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Abstract. In this work we study the asymptotic behaviour of solutions to the Korteweg–
deVries–Burgers equation in the case when the initial data has di↵erent asymptotic lim-
its at ±1. The method used is the one developed by Kawashima and Matsumura to
discuss the asymptotic behaviour of travelling-wave solutions to Burgers equation.

1. Introduction. In this work we consider the Korteweg–deVries–Burgers
equation

ut + uux + uxxx � ⌫uxx = 0, (1.1)

where ⌫ is a positive constant and the initial data

u(x, 0) = u0(x) (1.2)

satisfies u0(x) ! c± as x ! ±1 with c� > c+. Under these conditions Bona
and Schonbek ([1]) showed that (1.1) admits travelling-wave solutions �(x� ct)
connecting c� to c+, which are monotone if ⌫ >> 1. Moreover, in obtaining
solutions to this problem one can look for solutions which are the sum of a
travelling wave and a perturbation. It has been shown that this travelling wave
is asymptotically stable for small perturbations (cf. [2]). In additional work
in this direction, it was shown in [5] that if the perturbation lies in a suitable
weighted class, then it decays. It is found that the L2-norm of the perturbation
decays at the rate of (1 + t)� 1

4 and the L2-norm of the first order derivative
decays at the rate of (1 + t)� 3

4 as t !1. To obtain this rate of decay, one uses
the properties of the underlying parabolic equation.

In this work we generalize the result obtained in [5]. Here we make use of the
technique developed by Kawashima and Matsumura ([3]) and Matsumura and
Nishihara ([4]) to obtain the decay rate of solutions to Burgers equation. The
important idea used here is to make use of the decay properties of the underlying
hyperbolic equation.

Accepted for publication February 1997.
AMS Subject Classifications: 35Q53, 35B40, 76L05.

85



86 kenji nishihara and shubha v. rajopadhye

The plan of the paper is as follows. In Section 2, we briefly discuss the
notation used, and in Section 3 we obtain results on the asymptotic behaviour
of the solution.

2. Notation. The notation used is mostly standard, but for the sake of
completeness we present it here. We denote positive constants depending of the
quantities a, b, c, . . . by C(a, b, c, . . . ) or only by the letter C without confusion.
Moreover, in the inequalities that follow, the constant C can change from one
line to the next. For function spaces, L2 denotes the space of square integrable
functions on the real line together with the norm

kfk =
�Z 1

�1
|f(x)|2dx

� 1
2 .

In addition, Hm denotes the m-th order Sobolev space of functions which to-
gether with their derivatives up to order m are square integrable and the space
is equipped with the norm

kfkm =
� mX

j=0

k@j
xfk2

� 1
2 .

For the weight function h(x), L2
h denotes the space of measurable functions f

satisfying
p

hf 2 L2 together with the norm

|f |h =
�Z 1

�1
h(x)|f(x)|2dx

� 1
2 .

In particular, when h(x) = hxi↵ = (1+x2)↵/2, we write L2
h = L2

↵ and | · |h = | · |↵
without confusion.

3. Asymptotic behaviour of solutions. We begin by considering the
Korteweg–deVries–Burgers equation (henceforth referred to as the KdVB equa-
tion for short) together with initial data u0(x) and assume that the initial data
tends to constant states c± as x ! ±1. The only restriction imposed on these
states at infinity is that c� > c+. There is a well-established global existence
theory (cf. [2]) for the equation when additional smoothness conditions are
imposed on the initial data. This result is stated here for completeness.

Theorem 3.1 ([2]). Suppose that u0 satisfies the following conditions:
i) u0(x) ! c± as x ! ±1
ii) u00 2 Hk

iii) (u0 � c+) 2 L2([0,1)) and (u0 � c�) 2 L2((�1, 0]),
for some nonnegative integer k. Then there exists a unique solution u to (1.1)
with data u0 such that u �  2 C(0,1,Hk), where  is given by  = u0 ? ⇢
where ? denotes convolution and ⇢ is a C1-function with compact support.

It was also shown in [2] that perturbations to the travelling wave which lie in
a suitable weighted function class are stable. We state this result here:
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Theorem 3.2 ([1]). Let � be a monotone decreasing, bore-like travelling-wave
solution of the KdVB equation with a speed of propagation c > 0. Let X =
L2

2� \ Hk(IR), where k � 2 and � > 1
2 . Then there is an ✏ > 0 such that

corresponding to any initial data u0 with ku0 � �kX  ✏, there is a real number
x0 with |x0|  ✏ having the property

ku(·, t)� �(·� ct + x0)kk ! 0

as t ! +1, where u is the solution to (1.1) with initial data u0.

In addition, we consider solutions to the KdVB equation which are of the
form

u(x, t) = �(⇠ + x0) + w⇠(⇠, t), ⇠ = x� ct,

where � is a monotone travelling-wave solution of the KdVB equation and w⇠

denotes the perturbation. Using the properties of the underlying parabolic equa-
tion, one can show that the perturbation to the travelling wave decays at a
certain rate, provided that the initial data for the perturbation lies in a certain
weighted function class. More precisely, since the travelling wave is a solution
to the equation, w satisfies the equation

wt � cw⇠ + �w⇠ + w⇠⇠⇠ � ⌫w⇠⇠ + 1
2w2

⇠ = 0. (3.1)

If the initial data for w satisfies (1 + x2)1+✏w(x, 0) 2 L2, it was shown in [5]
that the L2-norm of the solution w and the L2-norm of the first-order derivative
decays at the rate (1 + t)� 3

4 . This result is stated in the following theorem:

Theorem 3.3 ([5]). Let u be a solution to (1.1) with initial data u0 such that

w(x, 0) =
Z x

�1
[u0(y)� �(y � ct + x0)] dy 2 L2

↵ \Hk

with ↵ = 2(1 + ✏) and for some k � 2. Then it follows that

sup
0t<1

t
3
2

Z 1

�1
(w4

x + w4 + w2 + w2
x + w2

xx) dx < 1.

In this work we generalize this rate of decay for the perturbation to the
travelling wave. The main idea of the proof is to make use of the properties
of the underlying hyperbolic equation. This technique was first developed by
Kawashima and Matsumura ([3]—see also [4]), to obtain the decay for pertur-
bations to travelling waves to the Burgers equation. We now state the main
theorem of the paper.
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Theorem 3.4. Let w⇠ be a perturbation to the monotone travelling-wave so-
lution of the KdVB equation which satisfies the zero mass condition. Then w
satisfies (3.1) and the decay estimate:

For 0  k  ↵ we have

kh⇠ � ⇠?i
↵�k

2 w(t)k  C(1 + t)�
(k�✏)

2 ,

where ⇠? is a constant to be suitably chosen. Here w(x, 0) 2 L2
↵, where ✏ = 0 if

k is an integer and is any positive constant otherwise.

Proof. Note that here we consider a more restrictive class of perturbations than
those considered in [5]. We begin by multiplying equation (3.1) by (1 + t)�h⇠ �
⇠?i�w(⇠, t) and integrate the result over space with respect to the ⇠ variable.
Here h⇠ � ⇠?i is given by the expression h⇠ � ⇠?i =

p
1 + (⇠ � ⇠?)2, where ⇠? is

a fixed constant to be suitably chosen. On integrating by parts the term arising
from (�c + �)w⇠ yields

(1 + t)�h⇠ � ⇠?i��1
⇥
��0h⇠ � ⇠?i � �(�c + �)

⇠ � ⇠?

h⇠ � ⇠?i
⇤
1
2w2. (3.2)

We now choose ⇠? so that c = �(⇠?). With this choice of ⇠? the term A�(⇠) in
the square parentheses in (3.2) is bounded below by c0�. In particular, note that
this coe�cient is always positive. Integrating all the remaining terms by parts,
we obtain the inequality

⇥
1
2 (1 + t)�

Z 1

�1
h⇠ � ⇠?i�w2 d⇠

⇤
t
+ c0�

4 (1 + t)�

Z 1

�1
h⇠ � ⇠?i��1w2 d⇠

+ ⌫
2 (1 + t)�

Z 1

�1
h⇠ � ⇠?i�w2

⇠ d⇠  �
2 (1 + t)��1

Z 1

�1
h⇠ � ⇠?i�w2 d⇠

+ C�(1 + t)�

Z 1

�1

�
h⇠ � ⇠?i��1 + h⇠ � ⇠?i��3

�
w2

⇠ d⇠.

(3.3)

In obtaining this inequality, we bound the nonlinear term by the quantity

|w|1(1 + t)�

Z 1

�1
h⇠ � ⇠?i�w2

⇠ d⇠,

which is small if the initial data is su�ciently small. Fix ↵ � 0 and let �  ↵;
then, the last term in (3.3) is estimated by dividing the integral over space into
two sets, one the set B = {⇠ : |⇠ � ⇠?|  R} and the other Bc, the complement
of B. The radius R is chosen so that C�

h⇠�⇠?i 
⌫
4 for all ⇠ in the set Bc. Then

the term is bounded above by

⌫

2
(1 + t)�

Z 1

�1
h⇠ � ⇠?i�w2

⇠ d⇠ + CR�(1 + t)�

Z 1

�1
w2

⇠ d⇠.
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Here CR is given by CR = C(R↵�1 + R↵�3). Hence, rearranging the constants
we obtain for �  ↵

⇥
1
2 (1 + t)�

Z 1

�1
h⇠ � ⇠?i�w2 d⇠

⇤
t
+

C0�

4
(1 + t)�

Z 1

�1
h⇠ � ⇠?i��1w2 d⇠

+ ⌫(1 + t)�

Z 1

�1
h⇠ � ⇠?i�w2

⇠ d⇠

 �

2
(1 + t)��1

Z 1

�1
h⇠ � ⇠?i�w2 d⇠ + C�(1 + t)�

Z 1

�1
w2

⇠ d⇠.

On integration, this inequality yields

(1 + t)� |w(t)|2� +
Z t

0

⇥
�(1 + ⌧)� |w(⌧)|2��1 + (1 + ⌧)� |w⇠|2�

⇤
d⌧

 C


|w0|2� +

Z t

0

⇥
�(1 + ⌧)��1|w(⌧)|2� + �(1 + ⌧)�kw⇠(⌧)k2

�
d⌧
⇤
,

(3.4)

which is the main inequality in this procedure. As in [3] and [4], by induction
on � and ↵ we have, for k = 0, 1, 2, . . . , [↵],

(1 + t)k0 |w(t)|2↵�k0
(3.5)

+
Z t

0

⇥
(↵� k0)(1 + ⌧)k0 |w(⌧)|2↵�k0�1 + (1 + ⌧)k0 |w⇠(⌧)|2↵�k0

⇤
d⌧  C|w0|2↵.

This inequality proves Theorem 3.4 when k is an integer. We next consider the
case when both ↵ and k are not integers. Then,
Claim 1. We have

(1 + t)�kw(t)k2 +
Z t

0
(1 + ⌧)�kw⇠(⌧)k2d⌧  C|w0|2↵

for � = ↵� ✏, where ✏ is an arbitrarily small positive constant.
Claim 2. Let k  ↵. Then

(1 + t)� |w(t)|2↵�k +
Z t

0
(1 + ⌧)� |w⇠(⌧)|2↵�kd⇠  C|w0|2↵

for � = k � ✏ where ✏ is an arbitrarily small constant.
Note that if ↵ = k then Claim 2 is the same as Claim 1. In particular, if

k = 0 we can take ✏ = 0 by virtue of (3.5).
Proof of Claim 1. In (3.4) we take � = 0 and estimate the second term on
the right-hand side. We have

�

Z t

0
(1 + ⌧)��1|w(⌧)|20 d⌧

=�
Z t

0
(1 + ⌧)��1

Z 1

�1
h⇠ � ⇠?i(↵�[↵]) 1

p�(↵�[↵]) 1
p (w2)

1
p + 1

p0 d⇠ d⌧.



90 kenji nishihara and shubha v. rajopadhye

We do this in order to use (3.5) with k0 = [↵]. Hence, we have

�

Z t

0
(1 + ⌧)��1|w(⌧)|20 d⌧

 �

Z t

0
(1 + ⌧)��1

�Z 1

�1
h⇠ � ⇠?i↵�[↵]w2

� 1
p
�Z 1

�1
h⇠ � ⇠?i�(↵�[↵]) p0

p w2 d⇠
� 1

p0 d⌧

= �

Z t

0

�
(1 + ⌧)��[↵]�1

�
(1 + ⌧)[↵]

Z 1

�1
h⇠ � ⇠?i↵�[↵]w2

� 1
p

⇥
�
(1 + ⌧)[↵]

Z 1

�1
h⇠ � ⇠?i�(↵�[↵]) p0

p w2 d⇠
� 1

p0
 

d⌧

 |w0|
2
p
↵

Z t

0
(1 + ⌧)�[↵]+1��

�
(1 + ⌧)[↵]

Z 1

�1
h⇠ � ⇠?i�(↵�[↵]) p0

p w2 d⇠
� 1

p0 d⌧

 C|w0|
2
p
↵
�Z t

0
(1 + ⌧)�([↵]+1��)pd⌧

� 1
p
�
(1 + ⌧)[↵]

Z 1

�1
h⇠ � ⇠?i�(↵�[↵]) p0

p w2d⇠
� 1

p0d⌧.

Hence, in order to use (3.5) with k0 = [↵], we choose p to satisfy �(↵� [↵])p0

p =
↵� k0 � 1 = ↵� [↵]� 1. This means that we choose p = 1

[↵]+1�↵ . The integral

Z t

0
(1 + ⌧)�([↵]+1��)p d⌧

converges provided � is less than ↵; that is, � = ↵ � ✏ for an arbitrarily small
✏ > 0. This proves Claim 1.
Proof of Claim 2. Let k < ↵ and k0 < k < k0 + 1. We take � = ↵ � k in
(3.4). If � < ↵, then the last term in (3.4) has already been estimated. Hence,
we need to estimate the second term, in the same way as in Claim 1. In this
case we can choose p = 1

1+k0�k and p0 = 1
k�k0

. This yields the result

�

Z t

0
(1 + ⌧)��1|w(⌧)|2↵�k d⌧  C|w0|2

�Z t

0
(1 + ⌧)�

k0+1��
k0+1�k d⌧

� 1
p ,

where � = k � ✏. This completes the proof of Claim 2 and hence completes the
proof of the theorem. ⇤

We now obtain the decay rate for the derivatives of w. To this end we prove
the following theorem:

Theorem 3.5. Let w satisfy the same conditions as in Theorem 3.4. Then the
first-order derivative of w satisfies the following estimate:

For 0  k  ↵ we have

kh⇠ � ⇠?i↵+1�k
2 w⇠(t)kL2  C(1 + t)�

(k�✏)
2
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if w⇠(x, 0) 2 L2
↵+1 and ✏ = 0 if k is an integer and is any small positive constant

otherwise.

Proof. To obtain the decay rate for the first-order derivative of w we first di↵er-
entiate the w equation with respect to ⇠, then multiply the equation by h⇠Ki�w⇠,
where h⇠Ki =

p
K2 + ⇠2, with K a positive constant to be chosen appropriately.

Integrating the result over space we obtain, after several integrations by parts,
the inequality

� Z 1

�1

1
2 h⇠Ki

�w2
⇠d⇠

�
t
+
Z 1

�1

�
⌫h⇠Ki� + 3

2 (h⇠Ki�)⇠

�
w2

⇠⇠ d⇠

= �
Z 1

�1

1
2

⇥
h⇠Ki��0(⇠) + (c� �)(h⇠Ki�)⇠ � (h⇠Ki�)⇠⇠⇠ � 1

2⌫(h⇠Ki
�)⇠⇠

⇤
w2

⇠ d⇠

+
Z 1

�1
h⇠Ki�w⇠(w2

⇠)⇠ d⇠.

Note that here

⌫h⇠Ki� + 3
2 (h⇠Ki�)⇠ = ⌫h⇠Ki� + 3

2�h⇠Ki
��1 ⇠

h⇠Ki
= h⇠Ki��2

�
⌫(K2 + ⇠2) + 3

2�⇠
�

= h⇠Ki��2
�
⌫⇠2 + 3

2�⇠ + ⌫K2
�
� C0h⇠Ki� ,

where C0 is a constant which depends only on ⌫,K and ↵ where �  ↵ + 1.
Since �0(⇠) tends to zero at an exponential order as ⇠ ! ±1, we have

|h⇠Ki��0(⇠)| = h⇠Ki� |�0(⇠)|  Ch⇠Ki��1

if �  ↵+ 1. Here C depends on ↵ and K. Finally,

|(c� �)(h⇠Ki�)⇠ � (h⇠Ki�)⇠⇠⇠ � 1
2⌫(h⇠Ki

�)⇠⇠|  Ch⇠Ki��1.

Taking the nonlinear term into consideration, we have for �  ↵ + 1 and K >
3(↵+1)

2⌫ the inequality

�
|w⇠|2�

�
t
+ |w⇠⇠(t)|2�  C|w⇠(t)|2��1. (3.6)

Multiply (3.6) by (1 + t)� and integrate the resulting equation with respect to
time to get

(1 + t)�|w⇠(t)|2� +
Z t

0
(1 + ⌧)�|w⇠⇠(t)|2� d⌧

 C
⇥
|w0⇠|2� +

Z t

0
�(1 + ⌧)��1|w⇠(⌧)|2� + (1 + ⌧)�|w⇠(⌧)|2��1 d⌧

⇤
.

(3.7)
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We now use Claim 2 to obtain the desired estimate. First, let 1  �  ↵ and
� � 1 = ↵� k � 0. Then, using � = � = k � ✏ in (3.7), we have

(1 + t)� |w⇠(t)|↵+1�k +
Z t

0
(1 + ⌧)� |w⇠⇠(⌧)|2↵+1�k d⌧  C(|w0|2↵ + |w0⇠|2↵), (3.8)

which is the desired inequality for 1  k  ↵. If w0⇠ 2 L2
↵+1, then (3.7) with

� = 0 and � = ↵+ 1 shows that

|w⇠(t)|2↵+1 +
Z t

0
|w⇠⇠(⌧)|2↵+1 d⌧  C(|w0⇠|2↵+1 +

Z t

0
|w⇠|2↵ d⌧)

 C(|w0|2↵ + |w0⇠|2↵+1), (3.9)

which is the desired inequality for k = 0. For 0 < k < 1, i.e., for ↵ < � <
↵+ 1,� = ↵+ 1� k and � = k � ✏ inequality (3.7) shows that

(1 + ⌧)� |w⇠(t)|2↵+1�k +
Z t

0
(1 + ⌧)� |w⇠⇠(⌧)|2↵+1�k d⌧

 C(|w0⇠|2↵+1 +
Z t

0
�(1 + ⌧)��1|w⇠(⌧)|2↵+1�k d⌧ +

Z t

0
(1 + ⌧)� |w⇠(⌧)|2↵�k d⌧

�

 C(|w0|2↵ + |w0⇠|2↵+1 +
Z t

0
(1 + ⌧)��1|w⇠(⌧)|2↵+1�k d⌧).

By (3.4) with � = 0 and � = ↵ we have

Z t

0
|w⇠(⌧)|2↵ d⌧  C|w0|↵. (3.10)

Interpolating (3.9) and (3.10) we can estimate

Z t

0
(1 + ⌧)��1|w⇠(⌧)|2↵+1�k d⌧

for 0 < k < 1 and � < k. In fact,

Z t

0
(1 + ⌧)��1|w⇠|2� d⌧ =

Z t

0
(1 + ⌧)��1

Z 1

�1
h⇠Ki�w⇠(⌧)2d⇠ d⌧

 C

Z t

0

�
(1 + ⌧)��1

�Z 1

�1
h⇠Ki↵w⇠(⌧)2 d⇠

� 1
p
�Z 1

�1
h⇠Ki↵+1w2

⇠ d⇠
� 1

p0
 

d⌧

 C
�Z t

0
(1 + ⌧)�(1��)p0

�1/p0�Z t

0
|w⇠(⌧)|2↵ d⌧

�1/p
,
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where we choose p so that � = ↵ 1
p +(↵+1) 1

p0 with 1
p + 1

p0 = 1. Hence 1
p0 = ��↵

and 1
p = 1 + ↵� � = k.

Combining the estimates obtained above, we get

(1 + t)� |w⇠(t)|2↵+1�k +
Z t

0
(1 + ⌧)� |w⇠⇠(⌧)|2↵+1�k d⌧  C(|w0⇠|2↵ + |w0⇠|2↵+1),

where 0  k  ↵ if � = k� ✏ for any positive ✏. (In particular, we can take ✏ = 0
if k = 0.)

Thus, we have obtained the following results, including the case when ↵ and
k are integers.
Claim 20. Let 0  k  ↵. Then

(1 + t)� |w(t)|2↵�k +
Z t

0
(1 + ⌧)� |w⇠(⌧)|2↵�k d⌧  C|w0|2↵

for � = k�✏ where ✏ = 0 if k is an integer and is any positive constant otherwise.
Claim 3. Let 0  k  ↵ and ✏ be as in Claim 20. Then

(1 + t)� |w⇠(t)|2↵+1�k +
Z t

0
(1 + ⌧)� |w⇠⇠(⌧)|2↵+1�k d⌧  C(|w0|2↵ + |w0|2↵+1),

which completes the proof of the theorem. ⇤
We can now prove an analogous result for all higher-order derivatives of w.

Theorem 3.6. Let w satisfy the same conditions as in Theorem 3.4. Then
the solution of (3.1) and its derivatives decay in time and satisfy the following
estimate:

For each 0  k  ↵ the estimate

kh⇠ � ⇠?i↵+s�k
2 w(s)(t)kL2  C(1 + t)�

(k�✏)
2 ,

where w(s) denotes the derivative of order s of w with respect to ⇠.
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