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Asymptotic behaviour of solutions
of the Tjon~Wu equation

by ZBIGNIEW KIELEK (Kielce)

Abstract. The paper is devoted to the problem ol the asymptotical stability of the Tjon-Wu
version of the Boltzmann equation. It is proved that for every initial density with the finite second
moment the corresponding unique solution converges strongly to the appropriate stationary
solution. The result is based on the expansion of the solutions in the form of Wild's sums,

1. Introduction. The Boltzmann energy equation in the Tjon—-Wu form
may be written as follows (see [8]):

au(t, x)+

(1.1) 5

= Tif U, y—2z)U(t, z)dzdy.
Yo

Here, U(t, x) 1s the unknown function, t the time and x the energy. Thus (1.1) is
always considered for ¢t > 0 and x > 0. This model has recently been studied
from the mathematical and physical point of view (see [1]-[5], [7]). In
particular, T. Dlotko and A. Lasota have proved the existence of the unique
solution of (1.1) with the initial condition

(1.2) U0, x) =uy(x) for x=0,

in the space L'(0, o) (with the weight function 1+ x). They also proved the
weak asymptotical stability in the subspace of L![0, o) consisting of the
densities with finite moment of all orders. Recently, new existence theorems for
(1.1), (1.2) were proved by Barnsley et al. [1] (in the space L? with the weight %)
and Herod [5] (in the space BC[0, oo) of bounded continuous functions).
Equation (1.1) may also be treated in the weak form as the equation for Borel
measures on [0, oo). In this case, the existence and stability theorems were
proved by Ferland and Giroux [4].

From physical point of view, it is natural to consider (1.1) as an evolution
equation in the space L'(0, o0). Thus, setting

(1.3) P(u, v)(x j j u(y —z)v(z)dzdy

xYo

for u, ve L'(0, o), we may write (1.1) in the form
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(1.4) %ﬂ U=PU,U), UQ)=u,.

It is easy to verify that (1.3) defines a bounded bilinear operator acting on L',
We shall assume that the initial function u,€ L' satisfies the conditions:

(i) ug(x) =0 ae,

(i1) ? Uy(x)dx =1,
0

(iii) ]'Dxuo(x)dx =1, afxzuo(x)dx < 0.
o o

Now, we may formulate our main result:

THEOREM 1.1. For every uy e L' satisfying (i), (ii), there exists a unique strong
solution U(t) of (1.4) defined for all t = 0. This solution fulfils conditions

analogous to (i) and (ii). If, in addition, u, satisfies (iii), then U(t) converges

strongly in L! (as t— o0) to the stationary solution w given by w(x) =e™*

2. Preliminaries. Let

M) = <}Qx"u(x)dx
)

for veL' and for n> 0. If M"(v) and M"(w) are finite we have

n ) — 1 & fn k n—k
2.1 M"(P(v, w)) = n+lk=0(k)M (V) M™*(w).

We omit the simple proof of this equality (see [3]). Let D be the set of all
probability densities, i.e., D = {ve L': M°(v) = 1, v = 0}. According to positi-
vity of P (v, w 2 0 implies P(v,w) > 0) and to (2.1), we have P(D, D) = D and
consequently

(2.2) IP, w)l < llo] x lw]l ~ for v, we L.

Let {u,};>0 be the sequence defined by the recurrent equalities

-1

(23) == Y Pyt 1)
M=o

The sequence (2.3) will be called the sequence of the convolution iterates of P.
Following [6], the solution of problem (1.4) exists and has the expansion

(2.4) Uit)=e™"* i (1—eY'u,.
n=0

Ifuy e D then u, € D for every n and the series (2.4) are convergent to an element
of D for t = 0. Moreover, the convergence of the sequence {u,}., implies the
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convergence of the U(t) (for ¢ tending to infinity) to the same limit. Thus it only
remains to prove the convergence of the convolution iterates under additional
assumptions (iiij) posed on the function u,.

To end this section, we shall make two remarks.

Remark 2.1. If M%(uy) = M'(uy) = 1, then M*(u) =1 for every n.
This immediately follows from (2.1) and (2.3).
Remark 2.2. If M%ug) = M*(uy) = 1, M*(ug) < o, then

2.5) lim M?(u,) = 2

Indeed, according to (2.1) and (2.3) we have

M) = lni M2 (P, -y 1)

| Rl R ) 2 2"
;kzo {M*(u)+2+M (“n—l—k)}=§ 3—; 2(uy)
n—1(2 2 " 2 2
= 2 J—
n {3 3(n 1);.2 M (uk)}+ + M (un 1)
1 2 2 2
= My ) o M) = 5 T M),
Hence
In—-1 " 3k—1
M3u)-2= 3n Mz(u,,_l)—2)=(’l= W )(M’(uo) 2)
Since
. 3k-—-1
,'i“lk. *

we get the desired result.

3. The power iterates. Let E be a real Banach space, Q a bilinear operator
from E x E into E and {u,}, the sequence of the convolution iterates of Q. If
Z is a subset of space E, then the convex hull of Z, denoted by co(Z), is the
smallest convex set that contains Z. We have the following

Lemma 3.1. Let Zo<c W< E, where W is a convex set such that
Q(W, W) < Wand Z, is a subset of W such that u, € Z, for every n. Let us define
a sequence of subsets of W as

3.1) Z,4y =c0(Q(Z,, Z,) Jor m=0.

Then for every m =0, 1,... there are sequences {Vp, }o=0, {Wmnlneos {Gmatnzo
satisfying for every n the relations
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(3.2) Vpn€Zmy  Wmn€W,  a4,€(0,1)

and

(3.3) Up = Gy U+ (1= p) Wy e

Moreover, the sequence {a,, ,}:%o for every m satisfies the condition
(3.4) lim a,,, = 1.

Proof. Setting vy, = w,,=1u, and a,, = (n+1)/(n+2), we may define
these sequences for m > 1 by the following recurrent equalities:

ln-l
An+1ip =" Z A kQmun—1-k>
Ni=o
n=1
Um+1m==(nam+LJ_1 z%amkamm—1—kQ(mmhvmu-1—0’
k=
n—1
Um+i,n = (n_nam+l,n)—1{2 Z am,k(l_am,n—l—k)Q(vm.k’ wm.n—l—k)
k=0

n—1
+ Z (1_am.k)(l_am.n—l-k)Q(wm.ka Wm.n—l—k)}-

These equalities are assumed to hold for n = 1. To complete the definition of
these sequences, we set Um+1,0 = Vm+1,15 Wm+1,0 = Wn+1,1 and Am+1.0 =9m+1,1+

It is easy to check by induction that (3.2) and (3.3) hold. We shall derive only
(3.4). We have

lnl lnl

ln—l
|1-am+1.n| < ‘1—_ Z amk Z amk_— Z AmikAmn—1—k
Br=0 Ri=0 Nk=o
ln 1 -1 2n—1
Z |1_ mk|+ Z l(l kl Il mn—l—kl < - Z |1_am.k|'
nk 0 Ry=o

Since the last inequality holds for n > 1 and m > 0, by an induction argument
it is easy to show (3.4). This completes the proof. w

For notational convenience, let GC_, be the set of all real-valued
measurable nonnegative functions defined on the interval R, = [0, co) (we do
not exclude the possibility that the value of a function is equal to infinity for
some xR ), let GC, be the set of all nonincreasing elements of GC_ ,, and let
GC,, for m = 1 denote the set of all ve GC,, such that the inequality

av’™(x,)+ (1 —a)v*™(x,) = v'/™(ax; + (1 —a)x,)

holds for all x,, x,eR, and a€[0, 1]. The following lemmas describe some
properties of the sets GC,,.
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LEMMA 3.2. Let § be a measurable real-valued function defined on [0, 1]x R,
such that f(t,")e GC,, for all te[0, 1] and some m > —1. Then

1
= [f(t, x)dt
0
belongs to GC,,.

Proof. For m = —1, this is a part of the Fubini Theorem. In the case of
m = 0, this lemma is due to the monotonicity of the integral. Let m > 1 and
a€[0, 1]. Then for x,, x,eR, we have

F™(ax, +(1 —a)x,) = {_[f(t ax, +(1 —a)x,)de} ™

< (@, x)+(1 - e, x,)ymdt}
0

< {Jlef e, x e} y(u —)fn(e, x ) de}Hm

= a%”"'(xl)-ir(l —a) ™ (x,).

The first inequality follows from the definition of the set GC,, and the second is
the Minkowski inequality. This completes the proof. =

Note that the function f is nonnegative, so that §(x) always exists, even
though it might be infinite.

LEMMA 3.3. Let functions v and w belong to GC,, for some m 2 —1. Then
the function u given by u(x) = v(x)w(x) also belongs to GC,,.

Proof For m= —1 and m =0, this lemma is obvious. Notice that for
m > 1 the function ve GC,, if and only if v!"eGC,. Then it is sufficient to
prove the lemma in the case m = 1. Let v, we GC,,. Thus they are nonin-
creasing functions and for x,, x,eR, we have

< Do) — 0(x)] [wl,) —wx,)].
This is equivalent to the inequality
au(x,)+ (1 —a)u(x,) = a?v(x ) wix,) +a(l —a)o(x)w(x,)
+ (1 —a)v(x,)w(x,) + (1 — &) v(x,)w(x,),
where ae[0, 1]. Hence we have
au(x,) + (1 —2)ulx;) > [a(x,) + (1~ 2)o(x)] [ow(x,) + (1~ )w(x,)]
> vfoox, + (1 —a)x,)wlox, +(1—a)x,)
= u(ox, +(1—a)x,)

which completes the proof. m
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Let T be a linear transformation defined as follows:

(3.5) To(x) = [ v(x)dx.
Note that for ve GC_, the integral (3.5) is well defined even though it might be
infinite,

LEMMA 3.4. Let veGC,, for some m2 —1. Then TveGCp4,.

Proof. For m = —1, the lemma is obvious. The proof for m > 0 will be
based on the closedness of the class GC,, under taking supremum. Namely, we
shall construct for ve GC,,,, and every xe R, the function f,€ GC,,+, such
that Tv(x) = f,(x) and Tv > f, on R,. Hence Tv(y) = sup{f,(y): xeR,} for
every yeR, and consequently Tve GC,,, ,. We shall construct the function f,
in a different way for three kinds of points. If the point x is such that
Tv(y) = o for y < x, then let f,(y) = Tv(y) for y < xand f (y) =0 for y > x. If
the point x is such that Tv(x) =0, then let f, =0 on R,. It may easily be
verified that the function f, constructed in both of these cases has the desired
properties. Now we assume that the inequalities 0 < Tv(x) < co and
0 < v(x) < o0 hold. Under these assumptions there exists a unique function

w such that
_ jalb=y  for y<b,
W) = {o for y>b,

where nonnegative parameters a and b are so chosen such that the equalities
v(x) = w(x) and Tov(x) = Tw(x) hold. In accordance with the above equalities
and the inclusion ve GC,,, there exists a finite real number x, > x such that
v<won [x, x,] and v > w on R,\[x, x,]. We claim that Tw < Tv on R,.
Indeed, this is obvious for y > x,. For ye[x, x,] we have

To(y) = Tv(x)— jv(s)ds Tw(x)— Iw(s)ds— Tw(y)

and for y < x

To(y) = Tv(x)+_|'v(s)ds Tw(x)+_[w(s)ds = Tw(y).

Thus the claim is proved. Let L) = Tw(y). Note that Twe GC,,.;. Thus we
have constructed the desired function f, for every xeR, and the proof is
complete. =

Let Dy = {veD: M'(v) =1, M*(v) < w} and D,, = co(P(D,,-y, Dpn-1))
for m > 1. We shall assume that the initial point of (1.4) belongs to D,,
1.e.,, ug€ Dy. In accordance with Remarks 2.1 and 2.2 we have P(D,, D,) D0
This mcluslon and the convexity of the set D, imply that D, c D,
and consequently, D,i; =D, for m>0. From (2.1) it follows that
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u, € D, for every n. The following proposition states a very important property
of the sets D,,.

ProrosiTiON 3.1. For all m= 0,
(3.6) D, < GCp_ NIt

Proof. For m=0 and m=1 the proposition is obvious. Let m > 1.
According to the convexity of the sets GC,, we prove the inclusion (3.6) by an
induction argument if we show that for v, we GC,,_, n L' the function P(v, w)
belongs to GC,_;NL'. We have

P(v, w)(x) = a_fo j'v(y 2)w(z)dzdy =T£v((1—-t)y) w(ty)dtdy

and the desired result follows immediately from Lemmas 3.3, 3.2 and 3.4. Then,
since the inclusion P(v, w)e L' follows from (2.1), the proof is complete. m

4, Convergence of the convolution iterates. Using Proposition 3.1 and
Lemma 3.4, we immediately have for m > 0

4.1) TD, < GC,

and, for the same reason,

4.2) T?D,, < GC,,, .
Moreover, for ve D, we have

(4.3) T?0(0) = M (v) =1,
(4.4) (T*0y (0)= —M°@v) = —1.

Let for m>=1

_fm™m—x)"  for x <m,
(4.5) W () = {0 for x > m.

The inclusion (4.2) and equalities (4.3), (4.4) imply that
(4.6) T*v>w,,, forveD,,.

We claim that for every m = 0 the function w,, is a lower function (see [7]) for
the sequence {T?u,}>,, ie,

4.7) lim ||(w,,— T?*u,)*|| =0

n—=+aw

We use the form of u, given by Lemma 3.1, where W= Z,=D, and
consequently Z,, = D,,. Let us notice that in accordance with (3.2) we have for
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every m and n that u,, v, ,, w,,, are elements of GC_, so the transformation
T is well defined on these sequences. Thus for m >0

"(W,,. +1= TZu")+ " = "(wm+ 1s am.n Tz vm.n - (1 - am.n) Tz wm.n)+ "
= Gm,n ||(wm+ 1= Tz T-7m.rr)+ " +(1 - am.n)" (Wm+ 1 Tz Wm,n) * “ .
Hence, since [[(Wm+1—T0ma)" |l =0 (see (4.6)) and

(s~ T0) ] € D] = <
(this follows from positivity of w,,,) we have
[(Wms 1= T?*u)* | < 1—a,,.
According to (3.4) we obtain (4.7) for every m.

COROLLARY 4.1. Let w(x)=e *. Then w is the lower function for the
sequence {T?u,} 0.

It immediately follows from the corollary that the function w is a limit of
the increasing sequence {w,}z==;. Since |T?u,| =4M?*(u,) and |w| =1,
Remark 2.2 and the previous corollary imply the following:

COROLLARY 4.2

(4.8) s-lim T?u, = w.

n—*o

S. Strong convergence. Having weak convergence of the sequence of the
convolution iterates, we will prove via the Fréchet-Kolmogorov theorem that
this convergence is exactly strong,

FRECHET-KOLMOGOROV THEOREM. Let S be the real line, B the o-ring of
Baire subsets B of S and m(B) = j dx the ordinary Lebesgue measure of B. Then
8

a subset K of L*(S, #, m), 1 < p < o0, is strongly pre-compact iff it satisfies the
conditions:

(1) sup [ x| = sup ([ |x(s)|Pds)'’? < o0,
xeK xeK S
) lim {|x(t +s)—x(s)/Pds =0  uniformly in xeK,
t—~0S§
(3) lim [ |x(s)Pds=0 wuniformly in xeK.
at oo |s|>a

Condition (1) is obvious, because |u,|| = 1 for all ne N. In order to derive
(2), we first notice that the functions u, are nonincreasing for n > 1. Hence

j [u,(t+8)—u,(s)|ds = _[ [u,(s)—u,(s+1)]ds = j'u,,(s)ds.
R. R, 4
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If (2).did not hold then there would exist ¢ > 0, § > 0 and an infinite set N,
contained in N such that

(5.1) fuls)ds=e for all neN,.
1]

But this implies that

t
fu s)ds=t for t<e, neN,
4
because the functions u, are nonincreasing. Then we have for t <&, neN,
!
(T2u) () = —Tu,(t) = —(1—-fu,(s)ds) = ¢—1.

This differential inequality and the relation T?u,(0) = 1 imply that
T2u,(t) = 1—t+12 > w(t)

which contradicts the weak convergence of the sequence {u,}%o.
Now we complete the proof if we check that property (3) holds. For all
n>=1, we have

| u,(x)dx < 2/x?;
R,
then

«

T huy(ods < |

2
—ids =

L)

SN S

and (3) holds. This completes the proof.
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