
Geophysical Journal (1989) 97, 459-469 

Asymptotic behaviour of solutions to Laplace’s tidal equations at low 
frequencies 

Sergey M. Molodensky 
Institute of rhe Physics of the Earth, Bokchaya Gruzinskaya 10, 123810 Moscow 0-242, USSR 

Accepted 1988 November 16. Received 1988 November 7; in original form 1987 November 6. 

S U M M A R Y  
The asymptotic behaviour of solutions to Laplace’s tidal equations at low frequencies is 
considered. The method used is based on perturbation in small parameters, these being the 
ratios of tidal frequency and the coefficient of bottom friction to the angular frequency of the 
Earth’s rotation. It is shown that the resulting solutions are unstable in that the functions 
involved in the zero-order approximation are not uniquely determined by the zero-order 
equations, but depend on first-order terms as well. Because of this instability, direct methods 
of numerical integration are inefficient. We propose a different procedure, replacing the 
original set of equations in partial derivatives by ordinary differential equations that have a 
stable solution. The equations are examined qualitatively. It is shown, in particular, that for 
the case of an ocean of uniform depth over the whole Earth, they coincide with the 
well-known Lamb’s equations. The asymptotic behaviour of the solutions is examined as 
modified by basin shape, bottom topography and bottom friction. 
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INTRODUCTION 

In recent years the asymptotic behaviour of solutions to 
Laplace’s tidal equations at low frequencies has attracted 
increased attention in connection with the problem of 
determining the rheological properties of the Earth’s mantle 
at low frequencies (O’Connor & Starr 1983; Carton 1983; 
Dickman 1985; Molodensky 1985; O’Connor 1986; Carton 
& Wahr 1986). As shown by Anderson & Minster (1979), 
Zharkov & Molodensky (1979), Smith & Dahlen (1981), 
Molodensky & Zharkov (1982), mantle anelasticity has the 
effect of significantly increasing the Chandler wobble period 
well beyond the range of observational uncertainty. 
Comparison of the observed period with its theoretical value 
for an ideally elastic Earth model can isolate mantle 
anelasticity effects, thus permitting determination of 
parameters of the mechanical quality factor Q, for 
oscillations having the Chandler wobble period TI = 1.2 yr. 

It is mentioned in Merriam (1985) that the modem 
accuracy attainable in the measurement of satellite 
coordinates and orbital parameters by the LAGEOS 
program makes it possible to determine tidal variations in 
the velocity of the Earth’s rotation and the Love number k 
for oscillations of a still longer period, T2= 18.6yr. 
Comparison of observed and theoretical values of Love 
numbers can yield the Q, for oscillations of period T2 as 
well. 

Reliable estimation of anelasticity effects for the mantle 
requires accurate calculations of the oceanic tide whose 
influence, both on the Chandler wobble period and on the 
amplitude of tidal variations in the velocity of rotation, is 
very great. 

Carton (1983), O’Connor & Starr (1983), Dickman 
(1985), O’Connor (1986) and Carton & Wahr (1986) made 
both analytical evaluations of the pole tide for the simplest 
models (an ocean of uniform depth over an absolutely rigid 
Earth) and direct numerical calculations for more complex 
ocean models. 

It should be noted that direct numerical calculations of 
the long-period tides are much more difficult than those for 
the diurnal and semidiurnal period range. The reasons for 
this are as follows: 

(1) Because the long-period tidal amplitudes are very 
small, it is practically impossible to correct calculation 
results by comparison with observations. 

(2) As will be shown below, the solutions of Laplace’s 
tidal equations at low frequency significantly depend on 
terms of the order of the ratio of the frequency u to the 
angular velocity of the Earth’s rotation o. The solutions 
become unstable in the limit o/w-+O; hence, even very 
small errors of numerical integration significantly affect the 
final results. 

It has been shown (Molodensky 1985) that the pole tide 
can be described by a finite set of ordinary differential 
equations whose solution significantly depends on depth 
distribution and the coastline shape. Thus, with no bottom 
friction and an axially symmetric distribution of depth, the 
deviation of the ocean surface from the equipotential 
surface f approaches zero; for realistic, axially asymmetric 
ocean models we generally have f # O  even in the limiting 
case a/o+O. 

This paper presents a rigorous derivation of the ordinary 
differential equations that determine the tides of both the 
first and the second class (according to Laplace’s 
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classification) at low frequencies. This problem is solved by 
a perturbation method in small parameters, these being the 
ratios of tidal frequency and the coefficient of bottom 
friction to the angular frequency of the Earth's rotation. The 
resulting equations are examined qualitatively and quantita- 
tively. It is shown, in particular, that these equations are the 
well-known Lamb's equations for the case of an ocean of 
uniform depth over the whole of the Earth (Lamb 1932, 
section 218). We consider the effects that basin shape, 
bottom topography and bottom friction have on the 
asymptotic behaviour of the solutions. The results should be 
taken into account in constructing rheological Earth models 
at low frequency on the basis of astrometric and satellite 
data. 

2. BASIC EQUATIONS 

Our treatment will be based on Laplace's tidal equations 
(Lamb 1932, section 214) written in the form 

[ = -d' 1 ~ 2  (vh), (1c) 
where 8 and rp are colatitude and longitude, respectively; 
u,, u,, F,, and F, are the components of tidal flow velocity 
and force of bottom friction, the dot above a symbol 
denotes the time derivative, a is the Earth's radius, g the 
acceleration due to gravity at the Earth's surface, w the 
angular velocity of the Earth's diurnal rotation, h = h(8, rp) 
ocean depth and 5 tidal height. 

4 = @/g (2) 

is the static tidal height, CP the tide-generating potential 
equal to 

cp = a+,($ C O S ~  8 - 4) ( 3 4  
in the case of long-period lunisolar tides (tides of the first 
species according to Laplace's classification) and 

cp=cposin8cos8cos(at-rp) (3b) 
in the case of the pole tide (or tide of the second species 
according to the same classification). 

In (3a) and (3b), Qo is a constant that does not depend on 
8, q, t ;  t is the time; u the angular tidal frequency. The 
divergence of the two-dimensional vector vh(u,h, u,h) 
entering (lc) is defined in spherical coordinates as 

div, (vh) = - 
a sin 8 (4) 

Equations (la) and (lb) are the 0 and Q, components in the 
equations of motion and (lc) is a continuity condition 
(constancy of the volume of an element of fluid under tidal 

As will be shown in section 6, the pole and long-period 
tide can be considered to be laminar. In such a case, the 
force of bottom friction is proportional to the velocity: 

flow). 

F, = -me; F, = --KV 9' ( 5 4  

where K is the coefficient of bottom friction. Its numerical 
value is, as will be shown in section 7, of the order of 

K - 10-'S-'. (5b) 

Equations (1) must satisfy boundary conditions; namely, the 
velocity component u, that is normal to & is zero on the 
boundary & between land and ocean: 

%I& = 0. (6) 

System (la-c) can easily be reduced to a single scalar 
equation in tidal height, f .  To do this, we express u, and u, 
in terms of = 5 - f using (la) and (lb). Writing 7&,, u, in 
complex-valued form t lg  - exp (id), u, - exp (iat) and 
replacing u,, 13, by iav, and iav,, respectively, we obtain 

i u + K  - 
20 cos e af iae - - a g a q  

g sin 8 
u, = - 

a 40 '  cos' e + (ia + K ) ~  

20 cos 8 a l  a f  
" v ,=  -- 
a 40' cos' e + (iu + K)' ' 

(7) 

Substitution of these expressions in (lc) yields an equation 
in second-order partial derivatives in f (0 ,  rp) which is 
equivalent to system (1). 

The value of K determined through (5b) is four orders 
smaller than the angular velocity of the Earth's rotation 
w =0.7X 10-4s-1, while the ratio a/o for the pole and 
19-yr tide is equal to 2 x and respectively. For 
this reason, solutions to (1) under boundary conditions (6) 
can be sought as expansions in powers of the small 
parameters u/w and K / O .  It would seem that, the 
parameters being so small, the terms containing them may 
be discarded. However, that is not really the case because, 
when u = K = 0, the order of equations (1) is reduced from 
two to one; that is, system (1) is equivalent to a single 
second-order scalar equation with small coefficients in front 
of the higher derivatives. It is known from the general 
theory of differential equations that solutions of such 
systems may significantly depend on the small parameters, 
i.e. may be unstable. Below it will be shown that when 
u = K = 0, solutions to (1) are not determined uniquely. If 
the solutions are represented as expansions in powers of the 
small parameters u / w ,  K / O  and afterwards only linear 
terms are retained, then equations (1) in partial derivatives 
can be reduced to ordinary equations that have a unique 
solution and are not unstable. Because the solutions of 
equations (1) are unstable, a direct numerical integration is 
hardly possible; whereas integration of sets of ordinary 
equations does not pose any serious computational 
difficulties. 

The principal result of the present paper, equation (M), 
was also derived by Molodensky (1985) but by a less 
rigorous approach. The author does not wish to pursue here 
the numerical calculation of the effect of the pole tide on the 
Chandler period which was considered in Molodensky 
(1985). Such calculations are very sensitive to small changes 
in depth (see discussion following equation (50) of the 
present paper). They may be re-considered in a later paper. 
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Tides at low frequencies 461 

3. REPRESENTATION OF SOLUTIONS AS 
EXPANSIONS IN u / w ,  K / W  

Expanding (7) in powers of a / w  and K / W  and retaining 
linear terms alone, we get 

(8) v = v(0) + v(1), 

where 

are zero-order terms, while 

are first-order terms. 
Substitution of these expressions into (lc) gives 

L ( f )  + L l ( f )  = i d ,  (11) 
where 

Lo( f )  = -div, (hv(O)( f ) )  

- - 

Ll( f )  = -iuf - div, [hv(”( f ) ]  

The boundary value problem (11) and (6) is an 
inhomogeneous equation in second partial derivatives with 
homogeneous boundary conditions. From (13) one can see 
that L , ( f )  = 0 when u = 0 and K = 0, so that the order of 
equation (11) is lowered from two to one. In addition, the 
right-hand side of (11) involves a small factor, u. If this is 
set equal to zero, the result is a homogeneous equation with 
homogeneous boundary conditions whose solution is not 
determined uniquely. Since we do not know anything about 
the asymptotic behaviour of the ratio f / f  at low frequency 
beforehand, the right-hand side of (11) cannot, in the 
general case, be discarded, even when u+O. For this 
reason the natural procedure would be to begin by 
examining equation (11) in the approximation L , ( f )  = 0; the 
factor u on the right-hand side of (11) is to be considered a 
small parameter which does not, however, vanish. 

4. 

In this approximation, eqn (11) becomes an inhomogeneous 
first-order equation 

APPROXIMATION L, (  f )  = 0 

Lo( 4) = iuf. (14) 
The homogeneous equation corresponding to (14) reduces 
to the condition 

L o ( f )  = 0 

or 

[V(h/cos @), V f ]  = 0. (15b) 

Relation (15b) shows that when there are no external 
tide-generating forces and u = K = 0, the vectors V g  and 
V(h/cos 0) are collinear, i.e. the isolines of f =constant 
coincide with those of h/cos 0 = constant. When u = K = 0, 
the relations connecting v w ,  u, and f reduce to (9), from 
which it is seen that the vector v = (ue,  v,) is normal to Vg; 
hence, isolines of f = constant coincide with lines of flow. It 
follows, therefore, from (15b) that 

[v, V(h/cos O)] = 0, ( 16) 

i.e. when u = K = 0, lines of flow coincide with isolines of 
h/cos 0, i.e. the ‘geostrophic contours’ of Greenspan 
(1%9). Equation (16), of course, expresses the well-known 
law of conservation of potential vorticity. 

Note that (16) can also be obtained as follows. Write the 
operator curl in spherical coordinates and calculate the 
radial divergence component of the left- and right-hand side 
of the equations of motion (la) and (lb); when 
v, = uq = F, = Fq = 0, we shall have 

a 2 (2 (up. cos 0) + - (ue sin e cos 0) 
a sin 0 aq, ae 

= div, (v cos 0) = cos 0 div, v + (v, V cos 0) = 0. (17a) 

On the other hand, when u = 0 and f = 0, it follows from 
the incompressibility condition (lc) that 

div,(vh) = h div, v + (v, Vh) = 0. (17b) 

Substituting out div, v from these two relations, we get (16) 
once more. 

The boundary condition (6) can easily be expressed in 
terms of f .  Since v and V f  are perpendicular in the zero 
approximation, it follows from (6) that 

41, =constant. (18) 

f =f(h/cos O), (19) 

Obviously, the general solution to (15b) is 

where f is an arbitrary function. Since the depth h = 0 at the 
coastline &,, (18) is a straightforward consequence of (19). 

To sum up, the homogeneous equation (15) has an infinity 
of solutions of the form (19), each automatically satisfying 
the boundary conditions. 

Solutions to the inhomogeneous equation (14) can be 
found by the general method in use for integrating linear 
and quasilinear first-order equations (method of Cauchy 
characteristics (Kamke 1966)). Using the explicit form (12) 
of the operator L , ( f ) ,  equation (14) can be represented in 
the form 

where, 

g h  
2wa2 cos 6 ‘ 

a=-- 

Relation (20) may be regarded as an orthogonality condition 
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for vectors with the Cartesian coordinates 

and 

Since 

af af 
acp ae df =-dq + - d o ,  

the vector el is also orthogonal to the vector 

e3 = (dq, do,  d f )  

which is tangent to the desired surface f ( 8 ,  q). The vector 
e, is thus perpendicular to the normal to the surface 
f (8 ,  cp), hence itself lies in a plane that is tangent to that 
surface. Consequently, the curves defined by the ordinary 
differential equations 

belong to the desired surface ((0, q). 
Equations (22) impose two restrictions on the three 

differentials d q ,  do, d f ,  hence describe a one-parameter 
family of curves called characteristics of the original 
equation (20). If each characteristic has a single point of 
intersection with the contour &, the conditions for f at & 
can be regarded as initial conditions for equations (22). In 
such a case, the family of characteristics (22) fills the entire 
surface c(0, q) and the solution of the original equation in 
first-order partial derivatives can be considered as known. 

It is easy to show, however, that the case under 
consideration is degenerate, no characteristic r having a 
common point with &,. To see this, note that the first part of 
equation (22) yields 

aa aa 
- d e  + - d q  = 0, ae a9 

i.e. the characteristics r coincide with the isolines of 
(Y = constant or h/cos 0 = constant defined above. Since 
(Y = 0 at the coastline &, the characteristics r corresponding 
to (Y # 0 do not intersect &. 

The second part of (22) defines the increment df  along r. 
Introducing an element of length dl of the contour r and 
remembering that (23) holds on that contour, we get 

dl = a(d0’ + sin’ 8 dcp2)lR 

where 

&/an = f l V a l  
=*-[(--)’+- 1 acu 1 (”)2]1’2 

a sin’8 aq ’ 
a tan  being the derivative along the normal to r. 

If 8 is measured from the north pole, q is western 
longitude, as we move clockwise along r, and d/an is the 
derivative along the outer normal, then the expression 
enclosed within the modulus lines is always positive. Hence 

aatae-a’sin O a a l a h ’  

Consequently, the second part of equations (22) can also be 
represented in the form 

(24) 
dg, dl -- 

Equation (25) is fully equivalent to the original equation 
(20), in the sense that any integral curve of (25) belongs to 
the surface f (6 ,  q) defined by (20) and, conversely, any 
solution of (20) can be represented as a family of integral 
curves of (25). For this reason, the existence condition for 
solutions of the partial equation is equivalent to that for 
solutions of the ordinary equation (25). It is easy to see that 
this latter reduces to the single requirement 

When (26) does not hold, the increment of f along a closed 
contour hlcos 8 = constant does not vanish, which is 
incompatible with the assumption of f being a single-valued 
function of the coordinates. 

For the general case of an arbitrary depth distribution 
h = h(B, cp), condition (26) is not true, hence there will be 
no unique solution to the inhomogeneous equation (20). 

An exception to this rule is the case of the pole tide in an 
Ocean with axially symmetric distributions of land, sea 
surface and depth. When h = h( 8, q) and f has values given 
by (2) and (3b), the contours r are identical with the 
parallels 8 =constant, and the left-hand side of (26) reduces 
to the vanishing integrals 
P2R 

In such a case, equation (20) has an elementary solution 

which falls off as a+ 0. 
To sum up, we have shown that the inhomogeneous 

equation (11) in the general case has no solution in the 
approximation L l ( f )  = 0. This means that the term L , ( f )  
cannot be discarded even in the limiting case a+O, K+O 
in which L,( &Lo( f )  + 0. 

5. SOLUTION WITH L , ( g )  TAKEN INTO 
ACCOUNT 

When the term L l ( f )  has been inserted into equation (20), 
this takes the form 

+sin e[Ll(f) - iaf] = 0. 
aaaf aaaf 
aeaq apae 
An exact imitation of what we did in Section 3 gives an 
equation that is similar to (25), except that ia4 has been 
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replaced by iaf - Ll(f): 

As far as form is concerned, (30) is still a second-order 
partial-derivative equation but, considering that the 
coefficients in front of the higher derivatives are small, it can 
be reduced to a set of ordinary differential equations. To see 
this, we make use of a perturbation method in the small 
parameters a / w ,  K I O .  Since the right-hand side of (30) 
involves the functions f ,  f and derivatives of 4 with respect 
to 8, q with small factors in front of them, their values may 
be taken from the zero-order approximation (19). Setting 

5 = 50 + 4 1  

where to, f ,  are the zero- and first-order approximation, 
respectively, and putting f o  = f o  (hlcos 0) in accordance 
with (19) or, which amounts to the same thing, 

50 = t o (@) ,  (31) 

vf = vfo = f;, va, ~f = ~ f ,  = f ; ; ( ~ a ) ~  + e;, A&, 

we obtain 

where the prime denotes differentiation with respect to a. 
Substitution of these in (13) yields 

aa2 ~ , ( f )  = ~ ~ [ f , ( a ) ]  = -iafo + - 
20 cos e 

X [ ( K  + ia) x ( ~ ~ ( V C Y ) ~  + f ;  An)] 

The right-hand side of (32) involves an unknown function, 
go(a). As was mentioned in Section 3, that function cannot 
be found from the zero-order approximation, and its 
determination requires first-order terms. 

To begin with, we consider the case in which the coastline 
does not intersect the equator, and all contours I' of the 
form hlcos 8 =constant are closed ones. To find fo(a), 
substitute (31) into (30) and integrate d f l d l  along E Since f 
is a single-valued function of the coordinates, its increment 
along a closed contour r i s  equal to zero. Therefore, from 
(30) it follows that 

f r d f  = f d f ,  = f -dl d f  
r r dl 

(33) 

Since we have a =constant on r, fo(a) and its derivatives 
with respect to a are also constant, so they may be put 
before the integration sign. The result is an ordinary 
differential equation in fo(a): 

where 

(35) 

It should be noted that c l ( a )  and c 2 ( a )  are related as 
follows: 

To see this, multiply c2(a )  by the differential d a  and recall 
that 

dad1 
aalan 
where 6s is an element of area between two infinitesimally 
close isolines of a = a. and a = a. + da.  Transforming the 
integral over a surface into one along a line by Gauss's 
formula, we find 

-- - & 

d a  c2( a) = dr 
cos e 

Dividing both sides by d a  yields (36). 

form 
Combining (36) and (34), one can rewrite the latter in the 

[ c I ( a ) f A ( a ) l '  + c 3 ( a ) f 0 ( a )  = b(a).  (34a) 
Integrating (34a) within the limits al and a2 gives 

Cl(a)f6(a) l : :=!  P I  k(a) -C3(a)fo(a)Ida 
uz 

where sI2 is the area enclosed between the isolines of a = a1 
and a= a2. 

The integral ia II,,, f ds determines the rate of change of 
the volume of sea water within the region between the 
isolines of a = a, and a = a2, while 

is the inflow through these boundaries. Therefore, (34b) is 
the condition of mass conservation. Thus, the condition for 
conservation of total mass is a straightforward consequence 

After separating the real and imaginary parts in (34a), we 
of (34). 

get a set of ordinary fourth-order differential equations 

+ a2e' ) '  + u 3 6  = b ,  
(a& - a 2 f 3 '  - a& = b,, (37) 
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where 

a,  = Re c , ;  a, = Im c , ;  a3 = Im c,; 

b,  = Re b ;  b, = -1m b ;  

f = Re (foeim) = Re f,, cos at - Im f ,  sin at 
= Re f,; 5“ = -1m 5,; 

= f‘ cos at + 5” sin at; 

2aw - 
a’ 

6 ,  = - To($ COS’ 0 - i); 
b,=O 

for the case of long-period lunisolar tides of the first species 
and 

2 a o  - sin 0 cos 0 sin q 
dl ; 

sin 8 cos 0 cos q 
fr a a / d n  b,  =- 50 

a’ 

b z =  -7 50 

for the case of the pole tide (tide of the second species 
according to Laplace’s classification); f ,  = @,/g; @, is the 
amplitude of the tide-generating potential given by (3a) and 

When K = 0, we have a ,  = 0, and the set of equations (37) 
separates into two independent sets of second-order 
equations. 

We discuss the conditions under which these equations 
can be used. 

The operator L , ( f )  can obviously be represented in the 
form (32) only in those cases in which I f , [  << I f , l .  To see 
when this is true, note that afo /d lJ , -=O because of (31); 
hence, the left-hand side of (30) equals df,/dlJ,. Replacing 
a f / d l  by d f , / d l  in the left-hand side of (30) and integrating 
along the contour r from I, to 1 2 ,  we get 

dl 
2 a o  - 

fr d a / d n  a 

(3b). 

where I is the contour length. According to (13) we have 

where I, is the scale of distance over which the functions f ,  
h, K experience significant variation. The condition 
I f , [  << I f , l  can also be represented in the form 

rat << - [ 2: 
<< 3 

or 

When l 0 - I - a - 6 ~ 1 O 3 k m ,  h -4km,  and f - f ,  these 
conditions reduce to the requirements a << o, K << w which, 
as we have seen, are true within a wide margin of safety. 

The condition (38b) can break down either when I f [ > >  f ,  or 
when h << 4 km. We are not interested in the former of these 
cases, as the relevant asymptotic behaviour of f is known. 
In the case l C l - \ f , \ ,  condition (38b) breaks down at 
the Chandler wobble frequency when h 50 m and at the 
frequency of the 19-yr tide when h 5 2 m. Since h is of the 
order of a few kilometres over most of the worlds ocean, 
one can assume (38) to be true and equations (34) to be 
applicable. 

The boundary conditions for (34) require regularity of 
solution (finite velocity of tide flow in the vicinity of the 
coastline, the equator, and extrema of a(0,  q)) and will be 
considered below. 

6 .  EXAMPLES 

6.1 The case b = b( O), K = 0 

As a first example of the use of equations (34), we show that 
a particular case of these are the well-known Lamb’s 
equations (Lamb 1932, section 218) for the long-period tide 
in an ocean of uniform depth over the whole Earth. Putting 
K = 0, h = constant in (35) and denoting k = g/20a2 for the 
sake of brevity, we get 

(39) 

When h = constant, contours r of the form a = constant are 
identical with parallels of 0 = constant. Substituting (39) 
into (35) and integrating over I (dl = a sin 0 d q ) ,  we get 

sin2 O 
- 2nia - - a2 ; c1 = 2niak2h2- - 

(k’i2 C O S ~  o 
c, = dc - 1 = Z n i o ( S  - 2 4 ;  

d a  
4niaw 

cos 0; c3= -- 

b=O 

for the pole tide and 

a 

for the long-period lunisolar tide of the first species. 

of derivatives with respect to 0, we get 

df ,  cos20 d f ,  
da kh sin 0 d 0  ’ 
d2fo ( cos2 0 )’ d f ,  (2cos O+ cos’,” ) 
da2 khsin 0 do2 kh khsm 0 . 

Expressing the derivatives of f ,  with respect to a in terms 

-=---. 

- = -  

cos2 0 d f ,  
kh sin 0 d0  ‘ 

X-- 
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hlcos 8, where the contour rdegenerates to a point, i.e. the 
height of the oceanic tide 5 = f + f = 0. 

For the small depth approximation to be valid it is 
necessary that 

Idiv, hv“’( f ) l < <  u 141 
or 

Substitution of (40) and (41) in (34) gives 

d2fo + 1 + sin2 8 df, 4w2a2 cos2 8 - 
( t o  + 640) = 0, (42) -- 

do2 sin 8 cos 8 d8 gh 

where 
-. ~ 

1 for the long-period lunisolar tide (of the first species) 
0 for the pole tide (of second species) 

6 = (  

For the case of an arbitrary axially symmetric depth 
distribution h = h ( 8 )  and K = 0, equation (33) becomes 

When 6 = 1, equations (42) and (43) are identical with 
Lamb’s equation (Lamb 1932, section 218, formula (5 ) ) ,  if 
we put f = u/2w = 0 and s = 0 in it; for f as given by (2), 
and (3a), the right-hand side of (43) and 6 are zero, and 
equations (42) and (43) have only the trivial solution g = 0. 
That conclusion also follows from (28) when u is made to 
approach zero in it: 

lim f (e,  u) = 0. 
a-0 

It is easy to see that for the general case of an arbitrary 
depth distribution the contours hlcos 8 = constant do not 
coincide with parallels of 8 = constant, the integrals 9,- f dl 
are generally speaking not equal to zero and (44) is not true. 

To sum up, in the case K = O  the height of the pole tide 
asymptotically approaches the equipotential surface only 
when the distributions of land, sea and depth are axially 
symmetric. 

6.2 S m d  depth approximation 

Equation (34) has a fairly simple solution for the case of 
sufficiently small depths. We have a+O when h+O, and 
the coefficients c,+O and c2+0 in accordance with (35). 
Consequently, the differential equation (34) reduces to the 
non-differential condition 

(45) 

From this formula one can see that the value of f ,  on is 
minus the value of f on the same contour calculated with 
the weighting function (aa ldn) - ’ .  The relation has a simple 
physical sense, viz. when h-0, the flow through r, 
I h(v, n) dl, tends to zero, hence 

jI, 5; ds = jI ( to+ 4 )  ds =O. 
S 

Taking into account that ds = dl da l (da ldn )  and golr= 
constant, one can easily see that this condition is equivalent 

near maxima and minima of 
to (45). 

From (45) we have f a  = - 

gh<< 1, 
w l  
where 1 is the typical scale of distance over which the 
function hlcos 8 experiences significant variation. An 
example that illustrates the dependence of f on 1 and h will 
be considered in Section 6.5. 

6.3 Model of a small basin that does not intersect the 
equator 

Consider a circular basin that does not intersect the equator, 
has a centrally symmetric distribution of depths, and whose 
size is much less than the Earth’s radius. Denote the 
coordinates of the centre of the basin by (O0,  qo), the polar 
coordinates of a point relative to the centre by t, q, and 
assume 8=constant within the region occupied by the 
basin. The contours r are then identical with circles of 
r = constant, and f is a function of r only. Putting = g(r), 
8 = constant, and K = 0 in (13), we get 

Substitution of this in (33) yields 

As (47) is a second-order equation, it requires two boundary 
conditions. These are as follows. 

(1) As we have h1r-m in (47) when h 2 0  and r -0 ,  it 
follows from the finiteness of the solutions that 

(2) The other boundary condition follows from the fact 
that f a  is finite at the basin boundary (for r = ro). The depth 
h + 0 when r + r,; but as h‘  < 0, the coefficient in front of 
f ;  is positive, while that in front of 2 is negative and tends 
to zero. It is easy to show that the solution will then increase 
without bound in the general case. Imposing the 
requirement that f be finite when r = r,, together with (48), 
makes the solution unique. 

6.4 Model of a basin intersecting the equator; singular 
points 

Equations (34) are based on the assumption that the isolines 
Tof the form hlcos 8 =constant are closed. It is easy to see, 
however, that this is not always the case. If the coastline 
intersects the equator, then the ratio hlcos 8 is an indefinite 
expression of the form 0/0 in an infinitesimal vicinity of an 
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intersection point, and can take any value between --m and 
+-m. Therefore, the intersections of and the equator are 
singular points. Contours r may begin and end at singular 
points. To see this, consider the simplest model-an Ocean 
of uniform depth with steep walls within a coastline of 
arbitrary configuration. In such a case, isolines of 
hlcos 0 = constant are identical with parallels far from the 
coast; h falls off rapidly near the land boundary, displacing 
isolines towards the equator where l/lcos 01 is greater. If 
the coastline intersects the equator, then the condition 
hlcos 0 =constant gives h - 0  when O+n/2, i.e. all 
isolines of hlcos 0 = constant begin and end at the points of 
intersection between the coastline h = 0 and the equator 
0 = nl2. 

Although the contour r i n  that case is not closed, (34) is 
still true. To see this, note that, when O-n/2, formula 
(9b) and the condition for u to be finite give 

i.e. f is constant at the equator. For this reason integrals 
Srdf are again zero for those r which begin and end at the 
equator, and integrals along the closed contours involved in 
(35) should be replaced by integrals along unclosed contours 
that begin and end at singular points. Then it is easy to see 
that the integrals defining c l ( a )  and c 2 ( a )  diverge, i.e. the 
coefficients of &a) and &a) in (34) increase without 
bound, and the solution of (34) degenerates into 
f,(a) =constant. The value of this constant is determined 
by the condition for conservation of mass 

whence 

1 
constant = - - f A, 

S 

where s is basin area. 
One can see from this expression that the deviation of the 

dynamic tide from the static, in regions where the 
characteristics of r begin and end at singular points, 
vanishes in the limit u+ 0. 

6.5 Realistic ocean models 

Below, we consider several Ocean models with realistic land 
and sea distribution and various distributions of depth. 

In the simplest case-an ocean of uniform depth-all 
characteristics begin and end at the points of intersection 
between coastline and the equator; hence, as has been 
shown in Section 6.4, 

To evaluate the effects of bottom topography, take a 
depth distribution of the form 

h = ho(l  + E sin no sin ncp), 

where h,=constant, and E is the amplitude of depth 
fluctuations. When n >> 1 ,  this distribution corresponds to 
isolines of (Y = constant, which have the shape of cells with 
radius r,- nu12n. In the equatorial zone (when lcos 01 5 
1 / 2 n ~ ) ,  the isolines of (Y = constant cease to be closed, they 
begin and end at singular points. Treating all closed cells as 

= 0. 

circles in a first approximation, one can use equation (47), 
Section 6.3, to describe the tide in a cell. 

When n >> 1, the functions c(0, cp) as given by (3) can be 
regarded as constant in a cell, i.e. one can put in (47) 

Condition (48a) for the centre of a cell obviously remains 
true. In contrast to the case considered in Section 6.2, we 
have h # 0 at cell boundaries, so that the finiteness condition 
for 4, is true under any initial conditions for col,=o. Since 
characteristics lying at cell boundaries are identical with 
parallels of 0 = constant, f ,  is zero at them. Consequently, 
another boundary condition should be added to (48), viz. 

fo(r0) = 0. 
When E << 1, we have dhldr << h l r  in equation (47), and 

this can be written in dimensionless form 

H -  
H f ; l + - C ; - L = O ,  

X 
(49) 

where 5 = f + to and 

H =  

is dimensionless depth, r, is cell radius, the prime denotes a 
derivative with respect to the dimensionless radius x = r/ro 

h 73 ha g -=-=- 
4w2 C O S ~  o0 1: cos2 0, r: 

( O C X C 1 ) .  
The boundary conditions in dimensionless form are 

Expanding 5 in powers of x ,  one can easily show that the 
solution of (49) with the boundary conditions (50) has the 
form 

5 = f (  1 + c1 + c2 + * . . ) - 1 ( l +  ClX2 + c2x4 + - * a ) ,  

where 

1 1 
C k = 2 2 ~ 4 2 ~  . . . (2k)2$ 

The ratio of the mean height of the dynamic tide to that of 
the static one is 

1 +c1 /2+c2 /3  + - * 

1 + c1 + c2 + . * * 

The numerical values of this ratio for a set of values of H 
are as follows: 

H = 0 . 1  0.2 0.5 1.0 2.0 5.0 
y=0.520 0.656 0.812 0.893 0.944 0.976 

From the table one can see that when depth increases (or, 
which amounts to the same thing, when the horizontal 
dimensions of cells decrease), the dynamic tide approaches 
the static one. When cos2 O,= 0.5 and h = 4 km, H = 0.1 
corresponds to r O = 6 x  103km, and H = 5  to r 0 = 8 x  
lo2 km. The typical horizontal topographic scale is 
r, - (1-5) X lo3 km for the real ocean, so the dynamic tide 
deviates considerably from the static. 
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It should be noted that small changes in depth 
significantly affect the asymptotic behaviour of the solutions: 
when E is small, but not zero, the above solution does not 
depend on E and is not zero; while f = O  when E = O ,  as 
shown in Section 6.4. 

7 EFFECT OF BOTTOM FRICTION 

When a-0 and x 20, the +(a) and b(a )  given by (35) 
tend to zero, while c l (a )  and c z ( a )  are different from zero, 
so that equation (34) takes the form 

cl(n)&(a) + c2(n)f '(a) = 0. (51) 
One can easily see that this equation has a single finite 
solution 

to(a) = constant, (52) 
because we have A n  < 0 in (35) near maxima of a( 8, tp), so 
that 

(53) 

where /3 is a positive constant. Substitution of (53) in (52) 
determines another solution of (51) 
f '  - n)-llS o - ( amax - 
which increases without bound when n- amax. 

Further, it follows from the condition of conservation of 
total mass that the constant in (52) is zero. Thus, when the 
coefficient of bottom friction is not zero, the deviation of the 
Ocean surface from equilibrium vanishes asymptotically. 

To see for what values of u and K approximation (51) is 
valid, one should obviously compare the terms entering (51) 
with c3(a) fo(a) .  Assuming, for order of magnitude 
estimates, 

A a  - al l2 ,  aalan - a l l ,  f ;  - fo/a, 

& - fO/a2, a - gh /wa2, 

where 1 is the typical scale of distance over which depth 
changes significantly, we get 

The effect of bottom friction can be disregarded only when 
this ratio is much less than one, i.e. 

(54) 

To obtain an order of magnitude estimate for K, we first 
evaluate the thickness of the bottom boundary layer, D, in 
which viscous friction is significant. When u<< w ,  motion 
within the layer is determined by the balance of the Coriolis 
force and viscous friction. The force due to the latter is of 
the order of vu6SJD for a laminar flow (here v is viscosity, 
6S is an element of area), so 

12p[ov]D 6SI - Ivu~SIDI  

whence 

112 

D-($) -10cm 

for v - 2 x lo-' poise. 

u - (10-~-10-~) cm s-l, 

so that the Reynolds number 

R = pDu/v - 10-'-lO-z 
is far below the critical value; hence, the assumption of 
laminar flow within the bottom layer is valid. 

We thus see that the force of friction acting on an element 
of area is of the order of vu6SID - uSS' X ( v ~ p ) ' ~ ,  and 

For the pole and long-period lunisolar tides 

K--- 10-8 s-l 

h 

for h - 1 km. Substitution of this into (54) yields 

When 1 - I d  km = 108cm, this gives 

u > > 3 ~ 1 0 - ~ s - '  or T=-<<8yr 

For the opposite limiting case, T >> 8 yr, the deviation of the 
dynamic tide from the static can be ignored. 

From this estimate one can see that the effect of laminar 
bottom friction is not so great that tides of 14-month or even 
19-yr period can be treated as static. Yet one cannot also 
wholly ignore bottom friction and assume K = 0. As was to 
be expected, bottom friction is significant in shelves and 
shallow-water areas where the parameter 1 may be well 
below lo3 km and the right-hand side of (55) increases like 

We conclude by noting that the term k, Av is sometimes 
added (Kagan & Monin 1978; Marchuk & Kagan 1983) to 
Laplace's equations (1); here k,  is the so-called 'coefficient 
of turbulent horizontal friction' having the dimension of 
kinematic viscosity vlp. Schwiderski (1980) finds the 
numerical values of kh by trial and error in such a way as to 
obtain the best fit between theoretical and observed tides. 
With h varying between 10 and 7000111 he assumes 
lo7 cmz s-' < kh C 10" cmz s-l which is 9-12 orders greater 
than the kinematic viscosity v /p .  When 1 - 10' cm, 

2 n  
U 

1 l12. 

Ikh Avl  - K' I v I ,  
where the value K' - kh/lZ - (10-6-10-9) s-' is comparable 
to the value of K assumed in the above discussion. 

Flow velocity and the Reynolds number for the 
long-period tide are about four orders smaller than those for 
the short-period components; it is not ruled out, however, 
that horizontal turbulent friction may, in some cases, exist 
here too. 

Equations (37) can obviously be extended to the case 
k, # 0, provided K is understood as the operator 

K = KO- k, A. 
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Then 

and the order of (37) becomes six instead of four. 

8 CONCLUSIONS 

Our main conclusions are as follows: 
I. The asymptotic behaviour of solutions to Laplace’s 

tidal equations at low frequencies is described by a single 
scalar equation in second-order partial derivatives (11) with 
small coefficients of the higher (second-order) derivatives. 
Solutions of that equation significantly depend on the small 
coefficients and are therefore unstable. Because of the 
instability, direct methods of numerical integration do not 
work. 

11. Solution of the problem by the method of 
perturbations in small parameters equal to the ratios of tidal 
frequency u and the coefficient of bottom friction K to the 
Earth’s rotation rate w shows the following: 

(1) It follows from the zero approximation u = K = 0 that 
lines of flow, lines of equal f=constant, and isolines of 
hlcos 8 = constant coincide, and f is a function of a single 
variable, a. 

(2) The dependence f (a)  is not determined by the zero 
approximation, and can be obtained when first-order terms 
are retained. The first-order theory of perturbations defines 
the function &a) through a set of ordinary differential 
equations of the fourth order, (37); its numerical integration 
for realistic ocean models does not pose serious 
computational difficulties. 

111. An analysis of equations (37) permits one to draw the 
following conclusions: 

(1) When the case of a basin that does not intersect the 
equator is considered, system (37) has a single regular 
solution. 

(2)  The points of intersection between the equator and 
the coastline are singularities. Characteristics of (14) of the 
form a=constant may begin and end at singularities. The 
deviation of ocean surface from the equipotential surface f 
vanishes asymptotically within regions belonging to these 
characteristics. In regions belonging to closed characteris- 
tics, the asymptotic behaviour of < depends on the ratio of 
two small parameters, U/K, on typical horizontal dimensions 
of the region and on the mean depth: in particular, f tends 
asymptotically to zero when K >> a; when K - u and K << u, 
the asymptotic behaviour of f (  a) can be evaluated using the 
relations obtained in Section 6.5. When the simplest case of 
an ocean of uniform depth over the whole Earth is 
considered and K << u<< w, equation (37) is equivalent to 
Lamb’s equation (Lamb 1932, section 218). 

(3) Numerical estimates for the simplest models show the 
significance of dynamic effects in the theory of long-period 
tides, and these have to be taken into account in the 
interpretation of recent data on the rotation of the Earth. 

It seems that the physical interpretation of our results is as 
follows: 

1. The influence of tide-generating and Coriolis forces on 

the real ocean leads to the generation of large-scale vortical 
currents. The origin of these currents is fully similar to the 
origin of cyclones and anticyclones in the atmosphere. If the 
level of the ocean in the centre of the vortex is lower than 
the equipotential surface (4 < 0), then the circulation is 
clockwise in the southern hemisphere and counter-clockwise 
in the northern hemisphere; in the case f > 0 the directions 
of circulation are opposite. In contrast to the case of 
cyclones in the atmosphere, the configuration of currents in 
the ocean are determined not by the configuration of 
external forces, but by the distribution of depths: in a first 
approximation, the lines of flow coincide with the isolines 
hlcos 8 = constant. 

In the case of periodical variations of external forces in 
time, the directions of circulation in each vortex and sign of 
f oscillate with a period which is equal to the period T of 
oscillation of external forces. Obviously, if T = 2n/u+ 
and K = 0, then the vortical currents with fixed velocity v 
can be generated by infinitesimal external forces. Neverthe- 
less, these currents render sufficient influence on the values 
f (by analogy with the influence of cyclones on the 
atmospheric pressure). 

From the mathematical point of view, the finite variation 
of g under the influence of infinitesimal external forces is 
evidence of instability of solutions of corresponding 
differential equations. 

If K is small enough, then the time of dissipative 
attenuation of vortical currents may be comparable to, or 
more than, the period of oscillation. In this case, the 
external fluid has no possibility of penetrating into the 
central part of the vortex, and amplitudes of oscillations of 
level in this region are smaller, to some extent, than their 
values in the static approximation. In the opposite case 
when T+m, and K it 0, the time of attenuation of the 
vortex is small in comparison with T, and IimT-- f = 0. 

In the vicinities of singular points the distances between 
different lines of flow tend to zero and the fluid, which 
participates in different vortical motions, is mixed. As a 
result, is constant in the regions where lines of flow begin 
and end at singular points. 

In any region which is bounded by closed lines of flow, 
the variation of the full volume of water II, cds = 0. If 
I$, f ds # 0, then the static solution f; = f is in contradiction 
with this condition. In the simplest case h = h(8), the region 
s is bounded by circles 8 =constant, and condition 
II, f ds = 0 is valid only for the tides of second class (2 )  and 
(3b). This is why the case of the tides of second class in the 
ocean with axially symmetrical distributions of lands and 
depths is a special one, for which Iim-,, f = 0. 

In conclusion we would like to point out that Carton & 
Wahr (1986) have considered the resonant excitation of 
barotropic Rossby waves as a possible cause of deflection of 
a dynamic pole tide from a static one. The dispersion 
relation for these waves is 

2wk  sin 8 (J= --L 
a k2 

(Carton & Wahr 1986; Kagan & Monin 1978), where k,, k 
are the q-component of wave vector k and its modulus. In 
the case k,  - k,  sin 8 - 1 and u / w  - 2 x lop3, one can see 
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from this formula that scale of length 

a a  

0 
I, - lk-'l - - - 10 km, 

i.e. the Rossby waves with Chandler period have very small 
wavelength. In addition, Carton & Wahr (1986) have 
proved that, for this period, Rossby waves are very 
susceptible to the effects of friction. For a reasonable value 
of the diffusive friction parameter, the Rossby wave has an 
e-folding distance which is smaller than the undamped 
wavelength. As a result, adding this wave has very little 
effect on the solution except at points very close to the 
western wall. 

In our approximation L ,  <<Lo the solutions of equations 
(l), which describe the resonant Rossby waves excitation, 
are excluded automatically. Indeed, in the case I, - aa /w 
and smooth distribution of depths, we have from (12) and 
(13): 

ILil a I K  + ial 1451 I K  + ial _- --- 
lLo l  w I V f l  a 

and the condition L ,  <<Lo is not fulfilled. It is easy to see 
that, in the case K = O ,  solutions of equations (34) are 
independent of a and, consequently, the resonant excitation 
of Rossby waves is not described by these equations. 
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NOTE A D D E D  IN PROOF 
After this paper was accepted, an anonymous referee pointed out 
that for the case k = 0 another form of our equation (34a) was 
obtained earlier by J .  Proudman (Proudman, J . ,  1913, Proc. Lond. 
math. SOC..  13, 273-306). Indeed, using in equation (22) of Proud- 
man the coordinates 5 = h sec 8 and which is equal to the length 
along the contour = constant, we shall have in Proudman's 
notations: 

J(hsec0)  - I  . = [ T I  , B = 1  

After substitution of these expressions into Proudman's equation 
(22). we obtain our equation (34a) in the case k = 0. 

Proudman's approach is based on the use of the continuity 
condition in integral form, which is equivalent to our  equation 
(34b). Because (34b) is equivalent to (34a). i t  is clear that equation 
(34a) may be considered as a direct consequence of the mass 
conservation condition in the region which is bounded by the 
geostrophical contour h sec 8 = constant. From the formal point of 
view, such an approach is correct, but it does not give the answers 
to the questions: (i) why continuity conditions in the regions. 
bounded by geostrophycal contours, have a special role? and (ii) is 
the process of direct numerical integration of equations (1) reduced 
to the integration of (34a) and, if so, then in what way? Probably, 
our approach gives the answers to these questions and has the 
following advantages. 

(i) It is shown that equation (34a) is the result of the solution of 
equations (1) by the method of perturbations. The geostrophic 
contours are the characteristics of unperturbed equations. and (34a) 
must be considered as the condition of existence of solution in the 
first-order approximation. As the solutions involved in the zero- 
order approximation depend on first-order terms, it is clear that 
solutions are unstable and the direct methods of their numerical 
calculation do not work [the process of numerical integration of 
equations ( I )  is not reduced to the integration of (34a)l. 

(ii) The method described here provides the possibility to obtain 
not only solutions in the zero-order approximation, but in the 
first-order too (i.e. the substitution of equation-(32) in the right- 
hand part of equation (30) give values of Jf , /J l l , -  and, after 
integration along r, the values f,]. 

(iii) Our approach is applicable not only to the case when v can 
be expressed in terms of < (when L ,  is a simple algebraic function 
of v), but in the general case, when L ,  is the arbitrary differential 
operator with small coefficients (for example, in the form given in 
the end of Section 7). 
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