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Abstract. We study the asymptotic behavior of the solution of a Stokes flow in a
thin domain, with a thickness of order €, and a rough surface. The roughness is defined
by a quasi-periodic function with period €. We suppose that the flow is subject to a
Tresca fluid-solid interface condition. We prove a new result on the lower-semicontinuity
for the two-scale convergence, which allows us to obtain rigorously the limit problem and
to establish the uniqueness of its solution.

1. Introduction. We consider in this paper a Stokes system with given exterior
forces in a three-dimensional thin domain where the thickness is of order Ae, for A > 0
a fixed constant and ¢ a small parameter which will tend to zero. The boundary of this
thin domain consists of three parts: the bottom, the lateral part, and the top surface.
This research is motivated by a free boundary problem from lubrication theory where
the domain of the flow is usually very thin and the roughness of the boundary strongly
affects the flow. Moreover, in many problems of lubrication theory the widely assumed
no-slip conditions when the fluid has the same velocity as the surrounding solid boundary
seem not respected since the shear rate becomes too high [I], [2]; see also [3], [4], [5], [6],
[7]. We consider then that on the bottom, the normal velocity is equal to zero but the
tangential velocity is unknown and satisfies Tresca-type fluid-solid boundary conditions,
with friction coefficient a given positive function. On the lateral and the top parts, we
have adhering boundary conditions. The top surface is assumed to be rough with a
roughness defined by a quasi-periodic function with period e.
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562 MAHDI BOUKROUCHE anp IONEL CIUPERCA

The weak form of the problem is a variational inequality [§], see also [3], where the
roughness of the top surface was neglected. We use the same scaling as in [9], where
only the adhering boundary conditions are considered. See also [10], [11], [I2] for related
work.

The main difficulty here is to pass to the two-scale limit in the variational inequality,
due to the term coming from the Tresca fluid-solid boundary conditions. This difficulty
induces us to prove a needed result of lower-semicontinuity for the two-scale convergence,
using some results on the subdifferential and regularization of convex functions.

This article is organized as follows. In Section 2] we give a precise strong and weak
formulation of the considered problem, and recall from [3] the existence and uniqueness
of solutions, which are the velocity and the pressure of the flow. In Section[3 we establish
some estimates, independent of the parameter ¢, for the velocity and the pressure. In
Section [l we prove some convergence results. In Section Bl we establish a first relation
between the two-scale limit of the velocity and the pressure. In Section [(] we obtain
the variational inequality between the two-scale limit of the velocity and the pressure,
using the result of lower-semicontinuity for the two-scale convergence. In Section [ we
study the limit problem and obtain the uniqueness of its solution. The needed result of
lower-semicontinuity for the two-scale convergence is proved in the last part of this work,
Section

2. Formulation of the problem. Let w be an open set in R? with Lipschitz bound-
ary and Y = [0,1]? the basic cell in R?. We consider a smooth function (z,y) — h(z,y),
such that h € C%(w x R?),

h and g—;i for i = 1,2 are periodic in vy,

(2.1)
Ja,b>0 a<h(z,y)<b VY(z,y) EwxY.
We set
hy = h hy, = i h(z,y),
M (z,;?gi(XY (Z,y), (z,yl)nelEXY (Z y)

and we define the domains
Qy =w X ]O,hM[, szw X ]O,hm[.

Let € be a small parameter, related to the roughness wavelength and also to the thickness
of the gap between the surfaces z3 = 0 and 23 = Aeh(z, 2), such that the domain occupied
by the fluid is

0 ={(z,23) eR’: z€w, 0 < z3 < Aeh®(2)},
where
h(z) = h(z, =), z Ew, (2.2)

and A > 0 is a fixed constant.

Let I'® be the boundary of Q°. We have I'* = @ N I'{ N[5, where I's is the lateral
boundary, T'S is the upper surface defined by z3 = Aeh®(2), and w is the bottom of the
fluid domain defined by z3 = 0.
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LUBRICATION PROBLEM IN A THIN DOMAIN WITH A ROUGH BOUNDARY 563

We need in the following to transform the domain ¢ into

Qe ={(z,23) €R®: zcw, 0<ax3<h(z)}
using the scaling
23
z=z and 23=7 (2.3)
and also to transform the domain €2, into Q = w x ]0, 1] using the scaling
t=z and 3= % (2.4)

Let 5% = (59, s3) € R? be the velocity of the lower surface and g be a given function
n (Hz(09,,))? which does not depend on ¢, such that

g, hm) =0, gp(z,0)=s) fork=1,2and g3 =0 on 0Q,,, (2.5)

/{m gndo = 0. (2.6)

We consider the Stokes system
do¢

Y4 ff=0 in OF 2.
7z, +ff=0 in , (2.7)

where

) 1 /Out Ous
o5 = —P"0ij +2pd;;(u)  with  d;;(u) = 3 < g j) )

8Zj 6z,
div(u®) =0 in QF, (2.8)

where u®, p¢ , p are the velocity, the pressure and the viscosity of the fluid.
On the upper surface, which is assumed to be fixed, no slip condition is given, so that

u* =0 on TI7. (2.9)
The velocity is known and parallel to the w-plane,
u® = g(z, i—z) on TIF, (2.10)

extended by 0 on I's — dw x 10, Aehy,[.
There is a no flux condition across w so that

u =0 on w. (2.11)

The tangential velocity on w is unknown and satisfies the Tresca friction law with a
friction coefficient k¢ [§],

of | < k¥ = uf = §°
| ¢ | . t -0 . on w, (2.12)
|of| = k* = Jr >0 suchthat uf =s"—rof
where | . | denotes the R? Euclidean norm. Here n = (n1,n2,n3) is the unit outward
normal vector to I'¢, and
Uy, = U M= UTNG U, = U — Uy, (2.13)
o, = (0°-n)-n=o0nn;; o} =0 n; —o,n; (2.14)
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564 MAHDI BOUKROUCHE anp IONEL CIUPERCA

are, respectively, the normal, the tangential velocity on I'*, the components of the normal
and the tangential stress tensor on I'®.

Due to [24) it is known [I3] (lemma 2.2, p.24) that there exists a function G such
that

Ge(H"(Q))?: divG=0 inQ, G=g ondQ,. (2.15)
We still denote by G its extension by zero to (2.. We set G such that
GS (2, 23) = Gy(z, %) for i=1,2, G5(z, 23) = AeGs(z, %), (2.16)
which belongs to (H(Q¢))? and satisfies also div G® = 0 in Q°.
We set

K® = {’U e (HY(Q9)®: v=G"onT5UTS, w3=0o0n w},
KS,, = {v eK°: dive=0 in Q}
For any three-dimensional vector ¢ = (¢1, @2, ¢3)7 we denote by ¢ the projected

bi-dimensional vector ¢ = (¢, , ¢,)". A formal application of @27)-@I2) leads to the

following variational problem [g]:

PROBLEM 2.1. Find u® € K5, (92°) and p° € L3(2°) such that
a(u®, ¢* —u®) = (p°, div®) +j(¢%) — j(u)

£ € € € € (217)

Z(f7<p —U), VSD EK»

where

a(u, ) =24 Z dm d;ij(p) dzdzs,

1,7=1

3

i) = [ Ko - az, ()= [ freidsdea
w i=1 v

(p, divey) = Z/

THEOREM 2.1. [3] Assume that f¢ in (L3(Q°))® and the friction coefficient k° is a
nonnegative function in L*°(w). There exists a unique u® in K5, and there exists a
unique p° in L3(Q°), such that (u®, p°) is a solution to Problem 211

3. Estimates of the velocity and pressure. Observe first that as u®(z, Aeh®(z)) =
0, we can extend it by zero to the fixed domain Qp; (2 = win Q° and @ = 0 in Q3 — ),
such that Korn’s inequality

C1|| Vil 20, < a(a,u) (Cp independent of ¢)
holds. Moreover we can easily check that C; = i So we have also the same inequality
for u® in Q°.
Throughout this paper, for the sake of simplicity, the same notation will be used for
a function defined on the three different domains ¢, . and Q.
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LUBRICATION PROBLEM IN A THIN DOMAIN WITH A ROUGH BOUNDARY 565

We assume the following dependence of data on e:
(2, z3) = f(x, x3),  ek™(2) = k(2)
with f and k independent of e, f € (L?(Q,,))? (extended by 0 on Q¢) and k € L?(w)

with £ > 0 a.e. We set
K= ={ve (H ()% v=(G1,G1,0) on Te, NIy,
0<uz3<h®(z)}

(3.1)

v3=0onw}

with Tep = {(z, z3) : = € dw,
and T5) = {(z, h*(x)) : = € w}.

Then passing to ., and dividing by e, [2I7) is equivalent to
dp]  0¢5 1 0y5
a(u®, ¢ —ut) — / p° A2 W 2 B 2 dxdxs
Q. &vl 8.%2 e 81’3 (3 2)
1 /- . AL 1 N )
L N > = (A€ i€ . e €
3w (16 = G00) 2 5 [ - (6° —udnday vt K

with the notation

Qus | Quj\ (9pf | 0¢]
/Qs (8% + 8.%1) (8% + 8:@) d$d$3

/ (1 Ou; 3u3> <i3% N 3@3) drdes (3.3)
Qs

-
S,
Il
_

E 8$3 82131 e 8$3 (91‘7,

o [ Ou 0%
2 dzd
TN Jo, Bs Oy

and
i) = [ K@ (2,0) - lda,
For any domain D in R? we introduce the Banach space
0
Vao(D) = {v € L*(D), == € L*(D)}
8$3

with the norm
2 ov o
Ivllvey 21 = 01320y + 1 5 [0

First we give the estimates of the velocity in the rescaled domain §2.; then we give the
estimates of the velocity and pressure in the domain 2.
PropoSITION 3.1. The following estimates, for the velocity, are satisfied in ., with C

denoting a constant which does not depend on ¢:

ous c

32’4 2oy < 42y 1<i<3, 1<j<2 (3.4)
J

Proof. Taking ¢° = G°¢ in ([2.17) we obtain
a(u®,u®) +j(u°) < a(u®, G°) +§(G7) = (f5,G) + (f7,u7)

14 llv., @) < C,
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566 MAHDI BOUKROUCHE anp IONEL CIUPERCA
but j(G?) = j(s°) = 0. Then using also the Korn inequality we have

2|Vt ||Z 200y < pll VU] L2y VG |22y + 16l 2oy 1 £5 |22 00
+11G 2o 1 Fo I 2202y -

Aeh®(z)
(s = [ ol S (2. )

z3

From

we have

Aeh®(z) u 2 Aeh®(z) us
|uf<z,z:3>|2s</0 g s>dt> < Ochar) ( JREEn] dg)

SO
Aeh®(z)
/ [uf(z,23)]> < >\5hM/ / |7 2,6)2dzdzsde
< N H ||L2 (@9);
thus
Hu6||L2(QE) < /\ahMHVuEHLz(Qs).
So
)\EhM
£l e lxaey < ( L e ) (VT 120
h2 )\2 2
< M 1£50Z2 ey + 5 HVUE||L2(QE)

and

IV 200 VG aoe) < SV [Feqey + SIVGE:

L2(QF) L2es) = 5 L2(Q5) T 9 L2(Qe)
Then
1 A2h2e?
IV ey < WV B + (5 + 2555 ) 17 (35)
[ I
Using now the dependence of G° and f¢ on ¢, and using the Poincaré inequality, we

deduce (B4). O

ProOPOSITION 3.2. The following estimates, for the velocity and the pressure, are satisfied
in , with C' denoting a constant which does not depends on e:

@ <C for i=1,23 (3.6)

out
g||i%||L2(Q> <C for i=1,23 j=1,2 (3.7)

op°
<C, i=1,2
-1(Q) 7 y 4y E‘ 8t3

-1(Q) <C. (3.8)
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LUBRICATION PROBLEM IN A THIN DOMAIN WITH A ROUGH BOUNDARY 567

Proof. Using the change of variables (2.3) and (IZZI) we have

1
D@y, z,23) _ [
D(t1,t2,t3) 4. Oh ahf
3°9t,
1 0 0
Ditr,tasts) 0 L
D(x1, 23, 23) _t3 Oh° 13 OR° L
he Oty “ he Oto he
As
¢ .
H ||L°°(w < - for 1<75<2, (3.9)
f0r1§i§3and1§j§2,wededuce
dus; ou;
Ha—tallia(g) :/Q <h€6x3> —dadzrs < hM|| ||L2(Q » (3.10)
ou; ous Oh® Ous 1
125 2, =/ (55 +uge ) L fuday
ot; ") QE oz, 9x; 03 ) o)

1, 0us
|| ||L29)+ o Hmm)

so from BI0) and BA]) we deduce B9), and from BA), BII) and B4) we deduce

B.1).
To prove ([B.8) we rewrite (ZIT) with ¢° = u® + 1 for all ¢ € (Hg(92°))3; thus

[ o dividsdzs —atut ) - (,0) 6 e (HY@)) (3.12)
Qe
On the other hand, the change of variables (Z3]) and (24) gives
1 0 0
D(Z],ZQ,Z,?,) — 0 1 0
Dltntosta) \ aety20 ety 225 e
and
1 0 0
Dt ta,t3) 0 1 0
D(z1, 22, 23) __t3 b t3 BRS 1 ’
he Ot he Ot;  Aehe
S0
8 Oh® O3
d (Aeh®1; Aet 3.13
/p ivip) = / [ { eh®1;) + ( E?’é)twﬁ—'—atg] (3.13)
Taking v = ©) in (m) and (Bj:_{l) with ¢ € H}(Q) we get
. 0p ous Op 1 )\/
——dtdt — — —dtdts — — 3h®dtdt
/ 8t3 3= 8t3 8t3 he 3 3 fd(p 3

1 Oui  t3 Oh® Oug Do t3 Oh® Dp
Aeh®dtdt
* Z / (8t3 Nehe ot he ot ots ) \ot, ke ot ot 3
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568 MAHDI BOUKROUCHE anp IONEL CIUPERCA

so from [B.6)-(B1) and 9) we deduce
dp C
< — 100)- .14
[ v 5l < Sl (314

Taking ¢ = (% , 0,0) in 312) and BI3) with ¢ € Hj(Q) we obtain
d(Aep) / 0 Oh® ¢ /
c dtdts — — | Aets dtdts = he dtdt
/QP ot 3 QP ot 501, hf 3= —fip 3

+2u/[% t3%MH8 vy taOh 10y

B 7 D3I 2 TP \ehe dtdt:
9ty hF Ot Ots | |0t ‘he’  hE Ot he 8t3] c 3

Ota  he Oty Ots  Ot1  h® Oty Ots

n / {31@ ts Oh Ous N ou§  t3 OhF 8u§}

0 2] t3 0ht 1 &p e .
8 L’%g(hf) T he Oty he oty | T Al

hence from (3.4), (B:ﬂ) and (B9) we get

o [ OhF
|/ dtdtg —/ 8t3 (€t3 9t he ) dtdtgl < _H(PHHl(Q) (315)

Now taking ¢ = (0, 0, tg%h—ﬁ) in 312) and B.I3), with ¢ € HE(Q), we get
0 (ts Oh® ous 1 0 [t3 Oh®
f— | = dtdts =2 — (= didt:
/Qp 8753 (hs 8751 4,0) 3 # Q 8t3 Aehe 8753 (]’LE 8751 S0) 3

1 8u§ 13 Oh® Jug
8t3 )\é‘he 8151 he 8t1 8t3

1o} t3 Oh® t3 Oh® 8()0 tg Oh® 1 Ohs
X [Gti (hE ot “’) - <h€ 8ti> <6t3 he ot T he o ¥ )| Aedtdts:
Then, from &8), @) and B3], we easily obtain

0 [ ts Oh®
£ — < 10)- 1
[ o (2 5 ) sl < Sl (3.16)

So, from ([BI3) and BI6) we obtain (for ¢ = 1 but it is the same for i = 2)

0 C .
\/pra—f didts| < Sl ellmye) for i=1,2. (3.17)

So from (BI4), BI7) we deduce (B.5). O

For the next sections we need the following notation: for any function v, we denote
its extension from 2. to Qs by

b= ¥ on €
0 on Qu— Q..
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LUBRICATION PROBLEM IN A THIN DOMAIN WITH A ROUGH BOUNDARY 569

We define also the sets
Bl’:{(y7x3)7 yEK 0<€Ud<h($7y)}a QMZWXYX ]OahM[v
Q= |J{e} x B ={(z,y,23), we€w, yeY, 0<uws<h(zy)}

TEW

and the spaces
Cyx (By) ={p €C™(B,;), ¢ isy-periodic, o(y,h(z,y)) =0},
Hy(Y)={¢pe€ HY(Y): ¢ is periodic},
H&#(Bz) ={p € H'(B,) : ¢ is y-periodic and o(y,0) = ¢(y, h(z,y)) = 0},
Hll#(Bz) ={pe HI(BJ;) : ¢ is y-periodic and ¢(y, h(z,y)) = 0}.
REMARK 3.1. We choose p° € L*(02°)/R such that
(>
/ %dzd@ =0, which implies / pedtdts = 0.
c Q
We deduce from [B.8) and [14] that
e%(|p°||r2(0) < C, (3.18)

where C' is a constant independent of .

4. Convergence results.

THEOREM 4.1. There exists p € L?*(w) with [ p(z)dz = 0 such that the two-scale
convergence holds in ), for a subsequence of € which is still denoted by &:

0 if x3> h(x,y). (4.1)

€2p_s — 5($7.’I/'3,y) = {
Proof. We have

Il = [ 16° Phdrdts < bl 2o
Q
SO
e p* |2 ) < C.
We can extract a subsequence such that £2p° two-scale converges to some ¢ in
L?(Qrx[0,1]*). We choose an arbitrary ¢ in D(Qar,C3 (V) with ¢ = 0 for 23 < h(z,y),
and we get

/ 821;s§0($7 §7 l‘3)dl‘d3 =0.
Qum 2

Passing now to the scale limit, we obtain

/ / 5@(% Y, $3)dyd$d3 = Oa
Qu JY

so & =0 for 3 > h(x,y). We denote by p the restriction of £ for z3 < h(z,y). Following
[9], we prove that ¢ depends only on x for z3 < h(x,y). For any v in D(Qar 5 CZ([0, 1]%))
with ¢ = 0 for z3 > h(z,y), taking

r I3

w8($7x3) = 7/1(%3537 Ea _)a

3
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570 MAHDI BOUKROUCHE anp IONEL CIUPERCA

and (u§,u§, u§ £ 9¥°) as a test function in (BZ), we have

1 oY 10y / Lo ous] [0w 109
Ae LE p (3333 3 8y3) d$d$3 NZ |:)\6 8$3 62131 (91‘7, + 3 8yz

2 Oug (0Y 1 0Y / f3
+ Ne Jq_ Ox3 (&'cg Tz € 8y3) dudzs q, €2 ydwdrs.

Then extending u® and p® by zero to Q,; and passing to the two-scale limit after multi-
plication by £* we deduce

/ —wdxdxgdydyg =0, (4.2)
0,113 Jo,,  Ovs
so p does not depend on y3. To prove that £ does not depend on 3, we take

¢6(99a353):1/)($75ﬂ3, )a

with ¢ in D(Qar, CF(Y), ¢ = 0 for 3 > h(x,y) and (uf, u5, u§£1°) as a test function

in (32). Then

1 oY 1 Ou Qus| [0y 10y
/\6/ P g s = “Z/ {Aaaxg axj [3xi+58 }dxdxg

o8

—~

24 Qug I / E
— ——dzdzs — —pdxdxs.
+ A2¢2 Q. 8]33 8$3 =3 €2w T

€

Passing to the two-scale limit after multiplication by £ we deduce

// fa—wd:vdmdyzo.
Y JQ. Oz

So p does not depend on x3. To prove that p does not depend on y; for i = 1,2 we take

T

1/)6(337333) = ¢(~"Ca T3, g)

with ¢ in D(Qr, CZ(Y)), where ¢ = 0 for x3 > h(x,y) and (uf £¢°, u5, u5) as a test
function in ([32)), and we obtain

oY 10y ou§ (oY 10y
(1 _r — 2 _—r
/Qsp (8:61 e € 8y1> dudws = M/QE 0x1 (5‘x1 e € 8y1) dudes
ouf  Ous oy 10y
+ H/Qs <8x2 + 83:1) <8x2 e € 8y2) dudzs

1 ou;  Ou§\ 1 O /
Ae o —dedry — - dad
i M/Qa <)\589€3 i 81‘1) e Oz X3 frvdzdxs.

Passing to the two-scale limit after multiplication by €3 we deduce

/ §a—wdydxdx3 =0.
Qv JY oy
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LUBRICATION PROBLEM IN A THIN DOMAIN WITH A ROUGH BOUNDARY 571

So p does not depend on y;. In the same manner p does not depend on y». It remains
to prove that fw pdx = 0. Passing to the two-scale limit in the relation

2.
/ =L dudes =0,
Qnr h

/ P tydadrs =0,
oh

which gives the expected result and finishes the proof. O

we find

THEOREM 4.2. There exists u € (L?(Qr; Hy(Y)))? with

ou c
8163
and there exists v € (L*(Qnr; HL([0,1]*))® such that the two-scale convergences hold,
up to a subsequence of £ denoted also by e:
€ ——
8Ij 8yj
8’1]?? 8’u, 61)1-

a:Cg - 8.%3 8y3

(L*(Qur x Y))?,

- _
U; —— Uy,

for 1<i<3, 1<j<2, (4.3)

Moreover
aul 8u2 1 8u3 .
—+—4+-—=—==0 B, a.e. ,
o 9y + X Oz n a.e.r €w
u; =0 for w3 > h(z,y) for i=1,2,3,
uzg =0 for x3=0,

ui (z,0) =»— u;(x,0), for w for 1<i<2

We have also the following relation satisfied by the y, x3-average of u:
2

90 ft
/ Z / / widydxs | doe = / ginifdo  for any 0 € H'(w), (4.9)
w =y Ox; Yy Jo Ow

hom
ai) = [ gdea.
0

Proof. ([&3)-(E.4) follow from the estimate ([B.4]) using the two-scale convergence results
[15], [16] as in [9]. For (@), note that u* is divergence free in €2, so
(91‘1 8:132 AE 8:133

Multiplying by e, passing to the two-scale limit in 25, and integrating on y; we easily

obtain (4.3)).
For ([.6]), choosing ¢ in C*° (2, CZE(Y)) with ¢ = 0 for x5 < h(z,y), we get

=0.

/ uip(x, f,xg)dxdg =0.
Qum €
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572 MAHDI BOUKROUCHE anp IONEL CIUPERCA

Passing now to the two-scale limit for i = 1,2, 3, we obtain

/ / ’az@($7 Y, xg)dydl‘dg, =0.
Qu JY

So @; = 0 for x3 > h(z,y), for i = 1,2, 3.
From ([29), II)), and for all ¢ in L?*(w;Cx(Y)) we have

€
ou§

xT
—)dzds = 0.
QIM axg (x’ E) €z 3

Passing to the two-scale limit we obtain

/ / (aud 8@3) o(z,y)dydysdzdrs = 0.
Qar J10,1]3 Oxz  Oys

81]3
dydys = 0,
/0138y3 (x y) yays

and using Green’s formula we deduce

/ / u3(:c,y,0)go(:c,y)dyd:c =0,
wJY
which proves (7).

In order to prove (L) let us remark from [@B4) that us(z,0) is bounded in L?(w).
Then there exists §; € L?(w x Y) such that

ui(x,0) »— &(x,0) in w.

Let us identify £. Passing to the two-scale limit in the obvious identity

gui o(z, E)dazda:g = —/ us (x,0)p(z, E)da: for any ¢ € Lz(w;C#(Y))
Qa 973 € w €

we obtain

ou; 87}1’ B |

The term in v; vamshes, so by Green’s identity we find

/w/yu"(x’y’o)‘p(:”’y)dydf”:/w/y&(x,y)w(x,y)dydx

for an arbitrary ¢, so & (x,y) = u;(z,y,0) for 1 <4 < 3, which ends the proof of (LJ).
To prove [A9) we write

2

o 1 0ug B .
/QM (zz 0z, + e 8:5;;) O(z)dxdzs =0 VO e H (w),

so by Green’s formula we have
ha 2
/ / gmi 0(x)dzxdzs.

()%

Passing to the two-scale limit we obtain (£9)). O
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5. A first relation between p and wu. In the following we need to transform the
domain B, into Y x ]0, 1] using the scaling

g:y’ 53:

_ 3
h(z, &)
For any function ¢ defined on B, we define ¢ defined on Y x 0, 1[ by

@2(53 53) = 7/)(:% .%3).

We have
1 0 0
W 0 1 0 :A:A(x’§7£3)a
1,62,G63 Oh Oh
53@ §3@ h
1 0 0
D(€17€27£3)
S I0L1A LV 0 1 0 = B = B((z,£,&).
D(y1,y2,23) & oh &0k 1 (( £,63)
h 0&; h 9& h

We will also use the following notation: V = {v € (C*(Q))? such that gﬁ + g—;g +
Lovs — v is y-periodic, and v = 0 for z3 = 0 or x5 = h(z,y)}. V' ={veV:v=0

)\ 8&23
for © € dw}.

For any = € w we set V, = {v € (C}(B,))? such that d”l + g;g + %gﬂ =0, wvis
y-periodic, v = 0 for 3 = 0 or z3 = h(z,y)}. Vo = {v € (HO#(Bz))?’ : 6”1 + glv;
10vs 0}

A 631'3 :
We also define the matrices
1 0 0 1 0 0
A\ = 0 1 0 |, By=A'= 0 1 0
ol oh d o 1
A Bl Mgl M —safh b L

We have the following technical lemmas.

LEMMA 5.1. For any z € w and any ¢ € (L?(B,))? the following two assertions are

equivalent:
oY1 OYp  10Y3
i R 1
Oy * 0y * A Oxg 0 (5.1)
dive e, (hBxv) = 0. (5.2)

Proof. The relation (&) is equivalent to

2
/ (Z Vi gy + ¢3 ) dyrdyzdas =0 Vip € D(By).
k=1

x

Passing to Y x [0, 1] this gives
| 0T BE Veed hdsdga =0,
Y x[0,1]

which is equivalent to (B.2). O
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LEMMA 5.2. For any ¢ € w and any v € V,, there exists ¢ € V such that ¢(zg,y, x3) =
U(yv 133).

Proof. We set 0(&,&3) = v(€, h(xo,&)&s) defined in Y x [0, 1]. We choose ¢(z, &, &3)
defined in w x Y x [0,1] such that

h(ﬁ,f)B)\({E,&fg) ‘»5 = h(x07§)B/\(xOv£7€3) 0, (53)
that is,
h
@(337 67 53) = h(éo,g) A)\(xa6763)B)\('r07£a€3)ﬁ(§7§3)'
Finally we set
— A x3
90(957%353) - (p(xvyv h(x,y))

Since by hypothesis

gu | Ova  10vs _,

oyr  Oy2  AOxg
this implies by Lemma [5.1] that

divfafS (h(ﬂfo, g)B)\ (an fa 63) ’0) = Oa

so by (B3) and again Lemma [T

Op1 | Op2  10ps

8y1 8y2 A 81‘3

The remaining conditions on ¢ are obvious. (]

=0.

We now have a first relation between p and wu.

THEOREM 5.3. The limit pressure p belongs to H'(w) and the following relation yields
a.e. T in w,

QNZ / DE, V) dydas = Z / Vi dydxg

7,7=1

. (5.4)
Y /B fitndydrs ¥ € Vo,
=1 T

where for 1 <14,j < 2,
1 /0u; Ou; 10u; Ou 1 0u

DB.(u) = = i J DB, (4) = i 3 DB (u) = =228
=5 (g +52). Pht=g(55m+52). Pt =55

Proof. We proceed as in [9]. From (BI2) passing to §2. we obtain, dividing by e,
/ Z 0g; L 1 oy5\ _ Z / oG (o 0%
QM ({91171 )\E Z’?xd Qs 8$J 8.%'1 8.%']' 8.%'1

2 e e € I3 e /e
n Z”/ (i du; + 8“3) (i O n a¢3> + 2p dus 05 (5.5)

—~" Jau Xe Oxs Oz Ae Oxs  Ox; N2e? Jq,, Oxg Oxs

L rE v e m @)

2
€ Jay
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We now take in (5.8) ¢° (2, z3) = ¢(z, 2, 23) with ¢ € V° and obtain
awz s / gus 0w | oy 10w 0y 10y,
/QM ~ Jr; 2 Z Q| 075 * Oz, | |0z, + € Jy; + Ox; + e dy;

+NZ/ {181; 8u§][i%+6¢3+18¢3] 2u Ous Os

Qumr e 8:133 8:131' e (91‘3 82131 3 8:% A2g2 Qum 3333 8$3

_i f’QEE

2
€ Jay

Passing to the two-scale limit in 2,7, after multiplying by €2, and using Theorems 1]
and L2, we deduce

87;[% ,U / <auz 8uj ) (87/)1 31/)3 )
x +
e ( ) Z 50 9w ) \By; T By
1 8ul 1 avi 8%3 1 8% a¢3
+“Z/ <)\8:v3 A8y3+8yi><)\63&3+8yi>

8u3 (9’03 51/)3
*‘/(a—xg%—yg)a—xg‘/czf”

As 1, u do not depend on y3, and v; is ys-periodic, we deduce

/ p(z ) gq/z dydrdrs = 2p Z / D (v)dydxdzs
¢ LI=1 (5.6)

- / f - Ydydrdrs Y € VO,
Q

Now we prove exactly as in [9], taking ¢ = (6(x)€, 0, 0) as a test function in (5.6]) with
6 arbitrary in D(w) and ¢ the extension on B, of a function depending only on y, and
x3 defined on [0, 1] x [0, h,,] with nonzero average, that aa—fl € L*(w) and the same holds
for ap € L?(w). Then p is in H(w).

Now taking in (50) ¢(z, v, z3) = 0(x)¢(z, y, x3) with § in D(w) and ¢ in V arbi-
trary, and using Green’s formula in the left-hand side of (&.6]), we obtain

/ Z T, Pidydas = =2y Z/ DP, (p)dydas

7,7=1

- Z/ fipidydrs ae. x €w.
i=1"Ba

(Remark that Dfu(z,-) € L?(B,) a.e. x € w by Fubini’s theorem.) Using Lemma
B2 we deduce that (B.7) is true for any ¢ € V,. Now using the density of V, in Vg, we
have the expected result. O

(5.7)
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6. The variational inequality between p and u. In the following we propose to
obtain another variational relation between p and u, more general than in Theorem [5.3]
Now the test functions will not vanish on x3 = 0 (except for the third component) and
the equality becomes a variational inequality. We first need to introduce the following
spaces: Cjy(w xY) = {v € C'(w x Y) with v(z,-) = 0 for z € w and v(z,-) y-periodic
on Y}, which is a Banach space as a closed subspace of C!(w x Y).

We then introduce U = {v € (L2(]0, has[; Cju(w x Y)))? with v = 0 for z3 > h(z,y),
v3 =0 for 3 = 0, 2= € (L2(J0, hi[; Ciy(w X Y)))%, and G + G2 4 L Js — O}

We need also the set U = {v € (L*(Qum))® : v = 0 for z3 > h(z,y); vs = 0 for
x3 =0, gy” € (L*(Qu))3, i=1,2 ad;d € (L?(Qur))3; v is y-periodic, and 3—21 + g—;i +

1 31}5

U is a Hilbert space endowed with the norm

oll& = || H(L?(QM s + Z ||—H(L2 (@Qu))?
=1

It is clear from Theorem that v € U. We have the following density result.
PRropPOSITION 6.1. U is dense in U for the norm of U.
Proof. We can suppose that 0 is in the interior of w. We set for any o > 1, o near 1,
Qmo = {(z,y,23): oxc€w; ox3€]0,hy[; y€Y}CQum.
For any v € U we set v7 = (v{,vJ,v]) such that, for k = 1,2,

g(l‘ y,mg) _ { ’Uk(o-xay7o—x3) or (x,y,xj) € Qmay

0 for (33797353) S QM - Qm0'7
5(w,y,x3) = svs(ow,y,025)  for (2,,23) € Qmo,
3 » L3 0 for (z,y,23) € Qur — Qumo-

It is clear that v € U and v — v in U for ¢ — 1. We extend v by y-periodicity on
w x | —1,2[% x ]0,hps[. Then we extend it by 0 on R* x ]0,hp[. We then introduce,
for any § > 0 small enough, the function v = v *z.4 ps (defined by convolution in z,y
only) where ps € D(R*) is a sequence of mollifier functions. We have

vz, y, x3) = / vi(x—t,y— 2z, x3)ps(t, 2)dtdz
R4

= / v (t, z, x3)ps(x —t, y — z)dtdz.
R4

For ¢ > 1 we have that v7% is an element of I for § small enough. (Remark that

o’ e o’ ®
= — %, f k=12 d = — %, .
oy Ok oy P30T R e e X )
We also prove classically that for fixed o > 1 we have v?% — v? in U for § — 0. This
ends the proof. O

We can now obtain the following variational inequality.
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THEOREM 6.1. The two-scale limits p and wu satisfy the following relation:

20 Z / Df (¢) dydzdrs + jo(u + ») — jo(u)
hj=1 (6.1)

0
+Z/ Pi P 2/ fodydrdrs Yo e U,
i=17@Q Oz Q

where
i) =5 [ [ @l v, 0 = Lligts e
Proof. Taking ¢° as a test function in (3.2]) such that
@°(w, 2) = (G, G, AeGa) (@, wa) + (W, U)o, 1)

with ¢ € U, and using the fact that div, ., G =0,

O O | 100

a. Y a. — d 7 ) = (')7
o + D0y X Ors 0, and G;(z,0)=ys;

we obtain

2
M 1 O 3%‘ 10y
2 Z /QM < 8x1> ( € Jy; 8xi + e Oy

1,5=1
B 2
+ 2 ;/ (33:] 33:1) (93:z )
2 —
Lo | 0ug\ (1 0v | vy 10w
+ H;/ <>\5 8x3 ox; Ae 5.%‘3 ox; + e Oy, >
2
1 Oug 8u3 1 5G 5G3)
+ -

2 Ous 03 2 oug 0Gs / Ry
Qar

/\282 Qur 81‘3 (‘9953 Ae Qar a—$3 81'3 B 1 sz

P E OuE 2 2 ous \°
hd > B + 2 °
A2/k W}x 0 _22_:/ <8xj O z) +)‘252/QM <ax3)
1 0u Ou 1 0
+u/52M<A58$3+5301) o2 /w x)|u (x,0) — s”|dx
1

+ — f'(?/lUE)+€2\/QMf'(G1,G2,>\€G3)T.

2
€ Jau

We multiply by €2 and we pass to the limit in € using Theorems E.1] and the fact
that p € H'(w). From the lower semicontinuity result, Theorem and the fact that
the application (x,z) € w x R? — k(z)|z — s°| € R satisfies the hypotheses (H1) — (H5)
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of Section 8, we obtain

lunmf/k s (x, O)—so|da:>// E(x)|u(z, v, 0) — s°|dydz. (6.3)

We then have

Q#Z/D MZ/D 8963

7,7=1

+3 L Heteano |>2“Z/ )’ %//kﬂuxy b (6

7,7=1

b [ a6 G 0n) e
Q

By the density of i/ in U (Proposition[6.1]) we deduce that the above variational inequality
is satisfied for any 1 in U. Then we take in (64) ¢ = u + ¢ — (G1,G2,0)T with ¢ an
arbitrary element of U and we obtain the desired result, provided that we prove

/Qz - f):vZ /Z 8:51 (6.5)

2 2
dp -
/Zuza_:/ ngini-
Qi= YT w21
On the other hand, using Green’s formula we can write

/ZG 7o, /aw/ngmz

Taking into account that dlvmCS G = 0 we deduce

/QH i //ngzm,

which gives (G.H]). O

REMARK 6.2. A direct method to obtain the inequality () would be to take, as a
test function, ¢® = ¢(x, £, x3)+u® in B2) with arbitrary . But if we do that we obtain
in the left side of ([62)),

1
@/wk(x)lf(x, 0) + ¥(z, §,0)730|dx

From (@9) we have

[APR)

instead of

1
5= | @l 2 0l

So, using the two-scale limit, we need to obtain

lim | k@) (z, 0) + (e, g 0) — s°|dz

e—0

// z)u(z, y,0)+ Yz, y, 0)—s'|dx
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and a strong convergence result such as
x
||ﬂs(xa 0) - @(-’I;a g ) 0)||L2(w><Y) —0

would be necessary. But such a result seems very difficult to prove since the function
y — u(z,y,0) is not continuous. Then

(LL‘, y) = k(x)|@($7y7 0)+%(.’E7 Y, 0) _Sol

is not a Carathéodory function.

7. The limit problem. We shall denote s*(z,y) = u(z,y,0), which is one of the
unknowns of our limit problem. For any = € w we recall the following space:
: Op1 | Opg  10¢3
Vo ={p € (H},(B))? th —— -0
0 {QO ( 0#( )) Wl 8y1 8y2 )\8$3 }
and introduce
. Op1 | Opa  10p3
Vie={p € (Hi, (B,))? th —— =0}.
1 {30 ( 1#( )) w1 ayl 8y2 /\3563 }

We define the following local problems:
(Lg) : Find w* € Vo, (for k = 1,2) such that

24 Z / D (ap)dydxg = —/ wrdydzrs Yo € Vo g (7.1)

3,j=1 Ba

(L3) : Find w* € Vg, such that

24 Z / D (p)dydxs = / fodydxs Vo € Vo z. (7.2)

i,5=1
On the other hand, we introduce the following space of traces on x3 = 0: S,
{0 € (L*(Y))? : J¢ € Vi, such that ¢k(y,0) = Okx(y), k = 1,2, ¢3(y,0) = 0} and
S={fec(L*(wxY))?: 3peUsuchthat ¢p(x,y,0)=0(zx,y), k=1,2}.
It is clear that s*(z, ) € S, ae. = € w and s* € S. For any s € S we define the

problem
(L) : Find w € V; 5 such that w = (s(x, -), 0) for 3 = 0 and

2u Z / DY (p)dydrs =0 Y € V. (7.3)
4,j=1
It is clear from the Korn inequality that (Ly)g=123 and (L) are well-posed problems.
We denote in the following by R the linear operator from S to U such that R(s) = w,
where w(x, -) is the solution of the problem (L) a.e. z in w. We introduce the following
scalar product on S:

(s, T)s = (R(s), R(T))u. (7.4)
We have

LEMMA 7.1. S endowed with the scalar product (74) is a Hilbert space.
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Proof. Since R is injective from S to U (since Ker(R) = {0}) it suffices to prove that
R(s) is closed in U. Let w* = R(s*) be a sequence in R(S) such that w* — w in U.
Then for any ¢ € V we have ([Z3)) with w replaced by w*. Multiplying by an arbitrary
0 € D(w), integrating in w and passing to the limit in k& we obtain

3
Z//B Dg(w)Dg(cp)dyde(x)dx:O,

i,7=1

which implies, since 6 is arbitrary, that

3
Z /B Dg(w)Dg(ga)dydxg =0, ae z€w. (7.5)

ij=1

Now set s(z,y) = w(z,y,0), so s € S. On the other hand, the equality (1)) is true for
any ¢ € V. Using Lemma and the density of V, in Vj, we deduce that w = R(s),
which ends the proof. O
REMARK 7.2. Tt is clear from Lemma [Tl that R € £L(S, U).
We have the following result whose proof is elementary.

ProprOSITION 7.1. There exists a constant C' > 0 such that
||wk||(H1(BI))3 <C for k=1,2,3 ae T€w,
where w” is the solution of the problem (Ly).
We now have

PROPOSITION 7.2. The limit v can be written in the following manner: a.e. z € w we
have

0
u= Z wh TP 4w a.e. (y,x3) € By (7.6)

with w® solutions of the problem (Lk)k=1,2,3 and w* = R(s*).
Moreover p satisfies the following homogenized Reynolds equation:

2

/AVp~Vv/Z[/ (w;er?)dydxg] ;g:dx/a g-vv Yoe HY(w), (7.7
w Bl- w

w o J

where A is the matrix defined by

Ajr = 7/ whdydes  j=1,2, k=1,2.
Proof. The relation (Z.0) is easily obtained from (TI))-(73]), (54) by linearity and
uniqueness and (7)) is an immediate consequence of (T.6)) and (@3]). O
We shall need to consider the equality (Z.7]) with the supplementary condition fw pdr =
0 (which is proved in Theorem [1]) as a well-posed problem in p. Remark also that by
hypothesis ([2.6) we have |, 9, 90 = 0. This will be a classical consequence of the following
result.
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LEMMA 7.3. The matrix A belongs to (L>(w))* and is symmetric and positive definite
uniformly in x; that is, there exists a constant o > 0 such that

¢TAE > all¢) VE e R (7.8)

Proof. We proceed as in [9]. The fact that A belongs to (L>°(w))* is an immediate
consequence of Proposition [[Jl Taking w' as a test function in (L) (k = 1,2), we obtain

3
A=y /B DZ(w*)DE (uf),

7,j=1

which gives the symmetry of A. We also deduce

2 2
Z Ak,l&kfl = 2,u Z /B ‘DZI;(’J})F with @ = §1w1 + €Q1U2. (79)

k=1 i,j=1
On the other hand, multiplying (Lx) by & and adding in k we get

3
2p Z /B Df (@)D (p) = —/ (§11 + Eap2) Vo € Vo q. (7.10)

x

ij=1
For any fixed £ we choose ¢ in the following manner:
oy, x3) = (=&123(hm — x3) , —223(him — x3), 0)

for x5 € [0, hy,] and extended by 0 on B,. It is clear that ¢ € Vg, for any « € w; then
it can be taken as a test function in (ZI0). We obtain, using also the Cauchy-Schwarz

inequality,
Wi <o S [ D5, Y [ DB 7.)
6 S ap s, ij =5, i P~ .
With the help of [Z9]) we easily obtain (Z.g]). O

For any s € S let us define ¢ as the unique solution of the problem
(Pp) : Find g € H'(w)/R such that

2
0
/AVqup :/ E (/B wjdydxg) 3—;; Vo € HY(w)
e w =1 ©

with w = R(s) (the solution of (L)).
We denote by Q the linear operator from U to H'(w) such that Q(w) = ¢ is a solution
of (Fy) for any w € U. It is obvious that Q is also continuous, that is,

Qc L(U, H (w)). (7.12)

On the other hand, we define p; as the unique solution of the problem
(Py) : Find p; € H'(w)/R such that

2
0 .
/ AVp1 -V = / Z </B w?’dydx;;) % 7/6 g-ve Yoc H' (w)/R. (7.13)
w w =1 = J w
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By linearity and uniqueness we easily see that p can be expressed as a function of s*
the following manner:

P =po+ D (7.14)

with pp = Qo R(s*) and p; the solution of (Py).
It is clear from (Z.8) that u can also be expressed as a function of s*:

2 op 2 dp
= E - E - . 7.15
w . +w —|—k 1w o +w ( )

k=1

Now substituting (I4) and (CI5) into (6.I) we obtain that s* satisfies the following
variational inequality:

2u/'§2l§jD M 4 DB ﬂ-Dﬁwa+[;§j%§¢j

31’1 B3| . pB ~om
/szl l;D )] D”((p)JF/Q; da; (7.16)

+§Lﬁmmww%m+ymw—ﬂ—www—ﬂﬂ
_/f.spzo Ve e U.
Q

The first two integrals in the above inequality will be seen as a bilinear form while
the three subsequent terms as a linear form. It is then natural to introduce the following
bilinear form b and linear form T respectively:

b(s, 0) —2u/ Z [ZD axk+DB( )] D5 (%)

1]1

(7.17)
/ V(s, ) e S xS,
Q

Jj= 1

—2u/ ZlZD 8p1+DB( )1-D5(¢)
,j=1 Lk=1
/Zaplqp] /f v Voes

with w = R(s), g = Q(R(s)), and ¥ an arbitrary relevement of 8; that is, ¢» € U is such
that ¢, _, = 0.

Now we easily see that b and T are well-defined; that is, they are independent of the
choice of the relevement v of 8. Indeed if ¢! and 2 are two different relevements of 6,
then ¢! — 4?2 is an element of Vi ,. Moreover the expressions of the right side and of
(TI6) and (TIT7) vanish for ¢ € Vo, since w* satisfies (Ly) for k = 1,2,3. This proves
that b and T are well defined. With the above notation the variational inequality (Z.I6])

(7.18)
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can be written in the following form:

Find s* € S:  b(s*,0) +T(0) +j(s*+0) —j(s) >0 VoeS (7.19)

i0) =5 [ ] #a)o.y) = ldyda.

The expression of b and T' can be simplified in the following manner.

where

PRrROPOSITION 7.3. We have

80—2u/ZD (V) + /AVq-Vr,

Z]l

_QM/ZD /Zaple IR

zg 1
with w = R(s), ¥ = R(0), ¢ = Q(R(s)) and r = Q(R(H)).
Proof. We take in (ZI7) and (ZI8) the relevement ¢» = R(#). We then have

Z/D () =0, k=1,2

1,j=1

since wk € Vo,» and ¢ is the solution of (L) with s replaced by #. On the other hand,
considering ¢ = Q(R(s)) as a test function in the problem (Fp) satisfied by » = Q(R(0))

we find
/Qzaxg /ZU )axj [ Avrva

This ends the proof. O
We can now state the main result of this paper.

THEOREM 7.4. The limit problem (Z.I9)) satisfied by s* = u(x,y,0) has a unique solution
s* € S. Moreover for the entire sequence of € we have in €,

e2pe —— po + p1,
2

U —— Zwk Ipo w*Jr;wkgi’chrws,
where w®, for k = 1,2,3, are solutions of (L), p1 is a solution of (P;), w* = R(s*),
po = Q(R(s*)). All the limit functions are defined on @ and extended by 0 to Q.

Proof. We use the form of b and T given in Proposition [[23] The symmetry of b is
obvious and the continuity of b and T are immediate from the fact that A € (L°°(w))*
(Proposition [[T]) and that R and Q are linear and continuous (Remark [[:2]) and (12]).
Moreover using positive definiteness of A we get

3
b5.5) 2 | ST
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By Korn’s inequality and since ||w|y = ||s||s we deduce that there exists a constant
a1 > 0 such that

b(s, 5) > au|s|13-

Since j is convex and continuous in S (we have the continuous embedding of S in
L?(w x Y)), and S is a Hilbert space we deduce classically the existence and unique-
ness of a solution of the variational inequality (CI9) (Proposition 2.2 chap. II of [I7]).
We deduce from the uniqueness that the entire sequences (in €) u® and £2p® converge to
the indicated limits. (]

8. Lower-semicontinuity result for the two-scale convergence. The aim of
this chapter is to prove ([6.3)), in a generalized case, in Theorem BH] which is still an open
problem, using some results on the subdifferential and regularization of convex functions.

Let © C R™ be an open bounded domain, Y = [0,1]™, and ¢ :  x R™ x R® — R
such that the following hypotheses hold:

(H1) ¢(z,-,-) is continuous a.e. z € ),

(H2) (-, y,2) is measurable for all (y,z) € R™ x R™,
(H3) (=, z) is 1-periodic in y,

(H4) ¢(x,y,-) is convex in z,

(H5) 3C; >0 and 3C, € L*(2) such that

lo(z,y,2)| < Ch||2]|*> + Ca(2) ae. z€Q V(y,z) € R™ x R™

REMARK 8.1. A particular case of Theorem B3] where ¢ depends only on z, was
proved in [I8] and [19] (see also [20] for an analogous result for the stochastic two-scale
convergence). All these results are valid only in the particular case where ¢ is an affine
function. Another particular case, with ¢(z) = 22, can be found in [15]. In [16] the case
©(z) = |z|P for p € |1, 4+00[ was also considered, which is a particular case of our only for
p€]1,2].

For 6 > 0 we define the partial Yosida-Moreau approximation of ¢:

- Iz = sl .
905(1:’?!) Z) - SIEH]R" ‘P(%ya 8) =+ 25 ) ( . )

which is well defined (see for example [21], chapter 2, page 121, theorem 2.3) and for
(xz,y) € @ x R™ we consider the multivalued operator A, , from R™ to 2R" such that
Ay (2) = 0.0(x,y, z), where 0,¢ is the subdifferential, in z, of ¢ defined by

2o Dl 2) = {w ER™ ;. p,,5) > @(@,y,2) +w-(s—2) Vs € R},

From (H1) and (H4) ¢ is continuous and convex in z, so we have (see for example [17],
page 22, Proposition 5.2) that

O.0(x,y,2) #0;  then Dom(A,,)=R".

We have also (see for example [22], page 25, [21], theorem 2.1) that A, , is a maximal
monotone operator. Then (see for example [22], Proposition 2.2) we get

S + 04, ,) =R",
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so for all 6 > 0, and for all s € R™, there exists a unique z € R"™, such that
(I+0A5,)(2) 3 s.
We denote z = (I + 64, ) *(s) and introduce the following application:
Joys R* = R™  such that J, ,s5(s) = (I +64,,) " (s)

and the partial Yosida approximation of the operator A, ,,

Agys R" —=R™  such that A, , 5(s) = %(s — Jzy.5(5)).

LEMMA 8.2. We have
ws(x,y,-) € CH(R™) and is convex in z,
}E,% 905(:5’ Y, Z) = <P($a Y, Z)v

VZQO(; = Ax,y,&
lim Jp5,(2) =2 V2 €R",

| Jeys(21) = Juys(22)| < ll21 — 22| V(21,22) € R" x R",
1
[Azy.6(21) — Az ys(22)|| < g||21 — 2] V(21,22) € R" x R",

o, y, Juys(2) < @s(x,y,2) < p(x,y,2) YzeR"™

585

Proof. The proof is similar to the well-known results in [2I], page 121; see also [22]. O

We have the following technical result.
PROPOSITION 8.1. For any £ such that £(z,y) € d.¢(x,y,0) we have
Vo0s(e,9,0¢(5,y) = E(z,y) ae. vew Vyev,
V=ps(@,y,08(x,y))| < vn(C1 + 2Ca(x)).
Proof. Since 6§ € §A; 4(0) + 0 we deduce J . 5(0§) = 0, which implies
V.05 (., 06(2, 1)) = Ay, 5(5€) = €(, 1),
which proves (8I1]). On the other hand, we have
o(z,y,2) —p(x,y,0) 2§z VzeR™

Taking successively z = +e; in the above inequality where ey is the k-th element in the

canonical basis in R", we deduce using also (Hb5),
|€k] < C1 4 20 () k=1,..n.
With the help of (8I1]) we obtain (812).
ProrosiTioN 8.2. We have
los(z,y, 2)| < 2C1[|2]|* + Ca(z) ae. z€Q, VY(y,z)€R™xR",
for all 0 < & < (4C1)~1, and also

IV.0s(2,y, 2)| < 2¢/n(Cy + 20 (x)) + @
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Proof. From BIQ), ¢s5(x,y,2) < ¢(x,y, z); then with (H5),
s(w,y,2) < 201 |2 + Co(a).
On the other hand, from the definition of s and (H5) we deduce

seR™

: s]|?
sty 2) = ~Calo) + int {570 - ol

Denoting B(s) = % — C1]|s||* we have
2

and we also have

B(8min) = 250 |2 ||2

As § < (4C1)7 1, then < 2C1, so

- 250
ws(@,y,2) = =201 |2]|* = Ca(2).
Thus (BI3) follows. To prove (814, we write
Vaps(x,y,2) = Vaps(x,y,06(2,y)) + Vaps(,y,2) — Vaps(@,y, 66 (2, 1)),
so from ([B9), (BII) and BIZ) we deduce (BI4). O

We introduce now the following operators:
So:L2(QxY)—=R: Sy(v)= / / o(x,y,v(z,y))dydz,

SS:L2QxY)—=R: S //@5;161/, (x,y))dydz,
which are well defined from (H5) and (8I3). Recall the definition of the epigraph of an
operator S from X to R, epi(S) :={(v,a) e X xR: a>S(w)}.

PROPOSITION 8.3.
. o )
epi(So) = [ epi(S))-

6>0

Proof. From Lemma [82] (8I0) we have S3(v) < So(v) for all v € (L?(2))™, so

epi(Sp) C ﬂ epi SO

6>0
Let (v,a) € epi(S]) for all § > 0. Then a > S(v). So taking § — 0 using (8H) and
BI3), we get the result by Lebesgue’s dominated theorem. O

We define now for all vy € (L?(Q2 x Y))™ and & > 0
Dyys ={(v,a) € (L*(2xY))" xR:

0> / / (052,900, )) + Vaos(2, 9, 002, 9)) (v(z, ) — vo(z, 4)}] dydz}.
QJY

The second integral is well defined from (8I3]) and (8.14).
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LEMMA 8.3. For any § > 0 we have

epi(S9) = ﬂ D, 5,
voE(D(QXY))™

where (D(2 x Y))™ is the space of functions in (C*°(€2 x Y))™ with compact supports in
QxY.

Proof. As s is a convex function in z we have

wg(x,y,v(x,y)) > @6($,y7'00(377y)) + vz‘pé(x’yavo(xay)) : [(v(x,y)) - (Uo(%,y))]
Yo e (L2 QxY)", VY € (DOQxY))", Vs>0.

So by integration we easily obtain

aZ/g/y‘Pé(ﬂC,y,vo(x,y))
+/Q/sztﬂ5(x,y,vo(x,y)).{v(%y)_vo(%y)}dydx;

thus we deduce the first inclusion.

Let (v,a) € (L?(Q x Y))" x R satisfying (8I5) for all vy € (D(Q x Y))" and for a
fixed § > 0. By density there exists a sequence (vg) € (D(2 X Y))" such that vy — v €
(L2(2 x Y))™. Taking vg = vx, in (BI5) we obtain

az//soa(ﬂf,y,vk(x,y))dydw
QJY

+ /Q /Y V.05(2, 9, v, 9) - {0(w, ) — vi(x, y) }yda.

We now pass to the limit £ — +o00 in the above inequality. For the first integral we
have

(8.15)

(8.16)

/ / 05(@, 9, o) — @a(a,y, v)|dyde
QJY

< [ [ 19:gs(ep. vt 6= o)) fox — ldyda,
QJY
with 0 < # < 1. Then using (814) we have
[ 1esten )~ gstop. vlldyds -0 as k- +ox.
QJY

Using also 814, |V.s(z, y, vi(x,y))| is bounded in L2(QxY), so the second integral
of (BI0) tends to zero. Thus we get

GZ//@§($7y7’U(CE7y))dyd$,
QJY

so (v,a) € epi(SY). O

LEMMA 8.4. For any § such that 0 < § < ;-

i): The functions y — @s(x,y, 2) and y — V,ps(z,y, ) are 1-periodic a.e. = € Q,
for all z € R™.

we have
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ii): The functions (y,2) — @s(z,y, z) and (y,z) — V,ps(z,y,2) are continuous
a.e. x € .

iii): The functions, from Q to R : z — ps(x,y, 2) and = — V,ps(x,y,2) are
measurable for all (y,2) € Y x R™.

iv): For any compact K C R™ we have that

T sup  ps(r,y,2) and w—  sup  V.ps(z,y,2)
(y,2)EY XK (y,2)EY XK

have a finite L?(2)-norm.

Proof. We recall that (see for example [22], p.25)

Iz — s Iz — 3]

stz = inf {otens) + B — o L )

where § = J, , 5(2). From the y-periodicity of ¢ we easily deduce the y-periodicity of
s Since from ([B0) and [B3) we have
1
VZQO(;(CC,%Z) = S(Z - Jm,yﬁ(z))ﬂ (8'18)
we deduce from (BI])) the y-periodicity of V ;.
Let us fix y° € R™, 2Y € R” and let y, — ° and z, — 2. We set

Sk = Jﬂfayk,(;(zk))a 50 = Jx,yo,é(zo)
and we have
. 2% — sl|? A
= inf = L. 1
st ) = inf Lot + 2~ ptapn + 1222 a9
. 50 _ 412 L0 _ 0|12
@5(3:7340) zO) = Slen]}{" {(p(x7y075) + %} = (p(xayovso) + %
We then have
_ 2 _ 02
(T, Yr, sk) + w < (@, yp, s°) + w- (8.20)
Using (H5) we deduce
2 sel®  llzsll® 02 [Ex e
— — ALl ] L | i e B

Taking § < ﬁ we deduce that si is bounded since z; is bounded. We can extract a
subsequence denoted also si such that sy — & with £ € R™.
Passing to the limit in (820) we deduce

12° - &P 2* = 5|2
p(2,y",) + = <ol y’ ) + T
so & = s° since s is the minimum of
0 2
0 12 — sl
3 9 + *
s ol )+

From the uniqueness of the minimum s°

converge to s°. We then have

, we deduce that all the subsequences of sy,

J%ykﬁ(zk) - Jw,y0,5(20)a
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which gives from ([BI8]) the desired continuity for V,ps. Passing to the limit in (819)
we deduce the continuity for ¢s.

The measurability of the function x — @s(x,y, ) is immediate from the measurability
of the function  — @(z,y, z) and the definition of p5. We now have for any fixed y € R™,
z € R",

s

1
8—Zj(x7y7z) = k:lggok QD&(.’L'?:%Z-’- Eek) - @5($7y72)

Since the function z € Q — k [apg(:c, Y,z + %ek) —s5(x,y, z)} is measurable, then the
function z — g%j (x,y, z) is measurable. The last result (iv) is an immediate consequence
of Proposition O

We now give the main result of this section:

THEOREM 8.5. Let uf in (L?())", which two-scale converges to some u in (L?(Q xY))",
and ¢ be such that (H1) — (H5) hold. Then we have

lim inf /Q ol 2, (@) > /Q /Y (@, v, u(z, ) dydz.

e—0
Proof. Let
b= liminf | ¢(z, §7 u®(z))dz,
e—0 Q £

so there exists a subsequence of ¢, still denoted by €, such that
/ o(z, g,ue(x))dx —b whene— 0.
Q
We also have
T T
/(p(x7—,u8(x))dx > / os(x, =, u(x))dx
Q € Q €

X X
> z z
- /Q%(x’ E’UO(I’ s))dx (8.21)
X

+ [ epsta, Lol D) (@) vl e
Q 5 € 5
for any vg € (D(Q2 x Y))™.
From Lemma [84] and using also Lemma 5.3 in [I5], we deduce that
(1) (2,9) = @s(@,y,v0(2,y)) is in L'(92,C4x(Y)),
(2) (z,y) = Vaps(a,y,vo(x,y)) is in (L*(2,Cx(Y)))™

We can now pass to the limit, ¢ — 0, in (821, using Theorem 2, p.40 of [16] and also
Theorem 7, p.48 of [16] and that u® two-scale converges to u, to get

bzALwa(w7y7UO(xvy)>dydx (8.22)

+ /Q /Y V.05(, 9, v0(2, ) - [u(z, y) — vo (2, y)] dyda.

Thus
(u,b) €Dyys Y6 >0 and Yoy € (D(QxY))"
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From Lemma B3] we deduce that
(u,b) € epi(S]) V6 >0,
and from Proposition B3 we deduce that (u, b) € epi(Sp). Thus

b= liminf/ o(x, gu (x))dx > So(u / / z,y, u(z,y))dydz.
Q

e—0
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