(x) belongs to W1($2o)for some a > n. 

Then the function f(x) is bounded and HSlder continuous in $2, i.e., there exists a 

constant H such that 

(1.12) If(x) l <~H, I f ( x ) - f ( y ) l  <<.HIx-yl ~ for x, y e Q ,  

where ~] -- 1 - n/a. 
It is easy to prove, by Moser's method, that the sequence us (x) is uniformly bound- 

ed. More precisely, the following result holds. 

THEOREM 1.3. -Assume that conditions A1, A2, and A3 are satisfied. Let us(x) be a 
sequence of solutions of problem (0.1), (0.2) satisfying condition (1.11). Then there 
exists a constant M independent of s, such that the estimate 

(1.13) ess sup lu~(x) l<<.M 
xe~Q 

holds for all s. 

PROOF. - For the proof of this theorem see, e.g., [56], w 2, Chapter 9. �9 

By (1.11) the sequence u~(x) contains a weakly convergent subsequence, therefore 

we may assume that us(x) converges weakly in W1($2) to a function Uo(X). 
Our main assumption on the sequence $2s in condition B 1 ,  which was formulated in 

the introduction in terms of the m-capacity Cm(F). For every compact set F contained 

in $2 o the m-capacity C~ (F) of F with respect to $2 o is defined by 

(1.14) cm(r) =inf  ~ dx , 

t~ o 

where the infimum is taken over all functions ~(x) ~ Co ~ (Q o) which satisfy the equality 

~(x) = 1 for x e F.  

A crucial role in our paper is played by some special auxiliary functions v(x, F, q), 
which are defined as the solutions of some model boundary value problems in the do- 

mains $2 o \F .  Let F be a compact set contained in $2 0 and let ~(x) be a function of class 

Co~ (~9o) equal to 1 in F. For every real number q we define v(x, F, q) as the unique 
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o 

function belonging to q~(x)+ Wi,~(~)o\F) which satisfies the integral identity 

j = 1 ~X V(X, F, q) 3xy 
~o \F 

o 

for every ~(x) e W~(Qo\F). 
By conditions A1 and A2 the existence and uniqueness of v(x, F, q) follow from the 

theory of monotone operators. We extend v(x, F, q) to ~90 by setting v(x, F, q)=q 
in F. 

For  every u E R  ~ and for every r > 0  let K ( x , r ) = { y e R ~ :  lYi-Xjl <~r, j =  
= 1, .. . ,  n} be the closed cube of side 2r and centre x = (xl, . . . ,  x~). In Section 4 we shall 

introduce a special decomposition of the domain ~9 of the form 

where 2 s and Q, are sequences of positive real numbers such that  )~ , -~  :r Q s -~ 0, and 

~sQs--*0 as s -+  oo, x(s) = x0 (s) + 2)~sQsa, a = (a 1 . . . .  , a~) is a multi-index with integer 

coordinates, xo (s) is a suitable point in the cube K(0, 2sOs), Is is the set of all multi-in- 

dices a such that  K(x(~ s), 3 Q s ;t s) c ~9, and Us is the complement of U K(x,  (s), ~)s ;t s) with 
respect to tg. a~Is 

We define v~(S)(x, q)=v(x,  F, q) for F=K(x(~S),(~. s -2 )Qs) \~gs .  Next, we intro- 

duce a family of cut-off functions cp ~)(x) equal to 1 for x E K(x(J ), ().s - 2) Q s)\~9 s and 

equal to 0 outside K(x(~ s), 2s~)s) (see (4.15) for the precise definition). Then we intro- 

duce the averaging function for Uo(X) defined by 

(1.16) u(~ 

where K(t) is an averaging kernel, with K(t) = 0 for Itl >/1, and uo(x) is the weak limit 

of us(x) in ~2. Finally, b y f ,  (~) and - (~) ua we denote the mean values of the functions f(x) 
and U(oS)(x) in the cube K(x(, s), s 

In Section 5 we construct the following asymptotic expansion, which is fundamental 

in our analysis: 

(1.17) uAx)  u(oS)(x) + E (s) + = v. (x,f~ -u(~ s)) q~)(x) +Rs(x). 
a~I s 

To study the asymptotic behaviour of the remainder Rs(x) we need the following 

assumption. 

CONDITION B 2.  - There exists an increasing continuous function w(Q), satisfying 

(1.18) 
I1(o)(o) )l/(m-1) dQ 
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such that 

(1.19) 

for every cube K(x, ~). 

v(K(x, 5) • 9)  <. ~(Q) 

(1.20) 

From (1.18) it follows that (Lemma 3.1) 

co(~) 
lim 
~---~0 ~ n - m  

- -  - - 0 .  

In order to formulate a result about the boundary value problem for the function 
Uo(X) we introduce a capacity connected with the differential equation (0.1), defined for 

every compact set F r t~ o and for every real number q by 

•0\F 

where v(x, F, q) is the solution of (1.15). For the main properties of this capacity we re- 

fer to [23]. 

We assume that the following condition is satisfied. 

CONDITION C. - There exists a Borel function C(x, q), continuous in q eR  ~, such 
that 

(1.22) r-~olim(l~-~f CA(K(x' r ) \ ~ '  q) ) r) ) 

= lim (lim sup CA(K(x ' r ) \Qs 'q ) )=C(x ,q )  
,'-~o \ s-~ ~ qv(K(x, r) ) 

for v-almost every x ~ Q and for every q # O. 

Condition C is very weak. We shall prove that every sequence ~9s which satisfies 
condition B1 has a subsequence which satisfies condition C (see (6.7), (6.22), and (6.23)). 
Moreover we shall prove that 

C(x, O) =0 and I C(x, q) l ~<K(I+ Iql m- l )  

for v-almost every x e t9 and for every q e R 1 (see (6.25) and (6.26)). 

Every function u(x) in W~(~9) will be identified with its Cm-quasi continuous repre- 

THEOREM 1.4. - A s s u m e  that conditions A1, A2, A~, B1, B2 are satisfied, and let 
Rs(x) be the remainder in the asymptotic expansion (1.17). Then for every function 
g(x) in C~(Q) the sequence g(x)Rs(x) converges to zero strongly in WI(Q) as 
S----> or 

In Section 5 we shall prove the following result. 
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sentative, which is defined for all x e ~9, except for a set of m-capacity zero. For the def- 

inition and properties of Cm-quasi continuous representatives of Sobolev functions we 

refer to [25], Section 4.8, [29], Section 4, [40], Section 7.2.4, and [61], Chaper 3. By con- 
o 

dition B2 the measure v belongs to the dual of the Sobolev space Wl(~9) (see [61], Theo- 

rem 4.7.5). Consequently for every x e t~ and for every compact set F r  t9 the equality 

Cm(F) = 0 implies v(F) = 0. Therefore the pointwise values of each function u(x) in 

W~(Q) are defined almost everywhere with respect to the measure v. 

The main result of the paper, proved in Section 7, is the following theorem. 

THEOREM 1.5.-Assume that conditions nl, t2, As, B1, B2, C are satisfied. Let us(x) 
be a sequence of solution of problems (0.1), (0.2) which converges weakly in WI ( Q ) to a 

r 

function uo(x). Then uo(x) belongs to f (x )+ W~(Q) and satisfies the integral 
identity 

(1.23) J~ faj(x'u~176176176176 = = ~ 3x 9xj 3x 

= f C ( x , f ( x )  - Uo(X)) q~(x) dv(x)  

D 

o 

for every cp(x)~ W~(Q)NL~(D),  where C(x, q) is the function defined by (1.22). 

Moreover the sequence Us(X) converges to uo(x) strongly in W~(D) for evew 
p < m .  

We shall say that a function Uo(X) which satisfies the integral identity (1.23) is a 

(weak) solution of the equation 

- -  u(x),  - -  + C(x ,?(x)  - u ( x ) ) v  = x,  u(x) ,  3u(x____)) 
3x 

in the domain ~2. 

2. - Po in twise  est imates  for so lut ions  and for averaging funct ions.  

In this section we establish some results on integral and pointwise estimates for the 

auxiliary functions v(x, F, q) introduced in Section 1 as solutions of problem (1.15). We 

will also obtain some estimates for the averaging functions of the form (1.16). 

Throughout the paper, in the proof of the estimates, we shall use the notation cj, 
j = 1, 2, ..., to indicate a constant which depends only on n, m, a 1, a 2, R, H, M, 

and v(tg) (see (1.2), (1.11), (1.12), and (1.13)). 
Let us fix a compact set F contained in ~ and let v(x, q) = v(x, F, q). For 0 < tt ~< 

~< Iql we introduce the set E~= { x ~ 0 :  Iv(x, q) l <~tt} �9 
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LEMMA 2.1. - A s s u m e  that conditions A 1 and A2 are satisfied, and that diam(F) ~< 

<. r. Then there exists a constant kl, depending only on a 1, a 2, n, m, such that 

(2.1) + 
9x ax 

E, 

for every q �9 R 1 and for every ~ with 0 < tt <~ I q I. 

REMARK 2.2. - I t  is easy to see that the inequality 0 ~< ( l / q )  v(x, q) ~< 1 holds for 

every q ~ 0 and for a.e. x �9 t9 o (see [59], Lemma 2.1). So we obtain an estimate of the 

norm of the function v(x, q) in W1(~9o) if we put tt = Iql in (2.1). 

PROOF OF LEMMA 2.1. - First  we prove the estimate for H = I ql- Le t  y be a point 

such that F c K(y, r/2). Since m < n,  there exists a constant Cl > 0, depending only on 

n and m, such that  

inf ~ dx: cpeC~(H(y,  r)), q ) ( x ) = l V x e F  ~ClCm(F) , 

[H(y, r) 

o 

where H(y,  r) = K(y, r) n Qo (see [56], Chapter  8, Lemma 2.1). Therefore for every 

e > 0 there exists a function q)(x) in C~ (H(y, r)) such that q~(x) = 1 for x e F and 

(2.2) dx <~ cl (Cm(F) + e) . 

H(y, r) 

Let  z(x) = (2cp(x) - 1)+, where we use the notation a§ = max{a ,  0} for an arbi t rary 

real number a, and let G = { x e H ( y ,  r): z(x) > 0} = { x e H ( y ,  r): cp(x) > 1/2}.  Using 

(2.2) and Poincar~'s inequality we obtain 

(2.3) meas(G)~<2 ~ f I cf(x)]~dx<<. 

H(y, ~) 

dx <" 4"~r~ Cl (Cm(F) + e) " 

H(y, r) 

If  we use the test  function v(x, q) - qz(x) in the integral identity (1.15), from (1.4), (1.8), 

and Young's inequality we obtain 

 24> s(1,1 I I a x ; 2   v xq> 

<~c2 f Iql 2 ~ + lql ~ ~ dx ,  

G 
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where c2 depends only on a 1, a2, n, m. Estimating the right hand side of (2.4) by HSld- 
er's inequality and using (2.2) and (2.3) we get 

J(l l v xq )  -2 xl 2 
dx<<.kl [ql 2 (r + Iql) "~-2 (C~(F) + e). 

As e -~0  we obtain (2.1) for # = I ql.  

In order to prove inequality (2.1) for 0 < # <  I qi,  we use test function 

min{ iv(x, q) i ,/~} - ( z /q ) Iv (  x,  q) l in the integral identity (1.15). Then estimate (2.1) 
for 0 < tt < I ql can be obtained by a standard computation, using the estimate already 

proved for # = l ql" " 

We base our study of the behaviour of the sequence us(x) on the pointwise esti- 

mates of the function v(x, q) given by the following lemma. 

LEMMA 2.3. - Assume that conditions A1 and A2 are satisfied, and that F is con- 
tained in a cube K(y,  r). For every x e R n let Q(x, K(y,  r) ) be the distance f rom x to 
K(y,  r). Then there exists a constant k2, depending only on a l ,  a2, n, and m,  such 
that 

(2.5) �9 Q(x, K(y, r)) ~ r n m ' 

for  every x ~ ~9 o such that ~)(x, K(y,  r)) <<. r. 

PROOF. - See [59], Theorem 2.5. g 

In order to obtain the limit boundary value problem we need also some integral es- 
timates of the auxiliary functions v(x, q). 

LEMMA 2.4. - Assume that conditions A 1 and A2 are satisfied, and let N be a positi- 

ve real number. Then there exist two constants k3 and k4, depending only on a 1, a 2, n, 
m ,  and N ,  such that 

(2.6) f t av(x,q')ax av(x'q") m a x  I 
-Qo 

dx <~ k 3 Iq' - q" I m/(m-1) Cm(F) , 

(2.7) I1CA(F,q') - 1  q")t  '-q"ll/(m-1) q--7 ~ CA (F, <~k4 tq Cm(r) ,  

(2.8) I 1  CA(F ' <<-k4 11/(m-1) C,~(F) q ' ) l  Iq' 
q' 
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for every compact set F r Q and for every pair of real numbers q' and q" such that 

0 <  ]q'l,  Iq"l < Y .  

PROOF. - inequality (2.6) can be proved by using the integral identities correspond- 

ing to v(x, q') and v(x, q"), with test function of(x) = v(x, q') - v(x, q") - (q' - q") z(x), 
where z(x) is the function introduced in the proof of Lemma 2.1. Subtracting one of the 

resulting inequalities from the other one and estimating by means of condition A2 we 

obtain 

SI I ~ 
av' (x) av" (x) dx <<. 

(2.9) ax 9x 
Do 

~ , 

Do 

where v'(x) = v(x, q') and v"(x) = v(x, q"). In the proof of this lemma the constants 

c3, ..., c6 depend only on a 1, a2, n, m, N. 
From (2.9) we obtain 

; I 

Do D 

S(i  v(x)i+i 1 
ax ax ' 

\ Do 

and inequality (2.6) follows from (2.1)-(2.3) and from the choice of z(x). 
In order to prove (2.7), in the integral identities for v(x, q') and v(x, q") we use the 

test functions (1 /q ' )v(x ,  q ' ) - z ( x )  and (1/q")v(x,  q" ) - z (x )  respectively, with the 
same function z(x) used in the first part of the proof. Subtracting one of the resulting 
equalities from the other one we obtain 

s(§ ( aj x, q" aj x, d x = I ( z ) ,  (2.10) 
j : 1 ~X ~Xj ~X ~Xj 

Do 

where 

I(z) = ~ aj x, - a j  x, 
j = 1 ~X ~X ~Xj 

Do 

dx.  
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We estimate I(z) by using condition (1.7) and we obtain 

( I I v x l)m2  vr x  r [I(z) l<<.c ~ f 1+ + dx 
3x 9x 3x ax 

~o 

 c6(!r )lJ (! xl x i 
+ 

ax 

and inequality (2.7) follows from (2.1)-(2.3), (2.6), and from the choice of z(x). Since 
(1/q") CA(F, q") tends to zero as q"-+ 0 by Theorem 6.10 of [23], inequality follows from 
(2.7). �9 

We shall now study some properties of the averaging function ua(x) defined by 

(2.11) uh(x) = h--- ~ h 

where K(t) is an infinitely differentiable function on R I, equal to zero for I tl 1> 1, such 
that 

• K ( t x l ) d x  = 1 

R n 

and 0 ~< K(t) ~< c(n) for a suitable constant c(n) depending only on n. 

LEMMA 2.5. - Let u(x) be a function in Wl,~(t)). Then there exists a constant ks, 
depending only on n and m, such that the inequality 

3uj~(x) "~ 1 f I 3u(Y) I~ <~ k5 dy (2.12) ! 3x ~ - ~ y  
B(x, h) 

holds for every point x ~ $2 and for every h > 0 such that the open ball B(x, h) of radius 
h and centre x is contained in ~2. 

PROOF. - See [59], Lemma 3.1. �9 

LEMMA 2.6. - Let u(x) be a function in W~(t~). Then there exists a constant ks, 
depending only on n and m, such that the inequality 

(2.13) I i uh (x ) -  u(x)I ~ dx <~ k~h '~ I I 3u(x) "~ ~ dx 

K(y, r) K(y, r + h) 
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holds for every point y e .Q and for every pair of positive numbers r and h such that 
K(y, r+ h)c t ) .  

PROOF. - See [59], L e m m a  3.2. �9 

Given x0 �9 R n and r > 0, let us consider the family of points x~ = Xo + 2 ra in R ~, 

where a = (a 1, . . . ,  a n )  is a multi-index with integer coordinates. Let  I(r, h) be the set of 

multi-indices a such that  K(x~, 2r  + h) c Q and, for every integrable function u(x), let 

1 f uh(a, r) - (2r)  n u~(x) dx 
K(x a, r) 

be the mean value of uh(x) with respect  to the cube K(xa, r), where uh(x) is defined by 

(2.11). 

LEMMA 2.7. - Let u(x) be a function in w l ( t g ) ,  let g,(x) ,  a �9  h), be a family of 
functions in L,~(9, ~), where ~ is a positive Borel measure on t~, and let q be a con- 
stant with 1 <~ q <<. 2. Assume that, for some positive constant Q, the inequalities 

(2.14) f Ig~(x) I ~ d~(x) ~ Q Va �9  h) 
K(xa, qr) 

are satisfied. Then there exists a constant kv, depending only on n and m, such that 
the estimate 

(2.15) ~ f lu~(x) - uh(a, qr) ]~ Ig~(x) ]~ d2(x) <~ 
a e I(r, h) 

K(xa, qr) 

holds whenever 0 < r <~ h. 

Q au(x) I r~ 

f~ 

dx 

PROOF. - Using (2.12) and (2.14) we obtain 

f luh(x) - uh(a, qr)I ~ Iga(X)I m d~(x) <~ 
a eI(r ,  h) 

K(xa, qr) 

~< (2 V n q r ) ~  ~ ~ ~ ,(r, h) ~ ,  f( fll~ qr) 0 
+ (15x-- t) ~h(a, r)) m dt) Iga(x) l m d~(x) 

<~ c7 --~ ~x(,,, h) ~ dx I g a ( x )  I 'n d~(x) < 

K(xa, qr + h) K(xa, qr) 

Q , o  . ~I(,., h) 
C7 

K(xa, qr + h) 

I Su(x) "~ 
dx.  
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Here ~h(a,  r) is a suitable point belonging to the cube K(xa, qr) and c7 is a constant de- 

pending only on n and m. Inequality (2.15) follows from these estimates and from the 

fact that  

(q~)+h(x) ~< Cs - -  for O<r<~h,  
a ~ I(r ,  h) Z r n  

where Z~)+h(x) is the characteristic function of the set K(x, ,  qr + h) and cs is a con- 

stant depending only on n. u 

3. - A P o i n e a r ~ - W i r t i n g e r  i n e q u a l i t y .  

In this section we shall prove a Poincard-Wirtinger inequality for measures satisfy- 

ing condition B2. We begin with two lemmas concerning the function w(Q). 

LEMMA 3.1. - Assume that condition (1.18) is satisfied. Then 

(3.1) n-m \ r n-m Qn- 0 
+ 

+ 
r(n - m ) / ( 2 ( m  - 1)) 

1 - 2 ( m  - n ) / ( m -  1) 

[1[ (D(O))1/(m-1) d~  

o J ~ 0 ~-'~ O 

for every r <. 1/2. In  particular we have 

(3.2) 
~(r) 

lim - -  - O. 
r ~ O  r n - m  

PROOF. - For  every r ~< 1/2 we have 

1 do 
o ( n - m ) / ( m -  1) ~) 

1 
_ m - 1  (a)(r))U(m_l) r (n-m)/(m-1) 

n - - m  

1) 
r(n - m ) / ( 2 ( m  - 1)) " 

This implies 

(3.3) 
m-1 (w(r) 1 '/(m- 
n - m  

1) ~[ o)(o) )l/(m-1) do 
<~j  ~ ~-:-~-z- ~ - - +  

m -  1 (co(r)) 1/(m-1) 

n -  m T ( n - m ) / ( 2 ( m - 1 ) )  " 
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On the other hand we have 

1(o)(e) /1/(m_1) __  i1 
r~ \ e ~ _ m  ] de ~ (o)(r))l/(m_ 1) 1 

e r e(n-m)/(m-1) 

n - - m  r(n_m)/(m_l) 1 >I n - m  

de 

e 

(o)(r))l/(m - 1) 
1 - 2 (m - n)/(m - 1) 

r (n - m)/(m - 1) ' 

where, in the last inequality, we use the fact that r ~< 1/2 .  Therefore  we obtain 

_ _  r (n -m) / (m-1)  1((D(e))1/ (m-l)  de 
(3.4) m - 1 (w(r))l/('~- 1) ~ 

n - m 1 - 2 (~- ~)/(~- 1) 0J ~ e n - m e 

Inequality (3.1) follows now from (3.3) and (3.4), while (3.2) is a consequence of (3.1) and 

(1.18). " 

Let  v(r) be the non-decreasing function defined for every r > 0 by 

(3.5) 
: ~ ( ( 2 ) ( e )  I1/(m-1) de__ -~- r (n-m)/(2(m-1)) ~1(~n(~_~)m)l/(m-1) d e 

v(r) o J [ ~ ] e 1 -- 2 (m-n)/(m-i) 0j \ e Q 

By (1.2) and (1.18) we have 

(3.6) lira v (r )  = 0 .  
r---~0 

For  every pair a, b of real numbers we set a A  b = min{a,  b}. 

LEMMA 3.2. - Assume that condition (1.18) is satisfied. Then 

oo( O)(Q A r) 11/(m- 1) de 

(3.7) e ~ -~  ] - -  ~< ~(r) 
0 e 

for every r <~ 1/2 .  

PROOF. - For  every r ~< 1/2  we have 

The conclusion follows now from Lemma 3.1. �9 

We prove now a Poincard inequality for measures satisfying condition B2. 

PROPOSITION 3.3. - Assume that condition B2 is satisfied and let v(r) be the func- 
tion defined in (3.5). Then there exists a constant ks, depending only on m and n, such 
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that 

(3.8) f lu(x)l~dv(x)<~ks(~(r))~-~f I Su(x) ['~ 
K(xo, r) N ~9 R ~ 

for every cube K(x~, r) and for every fitnction u(x) in W,~(R ~) with compact 
support. 

PROOF. - Let us fLX a cube K(x0, r) and a function u(x) in W~(R ~) with compact sup- 

port. It is well known that 

(3.9) lu(x)l<~c~ ~ l y - x l ~  dy 
R ~ 

for (,~-almost every x e R  ~ (see, e.g., [28], Lemma 7.16). By condition B~ the measure v 

belongs to the dual of the Sobolev space I~V~($2) (see, e.g., [61], Theorem 4.7.5). There- 

fore inequality (3.9) holds for v-almost very x ~ K(xo, r) (~ ~. Thus we have 

t" 

(3.1o) J Iu(x) i "~ dr(x) < 
I((Xo, r) n t~ 

l u(x) I ~-  ~ "~ 
~-~ xl~--- q dr(x)) dy <~ 

K(~o, r) n 

l u(x) I ~- ~ \~/(~- ~) }(~- 
lY - xl ~-T dr(x) I dy 

By using HSlder's inequality we obtain 

(3.11) K( I Ira-1 f !U(~)r dv(x) )~/(,~ - 1) dy <- 

K(xo, r) n 0 ~ K(xo, 

1)/m 

1 \1/~.~- 1) 

lY-  zl ~-1 dv(z)l ~ dy <. 

/ 

1 ~l/(m- 1) } 
ly_zl~_l dr(z)) dy dr(x). 
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The estimate proved in Theorem 6.1 of[41] gives 

(3.12) 
; ( K I )  1/(m-l) 1 1 dr(z) dy <. 

~ ly-~l  ~-~ ly=~l ~-~ (xo, r) n 

Cl0 i ~( co(r, ~ ) 
0 Qn-m 

t / ( ~  - 1) d ~  

Q 

where w(r, Q) = sup v(K(xo, r) n t) riB(x,  Q)). Since w(r, Q) ~< w(rAQ), from (3.7), 
xeR n 

(3.11), and (3.12) we obtain 

f (K i! ,U(X) Im-1  )m/(m-1) f 
R n (xo, lY -- Z [ ~-1 dr(x) dy ~ Cl0T(r) 

n ~ K(xo, r) n E'2 

l u(x) I "~ dr(x), 

which, together with (3.10), implies (3.8). �9 

We shall use the following Poincar~-Wirtinger inequality, where 

i f  
uy.~-  (2r) ~ K(y, r) 

u(x) dx . 

PROPOSITION 3.4. - A s s u m e  that condition B2 is satisfied and let r(r) be the func- 
tion defined in (3.5). Then there exists a constant kg, depending only on m and n, such 
that 

(3.13) f lu(x)_ uy,~ i~ d,(x)< kg(T(r))~ 1 f I au(x) ~ dx 

K(y, r) K(y, r) 

for every cube K(y, r) contained in Q and for every function u(x) in W,~(~). 

PROOF. - For simplicity we assume y = 0 and we set K(r) = K(0, r) and ur = u0, r for 
o o o 

every r > 0. Let us fix a bounded extension operator T: WI(K(1))--> W~(K(2)) ,  and 
O o o 

for every r > 0  let us define the extension operator Tr: W~(K(r))-->WI(K(2r))  

by (T~u)(x) = (Tur)(x/r), where ur(x) = u(rx). It is easy to see that the boundedness of 

T implies that there exists a constant c11, depending only on m and n, such that 

I I ~X ~ r m 
K(2 r) K( K(r) 

o 

for every function u(x) in WI(K(r) ) .  
Assume now that u(x) belongs to W~(t~) and that K(r) is contained in ~9. Note that 

u(x) - ur = (Tr(u - Ur) )(X) C~-almost everywhere (hence v-almost everywhere) in K(r), 
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since both functions are C~-quasi continuous and coincide C~-almost everywhere in 
o 

K(r). From (3.8) and (3.14) we obtain 

I lu(x) - u~ t ~ du(x) = ] I(T,.(u - u~))(x)I m dr(x) <~ 
g(r) K(r) 

<ks(v(r))'~-l f I ~(Tr(u-ur))(x)gx i ~dx<" 

K(2r) 

<~Cl2(v(r)) m-1 mdx+ - lu(x)-u~ d x .  

( K(r) 

The conclusion follows now from this inequality and from the classical version of the 

Poincar~-Wirtinger inequality 

1 lu(x)_urlmdx< ct 3 dx 

K(r) K(r) 

(see, e.g., [28], formula (7.45)). �9 

4. - Decomposit ion of  the domain and construction of cut-off functions. 

In the rest of the paper us(x) is a sequence of solutions of problem (0.1), (0.2), which 

satisfies estimates (1.11) and (1.13) and converges weakly in W~(tg) to a function Uo(X) 

in f(x)+W1(~9). We shall always assume that conditions As, A2, As, B1, B2 are 

satisfied. 
In this section we consider a decomposition of the domain ~9 and a family of cut-off 

functions depending on three sequences Q 8,/~ ~, )~ s. 

Choice of Q ~. Let Q ~ be a sequence of real numbers such that 

(4.1) O~>~r~+ lu~(x)-uo(x)l'~ dx , 
5 

(4.2) l im ~o~ = 0,  

where r, is the sequence which appears in condition B~. 

Choice of 2~. Let ~(~)) be the function which appears in condition B2, and let t~ be 

the solution of the equation 

t~§ [ w(t~) )l/(m-1):e n+l ; 
(4.3) tt-m 
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we define A ~ to be the odd integer number which satisfies 

(4.4) A~-- < t-2--~ <A~+2. 

Choice of  # ~. We define tt ~ by 

(4.5) tt ~ = max 
( o(A,0,) )1/(~-1) 

A~ (A~Q~) ~-~ ,(A,~)~, sup 

where ~ = 1 - n / a  is the exponent in condition (1.12). 

LEMMA 4.1. - A s s u m e  that conditions A1, A2, A~, B1, B2 are satisfied. Then the se- 
quences ~ ~, A ~, tt ~ satisfy the following properties: 

(4.6) l i ra  A ~ :  + or l i m  A ~ s = 0 ,  l i m / ~ =  0.  

PROOF. - By (4.2) the sequence t~ defined by (4.3) tends to zero as s---) ~ .  So from 

the first inequality in (4.4) we obtain the second equality in (4.6). 

From (3.2) and (4.3) it follows that 

tends to infinity and consequently from the second inequality in (4.4) we obtain the first 
equality in (4.6). 

The last equality in (4.6) follows from the other equalities in (4.6), from (3.2), and 
from the estimate 

An ( A s ~ s ) n _  m As~ n+l ( A s Q s )  n - m  

1 
A S ~) S~t + 1 tn+l 

(~)(ts) )l/(m- 1) [ As _{_ 2 - m)/(m - 1) 

which is a consequence of (4.3) and (4.4). �9 

= 1 ( A~ + 2 / (n-m)/(~- 1) 

A~ ~ A~ ] 

We introduce now a subdivision of the domain Q that  will be useful for our esti- 

mates. Given a point x0 (~) in K(0, A~ Q s), we shall consider the cubic lattice composed of 

the points x,  (s) = Xo (~) + 2A s Q ~ a ,  where a = (a 1, -.., a ~) is a multi-index with integer co- 
ordinates, and the set 

(4.7) F~ = U (K(x(~ ~) , A~ Q~) \K(x(~ ~), (A~ - 6) Q~ ) ) ,  

where the union is over all possible multi-indices a with integer coordinates. 
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LElVIMA 4.2. - There exists a point xo (s) in K(0,  )~sQs) such that 

7n 
(4.8) v(Fs ~ Q) ~< -:-- u(tg). 

PROOF. - We introduce the strips 

i(J) ki = {(Xl, . . . ,  x~) ER~: 2 Q s ( k -  3) ~< x j - 2 i ~ s Q s  <~2~)~(k + 3)} 

f o r j  = 1, . . . ,  n,  k = 1, . . . ,  +l s, i = 0, -+ 1, _+ 2, . . . .  I t  is easy to see that  for every x in R n 
and for every  j we have 

Zs + ~  

k = l i = - o o  

where X (/) is the characteristic function of the stri,~ n~)  I t  follows that  for every j there 

exists an integer number kj, with 1 ~< kj <~ ;~ s, such that  

Z ~ +rT(J) ~= _ ~ - t -  kjin t?) ~< v(D) .  

Define the point Xo (s) by Xo ~) = ((2 kl - ~  8) Q s, (2 k2 - ;~ ~) Q~, . . . ,  (2 k~ - ; t  ~) Q s). Inequali- 

ty (4.8) is now an easy consequence of the inclusion 

+ ~  

j = l i = - ~  

which follows from the definition of H ~  and from the choice of xo (s). [] 

The domain ~2 will be decomposed as 

(4.9) 

where - ( s )  Xo (s) Xo (s) xa = + 2Z s Q s a and is defined in Lemma 4.2. In (4.9) I~ is the set of all 

multi-indices a such that  K(x(~ ~), 3s c s and Us is the complement in (2 of the set 

U K(x(~ s), 2s~os). 
a~Is 

Moreover we introduce the notation 

(4.10) 

Le t  us define the function 

(4.11) 

I t i g a )  = K(x(~ s>, ~ ~), 

Ks'(a) = K(x(~S),(~ s - 2) Qs), 

K~" (a) = K(x(2),(~s - 1) ~s)  . 

v(J)(x, q) = v(x,  K /  (a) \ ~  ~, q) , 

where v(x, F,  q) is the function which satisfies the integral identity (1.15). In particular 
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we have Va(~)(x, q ) = q  for xeK~ ' (a ) \ t2~ .  By (4.6) we can assume that the inequali- 

ties 

(4.12) ; t~>4 ,  3;t~Q~< 1, # ~ < 1  

are satisfied for all s. 
Let U(o~)(x) be the averaging of the function Uo(X) defined by (1.16) and letf~ (~) and 

u(~) be the values of the functions f ( x )  and u(o~)(x) in the sube K~(a). 

Let I~' and I" be the sets of multi-indices defined by 

(4.13) I I8'= {ac id :  If~ (8) - u~(~) I >2#~} ,  

[ r ' =  {a�9 V(:)-u(:)  l ~<2z~}. 

Let w(~)(x) be the function defined by the equalities 

{ w.(~)(x) = v~)(x, f ( : ) ,  u(:)) for a �9 
(4.14) w(~)(x) = v(J)(x, 2t*~) for a eI~' .  

For every function g(x) we denote its positive part by (g(x))+ = max{g(x), 0}. Let 
us define the cut-off function cf~)(x) by 

- - r a m  I ~ ( x ) l -  V ' V  ' ~ ) ( x )  = ~ § 

and let G~ (~) be the set where the function cf~)(x) is different from zero. Note that 
cp~)(x) = 1 for x � 9  

Some properties of the functions c;~)(x) will play an important role in the 
sequel. 

LEMMA 4.3 . -  Assume  that conditions A1, n2, A3, B1, B2 are satisfied. Then there 
exists an integer st such that 

(4.16) Ga (~) A G~ '~)= 0 

for  every s >>- sl and for  every a, 7 �9 Is with a ~ 7. 

PROOF. - It  is sufficient to verify that the inclusion 

(4.17) G,(~) r K;' (a) 

holds for s large enough. Usisng the pointwise estimate (2.5) and conditions B 1 and B2 
we obtain the inequality 

(4.18) Iw(S)(x)I ~Cl4,~s l(Cm(Ks'(a)\~'2s)) 1 / ( m - 1 ) n  (~s~s) n-m ~C14)[n-1(O)(~s~s) ) 1/(m(,~sQs) n-m 
1) 

if x �9 ~K"(a).  By the maximum principle the same inequality holds for every x r 
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From (4.5) and (4.6) we have the inequality 

C 1 4 x s - l ( E O ( ' ~ s ~ ) s )  ) 1/(m-1) <~ cfi_.A /z s 
(2~Qs) ~-m ).s #s < --2 

for sufficiently large s. Consequently from (4.18) we obtain 

[ t t s )  =O f~ /Iw2)(x) l - y + 

which implies (4.17). " 

For  s = 1, 2, .~ and a ~ Is we define a set of multi-indices Is(a) with integer coordi- 

~(s) = x0(S) + 2Q sfl and nates and a set of points i~(s), fl~Is(a)~ such that ~,~ [ "~a fl " �9 

o 
(4.19) Ks(a)\Kg(a) = U Ks(a, fl), 

fleIs(a) 
K g a ,  ~) = w~<s) 

We define also the functions 

(4.20) { W(~ (X, q) = V(X, F, q) for F = Ks (a,  fl) \~9 s , 

v(~ (x, q) = v(x, F, q) for F = K~' (a ,  fi) \g2s,  

where v(x, F, q) is the function defined in (1.15) and 

(4.21) Ks'(a,  fl) -~ (s) = ~(xa~, 2Qs).  

Let  118] and IIs(a) I be the numbers of multi-indices of the sets Is and Is(a) re- 

spectively. I t  is easy to see that 

Ilsl ~< (2)~sQs)-n meas ( t ) ) ,  IIs(a) i <<.2n2~ -1 

Let  us define the cut-off functions c f~(x)  by 

(4.22) ~ t x )  = --~s min w ~ ( x ,  1 ) -  ~ +, ~ 

for s 1, 2, .. a e Is, fl e Is(a), and let "~ (s) be the set  where ~o ~ ( x )  is different from --~ . ~ t-Y a fl 

zero. By (4.12) we have cfl~(x) = 1 for xeKs(a ,  fl)\g2s. 
For  future use we state the following estimates for the functions ~ ) ( x )  and 

q:) (s) ," - 
aS(X). 

LEMMA 4.4. - Assume that conditions A1, A2, A3, B1, B2 are satisfied. Then for 
every a~Is  and fl~Is(a) we have 

f i 3 q J ~ ) ( x )  I ~ ' ~ d x ~  ~ _ ~  ,, - klo~t8 v(K~ (a))  ~< klo/~ mw()~s0 s), (4.23) 
J l  I Sx 

Ga (~) 
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(4.24) ~ I aq)(~)(x)12dx~kllfl;1y(K~'(a)) 
ax 

G(S) 

(4.25) I I &f~)~(X)ax I m dx<~ k12tt1~-~u(K~ (a ,  fl))~< k12tt18-mw(2Q~), 

with constants klo, kn,  k12 depending only on n, m, al, a2, H, and M. 

PROOF. - Let  E.(~)(/~) = { x e Q 0 :  Iw(~)(x)l ~</~}. Using Lemma 2.1 we have 

ax ~-s ax 
$) 

and we obtain (4.23) from conditions B1 and B2. The other inequalities are proved in a 

similar way. �9 

LEMMA 4.5. - Assume that conditions A1, A2, As,  B~, B2 are satisfied. Then 

(4.26) lim Y~ '"(~)~ . meas tu~ , = 0 
s---->r aeI~ 

PROOF. - We introduce the auxiliary functions 

~ ) ( x )  = 4 min Iw(,~)(x) l - --~ , --~ . 
tt~ 

As in (4.17) we can prove that  ~ ) ( x )  = 0 for x ~tKs(a) and s large enough. Since (4.23) 

holds also for ~ ) ( x ) ,  from Poincar~ inequality we obtain 

(4.27) I I~)(x)lmdx<'(2280~)~ ~[ I ~(~)(X)ax I mdx< 
K~(a) Ks(a) 

< C16~t1-m(~s~s) m p(K~' (a) ) .  

Observing that  ~ ) ( x ) =  1 for x eG(, ~), from the last inequality and from (4.5) we 

obtain 

(4.28) meas (G~ (~)) < 1 - m m Cl6~ts (~s~s)  E Y(Us'(a)) ~ C17~ls(~s~s)(1-')m]2(~), 
a~Zs a~X~ 

and the right hand side of (4.28) tends to zero as s--~ oo by Lemma 4.1. �9 

LEMMA 4.6. - Assume that conditions A1, A2, As, B1, B2 are satisfied. Then there 
exists an integer s2, that we may assume larger than the constant Sl in Lemma 4.8, 
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such that 

(4.29) ~(~)c K( ( s )  4 } x , ~ ,  -~ Q 

for every s >I s2, for every ac id ,  and for every fleIs(a).  

PROOF. - As in the proof of (4.18) it is possible to obtain the estimate 

1 )  < - -  f o r  x K e s , ~af i  ( 'x '  C18 Q n - m  

and by (4.5) and (4.12) we have 

~(2Q~))!/(m-l) 1) <: /As 

~18 ~ s 2 
Cl 8 O~ - m  < ~ 2 ( n - m ) / ( m - 1 ) , ~  . m / ( m -  _ _  

for sufficiently large s. This implies that ~,~,~ (S)Cx, 1) --< tt s/2 for x ~t K(x(~, (4/3)  Q s), and 
the conclusion follows from (4.22). " 

REMARK 4.7. - From the inclusions (4.17) and (4.29) it follows that 

(4.30) ~ } ( x )  ~(~S)(x) = 0 

for s>~s2, a, ~'~Is, f icls(a),  a ~ 7 .  

REMARK 4.8. - Denote by z(G(~ ), x) the characteristic function of the set ~.zn(s). Then 

from (4.29) we obtain 

F~ F~ - (G (s) x ) < 2  ~ 
aeIs  fleIs(a) 

for every x e 9 and for every s >t s2. 

REMARK 4.9. - For aEIs  and f leIs(a)  let Is(a, fi) be the set of all pairs (7, 5) of 
multi-indices such that y e/~, 5 eIs(y),  and G~(~ ) N G~ ) ;~ ~, and let [Is(a, fi) l be the 
number of elements of the set Is(a, fi). The t~rom (4.29) we have IIs(a, fi) I ~< 3~ for 

8 i>8  2. 

LEMMA 4.10. - A s s u m e  that conditions A1, A2, n3, B1, B2 are satisfied. Then there 
exists a positive constant k13, depending only on n, m, a 1, a 2, such that, i f  s is suffi- 
ciently large, 

k13Qs tts v(Ks (a, fi) ) (4.31) m e a s  (aa (~)  ~ m 1 - m  , 

for every a e Is and for every f le  Is(a). Moreover 

( ~ ( s ) ~  (4.32) lira ~ ~ meas ~a~  J = 0 
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PROOF. - We introduce the auxiliary functions 

= - -m  w~(x, 1 ) -  -~- , . 
~ s  + 

As in the proof of (4.27) we ovtain the inequality 

I ]~)~(x)"~dx<'(4os)m I ]~9-~}(X)~x I mdx<'c19~aftls-m]](K~(a'~))" 
Ks (a, fl) Kg (a, fl) 

--(8) (8) As cf ,~(x) = 1 for every x e  G.~,~ from the last inequality we obtain (4.31). Using Lem- 
ma 4.2 and the choice of ~ 8 we get 

~f*(s)) ~ m 1 - m  1 
~ m e a s ~ a ~ ,  ~-~ t,20~) s /b/s - -  ,1.,(~r'2) ~< C 2 0 ~ s ~ m ( 1 - ~ ? ) ~ s l - m ~ I v ( ~ )  

and the right hand side of this inequality tends to zero as s--~ ~ by (4.2) and 
(4.6). �9 

LEMMA 4.11. -Assume that conditions t l ,  n 2 ,  A3, B~, B2 are satisfied. Then there 
exist three positive constants k14, ]C15, and k16, depending only on n, m, a 1, a2, H, and 
M, such that the inequalities 

(4.33) I (8 m ((f  ~,~(X)) d x  ~ k 1 4 ~ t 1 - m ~ ] ( K s  (~2 , ( ~ ) ) ,  

(4.34) I Sv(d)(x' q) I m (8) ,~ 1-m , 
kl5/A s v ( g  8 ( ~ ,  i~)) ((p r~(x)) dx<~ 

ax 
G(S) 

76 

(4.35) f I ^ (8)(X m d V ~ .  ' q)  (8) m - m 
9x (cfy~(x)) dx<~kl~tt~ "(Ks'(y, 5)) ,  

hold for s large enough a, f ieIs ,  f iels(a) ,  6eIs(y) ,  Iql <~H + M. 

PROOF. - Let W(aS)(X) be the function defined in (4.14) and let ~(8)= {xe 
eG~):lW(aS)(x)]<<.tt~,}. By the definition of I~' and I;' given in (4.13) we have/~8< 
<~]w~8~(x)] in Ks(a)\~28. This implies that the function ~f~) (x )=t t s -  
- rain { ]w~ (8) (x) ], # ~} vanishes in Ks' (a) \t28. Consequently we can use the test function 

~7)~ (x) = ~f ~)(x) (of ~) (x))'~ in the integral identity (1.15) for the function w~ (8) (x). Since 
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0 ~< ~P~)(x)~<#~, using (1.4) and (1.8)we obtain 

~ " ~  + ( q ~ o ( x ) )  dx~ 
8x c~x 

~ ( s )  
Z~'a7 5 

+ 
<~ c~/~ ~ 8x 

E(S) 
a75 

which, by Young's inequality, implies 

+ (~ ~ ( x ) )  dx<~ 
8x l 8x 

c 2 8~p~( ) 
~< 22~s ~X 

(s) (X I m - ) dw~ ~ ) i 

8X 

I (s) X ] 
Wra~J] dx, 

8x 

G(S) y~ 

fl 2 8 q ~ (  ) dx.  
dx + c~tt ~ ~x 

G(S) 

Using (4.25), (4.31), and HSlder's inequality we obtain 

fl [m , ~ 3 - m  .~-2v(K,(y  ' 6)) 8w(J)(x) (~(r~)~(x)) m dx <~ c23/~v(K~ (7, 5)) + -23#~ O~ 
~x 

E(S) 
a 7 5  

By (4.5) and (4.12) we have 0 ~ ~< 2 s 0 ~ ~< (~ ~ 0 ~)' ~< # ~, so that 

i [ 8w:~)(X)sx [ m(cf(~)~(x))~ dx<~2c23p~v(K~'( ' '5))" 

E(s) 
a76 

Since s~ ~) / Sx = o a.e. in V~2 \E  a(~ and I Sr ~) / Sz I = ( 2 / , ~  ) I ~w ~(~) / S~ I a.e. in ~~ (~), in- 
equality (4.33) follows easily from the previous estimate. 

Let  us prove (4.34). In the integral identity (1.15) for the function v,~ (~)(x, , q) we use 

the test  function ~(x) (v(j)(x, q) _ (~) m = q)(cfv~(x)) . Using (1.4), (1.8), and Young's in- 

equality we obtain the estimate 

I + (r dx < 
ax 8x 

T y~x)  + dx . 
<~ c24 8x 8x 

~(s) 

Inequality (4.34) follows now from this estimate, by using (4.25), (4.31), and HSlder's in- 

equality. The proof of (4.35) is analogous. �9 
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Let us construct now a sequence of functions X~(x) such that 

(4.36) 0 ~< Z ~} (x) ~< 1 for x e R ~ , 

(4.37) X ~} (x )  = 0 for ~ ~ ~ (~) 

(4.38) E E Z~(x )  =1  for x e  O O (K~(a, f l ) \ ~ ) .  
a~Is fl~Is(a) a~Is flels(a) 

To this aim we order the set J of all pairs (a, fl) of multi-indices with a E I~, f l~ I~(a) in 
a lexicographic way. We write (a, fl) < (~, 5) if, in the sequence of numbers 

~ 1 - - a l ,  . . . ,  ~ n - - a n ,  ~ 1 - - ~ 1 ,  . . . ,  5 n - - f i n ,  

the first non-zero difference is positive. 
If (~, fl) is the minimum element of J, then we put Z~(x)  = cf ~(x).  Assume, by in- 

duction, that for every (a, fl) e J  with (a, fl) < (7, 6) we can define a function X~(x) 
such that (4.36) and (4.37) hold, and 

(4.39) E Z~(x )  = 1 for x~ U (Ks(a, f l ) \ ~ )  
(a, fl) < (r, 6) (a, fl) < (r, 5) 

(4.40) 0 ~< E X~(x)  ~< 1 for x ~R ~ . 
(a, fl) < (r, 6) 

We define now the function (8) Z~5(x) by the equality 

= - Z (4.41) z(rs) (x) 1 

Then (4.86) and (4.37) hold for zr~," (~)(x). Let us prove that 

(4.42) E X~(x)  = 1 for z~  U (Ks(a, f l ) \ t28),  
(a, fl) ~< (~, 6) (a, fl) ~< (~, 6) 

(4.43) 0 ~< E Z~(x )  ~< 1 for x e R  ~ . 
(a, fl) -< (~, 6) 

If x e U ~)(K~(a, fl)\~9 8), then from (4.39) and (4.41) we obtain Zrs(x) (~) = 0 and 
(a, t~) < (y, 

consequently equality (4.42) follows from (4.39). If x E K~(7, 6)\~9 8, then 

(4.44) (a, Z)~(~, ~) Z~(x )  = (a, ~)~"< (r, ~) Z ~ (x) + ~ (~)6 (x)( 1 -  r 8)~'< (r, 6) Z~(x ) )  = 1, 

since (s) _ ~v y~(x)-  1 in K~(7, 5)\~98. This proves (4.42). Inequalities (4.43) follows from 
(4.40) and (4.44). 

Proceeding by induction we construct a sequence X~(x) such that (4.36), (4.37), and 
(4.38) hold for every (a, f l ) e J .  
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'~ (~) by (4.37), from the inclusions (4.17) and REMARK 4.12. - Since X~(x) = 0 for x ~ ~@ 
(4.29) it follows that 

(4.45) Z ~ ( x )  cf(r~)(x) = 0 

for s>~s2, a, yeI~, fieI~(a), a ~ 7 .  

LEMMA 4.13. - A s s u m e  that conditions At, A2, A3, B1, Be are satisfied. Then there 
exist two positive constants k17 and klS , depending only on n, such that 

(4.46) 

Z(aS~(x) ~ k17 E .r y6[x),m(s)l " 
(7, 6) els(a, fl) 

aZ(Sa)fl(X) ~ ]~18 2 ~F76 
~X (7, 6) e I.~(a, fl) ~X 

for every s >i s2, for every a e I~, and for every fle Is(a). 

PROOF. - From the construction of the function Z ~ ( x )  it follows that g ~ ( x )  is equal 

to a sum of terms of the form 

(4.47) -4- ~ (as/1)/~(1)(X)... ~) (8(ltN)/~(N)(X), 

where (a (/), fl(i)) ~ (aO'), rio) if i ;~j. From Remark 4.8 it follows that the function in 

(4.47) is identically zero if N > 2 ~. Therefore we have the estimate 

I E ( )xl (4.48) . Sx y~5 ~ ~ z ~ ( r )  ax ' 

with a constant kis depending only on n. By (4.37) the left hand side of (4.48) is equal to 

zero outside ~a~ ~ (~) and consequently, by Remark 4.9, in the right hand side of (4.48) we 
can omit the terms with (y, 6) ~tI~(a, fi). The proof of the first inequality in (4.46) is 

analogous, w 

Let  us consider now the functions ~ ( x )  defined by the equality 

(4.49) - -  - 

Then 0 ~< F ~ ( x )  ~< 1 in R *~ and F ~ ( x )  = 0 for xctG(~ ). Let us verify that 

(4.50) • cf~)(x) + E E , f ~ ( x )  = 1 for x e  U ( K s ( a ) \ ~ ) .  
aels a~Is fl~Is(a) aeIs 

First  of all we note that by (4.30) and (4.41) we have 

(4.51) 
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If x e  [J ((K~(a)\Kj(a))\t2~), then from (4.38) and (4.51) we obtain 
a e l s  

E q~)(x)+ E E ~p~}(x)= Z ~)(x)+ Z Z )/~}(x)(1- E cf(~)(x) 
a e I  s a ~ I  s f ieIs(a)  ae l~  a~I~ f i~Is(a) y e I  s 

For xeK~(a)\Y2~ we have 

(4.52) cp~)(x) = 1,  cf(r~)(x) = 0 for Y ~ a 

in virtue of (4.15) and (4.17). So we obtain from (4.51) 

(4.53) 

! 

~0~}(x)=x~)B(x)~l - Y, cf(7~)(x) = 0  for x e  [J (K~'(a)\f2~) 
y e l s  a e l s  ' 

and hence identity (4.50) is proved. 

= 1 .  

LEMMA 4.14. - Assume that conditions A1, A2, n3, B1, B2 are satisfied. Then there 
exists a positive constant k19, depending only on n, m, a 1, a2, H, and M, such 
that 

(4.54) i is~(:}(x) 
ax I 

G(S) a~ 

1-m (s) k19At~-mw(4~)~) dx k19tt~ v(K(xaz, 40~)) ~< 

for every s >I s2, for every a e Is, and for every fl e I~(a). 

PI~OOF. - From the definition of ~0~(x) given in (4.49) and from Lemma 4.13 we 
obtain 

I I aw~}(x)ax I m 
ax 

The first inequality in (4.54) is now a consequence of (4.25), (4.33), and of the 
inclusion 

(4.55) [J ~)Kj(y,  5)cK(x~(~ 4Q8), 
(y, 6) e l s (a ,  

which follows from (4.29). The second inequality in (4.54) is a consequence of condi- 
tion B2. �9 
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5. - Asymptotic expansion of the sequence of solutions. 

In this section we investigate an asymptotic expansion of the solutions us(x) that 
will be fundamental in our study: 

5 

(5.1) u~(x) u(o~)(x) + ~ r (i)( " = ~ ~x) + w~(x), 
i = 1  

where 

• ( 1 ) / •  _((8)) _ , ,~J= E ((f(x) ,~ . (u(o~)(x)-u(J)))q~)(x) 
a E I s  

r:~)(x)= E E ((f(x)_e(.)~_(U(o~)(x) o (8) o~. %~ )) ~)~(x),  
a e I  s f l e l s ( a )  

r(~3)(x)= E v(.~)(x,f (") - (~)~(:)(x), a - -  'bba ] 

a a_I  s 

a ~ I s  f i~ I s (a )  

r(.5)(x) = Z E ( ( f ( s )_  U(a.))_ (8) (~) (8) (~) (~) V. (x, f~ - -% ) ) ~ .  (X) Z~(X) ,  
a E I  s f l e l s ( a )  

and w~(x) is the remainder. Here U(o~)(x) is the averaging of the function Uo(X) defined 

in (1.16), f~(~) and Ua (~) are the mean values of the functions fix) and u(oS)(x) in the cube 

Ks(a) defined in (4.10), f~(~) and u.(~ ) are the mean values of the same functions in the 

cube Ks' (a, fl) defined in (4.21), v~t;(x, q) and v(~)(x, q) are the functions introduced in 
(8) (s) (4.11) and (4.20), ~a (x) are the functions introduced in (4.15), Za~(x) are the functions 

(8) introduced in (4.41), and ~f~(x) are the functions introduced in (4.49). 

The study of the behaviour of the terms of the asymptotic expansion (5.1) is the 

main purpose of this section. 

LEMMA 5.1. -Assume  that conditions A1, A2, As, B1, B2 are satisfied. Let g(x) be a 
function in C~ (~)  and let ws(x) be the remainder of the asymptotic expansion (5.1). 
Then there exists a number s3, depending on g(x), such that g(x) ws(x) belongs to 

o 

Wl  ( ~ 8) for s >1 s~. 

PROOF. - See [59], Lemma 4.6. [] 

LEMMA 5.2. - Assume that conditions A1, A2, A3, B1, B2 are satisfied. Then the se- 
quences r~(1)(x), r(~2)(x), r(~4)(x), and r~(5)(x) converge to zero strongly in W~(52) as 
8 - - - - > o o ,  

PROOF. - Since the functions f ix)  and Uo(X) are bounded, from Lemmas 4.5 and 4.10 
we obtain immediately that the sequence r(~)(x), i = 1, 2, 4, 5 converge to zero strong- 
ly in Lm(t)) as s---> ar 
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Let us estimate the norm of the gradient of r(~i)(x) in L,~(~9). For i = 1 we 

have 

e2 ) 

+c26 ~ .  I (,f(x) -~f(=)~ ,~ + ,U(o=)(x) --'a~ (~) , ~ ) I  8~)(x)Sx I ~ dx. 

The first term in the right hand side of the previous inequality tends to zero as s--> 
by Lemma 4.5 and by the absolute continuity of the integral. The second term tends to 

zero by the properties of the averaging functions. 
Since the function f(x) belongs to the space C o, ' ( ~ )  with ~] > 0. Lemma 2.7. togeth- 

er with (4.17) and (4.23). yields 

8~(~)(x) 
(5.2) 2 [ (]f(x)-f(=)l =+ lU(o=)(x) -(')I ) ] 

= 

- u .  m dx <~ 
a e I= . a , C3X 

C , , 1 - m ( ~  ~ ~m~? V(~?) + 1 - m  ~o(k~Q~) I aUo(X) m d x  
27/~s  ~ s ~ s ]  c27/2s ( ~ s Q s ) n - m  2 ~X 

f I 8u~ I~dx, <- c27# = v(Q) + c~7# = 8x 
Q 

where in the last inequality we use the definition of # = given in (4.5). Both terms in the 
last line of (5.2) tend to zero as s--* ~ by Lemma 4.1. This completes the proof of the 
strong convergence to zero of the gradient of r(~l)(x). 

Let us estimate now the norm of the gradient of r(~2)(x) in L~(~) .  Recalling that the 
function ~f~(x) is zero outside ~(=), we have 

d x  

(i i l  I I u0 x  uo x l ) dx + <- C2s ~, ~_, ~ 8f(x) 8Uo(X) m+ + 

a~1= ~i=(~) 8x 3x 8x 

l ar = +C2s ~ ~ (If(x)-r(=)lm+lu(0~)(x) -~ m) dx. 
aEIs fleIs(a) J aft 'trail ~X 

G(S) a~ 
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The fn-st sum in the right hand side of the previous inequality tends to zero by (4.32), by 

the absolute continuity of the integral, and by the properties of the averaging 
functions. 

By using (4.54), Lemma 2.7, and the HSlder continuity of the function fix), we 
obtain 

s flels(a) aft I m -j- I u(Os)(x) -- 'l~afi S X  

G(~) a/3 

dx <% 

co(4g ~) - - I  I au~ m 

t9 

dx <~ 

t~ 

d x  , 

where in the last inequality we use (4.12) and the definition of # ~ given in (4.5). Both 

terms in the last line tend to zero as s--~ :r by Lemma 4.1. 
Let us estimate now the norm of the gradient of r~(4)(x) in L~(tg). Using (4.t2), 

(4.33), (4.35), (4.46), (4.49), (4.54), and (4.55) we obtain 

(5.3) f l ar(s4)(x) l 
Q 

(s) f ( s )  ~j(s)~ Im 

+c3~ ~ ~ I ! $F(~)~(x) i~dx<~cs2#~-'~ ~ ~ v(K(x(~) 40~)) 
aeI~ f~Is<a)G(oS ~ " S X  s a~Is f e l s ( a  ) aft '  " 

It is easy to veYify that the following inclusion holds 

(5.4) U U ~(~(~) ~#~z~(,).~,~#, 40~)cF s n s 

where Fs is the set defined in (4.7). Consequently, from (4.5), (4.8), (5.3), and (5.4) we 

obtain 

(5.5) f l 3r~(4)(x) i~ 
Q 

1 - m  - 1  ~ m + l  dx~c3s#~ ~ v(D)-~css#~ v(t~), 

and the right hand side of this inequality tends to zero by Lemma 4.1. 
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For the gradient of r(~)(x) we have the estimate 

~2r aels fleI~(a) G ~X 

~(~) 

Using (4.46), (4.25), (4.33), (4.34), (4.55), (5.4), (4.8), and (4.5), we obtain 

I l ar(5)(x) ]mdx<~ 851~s aels f le i s (a) (y ,  5) els(a, fl) (5.6) COX C ,1-m E E E v(K;(y,  6))< 
t~ 

~- C35/~s'1-m 2 2 Y(K(~r 4~)s))<~7ncs5#ls-m~slv(Q) <~7nc85#ms+1u(Q) 
a~I~ flels(a) 

and the right hand side of this inequality tends to zero as s---)~ by Lemma 
4.1. �9 

LEMMA 5.3. - A s s u m e  that conditions A~, A2, A3, B~, B2 are satisfied. Then the se- 
quence r(~S)(x) is bounded in Wl ( t~ )  and converges to zero strongly in  WI (Q)  for  
p < m .  

PROOF. - The strong convergence to zero of r(~a)(x) in L~(~9) follows from Lemma 
4.5 and from the estimate 

Iv(~)(x,f(~)-u(.~))l <.H + M for xe-Qo,  

which is a consequence of (1.12) and (1.13) and Remark 2.2. We estimate the derivative 
of r(~8)(x) in L~(Q) by means of Lemmas 2.1 and 4.4. Taking B 1 into account we 
obtain 

fl I II 9r(~S)(x) dx <~ c36 ~ $v a (x, ~ - 'a, , dx + 
(5.7) ax ~i~ ~ ax 

Q 

- u a ) dx <~ c~7 ~ u(K"(a) )  <~ c3712(~'~), 
aels ~ a ~X aeIs 

E(J)(# ~) 

(s) where E (it) = {x E t2 o: I w~ (s) (x) I ~< tt}. Consequently in the third integral in (5.7) we 
have majorized Iv(,S)(x, f(~)-u(~)) I by 2#s in both cases a ~ I "  and a~I~'  (see (4.13) 
and (4.14)). 

Observing that the function r(~)(x) vanishes outside [J G~ (~) and applying H51der's 
ael~ 
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inequality, we obtain for 1 < p < m 

i (j i f i 3x ax 

The right-hand side of this inequality tends to zero thanks to (4.26) and (5.7). This con- 

cludes the proof of the lemma. [] 

LEMMA 5.4. - Assume that conditions A1, A2, As, B1, B2 are satisfied. Let w~(x) be 
the remainder of the asymptotic expansion (5.1) and let g(x) be a function in C~ r (Q). 
Then the sequence g(x) w~(x) converges strongly to zero in W~(~2). 

PROOF. - We may assume that  Ig(x) I <~ 1 for every x e t ) .  By Lemma 5.1 the func- 
o 

tion g(x)w~(x) belongs to W~(f2 s) for s large enough. Moreover, we shall assume that  

s i> s2 and s i> ss, where s2 and s3 are the constants in Lemmas 4.6 and 5.1. So we can 

take Ig(x)I'~w~(x) as test  function in the integral identity (1.10) corresponding to the 

boundary value problem (0.1), (0.2), obtaining 

(5.8) 3 l,  ~ - -  ~xj (Ig(x) w~(x))dx= 

= - f ao(X, us(x), 3u~(x____~))3x [g(x)  [~ w~(x )  d x  . 

Let  us investigate the behaviour of the integrals on the left-hand side of (5.8) as s ~ oo. 

From Lemmas 5.2 and 5.3 and from (5.1) it follows that  w~(x) converges to zero strong- 

ly in Lm(tg). This convergence is also in Lr(~9) for every r > 1, since the sequence w~(x) 
is uniformly bounded (Theorem 1.3). By (1.8) and (1.11) this implies that  

) ~ :1 3--;- ~ tg(x) + a0 x, a--V- Fg(x)I m 
Q 

�9 w~(x )  d x  = 0 

and consequently 

(5.9) ) 
j = ~X 3Xj 

We rewrite the integral in (5.9) in the form 

(5.10) f kg(x) !,~ ~ a~(x, u~(x), aug(x))3w~(x) 
j = 1 Sx 3xj 

dx= I} ~) + ;~ + ;~ + ~?~ + ;~ , 
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where 

I1(~) = I }g(x)I "~. 

)( )) �9 a s x, uAx), au~(x____~) -as x, uAx), aus(x) aw~(x___~) 9w~(x) 
8x 8x 8x ax s 

I2(~) = ~ I g(x) I m. 
s 

uAx), 
8uAx) 9w~(x) 

8x ax 

I3 (~)= ~ I g(x) I m- 

+ - -  - a s x, us(x), - -  
8x 8x 8xi 

8x - aj x, 0, - - S x  - -  dX 

I~ ~) = f la(x)I m E j=laJ x, O, ar(~3)(X)3x ) aw~(X)3xs - -  d x .  

By (1.5) we have the following estimate for 11(2): 

- -  d x ,  

- -  d x ,  

To study the behaviour of I~ (~) we introduce the function ~ ) ( x )  defined by the 
equality 

1 
(5.13) ~ ) ( x )  = - -  min {( IW(a~)(X)l - tt~)+, # s } .  

tt~ 

I I I m ' (5.12) lim sup Ig(x) I m 8w~(x) dx <~ - -  lim sup tI5(~) I . 
s--~ r162 9X a l  s--~ 

- -  d x ,  

(5.11) I(lS)>~al f Ig(x) Iml ~ws(x)~x I m dx. 
t~ 

The convergence to zero ~ T(~) i4(s) oi 12 , I8 (s), and is proved as in Theorem 4.9 of [59]. There- 
fore (5.9), (5.10), and (5.11) imply that 
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As for the function ~ ) ( x )  we can prove (Lemma 4.4) the estimate 

(5.14) f ! 9~(Sa)(X) I~dx<~k2o~t~-m ,, $x ~ v(K~ (a)),  

where H~ (~) is the set of points x such that  ~ ) ( x ) ~  0. Moreover we have H(j)cG(j ) 
and 

(5.15) cf~)(x) = 1 in H (~) a 

for every a e I~. Using this proper ty  and Lemma 4.3 we obtain 

(5.16) I~(~) = i~(~) + I~ ~) + I~(8), 

where 

f aeI s j = l  
H(a s) 

9v(~ 8)(x) i -3 j ~ (x) we(x))dx, 
ax ] ~ (Ig(x) "~ (~) 

aeI~iICa~) j = 1 ~X ~Xj 
dx  , 

s ~)= E Jg(x)j ~ aj x, o, ~ (~v:~)(x)  

Here  v(~)(x) = v(~)(x, f(~)- u(~)). By the definition of the function v(j)(x, f(a ~)- U(~ ~)) we 

obtain that  I6 ('~) = 0. Since w~(x) converges to zero strongly in L~(~9) for every r > 1, 

Lemma 5.3 implies that  I7 (~) tends to zero as s--~ ~ .  So we have 

(5.17) I~ ~) = 0,  J im I~ 8) = o.  

In order  to estimate Is (~) we introduce the sets 

\E(~) from (1.8) we obtain the inequality Since 1 -  ~ ) ( x )  = 0 in G~(8),_ a , 

(5.18) 
' (  >(m - 

I ~ ( (s) r^(s)'[~'~ ] m 
+ ~X Va ~a ]~z dx 

2)/~ 

dx) . 
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I f a � 9  Iv(J)(x) l = Iw(~8)(x)l -< �9 (8) ,, (8) ~< (.~) -~2#8 m E a  . I f a � 9  then I v~ (x) I " If~ - 
-Ua(~) I ~< 2#~in ~2. Therefore Iv(,~)(x)l �9 (8) ~< 2it ~ m E~ for every a �9 I~. Consequently Lem- 
ma 2.1, condition B1, and inequality (4.23) yield 

I im (5.19) r I (va(~) cf~))(x) dx 
! 

E(S ) 

s(, I1 8V(aS)(X) 8q~)(X) dx <- C4o~tsv(K~'(a)) , 
<~ c39 Sx /~ ~ 8x 

E(a s) 

which, together  with (4.12) and (4.28), gives 

a~Is �9 ~ X  (va q~a ) (X)  d x ~ c 4 1 / 2 s  

Ea(S) 

For  the last integral of the right-hand side of (5.18) we have the estimate 

(5.21) a ~  -~X (W~(1 -- ~) ) ) (X)  dx <<. 

i ) 8ws(x) dx + ~ I Iws(x) I~ dx 
<<- c4~ 8x ~ ~ X~H(:) 8X " 

By (5.1) and by Lemmas  5.2 and 5.3 there exists a constant c84 such that  

(5.22) I I 8w~(x) mdx<<.c43. 
8x 

We shall now evaluate the last integral in (5.21). By (5.15) for x �9 H~ (~) we have cf ~)(x) = 
= i and, consequently, from (4.49) we get ~ ~)(x) = 0. Therefore from the asymptotic ex- 
pansion (5.1) we obtain 

W s ( X ) ~ -  U s ( X ) - - U ( o S ) ( x )  - -  T(1)(X) - -  r(~S)(x) - r(~5)(x) for x �9 , 

and 

(5.23) 
a e I  s . 

H(J) 

I a~)(x)I m 
IwAx) I'~ sx d x  ~ r (s) c44kt 9 + I1(~ ) + I1(~ ) + I](~)), 
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where 

8~)(x)  r n 

a ~& ) I c~X 
H[~ s} 

58 ) = ~ ((If(x)- .~r( ' ) ln+ 
6t E ~  s . 

H~ ~ ) 

I T~  

u(?)(x) - u(~) J n) I 
I 8x 

d x  , 

a ~ I  s . 
H(S) 

t L 1~ 3~T(x) dx, 
8x 

aeIs  t iES(a) 
H(a s) 

s~T(Z)Sx in dx. 

In order  to estimate 19 (~) we fLX a function a(~)(x) of class Co ~ (~9), equal to one on 

K~(a) and to zero outside K(x (~)~ ,22~0~), and satisfying 18a(~)/Sxl ~<2/(2sQ~). Then 

we take the test  function 

lu~(x) _ Uo(~)(x)jn min { Jw~(~)(x) ] - 2 # ,  0} (a~)(x))  ~ 

in the integral identity corresponding to the boundary value problem for the function 
~(s) X a ( ) defined by (4.14), and we obtain 

(5.24) 
f 

] ~o (s) X u.~. ( ) ~ 
ju~(x) - U(o~)(x)jn 8x i dx <~ 

E(S ) 

C 2 f ~ U s ( X )  ~U(oS)(x,) ]2 dx + 
~< 4sff~ 8x 8x 

K(x(a s), 22sQs) 

f 
! $u~(x) 8u(?)(x) m dx + 

+ c4s f f  '~ 8x 8x 
K(z~ (+), 2 ~ )  

('~ y [ I~s(x)-~o~)(x)12dx+ +c4s ~ Q ~  ] j 

I K(x(j), 2)-s~s) 

1 r 
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Using Lemma 2.6, (4.12), (5.24), and the choice of Q 8 we have 

I Io 
) + /~8 lus(x)- Uo(X) I m dx <~ c47~2s -m, 

where R is the constant in inequality (1.11). 
The estimate for 11(8 ) is similar to (5.2) and can be obtained by the same arguments, 

using (5.14) instead of (4.23): 

c o ( ~ 8 ~ 8 )  
C . 1 - m [ ~  ~ "~m~] 1 - m  

(5 .26)  [11(8)[ • 48•8 \ 8 . s ]  P ( ~ )  ~- C 4 8 # s  R <<. cagPs. 
( ~ s O  s )  n - m  

,~ ~(8) ~ (~) f(8) . (~)~ (8) from (5.14) we A s 3 ~  ) /ax=OinH~ (8)\~a and [ (x, a - ]~<2tt i n E  'U a 'bb a .' 8 , 

obtain 

(5.27) ]I1(~ ) ] ~< cs0#sv(tg). 

The estimate for I1(~ ) is similar to (5.6) and can be obtained by the same argu- 

ments: 

(5.28) 111(~) I ~ C s l # ~ - m , ~ s l p ( ~ r  ~< C 5 2 # s .  

Using (5.25)-(5.28) we obtain 

119 (~) + 11(8 ) + I1(~ ) + I1(~) I < c47~-'~+ c5~ .  

Therefore (4.12), (5.18), and (5.20)-(5.23) imply that 

~ , ( m - 1 ) / m [ .  2 - m  C " "~l/m , 1 /m 

and by virtue of Lemma 4.1 we have 

(5.29) l i ra  I~ (8) = o .  

From (5.12), (5.26), (5.17), and (5.29) it follows that  the sequence g(x) ws(x) converges 

to zero strongly in Wl(t2) .  �9 

PROOF OF THEOREM 1.4. - If  we compare the asymptotic expansions (1.17) and (5.1) 

we obtain 

(5.30) Rs(x) = r(1)(x) + r(2)(x) + r(4)(x) + rs(5)(x) + ws(x). 

Therefore Theorem 1.4 follows Lemmas 5.2 and 5.4. �9 
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6 .  - Choice of  the decomposit ion.  

So far 0 + is an arbi trary sequence which converges to zero and satisfies (4.1). In or- 

der to conclude the proof of Theorem 1.5 we need a very precise choice of 0 8. We begin 

with some lemmas about subadditive functions. 

LEMMA 6.1. - Let fl(B) be a non-negative increasing subadditive function defined 
for every Borel set B r to. Assume that there exists a bounded Borel measure/~(B) such 
that fi(B) <~ tt(B) for every Borel set B c tO. Then 

(6.1) fl(B) = sup {fi(E): E compact, E c B }  

for every Borel set B r tO. 

PROOF. - Let  us fix a Borel set B c tO and let S be the right hand side of (6.1). By 

monotonicity it is enough to prove that  fi(B) <~ S. Since #(B) is a bounded Borel mea- 

sure, for every e > 0 there exists a compact set E c B  such that  t t (B \E)< e. As 

f l(B\E) <~ tt/B\E), by subadditivity we have 

fl(B) <~ fi(E) + fi(B\E) <~ S +/~(B\E) < S + e,  

and letting e tend to zero we obtain fi(B) <~ S. �9 

LEMMA 6.2. - Let fi(B) be a non-negative increasing function defined for every 
Borel set B c  tO, and let ~(B) be the function defined by 

(6.2) )~(B) = sup • fl(B+), 
i e I  

where the supremum is over all finite families {Bi} i~  of disjoint Borel sets contained 
in B. Then it(B) is the smallest superadditive function such that ~(B) >i fi(B) for every 
Borel set B r tO. If,  in addition, fi(B) is countably subadditive, then ~(B) is a Borel 

measure. 

PROOF. - I t  is clear from (6.2) that  2(B) is superadditive and that  ~(B)/> fl(B) for 

every Borel set B c tO. Let  rl(B) be another superadditive function such that  tl(B) >~ 

>I fi(B) for every Borel set B c tO. Then tl(B) is non-negative, increasing, and 

~(B) t> E ~(B+) >/ E ~(B~) 
i e I  i e I  

for every finite family {Bi}i~] of disjoint Borel sets contained in B. By (6.2) this implies 

that  ~(B) i> ;t(B) for every Borel set B c tO. 
If  fl(B) is countably subadditive, it is easy to see that  it(B) is countably subadditive 

too. Since )~(B) is non-negative, increasing, and superadditive, we conclude that  it is 

countably additive. Therefore it(B) is a Borel measure. �9 

LEMMA 6.3. - Let fl(B) be a non-negative increasing subadditive function defined 
for every Borel set B c to, and let ~(B) be the function defined by (6.2). Assume that 
(6.1) holds for every Borel set B e  tO. Then for every Borel set B c tO and for every 
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t < ;t(B) there exists 5 > 0 such that 

(6.3) t < E fl(Bi) <~ 2(B) 
iEI 

for every finite Borel partition {Bi}i~i of B such that diam(Bi)<6 for every 
i � 9  

PROOF. - Let us fLX a Borel set B r $2 and a real number t < ~t(B). By (6.2) there 

exists a finite family {Aj}i~j of disjoint Borel sets contained in B such that 

t < E Z(As). 
j e J  

By (6.1) there exists a finite family {Ej}jej of compact sets such that EjcAj  for every 

j e J  and 

t < E 
j e J  

As the compact sets Ej are pairwise disjoint, there exists 5 > 0 such that dist(Ejl, Ej2) > 
> 26 for j l  ~J2. Let {B~}i~i be a finite Borel partition of B with diam(B~) < 5 for every 
i ~ I. By subadditivity for every j �9 J we have 

fi(Ej) <. E fl(Bi), 

where Ij = {i e I: Be • Ej ~ 0}. Since dist(Ejl , Ej2) > 25 for j l  ~J2, the sets Ij are pair- 
wise disjoint, hence 

t < E ~'. fl(Bi) <~ E fi(Bi). 
j e J i ~ I j  iEI 

The second inequality in (6.3) follows from (6.2). �9 

Condition B1 is expressed in terms of cubes. The following lemma shows that it im- 
plies an inequality for every compact set. 

LEMMA 6.4. - A s s u m e  that condition B1 is satisfied. Then 

(6.4) lira sup Cm(E\t)8) <~ v(E) 
8--->00 

for every compact set E r t~. 

PROOF. - Let us fLX a compact set E r ~9. For every s > 0 there exists a finite fam- 
ily of closed cubes K(xi, Qi), 1 ~< i ~< k, such that 

k k 

E r  [J K(xi, Qi) and ~ v(K(xi, ~i)) < v(E) + ~. 
i=1 i= l  

We may assume that K(x~, 2r i) c ~9. By the subadditivity of the capacity Cm and by con- 
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dition B1 we have 

k k 

C,~(E\~ ~) <<. E C~ (K(x~, e i) \~9 ~) ~ E u(K(x~, Q i + r~) ) 
i=1  i = 1  

for every s such that r~ ~< min e~. Since r~ tends to zero as s--~ ~ we obtain 
l <~i~k 

k 

lira sup C,~(E\f2 ~) ~< ~ ~,(K(xi, Qi)) < v(E) + e. 
s---~ ~ i = 1  

As ~ tends to zero we obtain (6.4). [] 

For every compact set E c f2 and for every real number q we define 

(6.5) f i ' (E,  q) = lira inf CA(E\f2,  q), fi"(E, q) = lim sup CA(E\f2s, q). 
8 - - ~  8_._> a c 

By Theorem 4.3 of[23] the functions CA(E\f2~, q) are increasing with respect to E. 

Therefore the functions fi'(E, q) and fi"(E, q) are increasing with respect to E. By 

Lemma 2.4 there exists a constant k4 such that 

(6.6) 

I 1 CA(E\K2s ' q')- 1 ")1 q" q--7 -~ CA(E\f28, q ~< k4 I q ' -  i1/(m-1) Cm(E\f2,), 

for every compact set E c  f2 and for every pair of real numbers q', q", with O < I q ' l ,  

[q"l <~ H + M. By (6.4) this implies that for every compact set E r  f2 the functions 

CA(E\f2~, q) are equi-continuous with respect to q in [ - H  - M, H + M]. Therefore, 

from Theorem 8.15 of[24] we deduce that there exist a subsequence, still denoted by 

~(2 s, and a function fi(U, q) such that 

(6.7) sup fi' (E, q) = sup fi" (E, q) = fi(U, q) 
E c U  E c U  

for every real number q and for every open set Ur tg. The same result can also be ob- 

tained by applying Proposition 5.9 and Theorem 16.9 of [16], with X = R 1 . Let us extend 

fi(U, q) to every Borel set B e t )  by 

(6.8) 

Note that 

(6.9) 

fl(B, q )=  inf{fl(U, q): U open, U~B} .  

~ E  fi ( , q) <~fi"(E, q) <.fi(E, q) 

for every compact set E r ~9. By Theorem 5.7 of [23] the functions CA ( E \ ~ ,  q) are sub- 

additive with respect to E, hence fi"(E, q) is subadditive with respect to E. This implies 

that fl(B, q) is countably subadditive with respect to B (see, e.g., [16], Propositions 
14.19 and 14.22). By Proposition 6.6 of[23] for every compact set Er we have 

(6.10) CA (E\f2 ~, q) <~ k21 I ql (1 + I q ]m- ~ ) Cm(E\K2 s) , 



GIANNI DAL MASO - IGOR V. SKRYPNIK: Asymptotic behaviour, etc. 55 

where k21 is a constant depending only on a 1, a2, m, n, and diam(~9). By Lemma 6.4 

this implies 

(6.11) f i ' (E,  q) ~< fl"(E, q) <~ k21 Iql (1 § Iq l~ - l )u (E)  

for every compact set E r r2, hence 

(6.12) /~(B, q) ~ k21 I ql (1 § I ql 1 ) v(B) 

for every Borel set B c ~c2 and for every real number q. Moreover, (6.6) implies 
that 

(6.13) 

1 q q') - q,') q' q"ll/(m-l) --q-; fi(B, <~ k4 I - v(B), 

,) ] <~ k4 j q, [1/(m- 1) 72(B), q 
I 

for every Borel set B c ~9 and for every pair of real numbers q', q" such that 0 < I q ' l ,  

I q " l < H + M .  
For every real number q and for every Borel set B c s we define 

(6.14) ~(B, q) =sup  ~ fi(B~, q), 
iEI 

where the supremum is over all finite families {B~}~I of disjoint Borel sets contained in 
B. Since fi(B, q) is countably subadditive with respect to B, for every q the set function 
B ~ ( B ,  q) is the smallest Borel measure on ~ such that ~(B, q) >~ fi(B, q) for every 
Borel set B e  ~ (Lemma 6.2). 

By (6.3), (6.12), and (6.13) we have 

(6.15) ,~(B, q) ~< k21 ]q] (1 + IqJ~-l)v(B),  

(6.16) I 1 ~ (B ,q ' )  ~ ,~ (B ,q" )  I <-k41q' q"ll/(m-1) v(B) 
q'  

(6.17) ' [ 1  ~(B, q ' ) I [~k4  I q '11/(m- I) p(B), 
I q' I 

for every Borel set B r t2, for every real number q, and for every pair of real numbers 
q', q" such that 0 < I q' I, I q"l ~< H + M. By the Radon-Nikodym Theorem for every ra- 
tional number q;~0 there exists a Borel function g(x, q), defined for x e t g ,  such 
that 

(6.18) 1 ~(B, q) I g(x, q) du(x), 
q 

B 
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for every Borel set Bc~2 .  By (6.15), (6.16), and (6.17) we have 

(6.19) !g(x, q) l ~< k21(1 + I q l ~ - ~ ) ,  

(6.20) ig(x, q ') - g(x, q") ! <<- k4 l q' - q" 11/(m-1) , 

(6.21) iY (x, q')i  <~k4 Iq' 11/(m- 1) , 

for v-almost every x e •, for every rational number q ;~ 0, and for every pair of rational 

numbers q', q" such that 0 < I q ' l ,  I q"l ~< H + M. This allows us to extend g(x, q) to a 
Borel function defined on t)  x R 1 such that (6.18), (6.19), and (6.20) hold also for real 

numbers q, q', and q". 

By Theorem 3.1 of[4] we have 

fl(K(x, r), q) 
(6.22) lim - g(x, q) 

r-~o qv(K(x, r) ) 

for v-almost every x E ~9 and for every q ~ 0. Let  us fLX q ~ R  1 . By (6.7) for every x E 

there exists a countable set N ( x ) r  ~ such that 

(6.23) f i ' (K(x,  r), q) = 8" (K(x, r), q) = fi(K(x, r), q) 

for every r ~tN(x) (see Proposition 4.8 of[24] or Proposition 14.15 of[16]). Since the 

function r ~ fl(K(x, r), q)/v(K(x, r)) is right continuous, hypothesis (1.22), together 
with (6.22) and (6.23), implies that  g(x, q) = C(x, q) for v-almost every x e t2. Therefore 

(6.18) gives 

1 
~(B, q) ~ C(x, q) du(x) (6.24) - = 

q 

for every Borel set B c t ~  and for every q ;~ 0, while (6.19), (6.20), and (6.21) imply 

that 

(6.25) C(x, O) = O, 

(6.26) I C( x, q) I <~ k21 (1 + I ql m- 1), 

(6.27) f C(x, q ') - C(x, q") ] <~ ]64 l q' - q " l  1/(m - 1) 

for u-almosty every x e tg, for every real number q, and for every pair of real numbers 

q', q" such that 0 < I q'], [ q"l <~H + M.  
Let  us define the sequence ~i by 

(6.28) ~i = sup 2rs + ius(x) - Uo(X) i ~ dx , 
s > ~ i  

and let ~i be the corresponding sequence constructed using (4.3) and (4.4). By Lemma 
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4.1 we have 

(6.29) lira A ~ = + r162 and lira ~ ~ ~ i = 0.  
i - - ~  i - * ~  

For every i we fix a point ~0 (~) which satisfies Lemma 4.2 with ;t~ and Q ~ replaced by ~ 
and ~ .  For every multi-index a with integer coordinates we define ~(~) = ~(o ~) + 2~i~ia  
we consider the sets 

(6.30) h:~ (a) = K ( ~  (~), ( ~  - 2) ~ i ) ,  

h:~"(a) = g ( ~  (~), ( ~  - 3) ~ ) ,  

The set (resp. the number) of all multi-indices a such that ""~ (i) l~( x a , 3~ i~ i) c Y2 is denoted 

by I~ (resp. by I I~l). For every j >~i and for every y ~ Ii we define 

(6.31) ?zr = {a e l_j: Kj(a) r Ki(y) } . 

It is clear that 

(6.32) ~j~j~<~i~h:i'(y)c U Kj(a). 

By (6.7) for every j I> i and for every y e Ii we have 

(6.33) lim inf E CA (Kj' (a) \Q~, q) I> E fi(h:j'(a), q). 
~-~ ~ ( ~ )  a~l~)(r) 

As fi(B, q) is subadditive with respect to B, by (6.12) we have 

(6.34) 2 f i(Kj(a),q)~ 2 fi(-~j"(a),q)+c561ql Z v(Kj(a)\Kj"(a)) 

for every j i> i, for every y e Ii, and for every q with I ql ~< H + M. From (6.33) and 
(6.34) we obtain 

(6.35) lira inf ~ CA (h:j' (a) \Q~, q) I> 
s---->~ a ~ i ) ( 7  ) 

~ fi(Kj(a),q)-c581ql 
a~lj(i)(~) 

for I ql ~< H + M. Similarly form (6.9) and (6.14) we obtain 

(6.36) lim sup Z CA (Kj' (a) \t)~, q) <~ 
s--) ~ a~j( i ) (y)  

a e Iy) (~)  

A q )  

<~ ~, fi"(Kj'(a),q)~< E fl( ~-(a),q)~< 

Given a positive integer i and a real number q, with I ql ~< H + M, by Lemma 6.3 and 
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by (6.32) for every e > 0 there exists d(e, i, q) > 0 such that 

(6.37) 

for every y e Ii and for every j such that 

(6.38) 2 ~r < 5(e, i, q) and i j~ j  < ~i .  

By (6.35) and (6.37) we have 

(6.39) lim inf ~ CA(Kj'(a)\S2~, q) > 
s---) ~ a~i~i)(y ) 

ilql-- --c  lql   E 
a e ]j(i)@) 

for every )1 e Ii and for every j satisfying (6.38). Let  us fLX e > 0 and j satisfying (6.38). 

By (6.36) and (6.39) there exists s(e, i, q, j )  such that 

(6.4o) }I l -c  lql 
aE]j(i)(y) 

<. E CA(Kj'(a)\~2~, q) <<.2(Ki(~), q) + e i~-- ~ 
a~Ij(i)(y) 

for every ?, ~ I / a n d  for every s t> s(e, i, q, j) .  We may assume that s(s, i, q, j + 1) > 

> s(e, i, q, j). 
We want to prove that condition (6.40) is uniform with respect  to q, for i q [ ~< H + 

+ M.  By (0.3), (6.6), and (6.28) we have 

(6.41) q')- q")i q-- ~' ~-~ 

for every a ~ Ij, for every s i> j ,  and for every q', q" with 0 < [ q' I, I q"l <~ H + M. This 

implies 

(6.42) 

<~k4 i q ' - q " l  1/('~- I) u(Ki(7)) 

Y ~ Ii, for every for every s I> j i> i, and for every q', q" with 0 < I q' I, I q"l ~< H + M. 
Given an integer i and e > 0, we fix a finite sequence %, ql, -.., qk of non-zero real 
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numbers such that 

t - H - M = q o  <ql <... <qk =H + M, 

for r = l , . . . , k .  (6.43) k4 Iqr- qr~-i 11/(m-1) v ( K / ( 7 ) )  < ii~1 

Let 6(s, i) = 1 /Vn  min ~(~, i, qr), where 5(~, i, q) is defined before formula (6.37). 
By (6.29) there exists ~ z) ~- z such that for every j ~j(~, i) 

(6.44) 2 ~ ~j ~j < 5 (s, i) and ~j ~j < ~ i.  

For everyj  ~>j(~, i) we set s(e, i, j)  = max{j, max s(~, i, q~, j)}. If ]ql ~< H + M, by 
(6.43) there exists q~ such that 

8 
]ca Iq-q~ 11/('~-1) v(Ki(~)) < i~i-- ~ 

From (6.16), (6.40), and (6.42) we obtain 

(6.45) 2(Ki'(y),q)-3e Iq l̂ -c561ql Z v(Kj(a)\~."(a)) <- 

~ CA(~j(a)\~js, q)<~(~,~(y),q)+3 ~ Iql 

for every 7eI~, j~>j(e, i), s>~s(e, i , j ) ,  and q with Iql <~H+M. 

Choice of Q 8. Let us f~x s with 0 < ~ < 1. By (6.29) there exists an integer i such 
that 

1 
(6.46) ~- < 

If i is large enough we have 

and 2 i Q i < e .  

v ~9\ 7) < - -  
7 ~ 2 

By Lemma 4.2 we have also 

for i large enough. Therefore we may assume that 

2 
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Let  s(e, i) =s@, i , j (E ,  i)) .  Since s(~, i , j  + 1) >s ( e ,  i , j )  for every j>~j(e, i), we 
define 

(6.48) ~)~ = ~ j ,  ~ = }.j, x~ = 

for s(E, i, j )  ~< s < s(e, i, j + 1) and j >i s(s, i). Moreover we set  Q s = ~ 1, ;t~ = ~ 1, and 
x(~) _ ^(1) for s < s(~, i). Then Q~ is non-increasing and tends to zero as s--+ ~ .  More- a - -  X a  

over, condition (4.1) follows from (6.28). It  is easy to see that )~ ~ and ~) ~ satisfy (4.3) and 

(4.4). For  every y e Ii we define 

(6.49) [(i)(y) = {a EI~: K~(a)eKe(y)}. 

Then I~(~)($) = I~)(~) for s(~, i, j )  ~< s < s(z, i, j + 1). By (6.44) this implies 

(6.5o) 2 V ~ o ~  < 5(E, i) and ) ~ Q ~ < ~ i ,  

for every s/> s(e, i). For  every a e l s  we define 

K~"(a) = K(x(~),(,~ - 3) ~)~). 

Then, by (6.45), we have 

(6.51) )~(K~'(7), q ) - 3 s  Iqi ^ - c56 ]ql ~ ,  r ( K A a ) k K s " ( a ) )  < 
I Zi I a ~I(J)(7) 

CA (a) \t? q)+3s 

for every y e Ii, s i> s(s, i), and q with I ql ~< H + M. 

7. - The l imi t  boundary  va lue  problem.  

In this section we shall prove Theorem 1.5 about the boundary value problem satis- 

fied by the limit function uo(x). Let  us fLX 0 < s < 1 and an integer i satisfying (6.46). 

We shall use the sequences ~ s and 2 s defined by (6.48) and the sequence/~ s defined by 

(4.5). 

PROOF OF THEOREM 1.5. - The strong_convergence of u~(x) to Uo(X) in W I ( ~  ') for 
p < m and for subdomains ~ '  such that tg' c t9 is a consequence of the asymptotic ex- 

pansion (5.1) proved in Section 5 together with Lemmas 5.2, 5.3, and 5.4. Since the se- 
quence u~(x) is bounded in W~(~2), we immediately obtain the strong convergence of 

us(x) in W~(~)  for every p < m. 
Let  g(x) be an arbi trary function of class Co1(~9) such that 

(7.1) 
I ag(x) I 

max tg(x) l + max <~ 1 
xEt~ x ~  ~ " 
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Let us introduce the sequence 

5 
(7.2) g~(x) = g(x) + ~, (J) ~ (x), 

j=l 

where 

0(1)(x) : Z ( g ( S ) - - g ( x ) ) ~ P ( ~ ) ( X ) ,  
aEI s 

o ~ ) ( x )  = E E ,-(~)-g(x))v~(x) Waft 
a~Is fleIs(a) 

-(s) 

aeI~ f ( s )  __ "~a- (S) aeI:' ~ s  ' 

O(4)(x) X" X' .(~)v(~)(x 1) F ~ ( x )  
-~ - L.~ L.~ gaff aft ~ ~ a~Is flels(a) 

(s)( w ( S ) ( x )  ) 
o~(x) - - -  E go ~ ~ - ~  ~ ) ( x ) E  X~(X)-- 

aeI~ ." a -- a flsls(a) 

()x) 
a EI~' 2it s /5 els(a) 

Here g(~)a and g,(~) are the mean values of the function g(x) in the cubes K~(a) and 
_-~), �9 (~) (8) (~) while w, (x), ~ (x), F,~(x) and ~/~(x) are the functions defined by (4.14), K~(a, 

(4.15), (4.49), and (4.41). 

LEYIMA 7.1. - Assume  that conditions A1, A2, A3, B1, B~ are satisfied. Then there 
o 

exists a number  s4, depending on g( x ), such that g( x ) g~ ( x ) belongs to W 1 (Q) for  every 

s >~s4. 

PROOF. - See Lemma 5.2 in [59]. 

LEMMA 7.2. -Assume  that conditions A1, A2, A3, B1, B2 are satisfied. Then the se- 
quences ~(~l)(x), ~ ) ( x ) ,  ~(~4)(x), ~(~5)(x) converge to zero strongly in W~(Q)  as 

PROOF. - The strong convergence of Q ~)(x), j = 1, 2, 4, 5, in W 1(t9) can be obtained 
as in the proof of the convergence of r~ ) in Lemma 5.2. For the estimate of the deriva- 
tives of r we use the inequality If~ (~) - ua- (~)l >2tt~ for a e I ~ ,  which follows from 
(4.13). Using also the arguments which lead to (5.6) we obtain 

i (5) m f ~)s (X) 1-2m -1 
dx C41~ts ~s  .v(~'~) ~ t s V ( ~ r ~ ) ,  

ax 
~2 

where the last inequality follows from (4.5). �9 



62 GIANN[ DAL MASO - IGOR V. SKRYPNIK: Asymptotic behaviour, etc. 

LEMMA 7.3. - A s s u m e  that conditions A1, A2, As, B1, B2 are satisfied. Then the se- 
quence Q(~S)(x) is bounded in W~($2) and converges strongly to zero in W~(Q) for 
p < m .  

PROOF. - The strong convergence of ~o~)(x) in L,~(x) follows from (4.26) and from 
the  inequality (Remark 2.2) 

(7.3) I v~ (~)(x, q) I ~< l ql for x e ~ .  

We estimate the derivative of Q(~/(x) in L~(x) by using (4.15) and we obtain 

(3) m 3Qs (x) 
(7.4) dx <~ 

l c~x 
~9 

i ~ o (  )1 ~ 
~af(S)--u(S)a ]m ~X 

+ 

! = F i 
+ r 

where Ea (~) (/~) = { x e g2 0: I w~ (~) (x) ] ~< # }. Thus in the first integral over Ea (~) (/~ ~) we can 
majorize lw(j)(x)l by #s. 

Since ~ e ~  ~< ( ~ e ~ ) "  ~<~  by (4.5) and (4.12), from Lemma 2.1 we obtain 

Ea (s) (#) 

(~> Cm (K/ (a) \$2 ~) c58z(max{ if~ (~>- uo i, 2zs} )  m-1 

for every # ~Tith 0 </~ ~< max { Ifa~r(s) --  '~a- (~) ], 2/~ ~}. From condition B1 and from (7.4) and 

(7.5) we obtain 

I i ~(s3)(X) m dx • c59 E ?](Ks'(a)) < c59!2(~r~) �9 
a x  a E I~ 

The proof of the strong convergence of Q(~3)(x) in W~($2) is totally analogous with the 
proof of the same property for r(~3)(x) in Lemma 5.3. �9 

PROOF OF THEOREM 1.5 (Continuation). - According to Lemma 7.1 we can take the 
test  function of(x)=g(x)g~(x)  in the integral identity (1.10) corresponding to the 
boundary value problem (0.1), (0.2). We obtain that 

(7.6) J1 (s) + J2 (s) + J~(~> = 0,  
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where 

(7.7) 

f a (x, - 
J=152 

aU~ax( X ) ) ~8 (g( x ) )2 dx + 

Q 

au~(x) ) a 

+ f ao x, uAx), --3us(x) ~, (~(x) O~k)(x))dx, 
8x k = 

8us(x) ) 8 
- -  o~ (x) )  dx. Sx Sxj (g(x) (~) 

The above mentioned strong convergence of us(x) to Uo(X) in W~(~) for p < m al- 

lows us to pass to the limit in j(1) and to obtain 

(7.8) f ( 9%(x) J(1 s) = ~ aj x, Uo(X), 
j = 1 ~ X  

8 ( g ( x ) f i d x +  

�9 S o(x.0(x) 
c~x ' Q 

where ~?(s 1) tends to zero as s---> ~ .  Taking into account Lewmmas 7.2 and 7.3, the 

boundedness of us(x) in W~(t~), and the boundedness in L~ (~) of the sequences 
Q~)(x), k = 1, ..., 5, we infer that 

(7.9) ) i r a  J(~) = o . 

It remains to study the behaviour of J~(~). Using the asymptotic expansion (5.1) for 
uAx) we obtain 

(7.10) 

where 

- at(x, uAx), aUo(X_____~) 
8x 

+ 8r(~)(x)))3x 

8 
- -  ( g ( x )  e ( ) ) (x )  ) d x  , 
ax~ 
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J(5 ~) = ~ aj x, u~(x), 8Uo(X) + - a j  x, u~(x), �9 
j = 1 ~ X  ~ X  ~ X  

t2 

8 
- -  (g(x) e~8)(x)) dx , 
ax3 

8x - aj x, O , $r(~3)(x))) 3 ( g ( x ) Q ~ a ) ( x ) ) d x ' S x  ~xj 

f a (x, o 
s j = l  

3r(~3)(x) ) 3 
3x ~ (g(x) ~ T (x)) dx. 

It is easy to prove that 

(7.11) l i ra ([J4(~) [ + IJs(~) I + IJ~ (~) t) = 0. 

Since Q ~3)(x) is bounded in W~ (s (Lemma 7.3) and w~ (x)_converges to zero strongly in 
W~(s ) for every open set ~ '  such that supp(g)c s s $2 (Lemma 5.4), the esti- 
mate for J4 (~) is analogous with the estimate for I2 (~) in the proof of Lemma 5.4 (see [59], 
Theorem 4.9). The estimate of J5 (~) is analogous with the estimate of I8 (~) in (5.10), while 
the estimate for JG (~) is analogous with the estimate for I4 (~). 

We deal now with J7 (~), writing this term in the form 

(7.12) 
(g (~))2 r ( 

a e I s j = l  .' a a QO 

6 
o, 3v:)(x) av:)(x) dx + Z R?) 

8x 8xj j = ~ ' 

where 

J a  a ~0  

R(~  ~) = - ~ r ( ~ i ~ ; ( ~  ) g ( x )  . 

' " =  ~ a  - - a  G(S)  

( ) )  �9 aj x, o, 7 x  (v("~)~T)(x) 7xj (v(2) ~T)(x)-a~ x, o, av(2)(x)ax av(j)(X)~xg 

a c I ~ j = l  Ua (s) 
J a Va 

- -  d x ,  

d x  , 
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j~l (g (S))2 f ( R(J)= ~ (-sa--(~) aj x, 
;'= f~ Ua ~o\G(.~) 

(s) X o, s %  ( ) Sv(.~)(x) 

8x ) 8xj 
dx  , 

= -  g(x)aj x, O, (v.(~)q~))(x) "- (~) ~" (w, ~ ) ) ( x )  dx,  
aeI~' j= l -~SG(s ) -~X ~Xj 

j= 1 

sr(~3)(x) 1 (3) ag(x) 

2x ) Q ~ ( x ) Sxj 
dx.  

In (7.12) and in the definition of R) s) the function v(J)(x, f (~)-u(J  )) is denoted by 

v(J)(x), while w(j)(x) is the function defined by (4.14). As in Section 4, Ga (~) is the set 

where ~ ) ( x )  is different from zero. 

LEMMA 7.4. - A s s u m e  that conditions A1, A2, A3, B1, B2 are satisfied. Then 

(7.13) lim Ry)= o 

for k=  1, ..., 6. 

PROOF. - We first prove (7.13) for k = 2 ,  3 , 4 .  Since ~v~)(x) = 1  if a ~ I j  and 

I v~ (~) (x, f~(~) - u~ (~)) I ~> tt~, the integral in the definition of R2 (~) can be replaced by an in- 
tegral on the set E~ (~)(/~ 8) A " (~) where (~) ~ , E a (# ~) is the set defined after (7.4). Since 
Iv(j)(x)l <<.#~ in E~(~)(#,), from (1.8), (7.5), and B 1 we obtain 

IR(~)l < C6o ~ ,  r(") _ (8) 1 + dx <. 
�9 I a E(S)(#s) 

< C61/'ts E Cm(gs ' (a ) \~ '~s )  < c61~sV(~r �9 
aeIg 

By Lemma 4.1 this implies (7.13) for k = 2. The proof for k = 4 is similar. For  k = 3 

the result follows from (7.1) and from the estimate obtained in (7.5) with /~ = 

= I f ~  (*) - ua-(*)1" 

Since ~t~Q, ~< (~.,~,)~ ~</~, by (4.5) and (4.12), from Lemma 2.1 we obtain 

 (1,1 ,; 
n0 8x 8x 

< c6~ If(. ~) - "~- (~) I t , ~ -  ~ c ~  ( g ;  (~) \ ~  ~) 

for every a eI~'. Using (1.8), (7.14), condition B1, and Lemma 4.1 we obtain (7.13) for 
k = l .  
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Sincelw~(~)(x) I ~<2#8 for acl~',  by (4.15) we have 

a aw(~ s)(x) 
(7.15) [ ~x (W(~) q~(J))(x) i <~ c63 3x I 

for every a~I~'. From (1.8) and (7.15) we obtain that IR(sS)l is less than or equal to 

(f(i i) cG-A4 ~ 3x Sx 

G 

�9 ~ (~)  dx + 
3x 

i av~)(x ) s~8>(x) 1/2 Sw(S) (x )  2 \1/2 

- -  + % ' ) ' 1  I dx I I ~x i dx " + 
~ s  acid' ~X I a ax 

Using (7.5) with/~ = 2# ~, together with the estimates (4.23), (4.24), (7.14), and recalling 

that I v~ (~) (x, f~(~) - u~(~)). I ~< 2/~ for a c I~', we obtain 

iR(J) i <~ c65(tt(: ~-')/m + #(s ~-1)/2) E v(K;'(a) ) <~ c66tt(~-l)/'~v(Q), 
a E I t s  ' 

and the right hand side of the last inequality tends to zero as s--> ~ by Lemma 4.1. 

Therefore (7.13) holds for k = 5. 
Finally the convergence of R6 (8) to zero follows from (1.8), from Lemmas 5.3 and 7.3, 

and from the fact that the sequence ~)~)(x) is bounded in L~(tg). �9 

Now we return to (7.12) and we study the behaviour of the first term of the right 
hand side as s -~  ~ .  Let E~ be the sequence of real numbers defined by the 

equality 

(7.16) j= i f ( s )  u(8) ] aJ x,O, Sx axj 
E ~ s  J a - -  a ~ 0  

= f C(x , f (x ) -  Uo(X))(g(x)) 2 dr(x)+ Es. 
Q 

LEMMA 7.5. -Assume  that conditions A1, A2, As, B1, Be, C are satisfied. Then there 
exists a constant k22, independent of the constants ~ and i used in (6.48) in the defini- 
tion of the sequences Q~ and ~s, such that for every s >I s(e, i) we have 

(7.17) ]E~ I <~ k22 z~/(~-l) + k22( T(~) )l/m + Y~), 

where v(r) is the function defined in (3.5) and y~) tends to zero as s - - ) ~ .  
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(7.18) 

PROOF. - By the definition of capacity given in (1.21) we have 

9v. ( )  
2 J + x, 0, 

a E Is j = 1 ~X ~Xj 
J a  a QO 

(g(8))2 
= ' ,to a ) E (1) (a)\Q~,f~ - + , E E r(-~-u+C~(K8 + ^ + 

7 ~ I i  aeI(si)(Y ) ,, a a 

where 

7nc67 

E~ (1) E (g(~))2 = ~----(~) CA(Ks'(a)\t~ f(~) (~)) 
a~J} ~) f~ ua 8, ~ ~ - u, 

and 

J(s~ U I(i)(7). 

By (0.3) and (6.10) for every s I> s(s, i) we have 

(7.19) E(s~)<~c6~ E Cm(Kj(a)\~28)<<-c67 ~ u(K~'(a)) <<- 

where, in the last inequality we use Lemma 4.2 and the inclusion 

~+ ~ 6)~) ) ,  (7.20) U K;'(a)c U (K(~(r i), ~i~i)\K(x~ ,( i-- 
a E j}0 

which follows from (6.50). From (6.46) and (7.19) we obtain 

(7.21) E~ (1) < 7nc67su(Q) 

v (~ )  , 

for every s I> s(e, i). 
Let  ~7~(i), +~(i)y , ur-(8' i) be t h e  mean values of the functions g(x),f(x), u(oS)(x) in the cube 

Ki(7). Then we have 

(s) 2 (ga ) 
U a ) ---- (7.22) ~ ~ f(~--~--~8)CA(Kj(a)\~8'f(~8)-  (8) 

reI~ ael(si)(Y ) .' a a 

(g~))~ 
r~ ~ ~(iT-~j(,,i) CA(K/(a)\Qs'f(Yi) -<8'~))+E~(2) ^ --  Uy , 

a~I(si)(Y) J 7  w y  

where, by Lemma 2.4 and condition B~, 

IE(2) I<~k4(H+M)U(~n-1) ~ Z I(g(~)) 2 ~(i) 2 - ( g r )  ] v (K; ' (a ) )  + 
7 e l i  aeI(si)(7) 

+ k 4  E E ( I S ( S ) - f i ( i ) ]  1 ~ ( m - l ) +  lu(a 8) -- Uy-(S'i) l : l ( m - 1 ) ) y ( K ~ ' ( a ) ) .  

7 e l i  aEI(si)(7) 
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As  g(x)  is Lipschitz continuous, from (0.3), (1.12), and (6.46) we get 

IE~(~) I < c 6 s ( ~ ) , / ( ~ - ~ )  ~(~)  + 

_ f )lj  lm-i,, ~-C68(P(O))(m2-m-1)/(m(m 1))(a~/sK~(a) l- (~)- U(O~)(X) I'~ & ( x )  + 

A_ C68 ( y ( ~ ) ) ( m  2 - m - 1 ) / ( m ( m  -1)) t U (s) -- g(r ~' O(X) ] m dr(x )  

R~( 

From the Poincar6-Wirtinger inequality proved in (3.13) and from (6.46) we ob- 
tain 

(7.23) IE(~2) I <~ c69 e ~/(m ~) + c69(v(s) ) 1/m $Uo(X) dx  
ax 

for every s I> s@, i). Let E~ (3) be defined by 

(i) 2 
(s, i) ) = 

(7.24) ~" ?(i; _-- ~ ,  i) 

~ (i) 2 f = ~ ( g ~ )  

R;(r) 

C(x, i f )  ~(~, o) &(x) + E(~ 3) - -  U y  

By (6.15), (6.24), and (6.51) for every s >/s(s, i) we have 

IE~ (3) ] < 3e + C7o v(F~ A ~2) + C7o v(Fi A Q),  

where F~ is the set defined in (4.7) and Fi is the set which appears in the right hand side 
of (7.20). By Lemma 4.2 and by (6.46) we have 

(7.25) IE~(a) I ~< C71E -~- c7--~-1 

for every s ~>s(s, i). Since the function g(x)  is Lipschitz continuous by (7.1), we 
have 

(7.26) A(i) 2 f (g~ ) 

R:(r) 

C(x,  ~(i) A (8, - ur i)) d r (x )  = 

= f -(*' ~ d r ( x )  + Es (4) E C(x, 2#) - u~ 

K~'(y) 

where, by (6.26) and (6.46), 

(7.27) [E (4) ] < C72~iQiY(~r'2) <<- C73~ 
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for every s >I s(e, i). We now write 

(7.28) 

K((7) 

C(x, j~i) _ ur~ (~, i)) (g(x) )2 dr(x) = 

= f C(x, f (x )  - u(o~)(x))(g(x)) 2 dr(x)  + E~ 5) . 

Since C(x, f (x)-u(o~)(x))  is bounded uniformly with respect to s, by (1.12), (3.13), 
(6.27), (6.46), (6.47) we have 

i 
(7.29) IE~6) I <c74 ~ ( l ~ ) - f ( x )  I1/(m-'+ I~)8,~)-u(o~)(x)ll/(m-1))d,(x)+cT~e< 

reli 
K:(~) 

< C75(~i~i)Y/(m-1) + C75 ~ lUr s' ~) -- u(S)(x)I  m d v ( x )  + C74~ < 

/~'(~) 

for every s >I s(s, i). Finally we write 

aUo(X)ax m dx)l/(m(m-1)) 

(7.30) f C(x,f(x)-u(oS)(x))(g(x))  2 dr (x )=  f C(x , f ( x ) -uo (x ) ) (g (x ) )  2 du(x)+E(6) " 
Q 

As Uo(X) is Cm-quasi continuous, u(oS)(x) converges to uo(x) for all x �9 ~ except for a set 

of m-capacity zero (see [61], Theorem 3.3.3). By condition B2 the measure u belongs to 

the dual of the Sobolev space W~(~) (see [62], Theorem 4.7.5), thus it vanishes on all 

sets of m-capacity zero. Therefore U(oS)(x) converges to Uo(X) almost everywhere with 
respect to the measure v and, consequently, 

(7.31) lim E~ (~) = 0 
S ---> co 

by (6.26), (6.27) and by the dominated convergence theorem. Inequality (7.17) follows 
now from (4.6), (7.18), and (7.21)-(7.31). �9 

PROOF OF THEOREM 1.5 (Conclusion). - Let us define E by the equality 

(7.32) s( s( aj x, Uo(X), ~ - - .  dx + ao x, Uo(X), - -  (g(x) ) 2 dx= 
j = 1~ 3x 3xj Q 3x 

= f C(x,](x) - Uo(X))(g(x)) 2 dr(x) + E .  
Q 
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Using (7.6)-(7.13), (7.16), and (7.17) for every s/> s(e, i) we obtain 

(7.33) iE i <~ k22~/(m-1) + k22(v(c) )l/m + y~3) , 

where ~ ~3) tends to zero as s--) ~ .  In this inequality the left hand side is independent 

of ~ and s, while the right hand side can be made arbitrari ly small for sufficiently large 

s and sufficiently small e. This shows that  E = 0 and that  identity (1.23) is satisfied if 

of(x) = (g(x)) 2, with g(x) in Co ~ (~) .  By a standard approximation argument  we can es- 
o 

tablish (1.23) for every  ~(x) in w l ~ ( t ) ) ~  L~ (t)). 
O 

Finally, Uo(X) belongs to the set f (x )  + W~(t)) ,  since this is t rue for u~(x) for every  

s. This shows that  uo(x) is a solution of the boundary value problem (1.23) and con- 

cludes the proof of Theorem 1.5. �9 
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