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1 INTRODUCTION. Qualitative results on the long-term behaviour of dynamical
processes are of great importance in the applications of differential equations, dynamical
systems, and control theory to science and engineering. Although Lyapunov’s famous
memoire on the stability of motion (published in 1892 in Russian) was translated into
French in 1907 and reprinted in the U.S.A. in 1949, [23]1 it was only at the end of the
1950s that scientists in the West began to appreciate, use, and develop further Lyapunov’s
seminal contributions to stability theory. This contrasted with the pre-eminence Lya-
punov’s direct method had achieved in the Soviet Union as a major mathematical tool in
the context of linear and nonlinear stability problems (see [15]). Today, Lyapunov’s di-
rect method is a standard ingredient of the syllabuses of university courses on differential
equations, dynamical systems, and control theory taught in mathematics, engineering, and
science departments worldwide. With Lyapunov’s direct method as exemplar, this paper
attempts to provide a self-contained, elementary, and unified approach to the analysis of
certain aspects of the asymptotic behaviour of solutions of ordinary differential equations
and differential inclusions. As a starting point, we make the simple observation, due to
Barbălat [3], that if a function y : [0,∞) → R is uniformly continuous and integrable,
then y(t) necessarily approaches 0 as t → ∞ (see section 3 for a proof). This result,
usually referred to as Barbălat’s lemma, was derived in [3] as a tool for the analysis of
the asymptotic behaviour of a class of systems of nonlinear second-order equations with
forcing. In the context of an autonomous ordinary differential equation ẋ = f(x) with
locally Lipschitz f : R

N → R
N , Barbălat’s lemma leads in an entirely elementary manner

to the invariance principle of LaSalle, a generalization of Lyapunov’s theorem on asymp-
totic stability. The following sketches this elementary argument. Let V : R

N → R be
continuously differentiable and assume that Vf (ξ) := 〈∇V (ξ), f(ξ)〉 ≤ 0 for all ξ in R

N .
Moreover, assume that x is a bounded solution of the differential equation. Then V ◦ x is
bounded with derivative (d/dt)V (x(t)) = (Vf ◦x)(t) ≤ 0 for all t ≥ 0. Therefore, (V ◦x)(t)
converges to a finite limit as t→∞, from which the integrability of Vf ◦x follows. Since x
is bounded, the derivative ẋ = f(x) is also bounded, and thus x is uniformly continuous.
Therefore, we may conclude that the integrable function Vf ◦ x is uniformly continuous.
By Barbălat’s lemma, Vf (x(t)) → 0 as t → ∞, implying that x(t) approaches the zero-
level set V −1

f (0) of Vf as t → ∞. Consequently, the ω-limit set Ω(x) must be contained

in V −1
f (0). Combining this with the fact that Ω(x) is invariant with respect to the flow

generated by the differential equation, we see that x(t) approaches the largest invariant
subset contained in V −1

f (0): this is LaSalle’s invariance principle, which (together with
its variants and generalizations) is ubiquitous in the stability theory of differential equa-
tions (including control theory) and dynamical systems (see, for example, [1], [13], [16],
[18], [19], [20], [28], [31], [32]). The importance of the invariance principle stems from

1 It was eventually translated into English by Fuller in 1992 [24], a hundred years after the publication
of the original.

1



the fact that the conditions on V are less restrictive than those imposed in the classical
result of Lyapunov on asymptotic stability (which can be considered as a special case of
the invariance principle): in particular, the invariance principle does not require Vf to be
strictly negative; see section 3 for more details. We mention that the “standard” proof
of LaSalle’s invariance principle, ubiquitous in the literature (see, for example, [1], [13],
[18], [19], [20], [28], [32]), is somewhat different insofar as Barbălat’s lemma is not usually
invoked. Instead, the convergence of V (x(t)) as t → ∞ is used to conclude that V is
constant on Ω(x), which in turn implies (via a straightforward argument based on the
invariance of Ω(x)) that Vf (ξ) = 0 for all ξ in Ω(x). In this paper, we show that suitable
generalizations of the first argument (involving Barbălat’s lemma) lead to diverse results
on asymptotic dynamic behaviour in the more general setting of nonautonomous ordinary
differential equations and (autonomous) differential inclusions. Our goal is first to develop
a compendium of results pertaining to asymptotic behaviour of functions and constitut-
ing generalizations of Barbălat’s lemma. We achieve this by elementary arguments based
on concepts of meagreness and weak meagreness of functions, which, in conjunction with
uniform continuity on particular subsets of [0,∞), capture certain asymptotic properties
of functions t 7→ y(t) as t → ∞. This compendium then forms the basis for a unified
approach to various results (including generalizations of LaSalle’s invariance principle) on
asymptotic behaviour of solutions of (nonautonomous) ordinary differential equations and
(autonomous) differential inclusions. The paper has a tutorial flavour and, for purposes
of illustration, we have included detailed descriptions of three examples.

2 PRELIMINARIES. In order to render the paper essentially self-contained, we
first assemble some familiar facts, notation, and terminology. Throughout, N denotes
the set of positive integers, R + := [0,∞), and µ denotes Lebesgue measure on R +. The
Euclidean inner product and induced norm on R

N are denoted by 〈·, ·〉 and ‖·‖, respectively.
Let x : R+ → R

N be a Lebesgue measurable function: if 0 < p < ∞ and the function
t 7→ ‖x(t)‖p is Lebesgue integrable (respectively, locally Lebesgue integrable, that is,
Lebesgue integrable over each compact subset of R +), then we write x ∈ Lp (respectively,
x ∈ Lp

loc); if the function t 7→ ‖x(t)‖ is essentially bounded (respectively, locally essentially
bounded), then we write x ∈ L∞ (respectively, x ∈ L∞loc).

Let A be a nonempty subset of R
N , and let h : A→ R

P . For a subset U of R
P , h−1(U)

denotes the preimage of U under h, that is, h−1(U) := {ξ ∈ A : h(ξ) ∈ U}; for notational
simplicity, if u belongs to R

P , then we write h−1(u) in place of the more cumbersome
h−1({u}). We recall that h is continuous at a point ξ0 of A if, for every ε > 0, there exists
δ > 0 such that ‖h(ξ0)− h(ξ)‖ ≤ ε for all ξ in A with ‖ξ0 − ξ‖ ≤ δ. If h is continuous at
ξ for all ξ in a subset B of A, then h is said to be continuous on B; if B = A, then we
simply say that h is continuous. The function h is uniformly continuous on a subset B of
A if, for every ε > 0, there exists δ > 0 such that ‖h(ξ1)− h(ξ2)‖ ≤ ε for all points ξ1 and
ξ2 of B with ‖ξ1 − ξ2‖ ≤ δ; if B = A, then we say that h is uniformly continuous. It is
convenient to adopt the convention that h is uniformly continuous on the empty set ∅. If h
is scalar-valued (that is, P = 1), then h is lower semicontinuous if lim inf ξ′→ξ h(ξ

′) ≥ h(ξ)
for all ξ in A, while h is upper semicontinuous if −h is lower semicontinuous.

The Euclidean distance function for a nonempty subset A of R
N is the function dA :

R
N → R+ given by dA(v) = inf{‖v − a‖ : a ∈ A}. The function dA is globally Lipschitz

with Lipschitz constant 1, that is, ‖dA(v) − dA(w)‖ ≤ ‖v − w‖ for all v and w in R
N . A

function x : R+ → R
N is said to approach the set A if dA(x(t))→ 0 as t→∞. For ε > 0,

Bε(A) := {ξ ∈ R
N : dA(ξ) < ε} (the ε-neighbourhood of A); for a in R

N , we write Bε(a) in
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place of Bε({a}). It is convenient to set Bε(∅) = ∅. The closure of A is denoted by cl(A).
In his well-known book [4, pp. 197], Birkhoff introduced the notion of an ω-limit in the

context of trajectories of dynamical systems. For the purposes of this paper, it is useful
to define the concept of an ω-limit point for arbitrary R

N -valued functions defined on R+

(see also [16, p. 112]). Let x : R + → R
N . A point ξ of R

N is an ω-limit point of x if there
exists an unbounded sequence (tn) in R+ such that x(tn) → ξ as n → ∞; the (possibly
empty) ω-limit set of x, denoted by Ω(x), is the set of all ω-limit points of x. The following
well-known properties of ω-limit sets (see, for example, [1], [16], and [31]) are summarized
here for later reference (see also Figure 1).

Lemma 2.1. The following hold for any function x : R + → R
N :

(a) Ω(x) is closed.

(b) Ω(x) = ∅ if and only if ‖x(t)‖ → ∞ as t→∞.

(c) If x is continuous and bounded, then Ω(x) is nonempty, compact, and connected, is

approached by x, and is the smallest closed set approached by x.

(d) If x is continuous and Ω(x) is nonempty and bounded, then x is bounded and x
approaches Ω(x).

trajectory of x

Ω(x)

Figure 1.

3 MOTIVATION: BARBĂLAT’S LEMMA, LASALLE’S INVARIANCE PR-
INCIPLE, AND LYAPUNOV STABILITY. A function y : R+ → R is Riemann
integrable (on R+) if the improper Riemann integral

∫∞
0 y(s)ds exists, that is, y is Rie-

mann integrable on [0, t] for each t ≥ 0 and the limit limt→∞

∫ t
0 y(s)ds exists and is finite.

If y belongs to L1 and is Riemann integrable on [0, t] for each t ≥ 0, then y is Riemann
integrable on R+. Furthermore, if y is ultimately nonnegative (respectively, nonpositive)
in the sense that, for some τ in R +, y(t) ≥ 0 (respectively, y(t) ≤ 0) whenever t ≥ τ ,
then Riemann integrability of y implies that y is in L1. However, if y is neither ultimately
nonnegative nor ultimately nonpositive, the improper Riemann integral y may exist, but
y may fail to be Lebesgue integrable.

As a starting point, we highlight the following simple observation, due to Barbălat [3]:

Lemma 3.1 (Barbălat’s Lemma). If y : R + → R is uniformly continuous and Rie-

mann integrable, then y(t)→ 0 as t→∞.

Proof. Suppose to the contrary that y(t) 6→ 0 as t → ∞. Then there exist ε > 0 and a
sequence (tn) in R+ such that tn+1− tn > 1 and |y(tn)| ≥ ε for all n in N. By the uniform
continuity of y, there exists δ in (0, 1) such that, for all n in N and all t in R +,

|tn − t| ≤ δ =⇒ |y(tn)− y(t)| ≤ ε/2 .
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Therefore, for all t in [tn, tn+ δ] and all n in N, |y(t)| ≥ |y(tn)|− |y(tn)− y(t)| ≥ ε/2, from
which it follows that

∣

∣

∣

∣

∫ tn+δ

tn

y(t)dt

∣

∣

∣

∣

=

∫ tn+δ

tn

|y(t)|dt ≥ εδ

2

for each n in N, contradicting the existence of the improper Riemann integral
∫∞
0 y(t)dt.

Lemma 3.1 was originally derived in [3] to facilitate the analysis of the asymptotic be-
haviour of a class of systems of nonlinear second-order equations with forcing. Subse-
quently, Barbălat’s lemma has been widely used in mathematical control theory (see, for
example, [9, p. 89], [25, p. 211], and [28, p. 205]).

The following corollary is an immediate consequence of statement (c) of Lemma 2.1
and Lemma 3.1.

Corollary 3.2. Let G be nonempty closed subset of R
N , and let g : G→ R be continuous.

Assume that x : R+ → R
N is bounded and uniformly continuous with x(R+) ⊂ G. If g ◦x

is Riemann integrable, then Ω(x) ⊂ g−1(0) and x approaches g−1(0).

Elaborating on the arguments sketched in section 1, we will use Corollary 3.2 to derive
LaSalle’s invariance principle. Let f : R

N → R
N be locally Lipschitz and consider the

initial-value problem
ẋ = f(x) , x(0) = x0 ∈ R

N . (1)

Let ϕ denote the corresponding local flow, that is, t 7→ ϕ(t, x0) is the unique solution of
(1) defined on I(x0), its maximal interval of existence. It is well known that, if R+ ⊂ I(x0)
and ϕ(· , x0) is bounded on R+, then Ω(ϕ(· , x0)) is invariant with respect to the local flow
ϕ (see, for example, [1]).

The following “integral-invariance principle” is an easy consequence of Corollary 3.2.

Proposition 3.3. Let G be a nonempty closed subset of R
N , let g : G→ R be continuous,

and let x0 be a point of G. Assume that R+ ⊂ I(x0), ϕ(· , x0) is bounded on R+, and

ϕ(R+, x0) ⊂ G. If the function t 7→ g(ϕ(t, x0)) is Riemann integrable on R+, then ϕ(· , x0)
approaches the largest invariant subset contained in g−1(0).

Proof. Since ϕ(· , x0) is bounded on R+ and satisfies the differential equation, it follows
that the derivative of ϕ(· , x0) is bounded on R+. Consequently, ϕ(· , x0) is uniformly
continuous on R+. An application of Corollary 3.2 together with the invariance property
of the ω-limit set of ϕ(· , x0) establishes the claim.

Proposition 3.3 is essentially contained in [5, Theorem 1.2]: the proof given therein
is not based on Barbălat’s lemma. The foregoing proof of Proposition 3.3 is from [11].
LaSalle’s invariance principle (announced in [17], with proof in [18]) is a straightforward
consequence of Proposition 3.3. For a continuously differentiable function V : D ⊂ R

N →
R (where D is open), it is convenient to define the directional derivative Vf : D → R of V
in the direction of the vector field f by Vf (ξ) = 〈∇V (ξ), f(ξ)〉.

Corollary 3.4 (LaSalle’s Invariance Principle). Let D be a nonempty open subset

of R
N , let V : D → R be continuously differentiable, and let x0 be a point of D. Assume

that R+ ⊂ I(x0) and that there exists a compact subset G of R
N such that ϕ(R+, x0) ⊂

G ⊂ D. If Vf (ξ) ≤ 0 for all ξ in G, then ϕ(· , x0) approaches the largest invariant subset

contained in V −1
f (0) ∩G.
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Proof. By the compactness of G and the continuity of V on G, the function V is bounded
on G. Combining this with

∫ t

0
Vf (ϕ(s, x

0))ds =

∫ t

0
(d/ds)V (ϕ(s, x0))ds = V (ϕ(t, x0))− V (x0) ,

we conclude that the function t 7→
∫ t
0 Vf (ϕ(s, x

0))ds is bounded from below. But this

function is also nonincreasing (because Vf ≤ 0 on G), hence the limit of
∫ t
0 Vf (ϕ(s, x

0))ds
exists and is finite as t → ∞, showing that the function t 7→ Vf (ϕ(t, x

0)) is Riemann
integrable on R+. An application of Proposition 3.3 (with g = Vf |G) completes the proof.

Assume that f(0) = 0, that is, 0 is an equilibrium of (1). The equilibrium 0 is said to
be stable if for every ε > 0 there exists δ > 0 such that if ‖x0‖ ≤ δ, then R+ ⊂ I(x0) and
‖ϕ(t, x0)‖ ≤ ε for all t in R+. Furthermore, the equilibrium 0 is said to be asymptotically

stable if it is stable and there exists δ > 0 such that ‖ϕ(t, x0)‖ → 0 as t→∞ for every x0

satisfying ‖x0‖ ≤ δ. We recall the following result due to Lyapunov (the proof of which
can found in, for example, [13, p. 102], [16, pp. 154], and [31, p. 319]).

Theorem 3.5 (Lyapunov’s Stability Theorem). Let D be a nonempty open subset

of R
N such that 0 ∈ D, and let V : D → R be continuously differentiable. The following

statements hold:

(a) If V (ξ) > 0 for all ξ in D \ {0} and Vf (ξ) ≤ 0 for all ξ in D, then 0 is a stable

equilibrium.

(b) If V (ξ) > 0 and Vf (ξ) < 0 for all ξ in D \ {0}, then 0 is an asymptotically stable

equilibrium.

Combining Corollary 3.4 and part (a) of Theorem 3.5, we immediately obtain the
following generalization of part (b) of Theorem 3.5.

Corollary 3.6 Let D be a nonempty open subset of R
N such that 0 ∈ D, and let V :

D → R be continuously differentiable. If V (ξ) > 0 for all ξ in D \ {0}, Vf (ξ) ≤ 0 for all ξ
in D, and {0} is the largest invariant subset of V −1

f (0), then 0 is an asymptotically stable

equilibrium.

Corollary 3.6 frequently turns out to be useful in situations where the natural choice for
V does not satisfy the condition of strict negativity of Vf required in part (b) of Theorem
3.5.

Example 3.7. In this example, we describe a typical application of Corollary 3.6 in the
context of a general class of nonlinear second-order systems. Consider the system

ÿ(t) + r(y(t), ẏ(t)) = 0 , (y(0), ẏ(0)) = (p0, v0) ∈ R
2 , (2)

where r : R
2 → R is locally Lipschitz and differentiable with respect to the second variable.

Furthermore, we assume that r(0, 0) = 0. Setting x(t) = (x1(t), x2(t)) = (y(t), ẏ(t)), the
second-order system (2) can be expressed in the equivalent form (1), where f : R +×R

2 →
R

2 and x0 in R
2 are given by

f(p, v) = (v,−r(p, v)) , x0 = (p0, v0) . (3)
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Let ε > 0, set D = (−ε, ε)× (−ε, ε), and define V : D → R by (p, v) 7→
∫ p
0 r(s, 0)ds+v2/2.

It follows from the mean-value theorem that, for each (p, v) in D, there exists a number
θ = θ(p, v) in the interval (0, 1) such that

Vf (p, v) = −v(r(p, v)− r(p, 0)) = −v2 ∂r

∂v
(p, θv) . (4)

Claim. Consider (1) with f and x0 given by (3). If pr(p, 0) > 0 for all p in (−ε, ε) \ {0}
and (∂r/∂v)(p, v) > 0 for all (p, v) in D satisfying pv 6= 0, then the equilibrium 0 is
asymptotically stable.

We proceed to establish this claim. Using the hypotheses and (4), we infer that
V (p, v) > 0 for all (p, v) in D \ {0} and Vf (p, v) ≤ 0 for all (p, v) in D. Observe that
V −1
f (0) = {(p, v) ∈ D : pv = 0} (implying in particular that the claim does not follow

from part (b) of Theorem 3.5). Writing ϕ(t, x0) = (x1(t), x2(t)), we see that for x
0 = (p0, 0)

in D with p0 6= 0, ẋ2(0) = −r(p0, 0) 6= 0. Similarly, for x0 = (0, v0) in D with v0 6= 0,
ẋ1(0) = v0 6= 0. We conclude that solutions with these initial conditions do not remain in
V −1
f (0), showing that {0} is the largest invariant subset of V −1

f (0). The claim now follows
from Theorem 3.6.

As a special case of (2), we consider the Liénard equation

ÿ(t) + d(y(t))ẏ(t) + k(y(t)) = 0 , (y(0), ẏ(0)) = (p0, v0) ∈ R
2 ,

which describes a nonlinear oscillator, where d(y)ẏ represents a friction term that is linear
in the velocity and k(y) models a restoring force. We assume that the functions d : R → R

and k : R → R are locally Lipschitz and k(0) = 0. It follows from the foregoing discussion
on the stability behaviour of (2) (applied to r given by r(p, v) = d(p)v + k(p)) that 0 is
an asymptotically stable equilibrium state of the Liénard equation, provided that there
exists ε > 0 such that pk(p) > 0 and d(p) > 0 for all p in (−ε, ε) with p 6= 0.

We mention that there are many situations of interest in control theory where the
integrability condition in Proposition 3.3 is automatically satisfied, for example, in optimal
control (finiteness of an integral performance criterion). Proposition 3.3 is particularly
useful in the context of observed systems. In applications, it is frequently impossible
to observe or measure the complete state x(t) of (1) at time t. To illustrate the latter
comment, consider the observed system given by (1) and the observation

z = c(x) , (5)

where c : R
N → R

P is continuous with c(0) = 0 (see Figure 2 for a schematic illustration).
The observation z (also called output or measurement) depends on the state and should
be thought of as a quantity that can be observed or measured: an important special case
occuring when z is given by one component of the state. Observability concepts relate to
the issue of precluding different initial states generating the same observation: the initial
state of an observable system can in principle be recovered from the observation. The
system given by (1) and (5) is said to be zero-state observable if the following holds for
each x0 in R

N :
z(·) = c(ϕ(· , x0)) = 0 =⇒ ϕ(· , x0) = 0 ,

that is, the system is zero-state observable if x(·) = 0 is the only solution generating the
zero observation z(·) = 0. As an example consider system (2) introduced in Example 3.7.
Endowed with the observation z = x1 = y (that is, c(p, v) = p), it is trivial that the
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resulting observed system is zero-state observable. Similarly, it is immediate that, with
the observation z = x2 = ẏ (that is, c(p, v) = v), the system is zero-state observable if and
only if r(p, 0) 6= 0 for all p 6= 0.

ẋ = f(x), x(0) = x0 x
c z = c(x)

Figure 2.

The following corollary of Proposition 3.3 is contained in [5, Theorem 1.3] and es-
sentially states that, for a zero-state observable system, every bounded trajectory with
observation in Lp necessarily converges to zero.

Corollary 3.8. Assume that the observed system given by (1) and (5) is zero-state ob-

servable. For given x0 in R
N assume that R+ ⊂ I(x0) and that ϕ(· , x0) is bounded on

R+. If
∫∞
0 ‖c(ϕ(t, x0))‖pdt <∞ for some p in (0,∞), then limt→∞ ϕ(t, x0) = 0.

Proof. By the continuity and boundedness of ϕ(· , x0), it follows from Lemma 2.1 that
ϕ(· , x0) approaches its ω-limit set Ω := Ω(ϕ(· , x0)) and that Ω is the smallest closed set
approached by ϕ(· , x0). An application of Proposition 3.3 with G = R

N and g(·) = ‖c(·)‖p
shows that Ω ⊂ g−1(0) = c−1(0). Let ξ be a point of Ω. By the invariance property of
Ω, ϕ(t, ξ) lies in Ω for all t in R. Consequently, c(ϕ(· , ξ)) = 0. Zero-state observability
ensures that ϕ(· , ξ) = 0, showing that ξ = 0. Hence Ω = {0}, so limt→∞ ϕ(t, x0) = 0.

4 GENERALIZATIONS OF BARBĂLAT’S LEMMA. In Theorems 4.4 and
4.5, we present generalizations of Barbălat’s lemma and of Corollary 3.2 that allow in-
teresting applications to differential equations. To this end we introduce the concept of
(weak) meagreness that will replace the assumption of Riemann integrability in Barbălat’s
lemma. Recall that µ denotes Lebesgue measure on R +.

Definition 4.1. (a) A function y : R + → R is said to be meagre if y is Lebesgue
measurable and µ({t ∈ R + : |y(t)| ≥ λ}) <∞ for all λ > 0.

(b) A function y : R+ → R is said to be weakly meagre if limn→∞(inft∈In
|y(t)|) = 0 for

every family {In : n ∈ N} of nonempty and pairwise disjoint closed intervals In in R+

with infn∈N µ(In) > 0.

We remark that, in the theory of rearrangements of functions, the property of mea-
greness is sometimes referred to as “vanishing at infinity” (see [21, p. 72]). Moreover, it
is easy to link meagreness to the well-known concept of convergence in measure (see, for
example, [14]). To this end let y : R+ → R be Lebesgue measurable. For each n in N

define a function yn : R+ → R by

yn(t) =

{

0 if t ∈ [0, n] ,
y(t) if t > n ,

Then it is a routine exercise to show that y is meagre if and only if

lim
n→∞

µ({t ∈ R+ : |yn(t)| > ε}) = 0

for each ε > 0, that is, if and only if yn converges to 0 in measure as n→∞.
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From Definition 4.1 it follows immediately that a meagre function is weakly meagre.
The converse is not true, even in the restricted context of continuous functions (see Ex-
ample 7.1 in the appendix). It is clear that if a function y : R+ → R is weakly meagre,
then 0 belongs to Ω(y).

The following result gives sufficient conditions for meagreness and weak meagreness,
respectively.

Proposition 4.2 Let y : R+ → R be measurable. Then the following statements hold:

(a) If there exists a Borel function α : R+ → R such that α−1(0) = {0}, infs≥σ α(s) > 0
for all σ > 0, and α(|y(·)|) belongs to L1, then y is meagre.

(b) If there exists τ > 0 such that limt→∞

∫ t+τ
t |y(s)|ds = 0, then y is weakly meagre.

(c) If y is continuous and for every δ > 0 there exists τ in (0, δ) such that
∫ t+τ
t y(s)ds

converges to 0 as t→∞, then y is weakly meagre.

Proof. We prove only part (c) (the proofs of parts (a) and (b) are even more straightfor-
ward). Let y : R+ → R be continuous. We show that if y is not weakly meagre, then there
exists δ > 0 such that for every τ in (0, δ) the integral

∫ t+τ
t y(s)ds does not converge to 0

as t → ∞. The claim follows then from contraposition. So assume that y is not weakly
meagre. Then there exists a family {In : n ∈ N} of nonempty, pairwise disjoint closed
intervals with δ = infn∈N µ(In) > 0 and a number ε > 0 such that inf t∈In

|y(t)| ≥ ε for
each n. Since y is continuous, the function y has the same sign on In for each n. Without
loss of generality, we may assume that there are infinitely many intervals In on which y is
positive. Then there exists a sequence (nk) in N such that y has positive sign on Ink

for
all k. Denoting the left endpoint of Ink

by tk, we obtain
∫ tk+τ

tk

y(s)ds ≥ ετ > 0,

for each k in N and τ in (0, δ), showing that the integral
∫ t+τ
t y(s)ds does not converge to

0 as t→∞.

It follows immediately from Proposition 4.2(a) that, if y belongs to Lp for some p in
(0,∞), then y is meagre. Part (c) shows, in particular, that if y : R+ → R is continuous and
Riemann integrable on R+, then y is weakly meagre. However, we mention that continuity
and Riemann integrability of a function y : R+ → R do not guarantee that y is meagre
(Example 7.1 in the appendix describes a nonmeagre function that is both continuous and
Riemann integrable). The sufficient conditions for weak meagreness provided by parts (b)
and (c) of Proposition 4.2 are not necessary. To illustrate this, we construct in Example
7.2 a continuous function y that is meagre (and so a fortiori is weakly meagre), but is
such that, for each τ > 0, the integral

∫ t+τ
t y(s)ds does not converge to 0 as t → ∞.

By contrast, the sufficient condition for meagreness given in Proposition 4.2(a) is also
necessary (for a proof of this assertion, see [22]).

The following result will play a role in the subsequent derivation of generalized versions
of Barbălat’s lemma.

Lemma 4.3. Let A and B be nonempty subsets of R
N such that cl(Bλ(B)) ⊂ A for some

λ > 0. If x : R+ → R
N is uniformly continuous on x−1(A), then there exists τ > 0 such

that

t ∈ R+, x(t) ∈ B =⇒ x(s) ∈ Bλ(B) (s ∈ [t− τ , t+ τ ] ∩ R+) . (6)
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Proof. Seeking a contradiction, we suppose that property (6) does not hold. Then there
exist sequences (sn) and (tn) in R+ such that x(tn) in B and x(sn) 6∈ Bλ(B) for all
n, and sn − tn → 0 as n → ∞. Evidently, sn 6= tn for all n. Define In to be the
closed interval with left endpoint min{sn, tn} and right endpoint max{sn, tn}, and write
Tn = {s ∈ In : s 6∈ x−1(Bλ(B))}. For each n, let τn in Tn (a compact set) be such that

|τn − tn| = min
s∈Tn

|s− tn|.

Clearly, dB(x(τn)) = λ and dB(x(tn)) = 0 for each n. Combining this information with
the facts that τn belongs to In and limn→∞(sn − tn) = 0, we conclude that

(i) ‖x(tn)− x(τn)‖ ≥ |dB(x(tn))− dB(x(τn))| = λ > 0,

(ii) tn, τn ∈ x−1(A),

(iii) |tn − τn| → 0 as n→∞,

contradicting the hypothesis of the uniform continuity of x on x−1(A). Therefore, property
(6) holds.

The following two theorems, the main results of this section, provide our generalizations
of Barbălat’s lemma.

Theorem 4.4. Let G be a nonempty closed subset of R
N , let g : G → R be a function,

and let x : R+ → R
N be continuous with x(R+) ⊂ G. Assume that each ξ in G for which

g(ξ) 6= 0 has a neighbourhood U such that

inf{|g(w)| : w ∈ G ∩ U} > 0 (7)

and x is uniformly continuous on x−1(U). If g ◦ x is weakly meagre, then the following

statements hold:

(a) Ω(x) is contained in g−1(0).

(b) If g−1(0) is bounded and Ω(x) 6= ∅, then x is bounded and x approaches g−1(0).

(c) If x is bounded, then g−1(0) 6= ∅ and x approaches g−1(0).

(d) If x is bounded and g−1(0) is totally disconnected, then Ω(x) consists of a single

point x∞ which lies in g−1(0) (in particular, limt→∞ x(t) = x∞).

Proof. If Ω(x) = ∅, then statement (a) holds trivially. Now assume that Ω(x) 6= ∅. Let
ξ be a point of Ω(x). Since G is closed and x(R+) ⊂ G, Ω(x) ⊂ G and thus ξ belongs
to G. We show that g(ξ) = 0. Seeking a contradiction, suppose that g(ξ) 6= 0. By the
hypotheses, there exists a neighbourhood U of ξ such that (7) holds and x is uniformly
continuous on x−1(U). Choose δ > 0 such that the closure of Bδ(ξ) lies in U . Then

ε = inf{|g(w)| : w ∈ G ∩ Bδ(ξ)} > 0 . (8)

Choose δ1 in (0, δ). Since ξ is an element of Ω(x), there exists a sequence (tn) in R+ with
tn+1 − tn > 1 and x(tn) in Bδ1(ξ) for all n. An application of Lemma 4.3 (with A = U ,
B = Bδ1(ξ) and λ = δ − δ1) shows that there exists τ in (0, 1) such that x(t) is in Bδ2(ξ)
for all t in ∪n∈N[tn, tn + τ ]. Therefore, by (8),

|(g ◦ x)(t)| ≥ ε (t ∈ [tn, tn + τ ], n ∈ N) . (9)

9



Finally, since tn+1 − tn > 1 for all n and τ belongs to (0, 1), the intervals [tn, tn + τ ] are
pairwise disjoint. Combined with (9) this contradicts the weak meagreness of g ◦ x and
establishes (a).

A combination of statement (a) and Lemma 2.1 yields statements (b)-(d).

We remark that lower semicontinuity of the function ξ 7→ |g(ξ)| is sufficient to ensure
that (7) holds for some neighbourhood U of any ξ in G with g(ξ) 6= 0.

Barbălat’s lemma follows immediately from an application of Theorem 4.4(b) to the
situation wherein N = 1, G = R, g = idR, and x = y, in conjunction with the observation
that a uniformly continuous and Riemann integrable function y : R+ → R is weakly
meagre, implying that 0 is a member of Ω(y) and thus ensuring that Ω(y) 6= ∅. Corollary
3.2 is a simple consequence of statements (a) and (c) of Theorem 4.4.

When compared with Theorem 4.4, the next result (Theorem 4.5) posits that x be
uniformly continuous on x−1(Bε(g

−1(0))) for some ε > 0. We remark that, in certain
situations (for example, if g−1(0) is finite), this assumption is weaker than the uniform
continuity assumption imposed on x in Theorem 4.4. On the other hand, the assumption
imposed on g in Theorem 4.5 is stronger than that in its counterpart in Theorem 4.4.
However, under these modified hypotheses, Theorem 4.5 guarantees that x approaches
g−1(0) 6= ∅ without assuming the nonemptiness of Ω(x) or the boundedness of x.

Theorem 4.5. Let G be a nonempty closed subset of R
N , and let g : G→ R be such that

g−1(0) is closed and, for every nonempty closed subset K of G,

K ∩ g−1(0) = ∅ =⇒ inf
ξ∈K

|g(ξ)| > 0 . (10)

Furthermore, let x : R+ → R
N be continuous with x(R+) ⊂ G. If (i) x is uniformly

continuous on x−1(Bε(g
−1(0))) for some ε > 0 and (ii) g ◦ x is weakly meagre, then the

following statements hold:

(a) g−1(0) 6= ∅, x approaches g−1(0), and Ω(x) is contained in g−1(0).

(b) If g−1(0) is bounded, then x is bounded, x approaches g−1(0), and Ω(x) is a nonempty

subset of g−1(0).

(c) If g−1(0) is bounded and totally disconnected, then Ω(x) is a singleton {x∞}, where
x∞ is a point of g−1(0) (hence, limt→∞ x(t) = x∞).

Proof. For convenience, we set Z = g−1(0). It is clear that Z 6= ∅ (otherwise, by (10)
and the closedness of G, γ = infξ∈G |g(ξ)| > 0 and so |g(x(t))| ≥ γ for all t in R +, which
contradicts the weak meagreness of g ◦x). To prove statements (a) and (b), it now suffices
to show that x approaches Z. From the closedness of Z it then follows immediately that
Ω(x) ⊂ Z; moreover, if Z is bounded, then we can conclude that x is bounded and so
Ω(x) 6= ∅. Since, by assumption, the trajectory of x is contained in G, it is immediate
that, if G = Z, then x approaches Z. Consider the remaining case, wherein Z is a proper
subset of G. By the closedness of Z, there exists δ in (0, ε/3) such that G \ Bδ(Z) 6= ∅.
For θ in (0, δ), define

ι(θ) = inf{|g(ξ)| : ξ ∈ G \ Bθ(Z)} > 0 ,

wherein positivity is a consequence of (10) and the closedness of G \ Bθ(Z).
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In search of a contradiction, we suppose that limt→∞ dZ(x(t)) 6= 0. Then there exist
λ in (0, δ) and a sequence (tn) in R+ with tn → ∞ as n → ∞ and dZ(x(tn)) ≥ 3λ for all
n. By the weak meagreness of g ◦ x, there exists a sequence (sn) in R+ with sn → ∞ as
n→∞ and |g(x(sn))| < ι(λ) for all n, so dZ(x(sn)) ≤ λ for all n. Extracting subsequences
of (tn) and (sn) (which we do not relabel), we may assume that sn is in (tn, tn+1) for all
n. We now have

dZ(x(tn)) ≥ 3λ, dZ(x(sn)) ≤ λ, sn ∈ (tn, tn+1)

for all n. By the continuity of dZ ◦ x, there exists for each n a number σn in (tn, sn) such
that x(σn) belongs to B := {ξ ∈ G : dZ(ξ) = 2λ}. Extracting a subsequence (which,
again, we do not relabel), we may assume that σn+1 − σn > 1 for all n. Noting that
cl
(

Bλ(B)
)

⊂ Bε(Z) and invoking Lemma 4.3 (with A = Bε(Z)), we conclude the existence
of τ in (0, 1) such that dZ(x(t)) ≥ λ for all t in [σn, σn + τ ] and all n. Therefore,

{t ∈ R+ : |g(x(t))| ≥ ι(λ)} ⊃ ∪n∈N[σn, σn + τ ],

which (on noting that the intervals [σn, σn + τ ], are each of length τ > 0 and form a
pairwise disjoint family) contradicts the weak meagreness of g◦x. Therefore, x approaches
Z, implying that statements (a) and (b) hold. Finally, invoking the fact that the ω-limit
set of a bounded continuous function is connected, we infer statement (c) from statement
(b).

We mention that Barbălat’s lemma follows immediately from Theorem 4.5(a).

5 APPLICATIONS TO NONAUTONOMOUS DIFFERENTIAL EQUATI-
ONS. Consider the initial-value problem for a nonautonomous ordinary differential equa-
tion:

ẋ(t) = f(t, x(t)), x(0) = x0 ∈ R
N . (11)

Throughout, f : R+ × R
N → R

N is a Carathéodory function. This means that: f(·, ξ) is
Lebesgue measurable for each ξ in R

N ; f(t, ·) is continuous for each t in R +; f is locally
integrably bounded on compact sets (i.e., for each compact subset K of R

N there exists m
in L1

loc such that ‖f(t, ξ)‖ ≤ m(t) for all (t, ξ) in R +×K). For each x0 in R
N , there exists

ω > 0 such that (11) has a solution on [0, ω), meaning a locally absolutely continuous
function x : [0, ω)→ R

N with x(0) = x0 that satisfies the differential equation in (11) for
almost all t in [0, ω). Recall that a function is locally absolutely continuous if and only if
it is a primitive of a locally integrable function. A solution of (11) on R+ is said to be a
global solution. A solution x on I = [0, ω) is maximal (with maximal interval of existence
I) if, for every ω̃ > ω and every solution x̃ of (11) on [0, ω̃), there exists t̃ in (0, ω) such
that x̃(t̃) 6= x(t̃) (equivalently, the solution x is maximal if it has no proper right extension
that is also a solution). Every solution x of (11) can be extended to a maximal solution on
a maximal interval henceforth denoted by [0, ωx); moreover, if x is maximal and ωx <∞,
then x is unbounded (see [8, Theorem 1.3, p. 47]). It follows that if a maximal solution is
bounded, then it is global.

Definition 5.1. A function m : R+ → R is uniformly locally integrable if m belongs to
L1

loc and if for each ε > 0 there exists τ > 0 such that

∫ t+τ

t
|m(s)|ds ≤ ε

for all t in R+.
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Clearly, a locally integrable function m : R + → R is uniformly locally integrable if and
only if the function t 7→

∫ t
0 |m(s)|ds is uniformly continuous. It is readily verified that, if

m belongs to Lp for some p (1 ≤ p ≤ ∞), then m is uniformly locally integrable.

Definition 5.2. For a nonempty subsetA of R
N , F(A) denotes the class of Carathéodory

functions f : R+ × R
N → R

N with the property that there exists a uniformly locally in-
tegrable function m such that ‖f(t, ξ)‖ ≤ m(t) for all (t, ξ) in R + ×A.

The following proposition shows that under suitable uniform local integrability assump-
tions relating to f , solutions of (11) satisfy the uniform continuity assumptions required
for an application of Theorems 4.4 and 4.5.

Proposition 5.3. Let A and B be nonempty subsets of R
N with the property that Bε(A)∩

B 6= ∅ for some ε > 0, and let f belong to F(Bε(A) ∩ B). If x : R+ → R
N is a global

solution of (11) such that x(R+) ⊂ B, then x is uniformly continuous on x−1(A).

Proof. If x−1(A) = ∅, then the claim holds trivially. Assume that x−1(A) 6= ∅. Since f
belongs to F(Bε(A)∩B), there exists a uniformly locally integrable function m such that
‖f(t, w)‖ ≤ m(t) for all (t, w) in R + × (Bε(A) ∩ B). Let δ in (0, ε) be arbitrary. Choose
τ > 0 such that

∫ t+τ
t m ≤ δ for all t in R+. Let t1 and t2 be points of x−1(A) with

0 ≤ t2 − t1 ≤ τ . We will complete the proof by showing that ‖x(t2) − x(t1)‖ ≤ δ. If we
define

J = {t > t1 : x(s) ∈ Bε(A) for all s ∈ [t1, t]},
it follows that

‖x(t)− x(t1)‖ ≤
∫ t

t1

m(s)ds ≤
∫ t1+τ

t1

m(s)ds ≤ δ

for all t in J with t ≤ t1 + τ . Since δ < ε, t1 + τ belongs to J , whence ‖x(t2)−x(t1)‖ ≤ δ.

In the following, we combine Proposition 5.3 with Theorems 4.4 and 4.5 to derive
results on the asymptotic behaviour of solutions of (11).

Theorem 5.4. Let G be a nonempty closed subset of R
N , and let g : G → R be a

function. Assume that each ξ in G for which g(ξ) 6= 0 has a neighbourhood U such that

(7) holds and f belongs to F(U ∩ G). If x : R + → R
N is a global solution of (11) with

x(R+) ⊂ G and g ◦ x is weakly meagre, then statements (a)-(d) of Theorem 4.4 hold.

Proof. Let ξ in G be such that g(ξ) 6= 0. By the hypotheses, there exists a neighbourhood
U of ξ such that (7) holds and f belongs to F(U ∩G). Let ε > 0 be sufficiently small so
that B2ε(ξ) lies in U . Then, setting A = Bε(ξ), we see that f is in the class F(Bε(A)∩G).
By Proposition 5.3, it follows that x is uniformly continuous on x−1(A). An application
of Theorem 4.4 completes the proof.

We remark that Theorem 5.4 contains a recent result by Teel [30, Theorem 1] as a
special case. In the next theorem, it is assumed that f is a member of F(Bε(g

−1(0))∩G)
for some ε > 0. Under the additional assumption that g satisfies (10), it is then guaranteed
that x approaches g−1(0) (without positing the boundedness of x).

Theorem 5.5. Let G be a nonempty closed subset of R
N , and let g : G→ R be such that

g−1(0) is closed and (10) holds for every nonempty closed subset K of G. Assume that

f belongs to F(Bε(g
−1(0)) ∩ G)) for some ε > 0. If x : R + → R

N is a global solution of

(11) with x(R+) ⊂ G and g ◦ x is weakly meagre, then statements (a)-(c) of Theorem 4.5
hold.
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Proof. Fix δ in (0, ε). By Proposition 5.3, x is uniformly continuous on x−1(Bδ(g
−1(0))).

An application of Theorem 4.5 completes the proof.

In the following we use Theorem 5.4 to obtain a version of a well-known result on ω-
limit sets of solutions of nonautonomous ordinary differential equations. For a nonempty
open subset D of R

N and a continuously differentiable function V : R+ × D → R, we
define Vf : R+ × D → R (the derivative of V with respect to (11) in the sense that
(d/dt)V (t, x(t)) = Vf (t, x(t)) along a solution x of (11)) by

Vf (t, ξ) =
∂V

∂t
(t, ξ) +

N
∑

i=1

∂V

∂ξi
(t, ξ)fi(t, ξ)

for all (t, ξ) ∈ R+ ×D, where f1, . . . , fN denote the components of f .

Corollary 5.6. Let D be a nonempty open subset of R
N , and let V : R+ × D → R be

continuously differentiable. Assume that V satisfies the following two conditions:

(a) for each ξ in cl(D) there exists a neighbourhood U of ξ such that V is bounded from

below on the set R+ × (U ∩D);

(b) there exists a lower semicontinuous continuous function W : cl(D)→ R+ such that

Vf (t, ξ) ≤ −W (ξ) for all (t, ξ) in R+ ×D.

Furthermore, assume that for every ξ in cl(D) there exists a neighbourhood U ′ of ξ such

that f belongs to F(U ′∩D). Under these assumptions, if x : R+ → R
N is a global solution

of (11) with x(R+) ⊂ D, then Ω(x) ⊂W−1(0).

Proof. If Ω(x) = ∅ there is nothing to prove, so we assume that Ω(x) 6= ∅. Since
(d/dt)V (t, x(t)) = Vf (t, x(t)) for all t in R+, it follows from assumption (b) that the
function t 7→ V (t, x(t)) is nonincreasing, showing that the limit l of V (t, x(t)) as t → ∞
exists, where possibly l = −∞. Let ξ ∈ Ω(x) ⊂ cl(D). Then there exists a nondecreasing
unbounded sequence (tn) in R+ such that limn→∞ x(tn) = ξ. By assumption (a) there
exists a neighbourhood U of ξ such that V is bounded from below on R+× (U ∩D). Now
x(R+) ⊂ D, so there exists n0 such that x(tn) ∈ U ∩D whenever n ≥ n0. Consequently,
the nonincreasing sequence (V (tn, x(tn))) is bounded from below, showing that l > −∞.
Therefore

0 ≤
∫ ∞

0
(W ◦x)(t)dt ≤ −

∫ ∞

0
Vf (t, x(t))dt = −

∫ ∞

0
(d/dt)V (t, x(t))dt = V (0, x0)−l <∞ ,

verifying that W ◦ x is in L1, hence is weakly meagre. By assumption, for each ξ in cl(D)
there exists an open neighbourhood U ′ of ξ such that f belongs to F(U ′ ∩D), implying
that f is a member of F(U ′ ∩ cl(D)). Therefore, an application of Theorem 5.4 with
G = cl(D) and g = W establishes the claim.

Corollary 5.6 is essentially due to LaSalle [19] (see also [16, Satz 6.2, p. 140]). However,
we point out that the assumption imposed on f in Corollary 5.6 is weaker then that in [16]
and [19], wherein it is required that, for every ξ in cl(D), there exists a neighbourhood U ′

of ξ such that f is bounded on the set R+× (U ′ ∩D). Furthermore, we impose only lower
semicontinuity on the function W (in contrast to [16] and [19], wherein continuity of W
is assumed).

The next result is a consequence of Theorem 5.5. It shows, in particular, that under a
mild assumption on f every global Lp-solution of (11) converges to zero.
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Corollary 5.7. Assume that there exists ε > 0 such that f belongs to F(Bε(0)), and let

x : R+ → R
N be a global solution of (11). Then the following statements hold:

(a) If ‖x(·)‖ is weakly meagre, then limt→∞ x(t) = 0.

(b) If x belongs to Lp for some p in (0,∞), then limt→∞ x(t) = 0.

Proof. If ‖x(·)‖ is weakly meagre, then an application of Theorem 5.5 with G = R
N and

g = ‖ · ‖ shows that limt→∞ x(t) = 0. This establishes statement (a). To prove statement
(b), let x be a member of Lp for some p in (0,∞). Then, by Proposition 4.2(a), the
function ‖x(·)‖ is meagre and hence is weakly meagre. By part (a) of the present result,
limt→∞ x(t) = 0.

Obviously, if (11) is autonomous (i.e., the differential equation in (11) has the form
ẋ(t) = f(x(t))), then the assumption that f belongs to F(Bε(0)) for some ε > 0 is trivially
satisfied. Thus we may conclude that every weakly meagre global solution t 7→ x(t) of an
autonomous ordinary differential equation converges to 0 as t→∞.

Example 5.8. In this example we describe a typical application of Theorem 5.5. In part
(a) of the example we analyze a general class of second-order systems with nonautonomous
“damping”; in part (b) we discuss a special case. We will return to this example in section
6 to refine the result further.

(a) Consider the second-order system

ÿ(t) + d(t, ẏ(t)) + k(y(t)) = 0, (y(0), ẏ(0)) = (p0, v0) ∈ R
2, (12)

where k : R → R is a continuous function with the property that

lim
|p|→∞

∫ p

0
k(s)ds =∞ . (13)

We assume that d : R+ × R → R is a Carathéodory function satisfying the following
conditions:

(i) d(t, v)v ≥ 0 for all (t, v) in R+ × R;

(ii) for each bounded subset K of R there exists a constant b ≥ 0 such that |d(t, v)| ≤ b
for all (t, v) in R+ ×K;

(iii) the function d∗ : R → R+ given by v 7→ inft∈R+
|d(t, v)| is a Borel function such that

infv∈K d∗(v) > 0 for every compact subset C of R with C ∩ cl(d−1
∗ (0)) = ∅.

Since d is a Carathéodory function, we know that the function v 7→ d(t, v) is continuous
for each fixed t in R+. Therefore it follows from assumption (i) that d(t, 0) = 0 for all t
in R+, showing that 0 lies in d−1

∗ (0).
By standard existence theory, (12) has a solution and every solution has a maximal

extension. As earlier, a solution y of (12) is said to be global if y is defined on R+.

Claim. For each (p0, v0) in R
2 every maximal solution y of (12) is global and bounded,

with bounded derivative ẏ. Moreover, ẏ approaches d−1
∗ (0) and, if 0 is an isolated point

of d−1
∗ (0), then limt→∞ ẏ(t) = 0.

We proceed to establish this claim. Setting x(t) = (y(t), ẏ(t)), the second-order system
(12) can be expressed in the equivalent form (11), where f : R + ×R

2 → R
2 and x0 in R

2

are given by
f(t, (p, v)) = (v,−k(p)− d(t, v)) , x0 = (p0, v0) . (14)
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Define V : R
2 → R by (p, v) 7→

∫ p
0 k(s)ds + v2/2. Observe that, by (13), V is bounded

from below and is such that, for every sequence (ξn) in R
2,

‖ξn‖ → ∞ as n→∞ =⇒ V (ξn)→∞ as n→∞ . (15)

Let x = (y, ẏ) : [0, ωx)→ R
2 be a maximal solution of (11) (with f and x0 given by (14)).

Then for almost all t in [0, ωx),

d

dt
V (x(t)) ≤ −d(t, ẏ(t))ẏ(t) = −|d(t, ẏ(t))||ẏ(t)| ≤ −d∗(ẏ(t))|ẏ(t)| ≤ 0 ,

wherein we have invoked assumption (i) on d. Consequently, c ≤ V (x(t)) ≤ V (x0) for all t
in [0, ωx) and for some constant c. Combining this with (15), we infer that x is bounded,
so ωx =∞. Moreover, l = limt→∞ V (x(t)) exists in R and hence

0 ≤
∫ ∞

0
d∗(ẏ(t))|ẏ(t)|dt ≤ V (x0)− l <∞ . (16)

Since x is bounded, there exists a compact interval I such that x(R+) ⊂ I × I. Define
g : I × I → R+ as follows

g(p, v) =

{

0 if (p, v) ∈ I × (cl(d−1
∗ (0)) ∩ I),

d∗(v)|v| otherwise.

Then g−1(0) = I × (cl(d−1
∗ (0)) ∩ I). In particular, g−1(0) is closed. It follows from

assumption (iii) on d that g satisfies (10) for every nonempty closed subset K of I × I.
Moreover, assumption (ii) on d implies that f belongs to F(B) for every bounded subset
B of R

2, so f is in F(Bε(g
−1(0)) ∩ (I × I)) for ε > 0. By (16), g ◦ x is weakly meagre,

and thus we may appeal to Theorem 5.5(b) to conclude that x = (y, ẏ) approaches g−1(0).
Consequently, ẏ approaches d−1

∗ (0). Finally, assume that 0 is an isolated point of d−1
∗ (0)

and hence of cl(d−1
∗ (0)). Now ẏ is continuous and bounded. By Lemma 2.1(c), the ω-

limit set Ω(ẏ) of ẏ is nonempty, compact, and connected, is approached by ẏ, and is the
smallest closed set approached by ẏ. Consequently, there exists ε > 0 such that either
Ω(ẏ) ⊂ (−∞,−ε] or Ω(ẏ) ⊂ [ε,∞) or Ω(ẏ) = {0}. Since y is bounded, it follows that
the first two alternatives are impossible. Therefore, we conclude that limt→∞ ẏ(t) = 0,
completing the proof of the claim.

(b) For purposes of illustration and to provide a connection with the material in sec-
tion 6, we choose a specific example wherein d is such that the associated function d∗ is
discontinuous. In particular, consider d : R+ × R → R given by

d(t, v) =

{

v if (t, v) ∈ R+ × [−1, 1],
sgn(v)max{0, 1− (t+ 1)(|v| − 1)} if (t, v) ∈ R+ × {v ∈ R : |v| > 1}, (17)

where sgn(v) denotes the sign of v. For generic t in R +, the graph of v 7→ d(t, v) is
depicted in Figure 3. Observe that d satisfies assumptions (i) and (ii). Furthermore, it is
readily verified that the function d∗ : v 7→ inft∈R+

|d(t, v)| can be expressed as

d∗(v) =

{

|v| if v ∈ [−1, 1],
0 if |v| > 1.

Clearly, d∗ is piecewise continuous (with jump discontinuities at v = ±1) and therefore
is a Borel function. Moreover, cl(d−1

∗ (0)) = {v ∈ R : |v| ≥ 1} ∪ {0} and it is clear that
infv∈C d∗(v) > 0 for every compact subset C of R with C ∩ cl(d−1

∗ (0)) = ∅, showing that
assumption (iii) is satisfied. Since, trivially, 0 is an isolated point of d−1

∗ (0), it follows from
part (a) that limt→∞ ẏ(t) = 0. In section 6 (see Example 6.3) we will further refine this
result to conclude that (y, ẏ) approaches the set k−1(0)× {0}.
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6 APPLICATIONS TO AUTONOMOUS DIFFFERNTIAL INCLUSIONS.
In section 5, we investigated the behaviour of systems within the framework of ordi-

nary differential equations with Carathéodory right-hand sides. However, there are many
meaningful situations wherein this framework is inadequate for purposes of analysis of
dynamic behaviour. A prototypical example is that of a mechanical system with Coulomb
friction which, formally, yields a differential equation with discontinuous right-hand side
(one such system is analyzed in Example 6.9). Other examples permeate control theory
and applications: a canonical case is a discontinuous feedback strategy associated with an
on-off or switching device. Such discontinuous phenomena can be handled mathematically
by embedding the discontinuities in set-valued maps, giving rise to the study of differential
inclusions of the form ẋ ∈ F (x), on which there is a growing literature (see, for example,
[2], [6], [7], [10], [12], [29]). The next goal is to extend our investigations on ordinary
differential equations to differential inclusions. We first assemble some basic definitions
and results.

Let U denote the class of set-valued maps ξ 7→ F (ξ) ⊂ R
N , defined on R

N , that are
upper semicontinuous at each ξ in R

N and take nonempty convex compact values. We
recall that a set-valued map F is upper semicontinuous at ξ in R

N if for each ε > 0 there
exists δ > 0 such that F (ξ′) ⊂ Bε(F (ξ)) for all ξ′ in Bδ(ξ), see Figure 4.

F (ξ′)
�

�

ξ

ξ′

Bδ(ξ)

F

F (ξ)

Bε(F (ξ))

Figure 4.

We consider next the initial-value problem for an autonomous differential inclusion corre-
sponding to a mapping F in U :

ẋ(t) ∈ F (x(t)), x(0) = x0 ∈ R
N . (18)
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We will study asymptotic properties of solutions of (18), where by a solution on [0, ω)
we mean a locally absolutely continuous function x : [0, ω) → R

N satisfying (18) almost
everywhere on [0, ω). A solution on R+ is again called a global solution. The concept of
a maximal solution of (18) is the natural analogue of that for differential equations (see
section 5). We record some well-known facts in Lemmas 6.1 and 6.2, which represent a
distillation of results in, for example, [2], [12], and [26].

Lemma 6.1. Let F belong to U , and let x0 be a point in R
N . Then (18) has a solution

with x(0) = x0, and every such solution can be extended to a maximal solution with

maximal interval of existence [0, ωx). If ωx <∞, then x is unbounded.

It follows from Lemma 6.1 that bounded maximal solutions of (18) are global. With
respect to (18), a nonempty subset A of R

N is said to be weakly invariant if, for each x0

in A, (18) has at least one maximal solution x : [0, ωx) → R
N with x(t) in A for all t in

[0, ωx).

Lemma 6.2. Let F belong to U . If x : R+ → R
N is a bounded global solution of (18),

then Ω(x) is nonempty, compact, and connected, is approached by x (and is the smallest

closed set so approached ), and is weakly invariant with respect to (18).

Example 6.3. Let us revisit the special case (b) of Example 5.8. Let f and x0 be given
by (14), and let x = (y, ẏ) : [0, ωx)→ R

N be a maximal solution of (11). We already know
that ωx =∞, that x is bounded, and that Ω(x) is a nonempty subset of R×{0}. Defining
a set-valued map ∆ on R by

∆(v) =

{

{v} if |v| ≤ 1 ,
[−1, 1] if |v| > 1 ,

we observe that d(t, v) lies in ∆(v) for all (t, v) in R +×R, where d is defined by (17). On
R× R, define the set-valued map F by

F (p, v) = {v} × {−k(p)− w : w ∈ ∆(v)} .

Evidently, F is a member of U and f(t, (p, v)) lies in F (p, v) for all (t, (p, v)) in R + ×R
2.

Therefore, the solution x of (11) is a fortiori a solution of the differential inclusion ẋ(t) ∈
F (x(t)). By Lemma 6.2, Ω(x) is weakly invariant with respect to that differential inclusion.
Since x approaches Ω(x), a subset of R× {0}, it follows that x must approach the largest
subset E of R × {0} that is weakly invariant with respect to the differential inclusion.
Consider a point (p, v) in E. By the weak invariance of E, there exists a maximal solution
(z, ż) of the differential inclusion such that (z(0), ż(0)) = (p, v) = (p, 0) and (z(t), ż(t))
belongs to E for all t in [0, ω(z,ż)). Therefore, z(t) = p for all t in R + and, noting that
∆(0) = {0}, we have

(0, 0) = (ż(t), z̈(t)) ∈ F (z(t), ż(t)) = F (p, 0) = {(0,−k(p))}

for almost all t in [0, ω(z,ż)), whence k(p) = 0. Thus, E ⊂ k−1(0)×{0} and so x approaches
the set k−1(0)×{0}. Finally, note that, if k−1(0) is totally disconnected, then x approaches
an equilibrium of the nonautonomous differential equation (11) (with f and x0 given by
(14)).

The following proposition shows that, under suitable local boundedness assumptions
on F , the solutions of (18) satisfy the uniform continuity assumptions required for an
application of Theorems 4.4 and 4.5. For a subset A of R

N and for a member F of U we
denote (in a slight abuse of notation) the set ∪a∈AF (a) by F (A).
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Proposition 6.4. Let A and B be subsets of R
N , and let F belong to U . Assume that

F (Bε(A) ∩ B) is bounded for some ε > 0 and that x : R + → R
N is a global solution of

(11) with x(R+) ⊂ B. Then x is uniformly continuous on x−1(A).

Proof. If x−1(A) = ∅, then the assertion holds trivially. Assume that x−1(A) 6= ∅, and
let δ in (0, ε) be arbitrary. Define θ = sup{‖v‖ : v ∈ F (Bε(A) ∩ B)}, and let τ > 0 be
sufficiently small so that τθ ≤ δ. Adopting an argument similar to that used in the proof
of Proposition 5.3, it can be shown that ‖x(t2) − x(t1)‖ ≤ δ for all t1 and t2 in x−1(A)
with 0 ≤ t2 − t1 ≤ τ , proving that x is uniformly continuous on x−1(A).

We now use Theorems 4.4 and 4.5 to derive counterparts of Theorems 5.4 and 5.5 for
differential inclusions.

Theorem 6.5. Let G be a nonempty closed subset of R
N , let g : G→ R have the property

that each ξ in G for which g(ξ) 6= 0 has a neighbourhood U such that (7) holds, and let

F belong to U . If x : R+ → R
N is a global solution of (18) with x(R+) ⊂ G and g ◦ x is

weakly meagre, then statements (a) and (d) of Theorem 4.4 hold. Moreover, the following

statements are true:

(b′) If g−1(0) is bounded and Ω(x) 6= ∅, then x is bounded and x approaches the largest

subset of g−1(0) that is weakly invariant with respect to (18).

(c′) If x is bounded, then g−1(0) 6= ∅ and x approaches the largest subset of g−1(0) that
is weakly invariant with respect to (18).

Proof. Let ξ in G be such that g(ξ) 6= 0. By hypothesis, there exists ε > 0 such that (7)
holds with U = Bε(ξ). By the upper semicontinuity of F , together with the compactness of
its values, F (Bε(U)∩G) is bounded (see [2, Proposition 3, p. 42]. By Proposition 6.4, x is
uniformly continuous on x−1(U). Therefore, the hypotheses of Theorem 4.4 are satisfied,
so statements (a)-(d) thereof hold. Combining statements (b) and (c) of Theorem 4.4 with
the weak invariance of Ω(x) yields statements (b′) and (c′).

Theorem 6.6. Let G be a nonempty closed subset of R
N , let g : G → R be such that

g−1(0) is closed and (10) holds for every nonempty closed subset K of G, and let F belong

to U . Assume that F (Bε(g
−1(0)) ∩ G) is bounded for some ε > 0. If x : R + → R

N is a

global solution of (11) with x(R+) ⊂ G and g ◦ x is weakly meagre, then statements (a)
and (c) of Theorem 4.5 hold. Moreover, the following also holds:

(b′) If g−1(0) is bounded, then x is bounded and x approaches the largest subset of g−1(0)
that is weakly invariant with respect to (18).

Proof. Fix δ in (0, ε). By Proposition 6.4, x is uniformly continuous on x−1(Bδ(g
−1(0))).

It follows immediately from Theorem 4.5 that statements (a)-(c) thereof hold. Assuming
that g−1(0) is bounded, a combination of statements (b) of Theorem 4.5 with the weak
invariance of Ω(x) yields statement (b′).

If there exists a locally Lipschitz function f : R
N → R

N such that F (x) = {f(x)} (that
is, the differential inclusion (18) “collapses” to an autonomous differential equation that
for every x0 in R

N has a unique solution satisfying x(0) = x0), then the conclusions of
Theorems 6.5 and 6.6 remain true when every occurence of “weakly invariant” is replaced
with “invariant”. We mention that precursors of Theorems 6.5 and 6.6 have appeared in
[11] and [27].
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We now use Theorem 6.6 to generalize LaSalle’s invariance principle (see Corollary
3.4) to differential inclusions.

Corollary 6.7. Let D be a nonempty open subset of R
N , let V : D → R be continuously

differentiable, let F belong to U , and set VF (ξ) = maxy∈F (ξ)〈∇V (ξ), y〉 for all ξ in D. Let

x : R+ → R
N be a (global ) solution of (18) and assume that there exists a compact subset

G of R
N such that x(R+) ⊂ G ⊂ D. If VF (ξ) ≤ 0 for all ξ in G, then x approaches the

largest subset of V −1
F (0) ∩G that is weakly invariant with respect to (18).

Proof. For later convenience, we first show that the function VF : D → R is upper
semicontinuous. Let (ξn) be a convergent sequence in D with limit ξ in D. Define l =
lim supn→∞ VF (ξn). From (VF (ξn)) extract a subsequence

(

VF (ξnk
)
)

with VF (ξnk
)→ l as

k → ∞. For each k, let yk be a maximizer of the continuous function y 7→ 〈∇V (ξnk
), y〉

over the compact set F (ξnk
), so VF (ξnk

) = 〈∇V (ξnk
), yk〉. Let ε > 0 be arbitrary. By

the upper semicontinuity of F , F (ξnk
) ⊂ Bε(F (ξ)) for all sufficiently large k. Since yk lies

in F (ξnk
), F (ξ) is compact and ε > 0 is arbitrary, we infer that (yk) has a subsequence

(which we do not relabel) converging to a point y∗ in F (ξ). Therefore,

lim sup
n→∞

VF (ξn) = l = lim
k→∞

VF (ξnk
) = lim

k→∞
〈∇V (ξnk

), yk〉 = 〈∇V (ξ), y∗〉 ≤ VF (ξ) ,

confirming that VF is upper semicontinuous.
Evidently,

d

dt
V (x(t)) = 〈∇V (x(t)), ẋ(t)〉 ≤ VF (x(t)) ≤ 0

for almost every t in R+, which leads to

V (x(t))− V (x(0)) ≤
∫ t

0
VF (x(s))ds ≤ 0 (19)

for all t in R+. Since x is bounded, we conclude that the function t 7→
∫ t
0 VF (x(s))ds

is bounded from below. But this function is also nonincreasing (because VF ≤ 0 on G),
which ensures that limt→∞

∫ t
0 VF (x(s))ds exists and is finite. Consequently, VF ◦ x is an

L1-function, showing that VF ◦x is weakly meagre. Since VF is upper semicontinuous and
VF ≤ 0 on G, the function G→ R given by ξ 7→ |VF (ξ)| is lower semicontinuous. Therefore,
each ξ in G with VF (ξ) 6= 0 has a neighbourhood U such that inf{|VF (w)| : w ∈ G∩U} > 0.
By statement (c′) of Theorem 6.5 (with g = VF |G) it follows that x approaches the largest
subset of V −1

F (0) ∩G that is weakly invariant with respect to (18).

In Corollary 6.7, it is assumed that the solution x is global and has trajectory in some
compact subset G of D. These conditions may be removed at the expense of strengthening
the conditions on V by assuming that its sublevel sets are bounded and that VF (ξ) ≤ 0
for all ξ in D.

Corollary 6.8. Let D, V , F , and VF be as in Corollary 6.7. Assume that the sublevel

sets of V are bounded and that VF (ξ) ≤ 0 for all ξ in D. If x : [0, ωx) → R
N is a

maximal solution of (18) such that cl(x([0, ωx))) ⊂ D, then x is bounded, ωx =∞, and x
approaches the largest subset of V −1

F (0) that is weakly invariant with respect to (18).

Proof. Since (d/dt)V (x(t)) = VF (x(t)) ≤ 0 for almost all t in [0, ωx), we have the coun-
terpart of (19): V (x(t)) ≤ V (x(0)) for all t in [0, ωx). Since the sublevel sets of V are
bounded, it follows that x is bounded. By Lemma 6.1, ωx =∞. An application of Corol-
lary 6.7, with G = cl(x(R +)), completes the proof.
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Example 6.9. In this example we describe a typical application of Corollary 6.8. In
part (a) of the example we analyze a general class of second-order differential inclusions;
in part (b) we discuss a special case, a mechanical system subject to friction of Coulomb
type.

(a) Let k : R → R be as in Example 5.8, that is, k is continuous with property (13).
Let (p, v) 7→ C(p, v) ⊂ R be upper semicontinuous with nonempty, convex, compact values
and with the property that, for all (p, v) in R

2,

C∗(p, v) := max{vw : w ∈ C(p, v)} ≤ 0 . (20)

Consider the system

ÿ(t) + k(y(t)) ∈ C(y(t), ẏ(t)), (y(0), ẏ(0)) = (p0, v0) ∈ R
2 . (21)

Setting x(t) = (y(t), ẏ(t)), the second-order initial-value problem (21) can be expressed in
the equivalent form

ẋ(t) ∈ F (x(t)), x(0) = x0 = (p0, v0) ∈ R
2 , (22)

where the set-valued map F in U is given by

F (p, v) = {v} × {−k(p) + w : w ∈ C(p, v)}. (23)

By Lemma 6.1, (22) has a solution and every solution can be extended to a maximal
solution; moreover, every bounded maximal solution is global.

Claim A. For each x0 = (p0, v0) in R
2, every maximal solution x = (y, ẏ) of (22) is

bounded (hence, global) and approaches the largest subset E of C−1
∗ (0) that is weakly

invariant with respect to (22).
To establish this claim, we define (as in Example 5.8) V : R

2 → R by

V (p, v) =

∫ p

0
k(s)ds+ v2/2 .

Observe that by (13) V is such that, for every sequence (ξn) in R
2, (15) holds and, as a

result, every sublevel set of V is bounded. Moreover,

VF (p, v) = max
θ∈F (p,v)

〈∇V (p, v), θ〉 = C∗(p, v) ≤ 0 for all (p, v) ∈ R
2 .

Let x0 = (p0, v0) be a point in R
2 and let x = (y, ẏ) be a maximal solution of (22). An

application of Corollary 6.8, with D = R
N , completes the proof of Claim A.

(b) As a particular example, the mechanical system depicted in Figure 5, wherein
a mass is subject to a friction force of Coulomb type on a rough surface of length 2L
(where L > 0) and is friction free off the surface, may be represented by a second-order
autonomous differential inclusion of the form (21).

−L +L0

y

Figure 5.
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In this specific example, the function k (continuous with property (13)) corresponds to the
spring force and is assumed to be such that k−1(0) = {0}. The (upper semicontinuous)
set-valued map C, which models the Coulomb friction effects, is given by

C(p, v) =























{−sgn(v)} if |p| < L, v 6= 0;
[−1, 1] if |p| ≤ L, v = 0;
[−1, 0] if |p| = L, v > 0;
[0, 1] if |p| = L, v < 0;
{0} if |p| > L, v ∈ R .

(24)

Claim B. For each x0 = (p0, v0) in R
2, every maximal solution x = (y, ẏ) of (22) (with

F and C given by (23) and (24) is bounded, is global, and approaches the set
(

[−L,L] ∩
k−1([−1, 1])

)

× {0}.
To prove this claim, we first note that in this case the function C∗ (defined in (20)) is

given by

C∗(p, v) =

{

−|v| if |p| < L,
0 if |p| ≥ L.

Therefore, C−1
∗ (0) = S1 ∪ S2 ∪ S3, where

S1 = [−L,L]× {0}, S2 = {(p, v) ∈ R
2 : |p| = L, v 6= 0}, S3 = {(p, v) ∈ R

2 : |p| > L}.

By Claim A, for each x0 = (p0, v0) in R
2, every maximal solution x = (y, ẏ) of (22) is

bounded, is global, and approaches the largest subset E of S1 ∪ S2 ∪ S3 that is weakly
invariant with respect to (22). To conclude Claim B, it suffices to show that

E ⊂
(

[−L,L] ∩ k−1([−1, 1])
)

× {0} .

To this end, we first show that

E ∩ (S2 ∪ S3) = ∅ . (25)

By (21), the following observations are immediate:

(i) if (p0, v0) is in S3, then (y(t), ẏ(t)) is in S3 for all sufficiently small t > 0;

(ii) if (p0, v0) is in S2 and p0v0 > 0, then (y(t), ẏ(t)) is in S3 for all sufficiently small
t > 0;

(iii) if (p0, v0) is in S2 and p0v0 < 0, then (y(t), ẏ(t)) 6∈ S1∪S2∪S3 holds for all sufficiently
small t > 0.

Seeking a contradiction, suppose that (25) does not hold. Then there exists a point (p, v)
in E ∩

(

S2 ∪ S3

)

and a global bounded solution (z, ż) such that (z(0), ż(0)) = (p, v) and
(z(t), ż(t)) ∈ E ⊂ S1 ∪ S2 ∪ S3 for all t in R+. If (p, v) belongs to S2, then pv > 0, for
otherwise observation (iii) leads to the contradiction that (z(t), ż(t)) 6∈ S1 ∪S2 ∪S3 for all
sufficiently small t > 0. Therefore, by observations (i) and (ii), (z(t), ż(t)) lies in S3 for all
sufficiently small t > 0. We consider the following two alternatives:

(α) (z(t), ż(t)) ∈ S3 for all t > 0 ; (β) (z(t0), ż(t0)) 6∈ S3 for some t0 > 0 .

We show that both lead to contradictions.
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First, suppose that alternative (α) holds. Then |z(t)| > L > 0 for all t > 0. Moreover,
z is bounded. Since k and z are continuous and k−1(0) = {0}, we conlude that there exists
ε > 0 such that either k(z(t)) ≥ ε for all t > 0 or k(z(t)) ≤ −ε for all t > 0. On noting
that z̈(t) = −k(z(t)) for all t > 0, we obtain a contradiction to the boundedness of ż.

Second, suppose that alternative (β) applies. Define τ = inf{t > 0 : (z(t), ż(t)) 6∈
S3} > 0. Then |z(τ)| = L and

z(τ)p > 0 . (26)

Since z̈(t) = −k(z(t)) for all t in (0, τ), a straightforward calculation shows that V (z(t), ż(t))
is constant on the interval [0, τ ] and thus that

∫ z(t)

0
k(s)ds+

(

ż(t)
)2

/2 =

∫ p

0
k(s)ds+ v2/2 (t ∈ [0, τ ]) . (27)

If (p, v) is in S2, then z(τ) = p and v 6= 0, so by (27) ż(τ) 6= 0. If (p, v) in S3, then
|p| > |z(τ)|. Combining this with (26) and the inequality k(ξ)ξ > 0 for all nonzero
real ξ (the latter being a consequence of (13), the continuity of k, and the fact that
k−1(0) = {0}), it follows again from (27) that ż(τ) 6= 0. Consequently, (z(τ), ż(τ))
belongs to S2. Furthermore, it is clear that z(τ)ż(τ) < 0, and therefore, by observation
(iii), there exists δ > 0 such that (z(t), ż(t)) 6∈ S1 ∪ S2 ∪ S3 holds for all t in (τ, τ + δ).
This contradicts the fact that (z(t), ż(t)) ∈ E ⊂ S1 ∪ S2 ∪ S3 for all t in R+. We can now
conclude that (25) holds.

By (25), we have E ⊂ S1. If (p, v) is a point of E, then |p| ≤ L and v = 0. By the weak
invariance of E, there exists a maximal solution (z, ż) of (22) satisfying (z(0), ż(0)) = (p, 0)
and that never leaves E. Consequently, (z(t), ż(t)) ≡ (p, 0). By (21), k(p) belongs to
C(p, 0) = [−1, 1], whence p is in k−1([−1, 1]). Therefore, E ⊂

(

[−L,L]∩k−1([−1, 1])
)

×{0}.
Now x approaches E, so a fortiori x approaches the set

(

[−L,L] ∩ k−1([−1, 1])
)

× {0}.

7 APPENDIX.

Example 7.1. A continuous nonmeagre function that is both weakly meagre and Rie-
mann integrable.

Consider the continuous function y : R+ → R given by t 7→ ∑

n∈N
yn(t), where for

each n in N, yn : R+ → [−1, 1] is the piecewise linear continuous function, compactly
supported on [n, n + 1/n], whose graph is shown in Figure 6 (wherein the corners occur
at t = n+ k/(5n) for k = 0, ..., 5).

� �

yn(t)

t
n

n+ 1/n

+1

−1

Figure 6.

To demonstrate the Riemann integrability of y, note that for all t in [1,∞) we have

∣

∣

∣

∣

∫ t

0
y(s)ds

∣

∣

∣

∣

≤
∫ t

btc
ybtc(s)ds <

1

2btc ,
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where btc = max{n ∈ N : n ≤ t} is the integer part of t, so limt→∞

∫ t
0 y(s)ds = 0.

Therefore, y is Riemann integrable. Invoking Proposition 4.2(c), we conclude that y is
weakly meagre. Alternatively, weak meagreness of y can be established by a straightfor-
ward verification of the defining property of weak meagreness. However, y is not meagre,
as the following argument shows. From the observation that |yn(t)| = 1 for all t in the set
[n+ 1/(5n), n+ 2/(5n)] ∪ [n+ 3/(5n), n+ 4/(5n)] it follows that

µ({t ∈ R+ : |y(t)| ≥ 1}) =
∑

n∈N

2

5n
=∞ ,

confirming that y is not meagre.

Example 7.2. A continuous meagre function y such that for each τ > 0 the integral
∫ t+τ
t y(s)ds does not converge to 0 as t→∞.

Consider the continuous nonnegative function y : R+ → R given by t 7→ ∑

n∈N
yn(t),

where yn : R+ → [0, n2] is the piecewise linear continuous function, that is compactly
supported on [n, n+ 1/n2], and has the graph as shown in Figure 7 (wherein the corners
occur at t = n+ k/(2n2) for k = 0, 1, 2).

� �

yn(t)

t
n n+ 1/n2

n2

0

Figure 7.

For any λ > 0 we have that

µ({t ∈ R+ : |y(t)| ≥ λ}) ≤
∞
∑

n=1

1/n2 <∞ ,

showing that y is meagre (so a fortiori weakly meagre). However, for any τ > 0 we have

∫ n+τ

n
y(t)dt ≥

∫ n+1/n2

n
yn(t)dt =

1

2

for all n in N with n ≥ 1/
√
τ , so

∫ t+τ
t y(s)ds does not converge to 0 as t→∞.
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