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Abstract. We study the asymptotic behavior of the solution of a Stokes flow in a
thin domain, with a thickness of order ε, and a rough surface. The roughness is defined
by a quasi-periodic function with period ε. We suppose that the flow is subject to a
Tresca fluid-solid interface condition. We prove a new result on the lower-semicontinuity
for the two-scale convergence, which allows us to obtain rigorously the limit problem and
to establish the uniqueness of its solution.

1. Introduction. We consider in this paper a Stokes system with given exterior
forces in a three-dimensional thin domain where the thickness is of order λε, for λ > 0
a fixed constant and ε a small parameter which will tend to zero. The boundary of this
thin domain consists of three parts: the bottom, the lateral part, and the top surface.
This research is motivated by a free boundary problem from lubrication theory where
the domain of the flow is usually very thin and the roughness of the boundary strongly
affects the flow. Moreover, in many problems of lubrication theory the widely assumed
no-slip conditions when the fluid has the same velocity as the surrounding solid boundary
seem not respected since the shear rate becomes too high [1], [2]; see also [3], [4], [5], [6],
[7]. We consider then that on the bottom, the normal velocity is equal to zero but the
tangential velocity is unknown and satisfies Tresca-type fluid-solid boundary conditions,
with friction coefficient a given positive function. On the lateral and the top parts, we
have adhering boundary conditions. The top surface is assumed to be rough with a
roughness defined by a quasi-periodic function with period ε.
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562 MAHDI BOUKROUCHE AND IONEL CIUPERCA

The weak form of the problem is a variational inequality [8], see also [3], where the
roughness of the top surface was neglected. We use the same scaling as in [9], where
only the adhering boundary conditions are considered. See also [10], [11], [12] for related
work.

The main difficulty here is to pass to the two-scale limit in the variational inequality,
due to the term coming from the Tresca fluid-solid boundary conditions. This difficulty
induces us to prove a needed result of lower-semicontinuity for the two-scale convergence,
using some results on the subdifferential and regularization of convex functions.

This article is organized as follows. In Section 2 we give a precise strong and weak
formulation of the considered problem, and recall from [3] the existence and uniqueness
of solutions, which are the velocity and the pressure of the flow. In Section 3 we establish
some estimates, independent of the parameter ε, for the velocity and the pressure. In
Section 4 we prove some convergence results. In Section 5 we establish a first relation
between the two-scale limit of the velocity and the pressure. In Section 6 we obtain
the variational inequality between the two-scale limit of the velocity and the pressure,
using the result of lower-semicontinuity for the two-scale convergence. In Section 7 we
study the limit problem and obtain the uniqueness of its solution. The needed result of
lower-semicontinuity for the two-scale convergence is proved in the last part of this work,
Section 8.

2. Formulation of the problem. Let ω be an open set in R
2 with Lipschitz bound-

ary and Y = [0, 1]2 the basic cell in R
2. We consider a smooth function (z, y) �→ h(z, y),

such that h ∈ C2(ω × R
2),

h and ∂h
∂yi

for i = 1, 2 are periodic in y,

∃a , b > 0 a ≤ h(z, y) ≤ b ∀(z, y) ∈ ω × Y.

⎫⎬
⎭ (2.1)

We set
hM = max

(z,y)∈ω×Y
h(z, y), hm = min

(z,y)∈ω×Y
h(z, y),

and we define the domains

ΩM = ω × ]0, hM [, Ωm = ω × ]0, hm[.

Let ε be a small parameter, related to the roughness wavelength and also to the thickness
of the gap between the surfaces z3 = 0 and z3 = λεh(z, z

ε ), such that the domain occupied
by the fluid is

Ωε = {(z, z3) ∈ R
3 : z ∈ ω, 0 < z3 < λεhε(z)},

where

hε(z) = h(z,
z

ε
), z ∈ ω, (2.2)

and λ > 0 is a fixed constant.
Let Γε be the boundary of Ωε. We have Γε = ω̄ ∩ Γ̄ε

1 ∩ Γ̄ε
L, where Γε

L is the lateral
boundary, Γε

1 is the upper surface defined by z3 = λεhε(z), and ω is the bottom of the
fluid domain defined by z3 = 0.
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LUBRICATION PROBLEM IN A THIN DOMAIN WITH A ROUGH BOUNDARY 563

We need in the following to transform the domain Ωε into

Ωε = {(x, x3) ∈ R
3 : x ∈ ω, 0 < x3 < hε(x)}

using the scaling

x = z and x3 =
z3

λε
, (2.3)

and also to transform the domain Ωε into Ω = ω × ]0, 1[ using the scaling

t = x and t3 =
x3

hε
. (2.4)

Let s0 = (s0
1 , s0

2) ∈ R
2 be the velocity of the lower surface and g be a given function

in (H
1
2 (∂Ωm))3 which does not depend on ε, such that

g(x, hm) = 0, gk(x , 0) = s0
k for k = 1, 2 and g3 = 0 on ∂Ωm, (2.5)∫

∂Ωm

g.ndσ = 0. (2.6)

We consider the Stokes system

∂σε
ij

∂zj
+ fε

i = 0 in Ωε, (2.7)

where

σε
ij = −pεδij + 2µdi,j(uε) with di,j(uε) =

1
2

(
∂uε

i

∂zj
+

∂uε
j

∂zi

)
,

div(uε) = 0 in Ωε, (2.8)

where uε, pε , µ are the velocity, the pressure and the viscosity of the fluid.
On the upper surface, which is assumed to be fixed, no slip condition is given, so that

uε = 0 on Γε
1. (2.9)

The velocity is known and parallel to the ω-plane,

uε = g(z,
z3

λε
) on Γε

L, (2.10)

extended by 0 on Γε
L − ∂ω × ]0, λεhm[.

There is a no flux condition across ω so that

uε
3 = 0 on ω. (2.11)

The tangential velocity on ω is unknown and satisfies the Tresca friction law with a
friction coefficient kε [8],

| σε
t | < kε ⇒ uε

t = s0

| σε
t | = kε ⇒ ∃ r ≥ 0 such that uε

t = s0 − rσε
t

}
on ω, (2.12)

where | . | denotes the R
2 Euclidean norm. Here n = (n1, n2, n3) is the unit outward

normal vector to Γε, and

uε
n = uε · n = uε

i ni; uε
ti

= uε
i − uε

nni, (2.13)

σε
n = (σε · n) · n = σε

ijninj ; σε
ti

= σε
ijnj − σε

nni (2.14)
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564 MAHDI BOUKROUCHE AND IONEL CIUPERCA

are, respectively, the normal, the tangential velocity on Γε, the components of the normal
and the tangential stress tensor on Γε.

Due to (2.6) it is known [13] (lemma 2.2, p.24) that there exists a function G such
that

G ∈ (H1(Ωm))3 : div G = 0 in Ωm, G = g on ∂Ωm. (2.15)

We still denote by G its extension by zero to Ωε. We set Gε such that

Gε
i (z, z3) = Gi(z,

z3

λε
) for i = 1, 2, Gε

3(z, z3) = λεG3(z,
z3

λε
), (2.16)

which belongs to (H1(Ωε))3 and satisfies also div Gε = 0 in Ωε.
We set

Kε =
{

v ∈ (H1(Ωε))3 : v = Gε on Γε
L ∪ Γε

1, v3 = 0 on ω
}

,

Kε
div =

{
v ∈ Kε : div v = 0 in Ωε

}
.

For any three-dimensional vector ϕ = (ϕ1 , ϕ2 , ϕ3)T we denote by ϕ the projected
bi-dimensional vector ϕ = (ϕ

1
, ϕ

2
)T . A formal application of (2.7)–(2.12) leads to the

following variational problem [8]:

Problem 2.1. Find uε ∈ Kε
div(Ω

ε) and pε ∈ L2
0(Ω

ε) such that

a(uε, ϕε − uε) − (pε, div ϕε) + j(ϕε) − j(uε)

≥ (fε, ϕε − uε), ∀ϕε ∈ Kε,
(2.17)

where

a(u , ϕ) = 2µ
3∑

i,j=1

∫
Ωε

dij(u)dij(ϕ) dzdz3,

j(ϕ) =
∫

ω

kε|ϕ − s0| dz, (fε, ϕ) =
3∑

i=1

∫
Ωε

fε
i ϕi dzdz3,

(p , div ϕ) =
3∑

i=1

∫
Ωε

p
∂ϕi

∂zi
dzdz3.

Theorem 2.1. [3] Assume that fε in (L3(Ωε))3 and the friction coefficient kε is a
nonnegative function in L∞(ω). There exists a unique uε in Kε

div and there exists a
unique pε in L2

0(Ωε), such that (uε , pε) is a solution to Problem 2.1.

3. Estimates of the velocity and pressure. Observe first that as uε(z, λεhε(z)) =
0, we can extend it by zero to the fixed domain ΩM (ū = u in Ωε and ū = 0 in ΩM −Ωε),
such that Korn’s inequality

C1‖∇ū‖L2(ΩM ) ≤ a(ū, ū) (C1 independent of ε)

holds. Moreover we can easily check that C1 = 1
2µ . So we have also the same inequality

for uε in Ωε.
Throughout this paper, for the sake of simplicity, the same notation will be used for

a function defined on the three different domains Ωε, Ωε and Ω.
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LUBRICATION PROBLEM IN A THIN DOMAIN WITH A ROUGH BOUNDARY 565

We assume the following dependence of data on ε:

ε2fε(z , z3) = f(x , x3), εkε(z) = k(x) (3.1)

with f and k independent of ε, f ∈ (L2(Ωm))3 (extended by 0 on Ωε) and k ∈ L2(ω)
with k > 0 a.e. We set

K̂ε = {v ∈ (H1(Ωε))3; v = (G1, G1, 0) on Γ̂ε
L ∩ Γ̂ε

1, v3 = 0 on ω}

with Γ̂ε
L = {(x , x3) : x ∈ ∂ω, 0 ≤ x3 ≤ hε(x)}

and Γ̂ε
1 = {(x , hε(x)) : x ∈ ω}.

Then passing to Ωε, and dividing by λε, (2.17) is equivalent to

â(uε, ϕε − uε) −
∫

Ωε

pε

(
∂ϕε

1

∂x1
+

∂ϕε
2

∂x2
+

1
λε

∂ϕε
3

∂x3

)
dxdx3

+
1

λε2

(
ĵ(ϕε) − (ĵ(uε)

)
≥ 1

ε2

∫
Ωε

f · (ϕε − uε)dxdx3 ∀ϕε ∈ K̂ε

(3.2)

with the notation

â(uε, ϕε) =
µ

2

2∑
i,j=1

∫
Ωε

(
∂uε

i

∂xj
+

∂uε
j

∂xi

)(
∂ϕε

i

∂xj
+

∂ϕε
j

∂xi

)
dxdx3

+ µ
2∑

i=1

∫
Ωε

(
1
λε

∂uε
i

∂x3
+

∂uε
3

∂xi

)(
1
λε

∂ϕε
i

∂x3
+

∂ϕε
3

∂xi

)
dxdx3

+
2µ

λ2ε2

∫
Ωε

∂uε
3

∂x3

∂ϕε
3

∂x3
dxdx3

(3.3)

and

ĵ(ϕε) =
∫

ω

k(x)|ϕε(x, 0) − s0|dx.

For any domain D in R
3 we introduce the Banach space

Vx3(D) = {v ∈ L2(D),
∂v

∂x3
∈ L2(D)}

with the norm

‖v‖Vx3 (D) = ‖v‖2
L2(D) + ‖ ∂v

∂x3
‖2

L2(D).

First we give the estimates of the velocity in the rescaled domain Ωε; then we give the
estimates of the velocity and pressure in the domain Ω.

Proposition 3.1. The following estimates, for the velocity, are satisfied in Ωε, with C

denoting a constant which does not depend on ε:

‖uε
i‖Vx3 (Ωε) ≤ C, ‖∂uε

i

∂xj
‖L2(Ωε) ≤

C

λε
, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2. (3.4)

Proof. Taking ϕε = Gε in (2.17) we obtain

a(uε, uε) + j(uε) ≤ a(uε, Gε) + j(Gε) − (fε, Gε) + (fε, uε)
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but j(Gε) = j(s0) = 0. Then using also the Korn inequality we have

2µ‖∇uε‖2
L2(Ωε) ≤ µ‖∇uε‖L2(Ωε)‖∇Gε‖L2(Ωε) + ‖uε‖L2(Ωε)‖fε‖L2(Ωε)

+ ‖Gε‖L2(Ωε)‖fε‖L2(Ωε).

From

−uε(z, z3) =
∫ λεhε(z)

z3

∂uε

∂z3
(z, ξ)dξ

we have

|uε(z, z3)|2 ≤
(∫ λεhε(z)

0

|∂uε

∂z3
(z, ξ)|dt

)2

≤ (λεhM )

(∫ λεhε(z)

0

|∂uε

∂z3
(z, ξ)|2dξ

)
,

so ∫
Ωε

|uε(z, z3)|2 ≤ λεhM

∫ λεhε(z)

0

∫
Ωε

|∂uε

∂z3
(z, ξ)|2dzdz3dξ

≤ λ2ε2h2
M‖∂uε

∂z3
‖2

L2(Ωε);

thus

‖uε‖L2(Ωε) ≤ λεhM‖∇uε‖L2(Ωε).

So

‖fε‖L2(Ωε)‖uε‖L2(Ωε) ≤
(

λεhM√
µ

.‖fε‖L2(Ωε)

)(√
µ‖∇uε‖L2(Ωε)

)
≤ h2

Mλ2ε2

2µ
‖fε‖2

L2(Ωε) +
µ

2
‖∇uε‖2

L2(Ωε)

and

µ‖∇uε‖L2(Ωε)‖∇Gε‖L2(Ωε) ≤ µ

2
‖∇uε‖2

L2(Ωε) +
µ

2
‖∇Gε‖2

L2(Ωε).

Then

µ‖∇uε‖2
L2(Ωε) ≤ µ‖∇Gε‖2

L2(Ωε) +
(

1
2µ

+
λ2h2

Mε2

2µ

)
‖fε‖2

L2(Ωε). (3.5)

Using now the dependence of Gε and fε on ε, and using the Poincaré inequality, we
deduce (3.4). �

Proposition 3.2. The following estimates, for the velocity and the pressure, are satisfied
in Ω, with C denoting a constant which does not depends on ε:

‖∂uε
i

∂t3
‖L2(Ω) ≤ C for i = 1, 2, 3, (3.6)

ε‖∂uε
i

∂tj
‖L2(Ω) ≤ C for i = 1, 2, 3 j = 1, 2, (3.7)

ε2‖∂pε

∂ti
‖H−1(Ω) ≤ C, i = 1, 2, ε‖∂pε

∂t3
‖H−1(Ω) ≤ C. (3.8)
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Proof. Using the change of variables (2.3) and (2.4) we have

D(x1, x2, x3)
D(t1, t2, t3)

=

⎛
⎝ 1 0 0

0 1 0
t3

∂hε

∂t1
t3

∂hε

∂t2
hε

⎞
⎠ ,

D(t1, t2, t3)
D(x1, x2, x3)

=

⎛
⎝ 1 0 0

0 1 0
− t3

hε
∂hε

∂t1
− t3

hε
∂hε

∂t2
1
hε

⎞
⎠ .

As

‖∂hε

∂tj
‖L∞(ω) ≤

C

ε
for 1 ≤ j ≤ 2, (3.9)

for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2, we deduce

‖∂uε
i

∂t3
‖2

L2(Ω) =
∫

Ωε

(
hε ∂uε

i

∂x3

)2 1
hε

dxdx3 ≤ hM‖∂uε
i

∂x3
‖2

L2(Ωε), (3.10)

‖∂uε
i

∂tj
‖2

L2(Ω) =
∫

Ωε

(
∂uε

i

∂xj
+ t3

∂hε

∂xj

∂uε
i

∂x3

)2 1
hε

dxdx3

≤ C

(
‖∂uε

i

∂xj
‖2

L2(Ωε) +
1
ε2

‖∂uε
i

∂x3
‖2

L2(Ωε)

)
,

(3.11)

so from (3.10) and (3.4) we deduce (3.6), and from (3.9), (3.11) and (3.4) we deduce
(3.7).

To prove (3.8) we rewrite (2.17) with ϕε = uε ± ψ for all ψ ∈ (H1
0 (Ωε))3; thus∫

Ωε

pε div ψdzdz3 = a(uε, ψ) − (fε, ψ) ∀ψ ∈ (H1
0 (Ωε))3. (3.12)

On the other hand, the change of variables (2.3) and (2.4) gives

D(z1, z2, z3)
D(t1, t2, t3)

=

⎛
⎝ 1 0 0

0 1 0
λεt3

∂hε

∂t1
λεt3

∂hε

∂t2
λεhε

⎞
⎠

and

D(t1, t2, t3)
D(z1, z2, z3)

=

⎛
⎝ 1 0 0

0 1 0
− t3

hε
∂hε

∂t1
− t3

hε
∂hε

∂t2
1

λεhε

⎞
⎠ ,

so ∫
Ωε

pεdivψ =
∫

Ω

pε

[
2∑

i=1

[
∂

∂ti
(λεhεψi) +

∂

∂t3
(−λεt3

∂hε

∂ti
ψi)
]

+
∂ψ3

∂t3

]
. (3.13)

Taking ψ = (0 , 0, ϕ) in (3.12) and (3.13) with ϕ ∈ H1
0 (Ω) we get∫

Ω

pε ∂ϕ

∂t3
dtdt3 =

2µ

λε

∫
Ω

∂uε
3

∂t3

∂ϕ

∂t3

1
hε

dtdt3 −
λ

ε

∫
Ω

f3ϕhεdtdt3

+
2∑

i=1

∫
Ω

µ

(
∂uε

i

∂t3

1
λεhε

+
∂uε

3

∂ti
− t3

hε

∂hε

∂ti

∂uε
3

∂t3

)(
∂ϕ

∂ti
− t3

hε

∂hε

∂ti

∂ϕ

∂t3

)
λεhεdtdt3,
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so from (3.6)-(3.7) and (3.9) we deduce

|
∫

Ω

pε ∂ϕ

∂t3
| ≤ C

ε
‖ϕ‖H1

0 (Ω). (3.14)

Taking ψ = ( ϕ
hε , 0 , 0) in (3.12) and (3.13) with ϕ ∈ H1

0 (Ω) we obtain∫
Ω

pε ∂(λεϕ)
∂t1

dtdt3 −
∫

Ω

pε ∂

∂t3

(
λεt3

∂hε

∂t1

ϕ

hε

)
dtdt3 = −

∫
Ω

λ

ε
f1ϕhε dtdt3

+ 2µ

∫
Ω

[
∂uε

1

∂t1
− t3

hε

∂hε

∂t1

∂uε
1

∂t3

] [
∂

∂t1
(

ϕ

hε
) − t3

hε

∂hε

∂t1

1
hε

∂ϕ

∂t3

]
λεhε dtdt3

+ µ

∫
Ω

[
∂uε

1

∂t2
− t3

hε

∂hε

∂t2

∂uε
1

∂t3
+

∂uε
2

∂t1
− t3

hε

∂hε

∂t1

∂uε
2

∂t3

]

×
[

∂

∂t2
(

ϕ

hε
) − t3

hε

∂hε

∂t2

1
hε

∂ϕ

∂t3

]
λεhε dtdt3;

hence from (3.6), (3.7) and (3.9) we get

|
∫

Ω

pε ∂(εϕ)
∂t1

dtdt3 −
∫

Ω

pε ∂

∂t3

(
εt3

∂hε

∂t1

ϕ

hε

)
dtdt3| ≤

C

ε
‖ϕ‖H1

0 (Ω). (3.15)

Now taking ψ = (0 , 0 , t3
∂hε

∂t1

ϕ
hε ) in (3.12) and (3.13), with ϕ ∈ H1

0 (Ω), we get∫
Ω

pε ∂

∂t3

(
t3
hε

∂hε

∂t1
ϕ

)
dtdt3 = 2µ

∫
Ω

∂uε
3

∂t3

1
λεhε

∂

∂t3

(
t3
hε

∂hε

∂t1
ϕ

)
dtdt3

−
∫

Ω

λ

ε
f3t3

∂hε

∂t1
ϕ dtdt3 + µ

2∑
i=1

∫
Ω

[
∂uε

i

∂t3

1
λεhε

+
∂uε

3

∂ti
− t3

hε

∂hε

∂ti

∂uε
3

∂t3

]

×
[

∂

∂ti

(
t3
hε

∂hε

∂t1
ϕ

)
−
(

t3
hε

∂hε

∂ti

)(
∂ϕ

∂t3

t3
hε

∂hε

∂t1
+

1
hε

∂hε

∂t1
ϕ

)]
λεdtdt3.

Then, from (3.6), (3.7) and (3.9), we easily obtain

|
∫

Ω

pε ∂

∂t3

(
t3
hε

∂hε

∂t1
ϕ

)
dtdt3| ≤

C

ε2
‖ϕ‖H1

0 (Ω). (3.16)

So, from (3.15) and (3.16) we obtain (for i = 1 but it is the same for i = 2)

|
∫

Ω

pε ∂ϕ

∂ti
dtdt3| ≤

C

ε2
‖ϕ‖H1

0 (Ω) for i = 1, 2. (3.17)

So from (3.14), (3.17) we deduce (3.8). �
For the next sections we need the following notation: for any function ψ, we denote

its extension from Ωε to ΩM by

ψ̄ =
{

ψ on Ωε

0 on ΩM − Ωε.
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We define also the sets

Bx = {(y, x3), y ∈ Y, 0 < x3 < h(x, y)}, QM = ω × Y × ]0, hM [,

Q =
⋃
x∈ω

{x} × Bx = {(x, y, x3), x ∈ ω, y ∈ Y, 0 < x3 < h(x, y)}

and the spaces

C∞
# (Bx) = {ϕ ∈ C∞(Bx), ϕ is y-periodic, ϕ(y, h(x, y)) = 0},

H1
#(Y ) = {ϕ ∈ H1(Y ) : ϕ is periodic},

H1
0#(Bx) = {ϕ ∈ H1(Bx) : ϕ is y-periodic and ϕ(y, 0) = ϕ(y, h(x, y)) = 0},

H1
1#(Bx) = {ϕ ∈ H1(Bx) : ϕ is y-periodic and ϕ(y, h(x, y)) = 0}.

Remark 3.1. We choose pε ∈ L2(Ωε)/R such that∫
Ωε

pε

hε
dzdz3 = 0, which implies

∫
Ω

pεdtdt3 = 0.

We deduce from (3.8) and [14] that

ε2‖pε‖L2(Ω) ≤ C, (3.18)

where C is a constant independent of ε.

4. Convergence results.

Theorem 4.1. There exists p ∈ L2(ω) with
∫

ω
p(x)dx = 0 such that the two-scale

convergence holds in ΩM for a subsequence of ε which is still denoted by ε:

ε2p̄ε →→ ξ(x, x3, y) =
{

p if x3 < h(x, y)
0 if x3 > h(x, y).

(4.1)

Proof. We have

‖pε‖L2(Ωε) =
∫

Ω

|pε|2hεdtdt3 ≤ hM‖pε‖2
L2(Ω),

so
ε2‖p̄ε‖L2(ΩM ) ≤ C.

We can extract a subsequence such that ε2p̄ε two-scale converges to some ξ in
L2(ΩM×[0, 1]3). We choose an arbitrary ϕ in D(ΩM , C∞

# (Y )) with ϕ = 0 for x3 ≤ h(x, y),
and we get ∫

ΩM

ε2p̄εϕ(x,
x

ε
, x3)dxd3 = 0.

Passing now to the scale limit, we obtain∫
ΩM

∫
Y

ξϕ(x, y, x3)dydxd3 = 0,

so ξ = 0 for x3 ≥ h(x, y). We denote by p the restriction of ξ for x3 ≤ h(x, y). Following
[9], we prove that ξ depends only on x for x3 ≤ h(x, y). For any ψ in D(ΩM ; C∞

# ([0, 1]3))
with ψ = 0 for x3 ≥ h(x, y), taking

ψε(x, x3) = ψ(x, x3,
x

ε
,
x3

ε
),
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and (uε
1, u

ε
2, u

ε
3 ± ψε) as a test function in (3.2), we have

1
λε

∫
Ωε

pε

(
∂ψ

∂x3
+

1
ε

∂ψ

∂y3

)
dxdx3 = µ

2∑
i=1

∫
Ωε

[
1
λε

∂uε
i

∂x3
+

∂uε
3

∂xi

] [
∂ψ

∂xi
+

1
ε

∂ψ

∂yi

]

+
2µ

λ2ε

∫
Ωε

∂uε
3

∂x3

(
∂ψ

∂x3
+

1
ε

∂ψ

∂y3

)
dxdx3 −

∫
Ωε

f3

ε2
ψdxdx3.

Then extending uε and pε by zero to ΩM and passing to the two-scale limit after multi-
plication by ε4 we deduce∫

[0,1]3

∫
ΩM

ξ
∂ψ

∂y3
dxdx3dydy3 = 0, (4.2)

so p does not depend on y3. To prove that ξ does not depend on x3, we take

ψε(x, x3) = ψ(x , x3 ,
x

ε
),

with ψ in D(ΩM , C∞
# (Y ), ψ = 0 for x3 ≥ h(x, y) and (uε

1 , uε
2 , uε

3±ψε) as a test function
in (3.2). Then

1
λε

∫
Ωε

pε ∂ψ

∂x3
dxdx3 = µ

2∑
i=1

∫
Ωε

[
1
λε

∂uε
i

∂x3
+

∂uε
3

∂xi

] [
∂ψ

∂xi
+

1
ε

∂ψ

∂yi

]
dxdx3

+
2µ

λ2ε2

∫
Ωε

∂uε
3

∂x3

∂ψ

∂x3
dzdz3 −

∫
Ωε

f3

ε2
ψdxdx3.

Passing to the two-scale limit after multiplication by ε3 we deduce∫
Y

∫
Ωε

ξ
∂ψ

∂x3
dxdx3dy = 0.

So p does not depend on x3. To prove that p does not depend on yi for i = 1, 2 we take

ψε(x, x3) = ψ(x, x3,
x

ε
)

with ψ in D(ΩM , C∞
# (Y )), where ψ = 0 for x3 ≥ h(x, y) and (uε

1 ± ψε , uε
2 , uε

3) as a test
function in (3.2), and we obtain∫

Ωε

pε

(
∂ψ

∂x1
+

1
ε

∂ψ

∂y1

)
dxdx3 = 2µ

∫
Ωε

∂uε
1

∂x1

(
∂ψ

∂x1
+

1
ε

∂ψ

∂y1

)
dxdx3

+ µ

∫
Ωε

(
∂uε

1

∂x2
+

∂uε
2

∂x1

)(
∂ψ

∂x2
+

1
ε

∂ψ

∂y2

)
dxdx3

+ µ

∫
Ωε

(
1
λε

∂uε
1

∂x3
+

∂uε
3

∂x1

)
1
λε

∂ψ

∂x3
dxdx3 −

1
ε2

∫
Ωε

f1ψdxdx3.

Passing to the two-scale limit after multiplication by ε3 we deduce∫
ΩM

∫
Y

ξ
∂ψ

∂y1
dydxdx3 = 0.
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So p does not depend on y1. In the same manner p does not depend on y2. It remains
to prove that

∫
ω

pdx = 0. Passing to the two-scale limit in the relation∫
ΩM

ε2pε

hε
dxdx3 = 0,

we find ∫
Q

p

h
dydxdx3 = 0,

which gives the expected result and finishes the proof. �

Theorem 4.2. There exists u ∈ (L2(ΩM ; H1
#(Y )))3 with

∂u

∂x3
∈ (L2(ΩM × Y ))3,

and there exists v ∈ (L2(ΩM ; H1
#([0, 1]3))3 such that the two-scale convergences hold,

up to a subsequence of ε denoted also by ε:

ūε
i →→ ui, ε

∂ūε
i

∂xj
→→ ∂ui

∂yj
for 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, (4.3)

∂ūε
i

∂x3
→→ ∂ui

∂x3
+

∂vi

∂y3
for 1 ≤ i ≤ 3. (4.4)

Moreover
∂u1

∂y1
+

∂u2

∂y2
+

1
λ

∂u3

∂x3
= 0 in Bx a.e. x ∈ ω, (4.5)

ui = 0 for x3 ≥ h(x, y) for i = 1, 2, 3, (4.6)

u3 = 0 for x3 = 0, (4.7)

ūε
i (x, 0) →→ ui(x, 0), for ω for 1 ≤ i ≤ 2. (4.8)

We have also the following relation satisfied by the y, x3-average of u:∫
ω

2∑
i=1

∂θ

∂xi

(∫
Y

∫ hM

0

uidydx3

)
dx =

∫
∂ω

g̃iniθdσ for any θ ∈ H1(ω), (4.9)

where

g̃i(x) =
∫ hm

0

gdx3.

Proof. (4.3)-(4.4) follow from the estimate (3.4) using the two-scale convergence results
[15], [16] as in [9]. For (4.5), note that uε is divergence free in Ωε, so

∂ūε
1

∂x1
+

∂ūε
2

∂x2
+

1
λε

∂ūε
3

∂x3
= 0.

Multiplying by ε, passing to the two-scale limit in ΩM and integrating on y3 we easily
obtain (4.5).

For (4.6), choosing ϕ in C∞(ΩM , C∞
# (Y )) with ϕ = 0 for x3 ≤ h(x, y), we get∫

ΩM

ūε
i ϕ(x,

x

ε
, x3)dxd3 = 0.
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Passing now to the two-scale limit for i = 1, 2, 3, we obtain∫
ΩM

∫
Y

ūiϕ(x, y, x3)dydxd3 = 0.

So ūi = 0 for x3 ≥ h(x, y), for i = 1, 2, 3.
From (2.9), (2.11), and for all ϕ in L2(ω; C#(Y )) we have∫

ΩM

∂ūε
3

∂x3
ϕ(x,

x

ε
)dxd3 = 0.

Passing to the two-scale limit we obtain∫
ΩM

∫
[0,1]3

(
∂u3

∂x3
+

∂v3

∂y3

)
ϕ(x, y)dydy3dxdx3 = 0.

As ∫
[0,1]3

∂v3

∂y3
ϕ(x, y)dydy3 = 0,

and using Green’s formula we deduce∫
ω

∫
Y

u3(x, y, 0)ϕ(x, y)dydx = 0,

which proves (4.7).
In order to prove (4.8) let us remark from (3.4) that uε

i (x, 0) is bounded in L2(ω).
Then there exists ξi ∈ L2(ω × Y ) such that

uε
i (x, 0) →→ ξi(x, 0) in ω.

Let us identify ξ. Passing to the two-scale limit in the obvious identity∫
ΩM

∂uε
i

∂x3
ϕ(x,

x

ε
)dxdx3 = −

∫
ω

uε
i (x, 0)ϕ(x,

x

ε
)dx for any ϕ ∈ L2(ω; C#(Y ))

we obtain∫
ΩM

∫
Y

∫ 1

0

(
∂ui

∂x3
+

∂vi

∂y3

)
ϕ(x, y)dydy3dxdx3 = −

∫
ω

∫
Y

ξi(x, y)ϕ(x, y)dydx.

The term in vi vanishes, so by Green’s identity we find∫
ω

∫
Y

ui(x, y, 0)ϕ(x, y)dydx =
∫

ω

∫
Y

ξi(x, y)ϕ(x, y)dydx

for an arbitrary ϕ, so ξi(x, y) = ui(x, y, 0) for 1 ≤ i ≤ 3, which ends the proof of (4.8).
To prove (4.9) we write∫

ΩM

(
2∑

i=1

∂ūε
i

∂xi
+

1
λε

∂ūε
3

∂x3

)
θ(x)dxdx3 = 0 ∀θ ∈ H1(ω),

so by Green’s formula we have∫
ΩM

(
2∑

i=1

ūε
i

)
∂θ

∂xi
dxdx3 =

∫
ω

∫ hM

0

(
2∑

i=1

gini

)
θ(x)dxdx3.

Passing to the two-scale limit we obtain (4.9). �
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5. A first relation between p and u. In the following we need to transform the
domain Bx into Y × ]0, 1[ using the scaling

ξ = y, ξ3 =
x3

h(x, ξ)
.

For any function ψ defined on Bx we define ψ̂ defined on Y × ]0, 1[ by

ψ̂(ξ, ξ3) = ψ(y, x3).

We have

D(y1, y2, x3)
D(ξ1, ξ2, ξ3)

=

⎛
⎝ 1 0 0

0 1 0
ξ3

∂h
∂ξ1

ξ3
∂h
∂ξ2

h

⎞
⎠ = A = A(x, ξ, ξ3),

D(ξ1, ξ2, ξ3)
D(y1, y2, x3)

=

⎛
⎜⎝ 1 0 0

0 1 0
− ξ3

h
∂h
∂ξ1

− ξ3
h

∂h
∂ξ2

1
h

⎞
⎟⎠ = B = B((x, ξ, ξ3).

We will also use the following notation: V = {v ∈ (C1(Q̄))3 such that ∂v1
∂y1

+ ∂v2
∂y2

+
1
λ

∂v3
∂x3

= 0, v is y-periodic, and v = 0 for x3 = 0 or x3 = h(x, y)}. V0 = {v ∈ V : v = 0
for x ∈ ∂ω}.

For any x ∈ ω we set Vx = {v ∈ (C1(B̄x))3 such that ∂v1
∂y1

+ ∂v2
∂y2

+ 1
λ

∂v3
∂x3

= 0, v is
y-periodic, v = 0 for x3 = 0 or x3 = h(x, y)}. V0,x = {v ∈ (H1

0#(Bx))3 : ∂v1
∂y1

+ ∂v2
∂y2

+
1
λ

∂v3
∂x3

= 0 }.
We also define the matrices

Aλ =

⎛
⎝ 1 0 0

0 1 0
λξ3

∂h
∂ξ1

λξ3
∂h
∂ξ2

λh

⎞
⎠ , Bλ = A−1

λ =

⎛
⎜⎝ 1 0 0

0 1 0
− ξ3

h
∂h
∂ξ1

− ξ3
h

∂h
∂ξ2

1
λh

⎞
⎟⎠ .

We have the following technical lemmas.

Lemma 5.1. For any x ∈ ω and any ψ ∈ (L2(Bx))3 the following two assertions are
equivalent:

∂ψ1

∂y1
+

∂ψ2

∂y2
+

1
λ

∂ψ3

∂x3
= 0, (5.1)

divξ,ξ3(hBλ ψ̂) = 0. (5.2)

Proof. The relation (5.1) is equivalent to∫
Bx

(
2∑

k=1

ψk
∂ϕ

∂yk
+

1
λ

ψ3
∂ϕ

∂y3

)
dy1dy2dx3 = 0 ∀ψ ∈ D(Bx).

Passing to Y × [0, 1] this gives∫
Y ×[0,1]

ψ̂T · BT
λ · ∇ξ,ξ3 ϕ̂ hdξdξ3 = 0,

which is equivalent to (5.2). �
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Lemma 5.2. For any x0 ∈ ω and any v ∈ Vx0 there exists ϕ ∈ V such that ϕ(x0, y, x3) =
v(y, x3).

Proof. We set v̂(ξ, ξ3) = v(ξ , h(x0, ξ)ξ3) defined in Y × [0, 1]. We choose ϕ̂(x , ξ , ξ3)
defined in ω × Y × [0, 1] such that

h(x, ξ)Bλ(x, ξ, ξ3) ϕ̂ = h(x0, ξ)Bλ(x0, ξ, ξ3) v̂, (5.3)

that is,

ϕ̂(x , ξ , ξ3) =
h(x0, ξ)
h(x, ξ)

Aλ(x, ξ, ξ3)Bλ(x0, ξ, ξ3)v̂(ξ, ξ3).

Finally we set
ϕ(x, y, x3) = ϕ̂(x, y,

x3

h(x, y)
).

Since by hypothesis
∂v1

∂y1
+

∂v2

∂y2
+

1
λ

∂v3

∂x3
= 0,

this implies by Lemma 5.1 that

divξ,ξ3 (h(x0, ξ)Bλ(x0, ξ, ξ3) v̂) = 0,

so by (5.3) and again Lemma 5.1,

∂ϕ1

∂y1
+

∂ϕ2

∂y2
+

1
λ

∂ϕ3

∂x3
= 0.

The remaining conditions on ϕ are obvious. �
We now have a first relation between p and u.

Theorem 5.3. The limit pressure p belongs to H1(ω) and the following relation yields
a.e. x in ω,

2µ
3∑

i,j=1

∫
Bx

DB
i,j(u)DB

i,j(ψ)dydx3 = −
2∑

i=1

∫
Bx

ψi
∂p

∂xi
dydx3

+
3∑

i=1

∫
Bx

fiψidydx3 ∀ψ ∈ V0,x,

(5.4)

where for 1 ≤ i, j ≤ 2,

DB
i,j(u) =

1
2

(
∂ui

∂yj
+

∂uj

∂yi

)
, DB

i,3(u) =
1
2

(
1
λ

∂ui

∂x3
+

∂u3

∂yi

)
, DB

3,3(u) =
1
λ

∂u3

∂x3
.

Proof. We proceed as in [9]. From (3.12) passing to Ωε we obtain, dividing by λε,∫
ΩM

pε

(
2∑

i=1

∂ψ̄ε
i

∂xi
+

1
λε

∂ψ̄ε
3

∂x3

)
=

µ

2

2∑
i,j=1

∫
ΩM

(
∂ūε

i

∂xj
+

∂ūε
j

∂xi

)(
∂ψ̄ε

i

∂xj
+

∂ψ̄ε
j

∂xi

)

+
2∑

i=1

µ

∫
ΩM

(
1
λε

∂ūε
i

∂x3
+

∂ūε
3

∂xi

)(
1
λε

∂ψ̄ε
i

∂x3
+

∂ψ̄ε
3

∂xi

)
+

2µ

λ2ε2

∫
ΩM

∂ūε
3

∂x3

∂ψ̄ε
3

∂x3

− 1
ε2

∫
ΩM

f · ψ̄ε ∀ψε ∈ (H1
0 (Ωε))3.

(5.5)
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We now take in (5.5) ψε(x, x3) = ψ(x, x
ε , x3) with ψ ∈ V0 and obtain

∫
ΩM

p̄ε

2∑
i=1

∂ψi

∂xi
=

µ

2

2∑
i,j=1

∫
ΩM

[
∂ūε

i

∂xj
+

∂ūε
j

∂xi

][
∂ψi

∂xj
+

1
ε

∂ψi

∂yj
+

∂ψj

∂xi
+

1
ε

∂ψj

∂yi

]

+ µ

2∑
i=1

∫
ΩM

[
1
λε

∂ūε
i

∂x3
+

∂ūε
3

∂xi

] [
1
λε

∂ψi

∂x3
+

∂ψ3

∂xi
+

1
ε

∂ψ3

∂yi

]
+

2µ

λ2ε2

∫
ΩM

∂ūε
3

∂x3

∂ψ3

∂x3

− 1
ε2

∫
ΩM

f · ψ̄ε.

Passing to the two-scale limit in ΩM , after multiplying by ε2, and using Theorems 4.1
and 4.2, we deduce

∫
Q

p(x)

(
2∑

i=1

∂ψi

∂xi

)
=

µ

2

2∑
i,j=1

∫
Q

(
∂ui

∂yj
+

∂uj

∂yi

)(
∂ψi

∂yj
+

∂ψj

∂yi

)

+ µ

2∑
i=1

∫
Q

(
1
λ

∂ui

∂x3
+

1
λ

∂vi

∂y3
+

∂u3

∂yi

)(
1
λ

∂ψi

∂x3
+

∂ψ3

∂yi

)

+
2µ

λ2

∫
Q

(
∂u3

∂x3
+

∂v3

∂y3

)
∂ψ3

∂x3
−
∫

Q

f · ψ.

As ψ, u do not depend on y3, and vi is y3-periodic, we deduce

∫
Q

p(x)
2∑

i=1

∂ψi

∂xi
dydxdx3 = 2µ

3∑
i,j=1

∫
Q

DB
i,j(u)DB

i,j(ψ)dydxdx3

−
∫

Q

f · ψdydxdx3 ∀ψ ∈ V0.

(5.6)

Now we prove exactly as in [9], taking ψ = (θ(x)ξ̄ , 0 , 0) as a test function in (5.6) with
θ arbitrary in D(ω) and ξ̄ the extension on Bx of a function depending only on y2 and
x3 defined on [0, 1]× [0, hm] with nonzero average, that ∂p

∂x1
∈ L2(ω) and the same holds

for ∂p
∂x2

∈ L2(ω). Then p is in H1(ω).
Now taking in (5.6) ψ(x , y , x3) = θ(x)ϕ(x , y , x3) with θ in D(ω) and ϕ in V arbi-

trary, and using Green’s formula in the left-hand side of (5.6), we obtain

−
∫

Bx

2∑
i=1

∂p

∂xi
ϕidydx3 = −2µ

3∑
i,j=1

∫
Bx

DB
i,j(u)DB

i,j(ϕ)dydx3

−
3∑

i=1

∫
Bx

fiϕidydx3 a.e. x ∈ ω.

(5.7)

(Remark that DB
i,ju(x , ·) ∈ L2(Bx) a.e. x ∈ ω by Fubini’s theorem.) Using Lemma

5.2 we deduce that (5.7) is true for any ϕ ∈ Vx. Now using the density of Vx in V0,x we
have the expected result. �
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6. The variational inequality between p and u. In the following we propose to
obtain another variational relation between p and u, more general than in Theorem 5.3.
Now the test functions will not vanish on x3 = 0 (except for the third component) and
the equality becomes a variational inequality. We first need to introduce the following
spaces: C1

0#(ω × Y ) = {v ∈ C1(ω × Y ) with v(x, ·) = 0 for x ∈ ∂ω and v(x, ·) y-periodic
on Y }, which is a Banach space as a closed subspace of C1(ω × Y ).

We then introduce U = {v ∈ (L2(]0, hM [ ; C1
0#(ω × Y )))3 with v = 0 for x3 ≥ h(x, y),

v3 = 0 for x3 = 0, ∂v
∂x3

∈ (L2(]0, hM [ ; C1
0#(ω × Y )))3, and ∂v1

∂y1
+ ∂v2

∂y2
+ 1

λ
∂v3
∂x3

= 0}.
We need also the set U = {v ∈ (L2(QM ))3 : v = 0 for x3 ≥ h(x, y); v3 = 0 for

x3 = 0, ∂v
∂yi

∈ (L2(QM ))3, i = 1, 2; ∂v
∂x3

∈ (L2(QM ))3; v is y-periodic, and ∂v1
∂y1

+ ∂v2
∂y2

+
1
λ

∂v3
∂x3

= 0}.
U is a Hilbert space endowed with the norm

‖v‖2
U = ‖ ∂v

∂x3
‖(L2(QM ))3 +

2∑
i=1

‖ ∂v

∂yi
‖(L2(QM ))3 .

It is clear from Theorem 4.2 that u ∈ U. We have the following density result.

Proposition 6.1. U is dense in U for the norm of U.

Proof. We can suppose that 0 is in the interior of ω. We set for any σ > 1, σ near 1,

Qmσ = {(x, y, x3) : σx ∈ ω; σx3 ∈ ]0, hM [; y ∈ Y } ⊂ QM .

For any v ∈ U we set vσ = (vσ
1 , vσ

2 , vσ
3 ) such that, for k = 1, 2,

vσ
k (x, y, x3) =

{
vk(σx, y, σx3) for (x, y, x3) ∈ Qmσ,

0 for (x, y, x3) ∈ QM − Qmσ,

vσ
3 (x, y, x3) =

{
1
σ v3(σx, y, σx3) for (x, y, x3) ∈ Qmσ,

0 for (x, y, x3) ∈ QM − Qmσ.

It is clear that vσ ∈ U and vσ → v in U for σ → 1. We extend vσ by y-periodicity on
ω × ] − 1, 2[2 × ]0, hM [. Then we extend it by 0 on R

4 × ]0, hM [. We then introduce,
for any δ > 0 small enough, the function vσδ = vσ �x,y ρδ (defined by convolution in x, y

only) where ρδ ∈ D(R4) is a sequence of mollifier functions. We have

vσδ(x , y , x3) =
∫

R4
vσ(x − t , y − z , x3)ρδ(t , z)dtdz

=
∫

R4
vσ(t , z , x3)ρδ(x − t , y − z)dtdz.

For σ > 1 we have that vσδ is an element of U for δ small enough. (Remark that

∂vσδ

∂yk
=

∂vσ

∂yk
�x,y ρδ for k = 1, 2 and

∂vσδ

∂x3
=

∂vσ

∂x3
�x,y ρδ.)

We also prove classically that for fixed σ > 1 we have vσδ → vσ in U for δ → 0. This
ends the proof. �

We can now obtain the following variational inequality.
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Theorem 6.1. The two-scale limits p and u satisfy the following relation:

2µ
3∑

i,j=1

∫
Q

DB
i,j(u)DB

i,j(ϕ) dydxdx3 + j0(u + ϕ) − j0(u)

+
2∑

i=1

∫
Q

ϕi
∂p

∂xi
dydxdx3 ≥

∫
Q

f · ϕ dydxdx3 ∀ϕ ∈ U,

(6.1)

where

j0(ψ) =
1
λ

∫
ω

∫
Y

k(x)|ψ(x , y , 0) − s0|dydx ∀ψ ∈ U.

Proof. Taking ϕε as a test function in (3.2) such that

ϕε(x , x3) = (G1 , G2 , λεG3)(x , x3) + (ψ1 , ψ2 , ψ3)(x ,
x

ε
, x3)

with ψ ∈ U , and using the fact that divx,x3 G = 0,

∂ψ1

∂y1
+

∂ψ2

∂y2
+

1
λ

∂ψ3

∂x3
= 0, and Gi(x, 0) = s0

i ,

we obtain

µ

2

2∑
i,j=1

∫
ΩM

(
∂ūε

i

∂xj
+

∂ūε
j

∂xi

)(
∂ψi

∂xj
+

1
ε

∂ψi

∂yj
+

∂ψj

∂xi
+

1
ε

∂ψj

∂yi

)

+
µ

2

2∑
i=1

∫
ΩM

(
∂ūε

i

∂xj
+

∂ūε
j

∂xi

)(
∂Gi

∂xj
+

∂Gj

∂xi

)

+ µ

2∑
i=1

∫
ΩM

(
1
λε

∂ūε
i

∂x3
+

∂ūε
3

∂xi

)(
1
λε

∂ψi

∂x3
+

∂ψ3

∂xi
+

1
ε

∂ψ3

∂yi

)

+ µ

2∑
i=1

∫
ΩM

(
1
λε

∂ūε
i

∂x3
+

∂ūε
3

∂xi

)(
1
λε

∂Gi

∂x3
+ λε

∂G3

∂xi

)

+
2µ

λ2ε2

∫
ΩM

∂ūε
3

∂x3

∂ψ3

∂x3
+

2µ

λε

∫
ΩM

∂ūε
3

∂x3

∂G3

∂x3
−
∫

ΩM

pε
2∑

i=1

∂ψi

∂xi

+
1

λε2

∫
ω

k(x)|ψ(x,
x

ε
, 0)| ≥ µ

2

2∑
i=1

∫
ΩM

(
∂ūε

i

∂xj
+

∂ūε
j

∂xi

)2

+
2µ

λ2ε2

∫
ΩM

(
∂ūε

3

∂x3

)2

+ µ

∫
ΩM

(
1
λε

∂ūε
i

∂x3
+

∂ūε
i

∂xi

)2

+
1

λε2

∫
ω

k(x)|uε(x, 0) − s0|dx

+
1
ε2

∫
ΩM

f · (ψ − ūε) +
1
ε2

∫
ΩM

f · (G1, G2, λεG3)T .

(6.2)

We multiply by ε2 and we pass to the limit in ε using Theorems 4.1, 4.2 and the fact
that p ∈ H1(ω). From the lower semicontinuity result, Theorem 8.5 and the fact that
the application (x, z) ∈ ω × R

2 �→ k(x)|z − s0| ∈ R satisfies the hypotheses (H1)− (H5)
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of Section 8, we obtain

lim inf
ε→0

∫
ω

k(x)|uε(x , 0) − s0|dx ≥
∫

ω

∫
Y

k(x)|u(x , y , 0) − s0|dydx. (6.3)

We then have

2µ

3∑
i,j=1

∫
Q

DB
i,j(u)DB

i,j(ψ) +
2µ

λ

2∑
i=1

∫
Q

DB
i,3(u)

∂Gi

∂x3
+

2∑
i=1

∫
Q

ψi
∂p

∂xi

+
1
λ

∫
ω

∫
Y

k|ψ(x, y, 0)| ≥ 2µ

3∑
i,j=1

∫
Q

(
DB

i,j(u)
)2

+
1
λ

∫
ω

∫
Y

k|u(x, y, 0) − s0|

+
∫

Q

f ·
(
ψ − u + (G1, G2 , 0)T )

)
∀ψ ∈ U .

(6.4)

By the density of U in U (Proposition 6.1) we deduce that the above variational inequality
is satisfied for any ψ in U. Then we take in (6.4) ψ = u + ϕ − (G1, G2, 0)T with ϕ an
arbitrary element of U and we obtain the desired result, provided that we prove∫

Q

2∑
i=1

ui
∂p

∂xi
=
∫

Q

2∑
i=1

Gi
∂p

∂xi
. (6.5)

From (4.9) we have ∫
Q

2∑
i=1

ui
∂p

∂xi
=
∫

∂ω

p
2∑

i=1

g̃ini.

On the other hand, using Green’s formula we can write∫
Q

p
2∑

i=1

∂Gi

∂xi
= −
∫

Q

2∑
i=1

Gi
∂p

∂xi
+
∫

∂ω

∫
Y

p
2∑

i=1

gini.

Taking into account that divx,x3 G = 0 we deduce∫
Q

2∑
i=1

Gi
∂p

∂x1
=
∫

∂ω

∫
Y

p
2∑

i=1

g̃ini,

which gives (6.5). �
Remark 6.2. A direct method to obtain the inequality (6.1) would be to take, as a

test function, ϕε = ψ(x, x
ε , x3)+uε in (3.2) with arbitrary ψ. But if we do that we obtain

in the left side of (6.2),
1

λε2

∫
ω

k(x)|uε(x , 0) + ψ(x ,
x

ε
, 0) − s0|dx

instead of
1

λε2

∫
ω

k(x)|ψ(x ,
x

ε
, 0)|dx.

So, using the two-scale limit, we need to obtain

lim
ε→0

∫
ω

k(x)|uε(x , 0) + ψ(x ,
x

ε
, 0) − s0|dx

=
∫

ω

∫
Y

k(x)|u(x , y , 0) + ψ(x , y , 0) − s0|dx
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and a strong convergence result such as

‖uε(x , 0) − u(x ,
x

ε
, 0)‖L2(ω×Y ) → 0

would be necessary. But such a result seems very difficult to prove since the function
y �→ u(x, y, 0) is not continuous. Then

(x , y) �→ k(x)|u(x , y, 0) + ψ(x , y , 0) − s0|

is not a Carathéodory function.

7. The limit problem. We shall denote s	(x, y) = u(x, y, 0), which is one of the
unknowns of our limit problem. For any x ∈ ω we recall the following space:

V0,x = {ϕ ∈ (H1
0#(Bx))3 with

∂ϕ1

∂y1
+

∂ϕ2

∂y2
+

1
λ

∂ϕ3

∂x3
= 0}

and introduce

V1,x = {ϕ ∈ (H1
1#(Bx))3 with

∂ϕ1

∂y1
+

∂ϕ2

∂y2
+

1
λ

∂ϕ3

∂x3
= 0}.

We define the following local problems:
(Lk) : Find wk ∈ V0,x (for k = 1 , 2) such that

2µ

3∑
i,j=1

∫
Bx

DB
ij(w

k)DB
ij(ϕ)dydx3 = −

∫
Bx

ϕkdydx3 ∀ϕ ∈ V0,x. (7.1)

(L3) : Find w	 ∈ V0,x such that

2µ
3∑

i,j=1

∫
Bx

DB
ij(w

3)DB
ij(ϕ)dydx3 =

∫
Bx

f.ϕ dydx3 ∀ϕ ∈ V0,x. (7.2)

On the other hand, we introduce the following space of traces on x3 = 0: Sx =
{θ ∈ (L2(Y ))2 : ∃ϕ ∈ V1,x such that ϕk(y, 0) = θk(y), k = 1, 2, ϕ3(y, 0) = 0} and
S = {θ̃ ∈ (L2(ω × Y ))2 : ∃ϕ̃ ∈ U such that ϕ̃k(x , y , 0) = θ̃k(x , y), k = 1, 2}.

It is clear that s	(x , ·) ∈ Sx a.e. x ∈ ω and s	 ∈ S. For any s ∈ S we define the
problem

(L) : Find w ∈ V1,x such that w = (s(x , ·) , 0) for x3 = 0 and

2µ

3∑
i,j=1

∫
Bx

DB
ij(w)DB

ij(ϕ)dydx3 = 0 ∀ϕ ∈ V0,x. (7.3)

It is clear from the Korn inequality that (Lk)k=1,2,3 and (L) are well-posed problems.
We denote in the following by R the linear operator from S to U such that R(s) = w,
where w(x , ·) is the solution of the problem (L) a.e. x in ω. We introduce the following
scalar product on S:

(s , τ)S = (R(s) , R(τ ))U. (7.4)

We have

Lemma 7.1. S endowed with the scalar product (7.4) is a Hilbert space.
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Proof. Since R is injective from S to U (since Ker(R) = {0}) it suffices to prove that
R(s) is closed in U . Let wk = R(sk) be a sequence in R(S) such that wk → w in U.
Then for any ϕ ∈ V we have (7.3) with w replaced by wk. Multiplying by an arbitrary
θ ∈ D(ω), integrating in ω and passing to the limit in k we obtain

3∑
i,j=1

∫
ω

∫
Bx

DB
ij(w)DB

ij(ϕ)dydx3θ(x)dx = 0,

which implies, since θ is arbitrary, that

3∑
i,j=1

∫
Bx

DB
ij(w)DB

ij(ϕ)dydx3 = 0, a.e. x ∈ ω. (7.5)

Now set s(x, y) = w(x, y, 0), so s ∈ S. On the other hand, the equality (7.5) is true for
any ϕ ∈ V . Using Lemma 5.2 and the density of Vx in V0,x we deduce that w = R(s),
which ends the proof. �

Remark 7.2. It is clear from Lemma 7.1 that R ∈ L(S , U).
We have the following result whose proof is elementary.

Proposition 7.1. There exists a constant C > 0 such that

‖wk‖(H1(Bx))3 ≤ C for k = 1, 2, 3 a.e. x ∈ ω,

where wk is the solution of the problem (Lk).

We now have

Proposition 7.2. The limit u can be written in the following manner: a.e. x ∈ ω we
have

u =
2∑

k=1

wk ∂p

∂xk
+ w3 + w	 a.e. (y, x3) ∈ Bx (7.6)

with wk solutions of the problem (Lk)k=1,2,3 and w	 = R(s	).
Moreover p satisfies the following homogenized Reynolds equation:∫
ω

A∇p · ∇v =
∫

ω

2∑
j=1

[∫
Bx

(w	
j + w3

j )dydx3

]
∂v

∂xj
dx −

∫
∂ω

g̃ · ν v ∀v ∈ H1(ω), (7.7)

where A is the matrix defined by

Aj,k = −
∫

Bx

wk
j dydx3 j = 1, 2, k = 1, 2.

Proof. The relation (7.6) is easily obtained from (7.1)-(7.3), (5.4) by linearity and
uniqueness and (7.7) is an immediate consequence of (7.6) and (4.9). �

We shall need to consider the equality (7.7) with the supplementary condition
∫

ω
pdx =

0 (which is proved in Theorem 4.1) as a well-posed problem in p. Remark also that by
hypothesis (2.6) we have

∫
∂ω

g̃ ·v = 0. This will be a classical consequence of the following
result.
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Lemma 7.3. The matrix A belongs to (L∞(ω))4 and is symmetric and positive definite
uniformly in x; that is, there exists a constant α > 0 such that

ξT Aξ ≥ α‖ξ‖2 ∀ξ ∈ R
2. (7.8)

Proof. We proceed as in [9]. The fact that A belongs to (L∞(ω))4 is an immediate
consequence of Proposition 7.1. Taking wl as a test function in (Lk) (k = 1, 2), we obtain

Ak,l = 2µ
3∑

i,j=1

∫
Bx

DB
ij(w

k)DB
ij(w

l),

which gives the symmetry of A. We also deduce
2∑

k,l=1

Ak,lξkξl = 2µ
2∑

i,j=1

∫
Bx

|DB
ij(w̃)|2 with w̃ = ξ1w1 + ξ2w2. (7.9)

On the other hand, multiplying (Lk) by ξk and adding in k we get

2µ

3∑
i,j=1

∫
Bx

DB
ij(w̃)DB

ij(ϕ) = −
∫

Bx

(ξ1ϕ1 + ξ2ϕ2) ∀ϕ ∈ V0,x. (7.10)

For any fixed ξ we choose ϕ in the following manner:

ϕ(y, x3) = (−ξ1x3(hm − x3) , −ξ2x3(hm − x3) , 0)

for x3 ∈ [0, hm] and extended by 0 on Bx. It is clear that ϕ ∈ V0,x for any x ∈ ω; then
it can be taken as a test function in (7.10). We obtain, using also the Cauchy-Schwarz
inequality,

h3
m

6
‖ξ‖2 ≤ 2µ

√√√√ 3∑
i,j=1

∫
Bx

|DB
ij(w̃)|2

√√√√ 3∑
i,j=1

∫
Bx

|DB
ij(ϕ)|2. (7.11)

With the help of (7.9) we easily obtain (7.8). �
For any s ∈ S let us define q as the unique solution of the problem
(P0) : Find q ∈ H1(ω)/R such that∫

ω

A∇q∇ϕ =
∫

ω

2∑
j=1

(∫
Bx

wjdydx3

)
∂ϕ

∂xj
∀ϕ ∈ H1(ω)

with w = R(s) (the solution of (L)).
We denote by Q the linear operator from U to H1(ω) such that Q(w) = q is a solution

of (P0) for any w ∈ U. It is obvious that Q is also continuous, that is,

Q ∈ L(U , H1(ω)). (7.12)

On the other hand, we define p1 as the unique solution of the problem
(P1) : Find p1 ∈ H1(ω)/R such that∫

ω

A∇p1 · ∇ϕ =
∫

ω

2∑
j=1

(∫
Bx

w3
jdydx3

)
∂ϕ

∂xj
−
∫

∂ω

g̃ · νϕ ∀ϕ ∈ H1(ω)/R. (7.13)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



582 MAHDI BOUKROUCHE AND IONEL CIUPERCA

By linearity and uniqueness we easily see that p can be expressed as a function of s	 in
the following manner:

p = p0 + p1 (7.14)

with p0 = Q ◦R(s	) and p1 the solution of (P1).
It is clear from (7.6) that u can also be expressed as a function of s	:

u =
2∑

k=1

wk ∂p0

∂xk
+ w	 +

2∑
k=1

wk ∂p1

∂xk
+ w3. (7.15)

Now substituting (7.14) and (7.15) into (6.1) we obtain that s	 satisfies the following
variational inequality:

2µ

∫
Q

3∑
i,j=1

[
2∑

k=1

DB
ij(w

k)
∂p0

∂xk
+ DB

ij(w
	)

]
· DB

ij(ϕ) +
∫

Q

2∑
j=1

∂p0

∂xj
ϕj

+ 2µ

∫
Q

3∑
i,j=1

[
2∑

k=1

DB
ij(w

k)
∂p1

∂xk
+ DB

ij(w
3)

]
· DB

ij(ϕ) +
∫

Q

2∑
j=1

∂p1

∂xj
ϕj

+
1
λ

∫
ω

∫
Y

k(x)
[
|ϕ(x, y, 0) + s	(x, y) − s0| − |s	(x, y) − s0|

]
−
∫

Q

f · ϕ ≥ 0 ∀ϕ ∈ U.

(7.16)

The first two integrals in the above inequality will be seen as a bilinear form while
the three subsequent terms as a linear form. It is then natural to introduce the following
bilinear form b and linear form T respectively:

b(s, θ) = 2µ

∫
Q

3∑
i,j=1

[
2∑

k=1

DB
ij(w

k)
∂q

∂xk
+ DB

ij(w)

]
· DB

ij(ψ)

+
∫

Q

2∑
j=1

∂q

∂xj
ψj , ∀(s , θ) ∈ S × S,

(7.17)

T (θ) = 2µ

∫
Q

3∑
i,j=1

[
2∑

k=1

DB
ij(w

k)
∂p1

∂xk
+ DB

ij(w
3)

]
· DB

ij(ψ)

+
∫

Q

2∑
j=1

∂p1

∂xj
ψj −

∫
Q

f · ψ ∀θ ∈ S

(7.18)

with w = R(s), q = Q(R(s)), and ψ an arbitrary relevement of θ; that is, ψ ∈ U is such
that ψ|x3=0 = θ.

Now we easily see that b and T are well-defined; that is, they are independent of the
choice of the relevement ψ of θ. Indeed if ψ1 and ψ2 are two different relevements of θ,
then ψ1 − ψ2 is an element of V0,x. Moreover the expressions of the right side and of
(7.16) and (7.17) vanish for ψ ∈ V0,x since wk satisfies (Lk) for k = 1, 2, 3. This proves
that b and T are well defined. With the above notation the variational inequality (7.16)
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can be written in the following form:

Find s	 ∈ S : b(s	, θ) + T (θ) + ĵ(s	 + θ) − ĵ(s	) ≥ 0 ∀θ ∈ S (7.19)

where

ĵ(θ) =
1
λ

∫
ω

∫
Y

k(x)|θ(x, y) − s0|dydx.

The expression of b and T can be simplified in the following manner.

Proposition 7.3. We have

b(s, θ) = 2µ

∫
Q

3∑
i,j=1

DB
ij(w)DB

ij(ψ) +
∫

ω

A∇q · ∇r,

T (θ) = 2µ

∫
Q

3∑
i,j=1

DB
ij(w

3)DB
ij(ψ) +

∫
Q

2∑
j=1

∂p1

∂xj
ψj −

∫
Q

f · ψ

with w = R(s), ψ = R(θ), q = Q(R(s)) and r = Q(R(θ)).

Proof. We take in (7.17) and (7.18) the relevement ψ = R(θ). We then have
3∑

i,j=1

∫
Q

DB
ij(w

k)DB
ij(ψ) = 0, k = 1, 2

since wk ∈ V0,x and ψ is the solution of (L) with s replaced by θ. On the other hand,
considering q = Q(R(s)) as a test function in the problem (P0) satisfied by r = Q(R(θ))
we find ∫

Q

2∑
j=1

∂q

∂xj
ψj =

∫
ω

2∑
j=1

(∫
Bx

ψj

)
∂q

∂xj
=
∫

ω

A∇r · ∇q.

This ends the proof. �
We can now state the main result of this paper.

Theorem 7.4. The limit problem (7.19) satisfied by s	 = u(x, y, 0) has a unique solution
s	 ∈ S. Moreover for the entire sequence of ε we have in ΩM ,

ε2p̄ε →→ p0 + p1,

ūε →→
2∑

k=1

wk ∂p0

∂xk
+ w	 +

2∑
k=1

wk ∂p1

∂xk
+ w3,

where wk, for k = 1, 2, 3, are solutions of (Lk), p1 is a solution of (P1), w	 = R(s	),
p0 = Q(R(s	)). All the limit functions are defined on Q and extended by 0 to QM .

Proof. We use the form of b and T given in Proposition 7.3. The symmetry of b is
obvious and the continuity of b and T are immediate from the fact that A ∈ (L∞(ω))4

(Proposition 7.1) and that R and Q are linear and continuous (Remark 7.2) and (7.12).
Moreover using positive definiteness of A we get

b(s, s) ≥
∫

Q

3∑
i,j

|DB
ij(w)|2.
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By Korn’s inequality and since ‖w‖U = ‖s‖S we deduce that there exists a constant
α1 > 0 such that

b(s, s) ≥ α1‖s‖2
S .

Since ĵ is convex and continuous in S (we have the continuous embedding of S in
L2(ω × Y )), and S is a Hilbert space we deduce classically the existence and unique-
ness of a solution of the variational inequality (7.19) (Proposition 2.2 chap. II of [17]).
We deduce from the uniqueness that the entire sequences (in ε) ūε and ε2p̄ε converge to
the indicated limits. �

8. Lower-semicontinuity result for the two-scale convergence. The aim of
this chapter is to prove (6.3), in a generalized case, in Theorem 8.5, which is still an open
problem, using some results on the subdifferential and regularization of convex functions.

Let Ω ⊂ R
m be an open bounded domain, Y = [0, 1]m, and ϕ : Ω × R

m × R
n → R

such that the following hypotheses hold:
(H1) ϕ(x, ·, ·) is continuous a.e. x ∈ Ω,
(H2) ϕ(·, y, z) is measurable for all (y, z) ∈ R

m × R
n,

(H3) ϕ(x, ·, z) is 1-periodic in y,
(H4) ϕ(x, y, ·) is convex in z,
(H5) ∃C1 > 0 and ∃C2 ∈ L2(Ω) such that

|ϕ(x, y, z)| ≤ C1‖z‖2 + C2(x) a.e. x ∈ Ω ∀(y, z) ∈ R
m × R

n.

Remark 8.1. A particular case of Theorem 8.5, where ϕ depends only on z, was
proved in [18] and [19] (see also [20] for an analogous result for the stochastic two-scale
convergence). All these results are valid only in the particular case where ϕ is an affine
function. Another particular case, with ϕ(z) = z2, can be found in [15]. In [16] the case
ϕ(z) = |z|p for p ∈ ]1, +∞[ was also considered, which is a particular case of our only for
p ∈ ]1, 2].

For δ > 0 we define the partial Yosida-Moreau approximation of ϕ:

ϕδ(x, y, z) = inf
s∈Rn

{
ϕ(x, y, s) +

‖z − s‖2

2δ

}
, (8.1)

which is well defined (see for example [21], chapter 2, page 121, theorem 2.3) and for
(x, y) ∈ Ω × R

m we consider the multivalued operator Ax,y from R
n to 2R

n

such that
Ax,y(z) = ∂zϕ(x, y, z), where ∂zϕ is the subdifferential, in z, of ϕ defined by

z �→ ∂zϕ(x, y, z) = {w ∈ R
n : ϕ(x, y, s) ≥ ϕ(x, y, z) + w · (s − z) ∀s ∈ R

n}.

From (H1) and (H4) ϕ is continuous and convex in z, so we have (see for example [17],
page 22, Proposition 5.2) that

∂zϕ(x, y, z) �= ∅; then Dom(Ax,y) = R
n.

We have also (see for example [22], page 25, [21], theorem 2.1) that Ax,y is a maximal
monotone operator. Then (see for example [22], Proposition 2.2) we get

�(I + δAx,y) = R
n,
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so for all δ > 0, and for all s ∈ R
n, there exists a unique z ∈ R

n, such that

(I + δAx,y)(z) � s.

We denote z = (I + δAx,y)−1(s) and introduce the following application:

Jx,y,δ : R
n → R

n such that Jx,y,δ(s) = (I + δAx,y)−1(s) (8.2)

and the partial Yosida approximation of the operator Ax,y,

Ax,y,δ : R
n → R

n such that Ax,y,δ(s) =
1
δ
(s − Jx,y,δ(s)). (8.3)

Lemma 8.2. We have

ϕδ(x, y, ·) ∈ C1(Rn) and is convex in z, (8.4)

lim
δ→0

ϕδ(x, y, z) = ϕ(x, y, z), (8.5)

∇zϕδ = Ax,y,δ, (8.6)

lim
δ→0

Jx,y,δ,(z) = z ∀z ∈ R
n, (8.7)

‖Jx,y,δ(z1) − Jx,y,δ(z2)‖ ≤ ‖z1 − z2‖ ∀(z1, z2) ∈ R
n × R

n, (8.8)

‖Ax,y,δ(z1) − Ax,y,δ(z2)‖ ≤ 1
δ
‖z1 − z2‖ ∀(z1, z2) ∈ R

n × R
n, (8.9)

ϕ(x, y, Jx,y,δ(z)) ≤ ϕδ(x, y, z) ≤ ϕ(x, y, z) ∀z ∈ R
n. (8.10)

Proof. The proof is similar to the well-known results in [21], page 121; see also [22]. �
We have the following technical result.

Proposition 8.1. For any ξ such that ξ(x, y) ∈ ∂zϕ(x, y, 0) we have

∇zϕδ(x, y, δξ(x, y)) = ξ(x, y) a.e. x ∈ ω ∀y ∈ Y, (8.11)

|∇zϕδ(x, y, δξ(x, y))| ≤
√

n(C1 + 2C2(x)). (8.12)

Proof. Since δξ ∈ δAx,y(0) + 0 we deduce Jx,y,δ(δξ) = 0, which implies

∇zϕδ(x, y, δξ(x, y)) = Ax,y,,δ(δξ) = ξ(x, y),

which proves (8.11). On the other hand, we have

ϕ(x, y, z) − ϕ(x, y, 0) ≥ ξ · z ∀z ∈ R
n.

Taking successively z = ±ek in the above inequality where ek is the k-th element in the
canonical basis in R

n, we deduce using also (H5),

|ξk| ≤ C1 + 2C2(x) k = 1, ..., n.

With the help of (8.11) we obtain (8.12). �

Proposition 8.2. We have

|ϕδ(x, y, z)| ≤ 2C1‖z‖2 + C2(x) a.e. x ∈ Ω, ∀(y, z) ∈ R
m × R

n, (8.13)

for all 0 < δ < (4C1)−1, and also

|∇zϕδ(x, y, z)| ≤ 2
√

n(C1 + 2C2(x)) +
‖z‖
δ

. (8.14)
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Proof. From (8.10), ϕδ(x, y, z) ≤ ϕ(x, y, z); then with (H5),

ϕδ(x, y, z) ≤ 2C1‖z‖2 + C2(x).

On the other hand, from the definition of ϕδ and (H5) we deduce

ϕδ(x, y, z) ≥ −C2(x) + inf
s∈Rn

{
‖z − s‖2

2δ
− C1‖s‖2

}
.

Denoting B(s) = ‖z−s‖2

2δ − C1‖s‖2 we have

B(s) ≥ B(smin) ∀s ∈ R
n with smin =

z

1 − 2δC1

and we also have

B(smin) = − C1

1 − 2δC1
‖z‖2.

As δ < (4C1)−1, then C1
1−2δC1

≤ 2C1, so

ϕδ(x, y, z) ≥ −2C1‖z‖2 − C2(x).

Thus (8.13) follows. To prove (8.14), we write

∇zϕδ(x, y, z) = ∇zϕδ(x, y, δξ(x, y)) + ∇zϕδ(x, y, z) −∇zϕδ(x, y, δξ(x, y)),

so from (8.9), (8.11) and (8.12) we deduce (8.14). �
We introduce now the following operators:

S0 : L2(Ω × Y ) → R : S0(v) =
∫

Ω

∫
Y

ϕ(x, y, v(x, y))dydx,

Sδ
0 : L2(Ω × Y ) → R : Sδ

0(v) =
∫

Ω

∫
Y

ϕδ(x, y, v(x, y))dydx,

which are well defined from (H5) and (8.13). Recall the definition of the epigraph of an
operator S from X to R, epi(S) := {(v, a) ∈ X × R : a ≥ S(v)}.

Proposition 8.3.
epi(S0) =

⋂
δ>0

epi(Sδ
0).

Proof. From Lemma 8.2 (8.10) we have Sδ
0(v) ≤ S0(v) for all v ∈ (L2(Ω))n, so

epi(S0) ⊆
⋂
δ>0

epi(Sδ
0).

Let (v, a) ∈ epi(Sδ
0) for all δ > 0. Then a ≥ Sδ

0(v). So taking δ → 0 using (8.5) and
(8.13), we get the result by Lebesgue’s dominated theorem. �

We define now for all v0 ∈ (L2(Ω × Y ))n and δ > 0

Dv0,δ = {(v, a) ∈ (L2(Ω × Y ))n × R :

a ≥
∫

Ω

∫
Y

[ϕδ(x, y, v0(x, y)) + ∇zϕδ(x, y, v0(x, y)){v(x, y) − v0(x, y)}] dydx}.

The second integral is well defined from (8.13) and (8.14).
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Lemma 8.3. For any δ > 0 we have

epi(Sδ
0) =

⋂
v0∈(D(Ω×Y ))n

Dv0,δ,

where (D(Ω× Y ))n is the space of functions in (C∞(Ω× Y ))n with compact supports in
Ω × Y .

Proof. As ϕδ is a convex function in z we have

ϕδ(x, y, v(x, y)) ≥ ϕδ(x, y, v0(x, y)) + ∇zϕδ(x, y, v0(x, y)) · [(v(x, y)) − (v0(x, y))]

∀v ∈ (L2(Ω × Y ))n, ∀v0 ∈ (D(Ω × Y ))n, ∀δ > 0.

So by integration we easily obtain

a ≥
∫

Ω

∫
Y

ϕδ(x, y, v0(x, y))

+
∫

Ω

∫
Y

∇zϕδ(x, y, v0(x, y)) · {v(x, y) − v0(x, y)}dydx;
(8.15)

thus we deduce the first inclusion.
Let (v, a) ∈ (L2(Ω × Y ))n × R satisfying (8.15) for all v0 ∈ (D(Ω × Y ))n and for a

fixed δ > 0. By density there exists a sequence (vk) ∈ (D(Ω × Y ))n such that vk → v ∈
(L2(Ω × Y ))n. Taking v0 = vk in (8.15) we obtain

a ≥
∫

Ω

∫
Y

ϕδ(x, y, vk(x, y))dydx

+
∫

Ω

∫
Y

∇zϕδ(x, y, vk(x, y)) · {v(x, y) − vk(x, y)}dydx.

(8.16)

We now pass to the limit k → +∞ in the above inequality. For the first integral we
have ∫

Ω

∫
Y

|ϕδ(x, y, vk) − ϕδ(x, y, v)|dydx

≤
∫

Ω

∫
Y

|∇zϕδ(x, y, v + θ(vk − v))| · |vk − v|dydx,

with 0 < θ < 1. Then using (8.14) we have∫
Ω

∫
Y

|ϕδ(x, y, vk) − ϕδ(x, y, v)|dydx → 0 as k → +∞.

Using also (8.14), |∇zϕδ(x, y, vk(x, y))| is bounded in L2(Ω×Y ), so the second integral
of (8.16) tends to zero. Thus we get

a ≥
∫

Ω

∫
Y

ϕδ(x, y, v(x, y))dydx,

so (v, a) ∈ epi(Sδ
0). �

Lemma 8.4. For any δ such that 0 < δ < 1
4C1

, we have
i): The functions y �→ ϕδ(x, y, z) and y �→ ∇zϕδ(x, y, z) are 1-periodic a.e. x ∈ Ω,

for all z ∈ R
n.
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ii): The functions (y, z) �→ ϕδ(x, y, z) and (y, z) �→ ∇zϕδ(x, y, z) are continuous
a.e. x ∈ Ω.

iii): The functions, from Ω to R : x �→ ϕδ(x, y, z) and x �→ ∇zϕδ(x, y, z) are
measurable for all (y, z) ∈ Y × R

n.
iv): For any compact K ⊂ R

n we have that

x �→ sup
(y,z)∈Y ×K

ϕδ(x, y, z) and x �→ sup
(y,z)∈Y ×K

∇zϕδ(x, y, z)

have a finite L2(Ω)-norm.

Proof. We recall that (see for example [22], p.25)

ϕδ(x, y, z) = inf
s∈Rn

{
ϕ(x, y, s) +

‖z − s‖2

2δ

}
= ϕ(x, y, s̃) +

‖z − s̃‖2

2δ
, (8.17)

where s̃ = Jx,y,δ(z). From the y-periodicity of ϕ we easily deduce the y-periodicity of
ϕδ. Since from (8.6) and (8.3) we have

∇zϕδ(x, y, z) =
1
δ
(z − Jx,y,δ(z)), (8.18)

we deduce from (8.18) the y-periodicity of ∇zϕδ.
Let us fix y0 ∈ R

m, z0 ∈ R
n and let yk → y0 and zk → z0. We set

sk = Jx,yk,δ(zk)), s0 = Jx,y0,δ(z0)

and we have

ϕδ(x, yk, zk) = inf
s∈Rn

{
ϕ(x, yk, s) +

‖zk − s‖2

2δ

}
= ϕ(x, yk, sk) +

‖zk − sk‖2

2δ
, (8.19)

ϕδ(x, y0, z0) = inf
s∈Rn

{
ϕ(x, y0, s) +

‖z0 − s‖2

2δ

}
= ϕ(x, y0, s0) +

‖z0 − s0‖2

2δ
.

We then have

ϕ(x, yk, sk) +
‖zk − sk‖2

2δ
≤ ϕ(x, yk, s0) +

‖zk − s0‖2

2δ
. (8.20)

Using (H5) we deduce

−C1‖sk‖2 − C2(x) +
‖sk‖2

2δ
− ‖zk‖2

2δ
≤ C1‖s0‖2 + C2(x) +

‖s0‖2

2δ
+

‖zk‖2

2δ
.

Taking δ < 1
4C1

we deduce that sk is bounded since zk is bounded. We can extract a
subsequence denoted also sk such that sk → ξ with ξ ∈ R

n.
Passing to the limit in (8.20) we deduce

ϕ(x, y0, ξ) +
‖z0 − ξ‖2

2δ
≤ ϕ(x, y0, s0) +

‖z0 − s0‖2

2δ
,

so ξ = s0 since s0 is the minimum of

s �→ ϕ(x, y0, s) +
‖z0 − s‖2

2δ
.

From the uniqueness of the minimum s0, we deduce that all the subsequences of sk

converge to s0. We then have

Jx,yk,δ(zk) → Jx,y0,δ(z0),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



LUBRICATION PROBLEM IN A THIN DOMAIN WITH A ROUGH BOUNDARY 589

which gives from (8.18) the desired continuity for ∇zϕδ. Passing to the limit in (8.19)
we deduce the continuity for ϕδ.

The measurability of the function x �→ ϕδ(x, y, z) is immediate from the measurability
of the function x �→ ϕ(x, y, z) and the definition of ϕδ. We now have for any fixed y ∈ R

m,
z ∈ R

n,
∂ϕδ

∂zj
(x, y, z) = lim

k→∞
k

[
ϕδ(x, y, z +

1
k

ek) − ϕδ(x, y, z)
]

.

Since the function x ∈ Ω → k
[
ϕδ(x, y, z + 1

kek) − ϕδ(x, y, z)
]

is measurable, then the
function x → ∂ϕδ

∂zj
(x, y, z) is measurable. The last result (iv) is an immediate consequence

of Proposition 8.2. �
We now give the main result of this section:

Theorem 8.5. Let uε in (L2(Ω))n, which two-scale converges to some u in (L2(Ω×Y ))n,
and ϕ be such that (H1) − (H5) hold. Then we have

lim inf
ε→0

∫
Ω

ϕ(x,
x

ε
, uε(x))dx ≥

∫
Ω

∫
Y

ϕ((x, y, u(x, y))dydx.

Proof. Let

b = lim inf
ε→0

∫
Ω

ϕ(x,
x

ε
, uε(x))dx,

so there exists a subsequence of ε, still denoted by ε, such that∫
Ω

ϕ(x,
x

ε
, uε(x))dx → b when ε → 0.

We also have ∫
Ω

ϕ(x,
x

ε
, uε(x))dx ≥

∫
Ω

ϕδ(x,
x

ε
, uε(x))dx

≥
∫

Ω

ϕδ(x,
x

ε
, v0(x,

x

ε
))dx

+
∫

Ω

∇zϕδ(x,
x

ε
, v0(x,

x

ε
)) · [uε(x) − v0(x,

x

ε
)]dx

for any v0 ∈ (D(Ω × Y ))n.

(8.21)

From Lemma 8.4 and using also Lemma 5.3 in [15], we deduce that
(1) (x, y) �→ ϕδ(x, y, v0(x, y)) is in L1(Ω, C#(Y )),
(2) (x, y) �→ ∇zϕδ(x, y, v0(x, y)) is in (L2(Ω, C#(Y )))n.

We can now pass to the limit, ε → 0, in (8.21), using Theorem 2, p.40 of [16] and also
Theorem 7, p.48 of [16] and that uε two-scale converges to u, to get

b ≥
∫

Ω

∫
Y

ϕδ(x, y, v0(x, y))dydx

+
∫

Ω

∫
Y

∇zϕδ(x, y, v0(x, y)) · [u(x, y) − v0(x, y)] dydx.

(8.22)

Thus
(u , b) ∈ Dv0,δ ∀δ > 0 and ∀v0 ∈ (D(Ω × Y ))n.
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From Lemma 8.3 we deduce that

(u, b) ∈ epi(Sδ
0) ∀δ > 0,

and from Proposition 8.3 we deduce that (u , b) ∈ epi(S0). Thus

b = lim inf
ε→0

∫
Ω

ϕ(x,
x

ε
uε(x))dx ≥ S0(u) =

∫
Ω

∫
Y

ϕ(x, y, u(x, y))dydx.

�
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