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Abstract. In this paper the asymptotic behaviour of the Castelnuovo—Mumford regularity of powers
of a homogeneous idedlis studied. It is shown that there is a linear bound for the regularity of
the powersl/” whose slope is the maximum degree of a homogeneous generatpamnd that the
regularity of I is a linear function for large. Similar results hold for the integral closures of the
powers ofl. On the other hand we give examples of ideals for which the regularity of the saturated
powers is asymptotically not a linear function, not even a linear function with periodic coefficients.
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1. Introduction

LetA = k[X4, ..., X,] be a polynomial ring over an arbitrary fietdLet L be any
finitely generated graded-module. The Castelnuovo—Mumford regularity (Ey
of L is defined to be the maximum degre#or which there is an index such that

H(L),_; # 0, whereH,,(L) denotes thgth local cohomology module df with
respect to the maximal graded idealof A. It is also the maximum degreefor
which there is an index such that Tof (k, L),+; # 0. The Castenuovo-Mumford
regularity is an important invariant which measures the complexity of the given
module. For instance, if

O— - —>F—>---—>Fh—>F—>L->0

is the minimal free resolution of over A and ifa; is the maximum degree of the
generators of’;, then

reg(L) = maxa; — j| j = 0}.

* The first author was partially supported by NSF.
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See, e.g., Eisenbud and Goto [EG], Bayer and Mumford [BM] for more informa-
tion on this notion.

Let I be any homogeneous ideal af Recently, Swanson [S] has proved that
there is a numbeD such that for alk > 1, reg /") < nD. This result follows
from a linear bound on the growth of associated primes of ideals which is closely
linked with a version of the uniform Artin—Rees lemma along the line of Huneke’s
uniform bounds in noetherian rings [Hu2]. However, Swanson could not provide a
formula for the numbeD in general.

A possible candidate foD is reg[). In fact, if dmA/I = 1, Geramita,
Gimigliano and Pittelloud [GGP] and Chandler [C] showed thatfeg< n reg()
for all n > 1. This result can be easily generalized to the case depth >
dimA/I — 1 for all n. The same bound also holds for a Borel-fixed monomial
ideal I by the Eliahou—Kervaire resolution [EK]. See [SS] and [HT] for explicit
linear bounds for re@”) whenI is an arbitrary monomial ideal.

The problem of bounding ré@") is also of interest in algebraic geometry.
Given a projective variet c P, and letly be the ideal sheaf of the embedding
of X. The Castelnuovo—Mumford regularity @f; is defined to be the the least
integerr such thatd! (P", 4x(t —i)) = O foralli > 1. Letdx denote the minimum
of the degreed such thatX is a scheme-theoretic intersection of hypersurfaces of
degree at mosi. For asmooth complegrojective variety, Bertram, Ein and Laz-
arsfeld [BEL] have shown that there is a numbesuch thatH' (P*, 1% (a)) = 0,
foralla > ndy +e,i > 1. The proof used the Kodaira vanishing theorem. See [B]
and [W] for related recent results.

In this paper we will propose a simpler method to estimatélfeg The main
result is the following.

THEOREM 1.1. Let I be an arbitrary homogeneous ideal. Lét/) denote the
maximum degree of the homogeneous generatafsTfien

(i) There is a numbee¢ such thatreg(I") < nd(I) + eforalln > 1.
(i) reg(1™) is a linear function for allz large enough.

We can estimate the numbefTheorem 2.4) and, if is generated by forms of
the same degree, the placavhere reg/") starts to be a linear function (Proposi-
tion 3.7).

We will also show thati(1") is a linear function fon > 0. Since we always
haved(I) < req(]), it follows that

reg/") _ . dU")
n N n '

lim

It is clear that the common limit is a positive numbs€r d(I). Therefore, the

difference between rég") andn reg(/) can be arbitrarily large iff (1) < reg(l).
Part (i) of the above result implies that for arbitrary projective varietyX c

IP", there is a number such thatd’ (P*, L% (a)) =0, foralla > ndx +e,i > 1.
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However, part (ii) does not have a similar geometric version. In fact, it does
not hold if we replacd” by its saturation/”, though/” and I" define the same
projective scheme. We will give examples of homogeneous ideals of ‘fat’ points for
which reg /™) is not a linear function for large (Example 4.2). In particular, using
a counter-example to Zariski's Riemann—Roch problem in positive characteristic
[CS] we can construct an example such that fepis not even a linear polynomial
with periodic coefficients (Example 4.3).

We also give an example of a homogeneous ideal in the coordinate ring of an
abelian surface such that limr@g)/» is an irrational number (Example 4.4).

Our method is based on a natural bigrading of the Rees aldebtap,~ol"t"
given by setting deg:" = (degx, n) for all homogeneous elementof 7”. It is
not hard to see that

HI(I") =~ Hy(R)amw,  Tort(k, I"), = Tor} (S/N, R)(u.n).

for all numbersa, n, whereS = k[X,, ..., X,, Y1, ..., Y] is the polynomial ring
mapping ontaR with ¥; — f;z whenI is generated by the homogenous elements
fi,..., fs, and whereN = (Y4, ...,Y,). Therefore, we only need to study the
bigraded structure off},(R) and TOIf.(S/M, S) in order to estimate reg").

The proof of Theorem 1.1(i) and (ii) will be found in Section 2 and Section 3,
respectively. We would like to mention that (i) has been also obtained by Lavila-
Vidal and Zarzuela by a different method (private communication) and that linear
programming is used to prove (ii). The same method can also be applied to give
linear bounds for red”), whereI” denotes the integral closure &f, and for
reg(lf1 ...I'm), wherel, ..., I, are arbitrary hgmogeneous ideals. Moreover it
can be shown that if the graded algel@, ., /"t" is finitely generated, then
there are a finite number of linear functions such tha(ie)gvaries among these
functions forn > 0 (Theorem 4.3).

2. Linear Bound for the Regularity

We begin with some observation on the bigraded structure of local cohomology
modules which we shall need in the proof of Theorem 1.1(i).

Let R = ®,.>0Rw.n be a noetherian bigraded ring alid = @, ,czE im0
be a bigradedr-module. We may consideR as anN-graded ring withR, =
®.>0R.n andE as aZ-graded module WItlE, = @,>0E ). It is clear thatRy
is also anN-graded ring and that,, is a gradedry-module.

Let m be the maximal graded ideal &. Then the local cohomology module
H| (E,) is a well-defined grade&y-module for alli > 0.

Let M denote the ideal generated by the elements,ofe. M = &,>omR,. We
shall see that/, (E,) is aZ-graded component of the local cohomology module
Hi,(E).

LEMMA 2.1. H}(E,), = H},(E)(.n for all numbersa, n.
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Proof. We shall use the characterization of local cohomology modules by
means of the Koszul complexes (see e.g. [BH], [H1]). ket .., x, be a family
of generating elements far. Setx’ = x!, ..., x’ and denote by’ (X, -) theith
cohomology of the Koszul complex functor associated witiThen

H! (E,) = lim H (X', E,), H,(E) = lim H (X', E).

Since the elements,, ..., x, have degree zero in tHé-graded ringR, we have
H (X', E,) = H (X', E),. From this it follows thatd/ (E,) = lim__, H' (X', E), =
Hi,(E),.ltis clear that the equatioH; (E,) ~ H},(E), also reflects the bigraded
structure in the sense thaY. (E,), = Hi;(E) .- O

From now on letR = &,>0/"t" be the Rees algebra of a homogeneous ideal
in a polynomial ringA = k[X4, ..., X,]. As I is homogeneous, we may viek
as a bigraded ring witlR , ,, = (I"),t".

Letm = (X,...,X,) be the maximal graded ideal of. By Lemma 2.1
we haveH: (I"), = Hi,(R).n, for all numbersa, n. Therefore, we may get
information on the graded structure &, (/") by the bigraded structure éf;,(R).

Assume thaf is generated by homogeneous polynomials. Th&may be rep-
resented as a factor ring of the bigraded polynomial fing k[ X+, ..., X, Y1, ...,
Y,]. Let N denote the ideal of generated bX4, ..., X,. Itis clear that

Hy (R)(am = Hy(R) (@),

for all numbersz, n. We will use a bigraded minimal free resolution®bver S to
study the the bigraded structure 8f, (R).
First we have the following description &f}, (S).

LEMMA 2.2.
Hy(S)=0, i#r,
HL(S) = k(XS Xy vPlay, ... a, <0; Br..... B €NI.

Proof. Sinces is a direct product of copies A = k[X4, ..., X,], we have
Hi(S) = Hi.(A) ®4 S. Itis well-known [H1] that

Hi(A) =0, i#r, HI(A) = k[X{*... X"y, ...,a, <Ol
Hence the conclusion is immediate. O

Let dy, ..., d; be the degree of the homogeneous generatork dhen the
bigrading of the polynomial ring is given by

bidegX; = (1,0), i=1...,r

183267.tex; 23/08/1999; 10:03; p.4

https://doi.org/10.1023/A:1001559912258 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001559912258

THE CASTELNUOVO-MUMFORD REGULARITY 247
bidngj=(dj,l), j=l,...,S.
This can be used to obtain information on the bigraded vanishir},of).

COROLLARY 2.3.H};(S)(an = 0foralla > nd(I) —r + 1.
Proof. Note thatd(/) = maxXd,, ..., d,}. Since

bidegx¢*... xeyfr. .. yH
=(a+-- o, +prdi+ -+ Bsds, P14+ + By),

using Lemma 2.2 we get

H () am = kX Xy YPla, ... <0

a1t -+ o+ prdi+ -+ Bds =a, fr+---+ By =nl.

If a >nd(I)—r+1,then

o+ +o = a—(Brdi+ -+ Bidy)

>a—(Br1+--+B)dI)=a—nd(I)>1—r.

Hence at least one of the numbers ..., o, must be nonnegative. From this it
follows thatHy (S)4.n) = O. O

The following result gives Theorem 1.1 (i) by settidg= R. This result will
be used to give a linear bound for (&g), too.

THEOREM 2.4. Let E be an arbitrary finitely generated bigraded module over
the Rees algebra df. Let

0— - = & S(—ay, —by) > - = & S(—an, —bn)

— &;S(—a,9, —byg) > E— 0
be a bigraded minimal free resolution &f over S, whereS is defined as above.
Putc; = max{a,; — b;;d(I)} ande = maxc; —j|j=0,...,r}. Foralln > 1
we havereqE,) < nd(I) + e.

Proof. First we will study the graded vanishing of;;,(E), i =1...,r.
Rewrite the above resolution &f as follows

O— - —>F—---—>Fh—>F—>E—QOQ

Let K; denote the image of the may — F;_1 for j > 1. Then there are the
exact sequences

0— Kj—>Fj_1—>Kj_1—>0,
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whereKy = E. Consider the derived exact sequence of local cohomology modules
of these exact sequences. Faot r, we use Lemma 2.2 to deduce that

Hy(E) ~ Hy(Ky) >~ - = H7Y (K1)

and that there is an injective mdp,(fl(]{,_i_l) — H\(K,_;) and a surjective
mapH}, (F,_;) — Hy(K,_;). Fori = r we also have a surjective ma&{, (Fo) —
Hy (E). Therefore, for alli > 0, Hy(E)u.n = O if Hy(F ). = 0. By
Corollary 3.2,H},(S(—a;j, —=b;j))m.ny = 0, form —a,j > (n—b;;)d —r+1, where
d =d(I). Therefore H,(F" ) gyny = 0if m > (n — by, —;)d +a,,—; —r + 1 for all
t. The latter condition is satisfiedif > nd +c,_; —r +1. HenceH,(E) ..y = O,
forallm > nd +c¢,_; —r + 1.

By Lemma 2.1 we geH;, (E,)n—i = HN(E)m—inm = 0, form —i > nd +
¢_i—r+1,i=1,...,r.Sincend +e > nd + ¢,_; —r + i, this vanishing holds
if m > nd + e. Note thatH2(E,)) = 0. Then we obtain re@,) < nd + e. O

COROLLARY 2.5. Let X c P" be an arbitrary projective variety. Lety be the
ideal sheaf of the embedding adg the minimum of the degredssuch thatX is

a scheme-theoretic intersection of hypersurfaces of degree atdmblken there is
a numbere such thatd’(P", 4 (a)) = 0, forall a > ndx +e,i > 1.

Proof Let I be a homogeneous ideal generated by forms of degree atdgpost
such thatly is the ideal sheaf associated withThend (1) = dx. By Theorem 1.1
(i) there is an intege¢ such thatH (I"), = 0 fora > ndy +e,i > 0. Therefore
the conclusion. O

COROLLARY 2.6. Let I be a homogeneous ideal generatedsbglements. As-
sume that the Rees algebralofs Cohen—Macaulay. Then

reg(") < nd(I) + (s — DId(I) — D],

foralln > 1.

Proof. The assertion follows immediately from the bound < sd(I) — (s —
1)+ j,j >0, for E = R given by O. Lavila—Vidal [L, Proposition 4.1], in case
the Rees algebra dfis Cohen-Macaulay. O

There are several important classes of ideals for which one knows that their
Rees algebras are Cohen—Macaulay, see e.g. Eisenbud and Huneke [EH].

EXAMPLE 2.7. Letl be the ideal generated by the maximal minors of a generic
p X g matrix, p < g. Then the Rees algebra pis a Cohen—Macaulay ring [EH].
Therefore

reg(I") < np + [(Z) - 1} (p-0,
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forall n > 1. This is far from being the actual value of ét)). Akin, Buchsbaum,
and Weyman [ABW] already gave a linear resolution f&from which it follows
that red/") = np for all n > 1. We are grateful to A. Conca for this information.

If we setE = @,>0l"t", wherel" denotes the integral closure bf, thenE is
a finitely generated bigrade®-module with £, ~ . Hence from Theorem 2.4
we also obtain a linear bound for rdg).

PROPOSITION 2.8.Let I be an arbitrary homogeneous ideal. Then there is a
numbere such thatreg(1”) < nd(I) + e forall n > 1.

3. Asymptotic Behaviour of Regularity

Let I be a homogeneous ideal = k[X4, ..., X,]. In this section we will show
that red™) is not only bounded by a linear function, but, fors> 0, is a linear
function. The approach will be similar as in the previous section.

For any A-module L we set reg(L) = maxa | Tor;(k, L), # 0O} —i. Since
reg(L) = max{reg(L)| i > 0}, Theorem 1.1 (ii) follows from the next result.

THEOREM 3.1. Let I be an arbitrary homogeneous ideal. Then foriajt 0, the
functionreg (/") is linear forn > 0.

Recall that for any homogeneous iddald(J) denotes the maximal degree of
the homogeneous generatorsJofit is well-known thatd (/) is nothing else than
reg,(J). The next result encodes the fact that the linear functions associated with
reg,(/") and regl") have the same slope.

COROLLARY 3.2.LetI be an arbitrary homogeneous ideal. Then

dm) —iim reg(/ )’
n n
and this common limit is a positive integgrd ().

Proof. Letreqg /") = an+b andreg(/") = cn+d forn > 0. Since reg(I") <
reg(I") for all n, it follows thatc < a. On the other hand, by Theorem 1.1 (i) we
have reg/™") < reg,(I")m + e for largen and allm > 0. This implies that
an < regy(I") = cn + d for all largen. Thereforea < ¢, and saz = c. Itis clear
thatc is a positive integex d(1). O

lim

In order to prove Theorem 3.1 we shall consider the Rees aldgebrap, > o/"t"
as a factor ring of the bigraded polynomial risg= k[Xq,..., X,, Y1,..., Y]
as in Section 3. Letn = (X4,..., X,) be the maximal graded ideal of and
N =mS.

LEMMA 3.3. Let E be a finitely generated bigrade@®-module. PUte, =
@uczE @ ThenTord(k, E,), =~ Tor’ (S/N, E) .y, for all a,n andi > 0.
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Proof. Consider a graded minimal freéeresolution of theR-module E
F: 0 > F—---—>F—>F—>E-QOQ
Taking then-homogeneous component is an exact functor, so that the sequence
F,. 0= .- = Fj)y—- - — (F),— (Fo)p—> E,— 0

is exact. Since the modul€s)), are freeA-modules/F, is a freeA-resolution for
E,. We have Tof(S/N, E) = H;(F/mF) so that Tof(S/N, E), ~ H;(F,/mF,)
which is isomorphic to Tgl(k, E,). Hence Tof (k, E,), == Tor’ (S/N, E).n). O

Remark The above free resolutiofi, of E, is not minimal in general. For
instance, letl = (X%, X1X, X3) C A = k[X1, X2]. ThenR = S/(f1, f2, f3)
with f1 = X,¥1 — X1y, f2 = XpY2 — X1Yz and f3 = Y2 — Y, Y3. One sees easily
that (f1, f2, f3) is a height 2 perfect ideal, and hence the Rees algklras the
S-resolution

0— S(-5, -2 — §(-3,-1)?® S(—4,-2) - S — R — 0.

Thus, if we want to compute a resolution B, we have to take the second com-
ponent of the above resolution, and get

0— A(=5)?% > A(-5°® A(—4) - A(—4)°® > I? > 0,

which, of course, is not minimal.

By Lemma 3.3 we have
reg(I") = maxa | Tor} (S/N, R) .. # O} — i.
Notice that each Te¢S/N, R) is a finitely generated bigraded module over the bi-

graded polynomial ring/N = k[Y4, ..., Y,]withbidegt; = (d;, 1),i =1,...,s.
Then Theorem 3.1 follows from the following property of such modules.

THEOREM 3.4. Let E be any finitely generated bigraded module over
k[Y1, ..., Ys]. The functionog (n) := maxXa | E(, ) # O} is linear forn > 0.

Proof PutT = k[Y1,...,Y]. Itis clear that for a given exact sequence
of bigradedT-modules 0 - E” — E — E’' — 0, we havepg(n) =
max{pg»(n), pp(n)} for all n € N. Therefore, since there exists a sequence of
bigraded submodules

O=EyCE,C---CE, 1CE; =M

of Esuchthatt;/E;_qiscyclicforj =1,...,i, we may assume thdt is cyclic.
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We represenE as a quotienf'/J. Let < be any term order, and denote by.n
the initial ideal of J with respect to this term order. It is clear tH&atJ has ak-
basis consisting of the residues classes of all the monomials which do not belong to
in(J), and it is well-known that the residue classes of the same monomials modulo
J form a (bigraded)-basis of7’/J. Thereforepg (n) = prins)(n) for alln > 0,
and we may assume thatitself is a monomial ideal.
Let J be generated by the monomiats™... Y5 fori = 1,..., p. For any
a= (a,...,a;) € N let y? denote the residue class Bf*..., Y% in T/J.
Let B, denote the minimal basis ¢7'/J),. Thenpg(n) = maXxv(a) | y* € B,},
with v(a) = ), a;d;. Note thaty® € B, if and only if Zj a; = n, and for all
i =1, ..., pthere exists an integerg j < switha; < ¢;;.
Let L denote the set of mafy, ..., p} — {1,...,s}, and consider for each
f € L the subset

Bn_’f = {yal Za./ =n, ari < Cifa) fori=1,..., S}.
J

It is clear thatB, = Usc. B, ;. Defineps(@) = maxuv(a)| y* € B, ¢}. Then
pe(n) =maxX{ps(n)| f € L}. Thus it suffices to show that the functiops(n) are
linear for all f € F and alln > 0.

Let {j1, ..., ji} be the image off, and suppose that < j,--- < ji. We set
cj, = minfc;j;)| ji) = ji}y —1fort =1,... k. Then

By = {ya| Zaj =nanda; < c;, fors = 1,...,k},
J

andps(n) is given by the maximum of the linear functionala) on the convex
bounded set

C, = {a| Zaj =n, anda;, <c;, forr=1,..., }
j

This is a rather trivial example of linear programming. The solution is the follow-

ing.

Suppose that is the smallest integer such that= 7 fort < £ andj, > £. In
other words, we have; < c¢1,...,a,_1 < ¢,_1 and no bound om, (except that
>_jaj=n).

If ¢ =5+1,then}_;a; can be atmos}_; c;, so that fom >> 0, B, ; = 0 and
hencep,(n) = 0.

If ¢ <s,letn > c1+c+...+c—1. We claim thaw has its maximal value for
a=1(1,...,Co_1,n — Zf;icj, 0,...,0). Then

-1 -1
v(a):Zdjcj+dg n—ch ,
Jj=1 J
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which is a linear function on, as we wanted to show.

Indeed, ifa = (a1, ...,a;) € C,, and if for some 1< i < j < s we have
a; < ¢; anda; > 0, thend = (as,...,a; +1,...,a; —1,..., a,) also belongs
to C, andv(a) > v(a) sinced; > d;, by assumption. This argument shows that if
we fill up the first ‘boxes’ as much as possible, we must reach the maximal value
of v. The resultinga with maximal value is exactly the one described abover

Theorem 3.4 also has the following interesting consequence

COROLLARY 3.5. Let I be an arbitrary homogeneous ideal. They(7") is a
linear function forn > 0.

Proof. PutE = @,>0l"t". ThenE is a finitely generated bigraded module
over the Rees algebra éfwith E, ~ 1. By Lemma 3.3 we have re@,) =
Prors s/n.£) () for all i > 0. Since re¢gE,) = maxreg(E,) |i > 0}, the conclu-

sion follows from Theorem 3.4. O
RemarkWith the same method as above one can prove the prove the following

modifications of Theorem 3.1: L€, ..., I, be graded ideals in the polynomial

ring A. Then there exist integers, . .., a, witha; <d(I;)for j =1,...,m,and

anintegeb suchthatreg/;* ... I"") = ain1+- - -+apny,+b,forallny, ..., n, >

0. For the proof one considers the multi-Rees tndiz1, ..., I,t,].

Now we will estimate the place where 1@§) starts to be a linear function
when I is generated by forms of the same degree. We shall need the following
observation.

LEMMA 3.6. Let0 - E —- F — G — 0 be an exact sequence of graded
A-modules.

() If reg(E) > reg(G) + 1, thenreg(F) = reg(E).
(i) If reg(E) < reg(G) + 1, thenreg(F) = reg(G).

Proof. Consider the derived long exact sequence
H:"YG) - H.(E) - H.(F) — H.(G) — H.T(E).

Putn = max{reg(E), reg(G)}. It is obvious that re¢F) < n.

Ifreg(E) > reg(G)+1, thenm = reg(E). We choosé such that/ (E),—; # 0.
Since regG) < n—1, Hi=Y(G),_; = 0. HenceH| (F),_; # 0. From this it follows
that reqF) = n.

Ifreg(E) < reg(G)+1, thern = reg(G). We choosé such thatd/ (G),_; # 0.
Since regE) < n, H"Y(E),_; = 0. HenceH| (F),_; # 0. O

Our estimation depends on the minimum number of generatofsavid the
Castelnuovo—Mumford regularity rég) of the Rees algebr& = &,0l"t" as
a N-graded ring with the usual grading deg' = n, x € I". The regularity
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reg(R) can be computed in terms of certain minimal set of generatois [@].
For instance, ifl is generated by d-sequence [Hul], then rég) = 0.

Recall that the Castelnuovo—Mumford regularity 8y of a graded modulé&
over anyN-graded ringB is defined to be the largest integerfor which there
exists an index such thatH, (E),—; # 0, whereB, is the ideal ofB generated
by the homogeneous elements of positive degree.

If we considerR as aN-graded module over thi-graded polynomial ringd
with deg X; = 0 and ded’; = 1, then regR) = max{b,; — j | j = O}, whereb,;
are the second coordinates of the bidegree of the generators ghterm of a
minimal bigraded free resolution & overS.

PROPOSITION 3.7.Let I be a homogeneous ideal generatedsbiprms of the
same degred. Putc = req(R) + s + 1. Then, forn > ¢, reg(I") = (n — ¢)d +
reg(1°).

Proof. We need to modify the statement as follows. Set k[X,, ..., X,
Yy, ..., Y] be a bigraded polynomial ring with bid&g = (1, 0) and bided’; =
(d, 1), whered > Qs a fixed integer. For any finitely generated bigradedodule
EletE, = ®,czE.n- ThensS is anN-graded ring andE anZ-gradedS-module.
Putc = reg(E) + s + 1. We claim that fon > ¢, reg E,) = (n — ¢)d + reg(E,).

Since R may be considered as a finitely generated bigragieadodule withR, ~
I", the conclusion clearly follows from this claim.

If s =0,8, =0foralln > 0. It follows that re§E) = max{n| E, # 0}. Hence
E, =0forn > req(E) + 1. In this cased = 0.

To prove the claim in the case > 0 we may assume that the base fiéld
is infinite. Then we can find a linear fori in Yy, ..., Y, such thatt ¢ P for
any associated prim@ 2 (Yy,...,Y;) of E. In other wordsyY is a filter-regular
element ofE with respect to the idedly, . . ., Y;). Note thatY is a bihomogeneous
form with bideq = (d, 1). PutK = E/Og : Y. Consider the exact sequence of
gradedA-modules:

0— K, 1(—d) > E, — [E/YE], — O.

Note thatregE) > reg(E/Y E) [T, Lemma 2.1]. By induction om we may assume
that forn > ¢ — 1,

req(E/YE],) = (n —c+1)d +req[E/Y E].-1).

Moreover, ifn > c¢,n — 1 > req(E) + 1. Then[Of : Y],_1 = 0 by [T, Proposition
2.2]. In this case we havg,_, = E,_;. We distinguish three cases:

Q) If reg(K._2)(—d)) > reg[E/YE]._.1) + 1, using Lemma 3.6 we get
req(E._1) = req(K._»(—d)). From this it follows that

reg(E.—1(—d)) = regK.2(—d)) +d > reg(E/YE].—1) +d +1
= req[E/YE].)+ 1.
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By Lemma 3.6 we getréd.) = req(E._1(—d)) = d+req(E._,). Using the same
argument, we will be led to the formula r@g,) = (n — ¢ + 1)d + reqg(E._,) for
n>c—1.

(2) If reg(K.—2(—d)) < req([E/YE]._1) + 1, using Lemma 3.6 we get
reE._1) =req([E/Y E]._1). Therefore,

reqE._1(—d)) =req([E/YE]._1) +d =reqlE/YE],).
By Lemma 3.6 we get
reqE.) =req[E/YE].) =d +reqE._1).

Using Lemma 3.6 again we will be led to the formula(gg) = (n — ¢ + 1D)d +
reqE._1) forn > ¢ — 1.

() Ifreg(K.—2(—d)) = reg([E/Y E].-1)+1,thenregE 1) < reg(K.—2(—d)).
As we have seen in (1), we may assume thatkeq,) < req(K._(—d)). It
follows that

regqE._1(—d)) <d+req[E/YE]._.1)+1=req[E/YE]) + 1
Following (2) we will obtain regE,) = (n — c)d + req(E.) forn > c. O
COROLLARY 3.8. LetI be an ideal generated by&sequence of forms of the
same degred. Forn > s + 1, reg(I") = (n — s — 1)d + reg(I**1).

4. Regularity of Saturations of Ideals
In this section we will study the regularity of the saturatibnof 1"
PROPOSITION 4.1.LetI be an arbitrary homogeneous ideal. There is a number

e such thateg(1") < nd(I) + e, foralln > 1.
Proof. We have

. (N) 0, i=0,1,
H' (I") ~ .
" HiI", i>2
Hence the conclusion follows from Theorem 2.4. O

Now we will present examples which show that (&Y is not a linear polyno-
mial for n > 0. The ideall will be the ideal of certain ‘fat’ points.

EXAMPLE 4.2. Letp,, ..., p, be distinct points on a rational normal curveFif
s = 2. Letg, ..., g, denote their defining prime ideals i = k[Xo, ..., X,],

wherek is an arbitrary algebraically closed field, and= g N --- N ;. Then
I"=pin---Ng
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By [CTV, Proposition 7] we know that

reg(A/I") = max{Zn -1, [Lr_z]} .

r

Note that re¢l/”) = reg(A/I") + 1. If s > 2r, then
- 2r — 2

r

In this case, ifs is not divided byr, regfﬂ) differs from a linear function by a
periodic function whose values depend on the residue mbdulor.

A more precise result can be obtained in the following situation

THEOREM 4.3. Let I be a homogeneous ideal. Assume that the graded algebra
@®.>0l"t" is finitely generated. Then there exists a positive integand linear
polynomialsf;(n) = nd; + ¢; for 0 < i < r — 1 such thatreg(I") = fo)(n) for
n > 0, whereo (n) = n modr.

Proof SinceR = @I"t" is finitely generated, it may be written as a factor
ring of a bigraded polynomial rin§ = k[ X4, ..., X,, Y1, ..., Y;] where degX; =
(1,0 fori =1,...,r,and ded’; = (d;,t;) for j = 1,...,s. The arguments of
Lemma 3.3 apply as well t&. So we conclude that

reg (I") = max{a | Tor’ (S/N, R)q.n # 0} — i.

Thus the conclusion follows if we prove the following analogue of Theorem 3.4:
Suppose thak is a finitely generated bigraded module oZer= k[Yq, ..., Y,]

where ded’; = (d;,t;) for j = 1,...,s. Then there exists an integley and linear
functions?;,i = 0, ..., ko, such that for alk > 0 one has thapz(n) = £;(n) if
n =i modky.

Consider theN-gradingT;, = ®,7(,.). Then there exists an integly such that
the koth Veronese subring *°) = @,-0Tj;, of T is standard graded in degree 1
(after normalizing the grading). Note thBtconsidered as afi*®-module decom-
poses af = @fing,- E. Therefore we may apply 3.4, and see that the functions
or.£(n) of the T%0-modulesT; E are linear fom > 0.

Now letn be arbitrary. Them = mk, + i with 0 < i < ko — 1, andpL(n) =

T (ko) .
pr.r (m). Hence the conclusion follows. a

The following example shows that in general (&g is not a linear polynomial

with periodic coefficients.

EXAMPLE 4.4. For anyp > 0 such thatp is congruent to 2 mod 3, there exists a
field k of characteristipp and an ideal C k[x, y, z] such that the regularity of the
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saturated powers" is not (eventually) periodic. In fact, regm) =2Mm+7ifn

is not a power ofp and red@/>+1) = 29 + 8 if n is a power ofp.

In [CS, Sect. 6] the first author and Srinivas construct a counterexample to
Zariski’'s Riemann—Roch problem in char> 0. There one can find a non singular
projective curveC of genus 2 over a field of characteristigp # 0 as above with
pointsn, g € C such that

0 if nis not a power o,

R Oc(n(n —q) +q)) = -
1 if nis a power ofp.

We will use this curve to construct our example.

SetD = 6g — n. ThenD is a divisor onC such that de@>) = 5 > 2g + 1,
whereg = 2 is the genus o€. Thus D is very ample [H2, Coro. IV.3.2] and
h%0O¢c(D)) = degD) + 1 — g = 4 [H2, Example IV.1.3.4 and Thm. IV.1.3].
HenceH(C, O (D)) gives an embedding af as a curve of degree 5 IP¥. We
can project C onto a degree 5 plane cupweith only nodes as singularities from a
point inP® not onC [H2, Thm IV.3.10]. The arithmetic genus efis p,(y) = 2+n
wheren is the number of nodes @f[H2, Exercise IV.1.8]. Sincd = deqy) = 5,
pa(y) = %(d —1D(d —2) = 6[H2, Exercise I.7.2]. Thug hasn = 4 nodes.

Let these singular points lag, . . ., g4. Letm1: S; — P? be the blow up of these
4 points. LetF; be the exceptional curves that map respectively; thet y; be the
strict transform ofy. Theny; = C since it is nonsingular. Letl; = n{l(H’)
whereH' is a hyperplane of?. Since the singular points are nodes

7 y)=y+2F+ - +2F, and F -y =qi+ g
for (distinct) pointsg;; ony;, 1 <i <4, j = 1, 2. The divisor
SHy-y1—2q11— -+ — 242 — N+ 5

has degree 13 sinaé?; - y;) = (H' - y) = 5. Thus it is very ample [H2, Corollary
IV.3.2], and there are pointsy, ..., p13 € y1 such that

SHy-y1—2q11— - —2q22—n+5q ~ p1+---+ p13,

where~ denotes linear equivalence.

Let ,: S; — S71 be the blowup of the pointg, ..., p13, with respective ex-
ceptional curvest; mapping top;. Lety = C be the strict transform ofy, F; be
the strict transform of; for 1 < i < 4. Letx: S, — P? be the composed map. Let
H =n"1H"). Then

5H ~ n X y) =V +E1+---+ E13+2F1 4 --- + 2F,,

V-V ~ BH —Ei— - — Exg—2F1 — - —2F) .7 ~ 5 —5q.
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By our constructionH -y ~ D = 6g — . Thus
Sy +4H)- v ~n—-q, F+H -V ~q.

SetA = 5y + 4H, B = 7 + H. Observe thaty?) = —4 and(y - H) = 5.
HY(Sz, Os,(mH)) = 0forallm > 0andH(y, O(mH +ny)) = 0if 5m —4n >
3since((mH+ny)-y) = 5m—4n and a divisor on a curve of gengss nonspecial
if its degree is> 2g — 2 [H2, Example 1V.1.3.4]. Consideration of the cohomology
of

0 — Os,(mH + (n — 1)y) = Og,(mH +ny)
— (97(mﬁ +ny)— 0 *)

and induction implyH*(S,, (DSZ(mF +ny)) = 0if 5m — 4n > 3. The relations
H?(Sy, Os,(mH)) = 0 for allm > 0 andH?(y, O (mH + ny)) = 0 for allm, n
imply H2(S,, Os,(mH + ny)) = 0 for allm,n > 0.

For alln > 0 we have

0— Os,(nA+ H) — Os,(nA + B) - O3(nA+ B) — 0.

By the above H(S,, Os,(nA + H)) = H?(S2, O5,(nA + H)) = O foralln > 0.
From (*) we see that
h(Os,(nA+ B)) = h'(Oc(n(n —q) +q))
0 if nis not a power ofp,

1 if nisapower ofp.

By (*), HY(S2, Os,(4nH + (5n — 1)y)) = O for alln > 0. Then by the Riemann—
Roch Theorem oy and (*),

W (Os,(4nH + 5ny)) = h*(O5(4nH + 5ny)) = 1,

forn > 0 since((4nH +5n%)-y) = 0 and by Riemann—Rocl(4n H + (5n+1)7)-
V) = —4. Thush®(O(4n H + (5n+1)¥)) = 0 andh (05 (4nH + (5n+1)y)) = 5
by Riemann—Roch. By (*) we have!(Os,(4nH + (5n + 1)y) = 4.

The formulas((nA + B + mH) - E;) > 0 and((nA + B +mH) - F;) > 0
for all m,n > 0 imply that R'7,05,(nA + B + mH) = 0 form,n > 0, and
HY(S2, Os,(nA + B +mH)) = HY(S, 7.05,(nA + B + mH)). The relation

nA+B+mH~ 2% + 6+ m)H—
—GBn+1D(Er+ -+ Eiz+2F 1+ -+ 2Fy)

183267.tex; 23/08/1999; 10:03; p.15

https://doi.org/10.1023/A:1001559912258 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001559912258

258 S. DALE CUTKOSKY ET AL.
implies
7.0O(mA+ B +mH)
=Wtn- gt N 919N N 3% @ 0 2% + 6+ m),
whereJ; are the ideal sheaves of the poipisand g, are the ideal sheaves of the
pointsg; in P2.

Let 1, ..., 13 and p14, . .., 17 be the homogeneous primes i, y, z]
which sheafify taly, ..., Li3andda, ..., g4, respectively. Set

I=p1N- Nz 2 N--- N2

Letm = (x, y,z). Then
HY(I") = Hy (I =0, HAZ(I") = @,z H'(P?, 1" (a)),
HY(I") = @uezH (P, 1" (a)),

whereJ is the ideal sheaf of. Putting everything together, we obtain

0 ifs>2%m+8,

_ o if s = 2% + 8 andn is not a power ofp.
dlmk Hm(15n+l)(s_2) =

=

if s =2% + 8 andn is a power ofp,

—_—

H3(I5 D) 3 =0 ifs>2%m +7.

By Theorem 4.3 we know th@n>ol~" is not a finitely generatettalgebra. We
can verify this directly.
If ®,>0l" were finitely generated, there would be a surjection of a bigraded

polynomial ring ontod,ol”. Then the subalgebrd = &, (ﬁ)zgn would be
finitely generated. We will show tha is not finitely generated

R = @,50H%(S2, Os,(nA)).

From (*), and our calculatiorf 1(S,, Osz(mﬁ—i- ny)) = 0if5m —4n > 3, we see
that we have surjections

H(S2, 05,(nA)) - H(¥7, 05(nA)) = H(V, O5(n(n — 9))) = 0,
sincen — g must have infinite order in the Jacobianygfand

HO(S2, O5,(nA — 7)) — H°(V, O5(nA — 7)) # 0,

183267.tex; 23/08/1999; 10:03; p.16

https://doi.org/10.1023/A:1001559912258 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001559912258

THE CASTELNUOVO-MUMFORD REGULARITY 259

since(y - (mA —7vy)) = —(y -y) = 4 > 2¢ and by [H2, Cor. IV.3.2]. Thus the
fixed locus (counting multiplicity) of the complete linear systémA | is y for
all » > 0. Since this multiplicity is nonzero and bounded forral- 0, R is not
finitely generated (c.f. [[Z], Part |, Sect. 2]).

The following example shows interesting asymptotic behaviour for an ideal
in the coordinate ring of an abelian surface. In this example, lif¥regn is an
irrational number. The construction is based on an example in [Cu].

EXAMPLE 4.4. Letk be a an algebraically closed field of arbitrary characteristic.
Let C be an elliptic curve ovek and letS = C x C. Let A C S be the diagonal,

P < S aclosed point and = 7; *(p), B = 7, *(P), wherer;: S — C,i = 1,2

are the projections. Let NS) be the Neron—Severi group 6fandNE(S) be the
closure in the metric topology on NS ®z R of the cone generated by the curves
onS. LetV c NS(S) ®z R be the real vector space with ba&is, B, A}. Observe
that (A%) = (A%>) = (B) =0,(A-B)=(A-A)=(B-A)=1.Let

U= {(x,v,2) | XA+ yB +zA)?> 0}
= {(x,y,2) | xy+xz+yz) > 0}.

U consists of two disjoint, connected cones. [Zebe the connected component
containingL = A + B + A. By the index TheorenGk - L) > 0 for any rational

E € G. Hence the effective classes thare contained in the closul@ of G. If

E is a rational class i, then E is ample by the Riemann—Roch Theorem, and
the fact that any effective divisor on an abelian surface with a positive intersection
number is ample. Henag = VNNE(S). Let H = 3A+6B+9A, D = A+B+A

(sH—D)?>=198°—-72s+6=0
has the roots
51= 2(6—V/3), 52 = % (6+/3).

If s > s, thensH — D is in the ample cone. If; < s < s, thensH — D is notin
the effective cone, anfd — s H is not in the effective cone.

By Mumford’s Vanishing Theorem (Sect. 16 of [Mu]),#f andr are nonnega-
tive integers

HYS,0smH —rD)) =0 ifm > rsy
and
H%(S,0s(mH —rD)) =0 ifm > rso.
Suppose thatz, r are nonnegative integers such that < m < sor. Then

HY(S, Os(mH — rD)) =0
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and
H?(S,Os(mH — rD)) = H°(S, Os(rD — mH)) = 0.

By the Riemann—Roch Theorem of Section 16 [Mu]

(mH — rD)?
x(mH —rD) = —
Thus ifs1r < m < sor we have
H —rD)?
h'mH — rD) = —% > 0.

H is very ample onS by the Lefschetz Theorem (Section 17 of [Mu]). Set=
®.>0H(S, Os(nH)), with graded maximal ideak. Let I; be the homogeneous
ideal of A, I be the homogeneous ideal Bf /3 the homogeneous ideal of. Let
I = LN I,N 5. LetJ be the sheafification df. SinceHZ(I7),-2 = H(S, Os(n —
2)H — rD)) and H3(I"),_3 = H*(S,Os(n — 3)H — rD)), we have that the

‘regularity’ of 17 is [spr] + 2 = [(r/33)(6 + fs)] +2.
The ring@n>01~" of Example 4.4 is not finitely generated. This follows since

0 ifm < sor,

17y = H%S, Og(mH — rD)) =
( )m (5, Osm ") {750 if m > sor.
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