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Abstract.

In this paper we study the asymptotic behaviour of the posterior distribution in a mixture model when

the number of components in the mixture is larger than the true number of components, a situation

commonly referred to as overfitted mixture. We prove in particular that quite generally the posterior

distribution has a stable and interesting behaviour, since it tends to empty the extra components. This

stability is achieved under some restriction on the prior, which can be used as a guideline for choosing

the prior. Some simulations are presented to illustrate this behaviour.
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1. Introduction

Finite mixture models provide a very flexible and often biologically or physically interpretable

model for describing complex distributions (Marin and Robert (2007); Frühwirth-Schnatter (2006);

MacLachlan and Peel (2000); Titterington et al. (1985)) An important concomitant problem of

choosing the appropriate number of components in a mixture distribution has entertained and

concerned a large number of researchers and attracted a correspondingly large literature (Akaike

(1973); Dempster et al. (1977); Lee et al. (2008); McGrory and Titterington (2007); Richardson

and Green (1997); Robert and Wraith (2009); Schwarz (1978)). When the number of components

is unknown, the analyst can intentionally or unintentionally propose an over-fitting model, that is,

one with more components than can be supported by the data. The problem of non-identifiability

in estimation of over-fitted mixture models is well known; in her review of this problem, for ex-

ample, Frühwirth-Schnatter (2006) observes that identifiability will be violated as either one of

the component weights is zero or two of the component parameters are equal. Examples of this

behaviour are provided and possible solutions are presented, including choosing priors that bound

the posterior away from the unidentifiability sets or that induce shrinkage for elements of the com-

ponent parameters, although the opportunity to reduce the mixture model to the true model is

forfeited by this practice.
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In this paper, we contribute to this growing understanding of how over-fitted mixtures behave

in Bayesian analysis, particularly as the dimension of the component parameters grows. Consider

a mixture model of the form

fθ(x) =

k
∑

j=1

pjgγj
(x), k ≥ 1, γj ∈ Γ, θ = (p1, ..., pk, γ1, ..., γk) ∈ Θk Γ ⊂ R

d. (1)

The number of components k can be known or unknown. Estimating k can be difficult in practice

and it is often the case that one prefers to choose a large k, with the risk that the true distribution

has less components. However the non-identifiability of the parameter in cases where the true

distribution has a smaller number of components leads to the following question: how can we

interpret the posterior distribution in such cases? To answer such a question we investigate the

asymptotic behaviour of the posterior distribution.

More precisely, assume that we have observations X1, ..., Xn, iid from a mixture model with k0

components:

f0(x) =

k0
∑

j=1

p0
jgγ0

j
(x), k ≥ 1, γ0

j ∈ Γ, 1 ≤ k0 < k. (2)

In such cases the model is non-identifiable since all values of the parameter in the form

θ = (p0
1, ..., p

0
k0 , 0, γ

0
1 , ..., γ

0
k0 , γ),

for all γ ∈ Γ and all values of the parameter in the form θ = (p0
1, ., pj .., p

0
k0
, pk+1, γ

0
1 , ..., γ

0
k0
, γ0
j )

with pj + pk+1 = p0
j satisfy f0 = fθ. This non-identifiability is much stronger than the non

identifiability corresponding to permutations of the labels in the mixture representation. In such

cases, it is well known that the asymptotic behaviour of the likelihood is not regular, although under

mild conditions the maximum likelihood converges to the set of values in Θk satisfying fθ = f0, see

Feng and McCulloch (1996). In such cases where the true parameter lies on the boundary of the

parameter set, the multiplicity of the limiting set implies that the maximum likelihood estimator

does not have a stable asymptotic behaviour. When fθ is the main object of interest this is not

of great importance, however in many situations recovering θ is of major interest. A particular

example in which such estimates are particularly useful is time evolving mixture models, where the

estimation of the number of components at each time period would be too time consuming to make.

In such cases, using a quite large number of components, which can be regarded as a reasonnable

upper bound on the number of components over the different time periods is computationally

easier. It thus becomes crucial to know that the posterior distribution under overfitted mixtures

give interpretable results.

In this paper we study the asymptotic behaviour of the posterior distribution, inducing some

results on the asymptotic behaviour of Bayesian estimates such as the posterior mean. It turns out,
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that the posterior distribution has a much more stable behaviour than the maximum likelihood

estimator if the prior on the weights is reasonable. In particular we prove that if the dimension d

of γ is larger than some value depending on the prior, then asymptotically the extra components in

the k-mixture are emptied under the posterior distribution. This result is of interest in particular

because it validates the use of Bayesian estimation in mixture models with too many components.

It is also of interest since it is one of the few example where the prior can actually have an impact

asymptotically, even to first order (consistency) and where choosing a less informative prior leads

to better results. It also shows that the penalization effect of integrating out the parameter, as

considered in the Bayesian framework is not only useful in model choice or testing contexts but

also in estimating contexts.

In Section 2 we state our main result, where we link conditions on the prior to the asymptotic

behaviour of the posterior distribution. A simulation study is presented in Section 3 where we

illustrate our theoretical results and also consider a case for which no theoretical asymptotic results

have been obtained.

2. Consistency issues : main results

In this section we state the main results of the paper, namely that the posterior distribution

concentrates on the subset of parameters for which fθ = f0 so that k− k0 components have weight

0. The reason for this stable behaviour as opposed as the unstable behaviour of the maximum

likelihood estimator is that integrating out the parameter acts as a penalization: the posterior is

essentially putting mass on the sparsest way to approximate the true density.

We first give some notation and state the assumptions needed to describe the asymptotic

behaviour of the posterior distribution.

2.1. Assumptions and notation

We denote Θ0
k = {θ ∈ Θk; fθ = f0} and let ln(θ) be the log-likelihood calculated at θ. Denote by

||f−g|| =
∫

|f−g|(x)dx the L1 distance and Pn(g) =
∑n
i=1 g(Xi)/n and Gn(g) =

√
n[Pn(g)−F0(g)]

where F0(g) =
∫

f0(x)g(x)dx. Let ∇gγ be the vector of first derivatives of gγ with respect to γ,

and D2gγ be the matrix of second derivatives with respect to γ. Define for δ ≥ 0

ḡγ = sup
|γ′−γ|≤δ

gγ′ , g
γ

= inf
|γ′−γ|≤δ

gγ′

We now introduce some notation that is useful to characterise Θ0
k, following Liu and Shao

(2003)’s presentation. Let t = (ti)
k0
i=0 with 0 = t0 < t1 < ... < tk0 ≤ k be a partition of {1, ...., k}.

For all θ ∈ Θk such that fθ = f0 there exists t as defined above such that, up to a permutation of
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the labels,

∀i = 1, ..., k0 γti−1+1 = ... = γti = γ0
i , p(i) =

ti
∑

j=ti−1+1

pj = p0
i , ptk0

+1 = ... = pk = 0.

In other words Ii represents the cluster of components in {1, ..., k} having the same parameter as

γ0
i . Then define the following parameterisation of θ ∈ Θk (up to a permutation)

φt =
(

(γj)
tk0
j=1, (si)

k0−1
i=1 , (pj)

k
j=tk0+1

)

∈ R
dtk0

+k0+k−tk0
−1, si = p(i) − p0

i , i = 1, ..., k0

and

ψt =
(

(qj)
tk0
j=1, γtk0

+1, ..., γk

)

, qj =
pj
p(i)

, when j ∈ Ii = {ti−1 + 1, ...., ti}.

Note that f0 corresponds to

φ0
t

=
(

γ0
1 , ..., γ

0
1 , γ

0
2 , ..., γ

0
2 , ..., γ

0
k0 , ..., γ

0
k0 , 0...0...0

)

where γ0
i is repeated ti − ti−1 times in the above vector, for any ψt.

Then we parameterize θ as (φt, ψt), so that fθ = f(φt,ψt), f
′

(φ0
t
,ψt)

where f”
(φ0

t
,ψt)

denotes the

first and second derivatives of f(φt,ψt) with respect to φt and computed at θ0 = (φ0
t
, ψt).

We also denote by Pπ [.|Xn] the posterior distribution, where Xn = (X1, ..., Xn).

Assumptions

A1 L1 consistency : Letting δn =
√

log n/
√
n, there exists M > 0 such that in probability with

respect to f0,

Pπ [||f0 − fθ|| ≥Mδn|Xn] → 0

A2 Regularity : The model γ ∈ Γ → gγ is three times differentiable and regular in the sense that

for all γ ∈ Γ the Fisher information matrix associated with the model gγ is positive definite

at γ. Denote by D(3)gγ the array whose components are

∂3gγ
∂γi1∂γi2∂γi3

.

For all i ≤ k0, there exists δ > 0 such that

F0

(

ḡ3
γ0

i

g3
γ0

i

)

< +∞, F0

(

sup|γ−γ0
i |≤δ |∇gγ |

3

g3
γ0

i

)

< +∞, F0

(

|∇gγ0
i
|4

f4
0

)

< +∞

F0

(

sup|γ−γ0
i |≤δ |D

2gγ |2
g2
γ0

i

)

< +∞, F0

(

sup|γ−γ0
i |≤δ |D

3gγ |
g
γ0

i

)

< +∞

Assume also that for all i = 1, ..., k0 γ
0
i ∈ int(Γ) the interior of Γ.
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A3 Integrability : There exists Γ0 ⊂ Γ satisfying Leb(Γ0) > 0 and for all i ≤ k0

d(γ0
i ,Γ0) = inf

γ∈Γ0

|γ − γ0
i | > 0

and such that for all γ ∈ Γ0,

F0

(

g4
γ

f4
0

)

< +∞, F0

(

g3
γ

g3
γ0

i

)

< +∞, ∀i ≤ k0

A4 Stronger identifiability : For all t partitions of {1, ..., k} as defined above, let θ ∈ Θk and

write θ as (φt, ψt); then

(φt − φ0
t
)T f

′

φ0
t
,ψt

+
1

2
(φt − φ0

t
)T f”

φ0
t
,ψt

(φt − φ0
t
) = 0 ⇔ (φt = φ0

t
). (3)

Assuming also that if γ /∈ {γ1, ..., γp} then for all functions hγ which are linear combinations

of derivatives of gγ of order less than or equal to 2 with respect to γ, and all functions h1

which are also linear combinations of derivatives of the gγj
’s j = 1, ..., p and its derivatives of

order less than or equal to 2, then αhγ + βh1 = 0 if and only if αhγ = βh1 = 0.

Extension to non compact cases : If Γ is not compact then we also assume that for

all sequences γn converging to a point in ∂Γ the frontier of Γ, considered as a subset of

(R ∪ {−∞,+∞})d, gγn
converges pointwise either to a degenerate function, i.e. satisfying

either
∫

g(x)dµ(x) = +∞ or g(x) = +∞ × 1lx∈A for some set A or to a proper density g

such that g is linearly independent of any non null combinations of g0
γi

, ∇g0
γi

and D2g0
γi

,

i = 1, ..., k0.

A5 Prior : The prior density, with respect to Lebesgue measure on Θ, is continuous and positive

and the prior on (p1, ..., pk) satisfies

π(p) = C(p)pα1−1
1 ....pαk−1

k

where C(p) is a continuous function on the Simplex bounded from above and from below by

positive constants.

These assumptions are weaker versions of the kind of assumptions that can be found in the

literature on asymptotic properties of mixture models. Assumption [A1] is quite mild and there

are quite a few results in the literature proving such a consistency of the posterior for various

classes of priors; see for instance Ghosal and der Vaart (2001) and Scricciolo (2001) for Gaussian

mixtures or Rousseau (2007) for Beta mixtures. Assumptions [A2] is a usual regularity assumption

and assumption [A4], is a much weaker version than the assumptions in Liu and Shao (2004) or

in Dacunha-Castelle and Gassiat (1999), since likelihood ratio need be integrable on some chosen
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subset og Γ and not everywhere. Assumption [A4] (first part) is the same assumption as in Liu and

Shao (2004). It is related to the linear independence of the functions gγ , ∇gγ and D2
r,sgγ , r ≤ s

and is weaker than requiring that these functions are linearly independent. Note that in the case

of an overfitted mixture the compactness assumption is important, and in particular the likelihood

ratio statistic is not a consistent test statistic in cases where the parameter space Γ is not compact;

see Azais et al. (2006). Here, however we prove that it is not a necessary assumption and that

the result remains valid when Γ is not compact under mild conditions, under the second part of

assumtion [A4]. These conditions are in particular satisfied for most regular exponential families,

including Gaussian, exponential and student mixtures if the degrees of freedom varies in a compact

subset of [1,+∞), where the densities gγ converge to degenerate functions near the boundary of

the set. In the case of discrete distributions, such as Poisson mixtures, it is to be expected that

the limit is still a distribution at least for some of the points of the boundary. However, the limit

will often be linearly independent of the gγi ’s and their derivatives. For instance, in the case of

a mixture of Poisson distributions with parameters λ, when λ goes to 0 the density converges to

0 except at x = 0 where it converges to 1, so that the limit is a proper distribution. However

this limit is linearly independent of any function (of x) in the form λx(a1 + a2x + a3x
2) unless

a1 = a2 = a3 = 0 and [A4] is satisfied. The assumption [A5] on the prior on p is valid for instance

in the case of Dirichlet priors on the weights D(α1, ..., αk)

2.2. Main result

Theorem 1. Under the assumptions [A1]-[A5] the posterior distribution satisfies:

• If max(αj , j ≤ k) < d/2, then for all ǫ > 0,

Pπ

[

∃I = {j1, ..., jk−k0},
∑

i∈I
pi < n−1/2+ǫ

∣

∣

∣

∣

∣

Xn

]

→ 1 P0.

• If min(αj , j ≤ k) > d/2, then for all ǫ < 1/2 for all permutation σ of {1, ..., k}

Pπ

[

∃I = {j1, ..., jk−k0},
∑

i∈I
pi < ǫ ∧ n−1/2+ǫ

∣

∣

∣

∣

∣

Xn

]

→ 0 P0.

Recall that (α1, ..., αk) are the hyperparameter appearing in the prior distribution on the

weights, and controlling its behaviour when some of the weights are close to 0. As a consequence

of Theorem 1, if max(αj , j ≤ k) < d/2, the posterior estimates verify

k
∑

j=k0+1

Eπ [pj |Xn] → 0

as n goes to infinity, under the convention that the classes are labelled such that the posterior
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means of the weights pj are in decreasing order. Hence if none of the components are small, it

implies that k is probably not larger than k0. Also in the case of longitudinal data, it is possible to

choose the largest possible k for all time periods and to estimate the parameters with this value of

k; the Bayesian answer would make sense and be interpretable, since at each time a components

is allocated with a small weight only if it corresponds to an empty component.

In contrast, if min(αj , j ≤ k) > d/2 and if the number of components is larger than it should

be, then 2 or more components will tend to merge with non-neglectable weights each. This will

lead to less stable behaviour since the weights of each of these 2 components can vary, and the

selection of the components that will merge can also vary. In the intermediate case, if min(αj , j ≤
k) ≤ d/2 ≤ max(αj , j ≤ k), then the situation varies depending on the αj ’s and on the difference

between k and k0. In particular, in the case where all αj ’s are equal to d/2 then although we have

no definite result we conjecture that the posterior distribution does not have a stable limit.

One of the consequences of the above result is in the choice of the prior on the weights in

mixture models. Since it is more interesting to have the posterior distribution concentrated on the

configuration where the extra components receive no weights as opposed to a merging of some of

the components, it is better to choose small values of the αj ’s. In particular in the case of location

- scale mixtures then choosing αj < 1 is preferable in this regard. Note that the special case of

a Dirichlet D(1/2, ..., 1/2) which is the marginal Jeffreys prior (associated with the Multinomial

model) is among such priors.

The usual case of a hierarchical mixture where the component’s parameters γj are independently

and identically distributed according to some common distribution hη indexed by a parameter η

where η is itself given a prior π0 falls into the setup of condition [A5] since the prior mass of sets

in the form {γ; |γ0 − γ| ≤ ǫ} is still equivalent to the Lebesgue measure of this set.

The proof of Theorem 1 is given in the appendix. However we present some aspects of it that

are of interest. Set An = {∃I = {j1, ..., jk−k0},
∑

i∈I pi > n−1/2+ǫ}, i.e. the event where the extra

components are emptied at a rate of order slightly larger than n−1/2. Then posterior probability

of An can be written as

Pπ [An|Xn] =

∫

An
eln(θ)−ln(θ0)dπ(θ)

∫

eln(θ)−ln(θ0)dπ(θ)
:=

Nn
Dn

where ln(θ) is the log-likelihood and θ0 ∈ Θ0. We prove that with probability going to 1,

Dn ≥ Cn−(dk0+k0−1+
P

j≥k0+1 ασ(j))/2,

for any permutation σ of {1, ..., k}, by considering approximations of Θ0 along paths of the form:

|γσ(i) − γ0
i | ≤ n−1/2, |pσ(i) − p0

i | ≤ n−1/2
∑

j≥k0+1

pσ(j) ≤ n−1/2.
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In constrast and by definition, An corresponds to paths approximating Θ0 where at least two

components merge, i.e. associated with partitions t of {1, ..., k0} such that there exists i ≤ k0 − 1

with ti+1 ≥ ti+2. We prove in the appendix that each of these paths has a prior mass bounded by

O((log n)qn−0.5(k0d+k0−1+d(k−k0)/2)) = o(n−(dk0+k0−1+
P

j≥k0+1 ασ(j))/2) when d/2 > max{αj , j =

1, ..., k}. Hence, when d/2 > max{αj , j = 1, ..., k} dk0+k0−1+
∑

j≥k0+1 αj appears as an effective

dimension of the model, which is different from the number of parameters, dk+k−1, or even from

some ”effective number of parameters” that would be given by the number of parameters used to

parameterize the path
∑

j≥k0+1 pj ≈ 0, due to the influence of the prior via αj , j ≥ k0 + 1.

In constrast again, when d/2 ≤ min{αj , j = 1, ..., k} a reverse phenomenon takes place, where

we bound from below Dn by considering approximations of Θ0 along paths of the following form:

if I1 = {1, ..., k − k0 + 1, }, Ii = {k − k0 + i}, i = 2, ..., k0

∣

∣

∣

∣

∣

∣

∑

j∈Ii

pj
∑

j∈Ii
pj
γj − γ0

i

∣

∣

∣

∣

∣

∣

≤ n−1/2, |
∑

j∈Ii

pj − p0
i | ≤ n−1/2 ∀j ∈ Ii, i = 1, ..., k0|γj − γ0

i | ≤ n−1/4,

i.e. by forcing all the parameters of the extra components to be close to γ0
1 . This leads to

Dn ≥ Cn−0.5(k0d+k0−1+d(k−k0)/2)),

with large probability whereas

π(Acn) ≤ δ
dk0+k0−1+

P

j≥k0+1 ασ(j)

n nǫ
Pk

j=k0+1(ασ(j)−d/2)

which is of much smaller than Dn as soon as ǫ > 1/2 so that

Pπ [Acn|Xn] = op(1).

An interesting feature of this argument is that it shows that the asymptotic behaviour of

the posterior distribution is driven by prior mass of approximating paths to the true density f0.

This acts as a penalization factor in a way which is more subtle than the mere dimension of the

parameter. This phenomenon is also observed in Rousseau (2007) in the framework of consistency of

Bayes factors. It is of interest to note that the natural penalization induced by Bayesian approaches

is not only crucial in test problems but also in point estimation problems.

In the following section we conduct a simulation study first to illustrate the above results but

also to study the possible behaviours one could expect when maxαj ≥ d/2.
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3. Examples

We illustrate the results derived in the previous section with a very simple study of fitting a two-

component Gaussian mixture model to a sample of data, Y = {yi, i = 1, .., n}, generated from a

single-component Gaussian distribution, say N (0, 1). Note that assumptions [A1]-[A5] are satisfied

in the case of location mixtures of Gaussians or location mixtures of Gaussians. In particular,

condition [A1] has been proved by Ghosal and van der Vaart (2006), [A2]-[A4] are weaker versions

of the hypothesis required in Chambaz and Rousseau (2008) and are therefore satisfied for mixtures

of Gaussians. We consider noninformative priors on p and µ so that [A5] is also satisfied.

We consider three cases corresponding to dimensions d = 1, 2, > 2, respectively:

• Case 1 : α1 = α2 = 1 > d/2 and αj − d/2 = 1/2.

yi ∼ N(0, 1) ; G = pN (µ1, 1) + (1 − p)N (µ2, 1),

where N (µ, τ) denotes the univariate normale distribution with mean µ and variance τ . In

this case Theorem 1 implies that for any ǫ > 0, Pπ [p2 < n−ǫ|Xn] = op(1), which might still

contain the possibility that the extra component eventually becomes empty as the sample

size becomes very large, but at a very slow rate.

• Case 2 : α1 = α2 = d/2.

yi ∼ N(0, 1) ; G = pN (µ1, σ12) + (1 − p)N (µ2, σ22)

The theorem does not cover this case. It is our belief, however, that the posterior might still

concentrate on the configuration where the extra component becomes eventually empty as

the sample size increases.

• Case 3 : α1 = α2 < d/2.

yi ∼ N2(0, 1) ; G = pN2(µ1
,Σ1) + (1 − p)N2(µ2

,Σ2)

where, in the last case, N2(µ̄,Σ) represents a bivariate normal distribution with mean µ = (µ1, µ2)
′

and covariance matrix Σ. In the present case we only consider covariance matrices Σj to be diagonal

with off-diagonals (covariances) equal to zero and diagonals (variances) given by σ2
j1, σ

2
j2, j = 1, 2

. In the above cases the generating distributions are N (0, 1) and G denotes the model to be

estimated. For each case, replicate samples of size 100, 500, 1000 and 5000 were generated and

estimates of the mixture parameters were obtained based on 10,000 iterations of a standard Gibbs

algorithm using conjugate, noninformative priors. Figures 1 and 2 depict the behaviour of the

estimated parameters for one representative replicate of sample size 1000, for d = 1 and d = 3,

respectively. Other replicates revealed similar behaviour although, as expected, the results based
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Figure 1. Left : trace of MCMC outputs, Right : boxplot of posterior means (60 replicates) in the case d=1

and n=1000
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Figure 2. (representative) trace of MCMC outputs in the case d=3 and n=1000

on smaller samples (n = 100) were less compelling than those based on larger samples. The

empirical findings support the theoretical asymptotic behaviour described in the previous section:

for d = 1 the posterior distribution of the weights is unstable, even with increasing sample size,

but the parameters of the components become closer and closer to mean equal to 0 and variances

equal to 1, as the sample size increases. On the contrary, when d = 3 one component is effectively

empty.

Figures 3 and 4 summarise the estimated parameters for the case d = 2. For this case, no theory

was established; it was proposed that the weights could behave quite differently across replicates,

although they could stabilise to an empty component in a longer MCMC run or with larger sample

size. This is indeed reflected in the Figures.
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Figure 3. density and boxplots of posterior means (based on 60 replicates) in the case d=2 and n = 1000

4. Discussion

This paper has contributed to an increased understanding of an important problem in mixture

modelling, namely the concern about the impact of over-fitting the number of components in the

mixture. This practice is ubiquitous and its impact is felt both in situations in which the mixture

components and associated parameters are literally interpreted, and in situations in which the

mixture is used as a convenient model-fitting framework.

The results presented in this paper contribute to the partial solutions provided in previous

literature by describing the asymptotic behaviour of the posterior distribution when the typical

additive mixture distribution is over-fitted. The main consistency result indicates that the posterior

distribution concentrates on a sparse representation of the true density; this is exhibited by a subset

of components that adequately describe the density remaining well described and any superfluous

components becoming empty. Estimators based on the posterior distribution thus exhibit quite

stable behaviour in the presence of over-fitting, as opposed to alternatives such as the maximum

likelihood estimator which can be quite unstable in this situation.

Importantly, the asymptotic behaviour appears to depend on the dimension of the mixture

parameters in relation with the form of the prior distribution on the weights, in particular in cases

of low dimensional parameters γ (d ≤ 2) it becomes necessary to favour small weights with a

prior in the form p
−1/2
1 ...p

−1/2
k , which interestingly corresponds to the noninformative prior in a

multinomial model. It thus appears that in this subtil framework, the prior has an impact to first

order since the asymptotic behaviour of the posterior distribution depends heavily on the form of

the prior.

These results thus provide practical guidelines for the cases that they address. Overfitted

mixtures can thus be used as an alternative to estimating the number of components and it also

provides some guidelines as to the choice of the prior distribution.
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The paper has also identified cases for which further research is required, such as the interme-

diate case where min(αj) ≤ d/2 ≤ max(αj), for which no description of the asymptotic behaviour

of the posterior distribution is obtained.
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5. Appendix: Proof of Theorem 1

Set An = {∃I = {j1, ..., jk−k0},
∑

i∈I pi > n−1/2+ǫ} for some ǫ > 0. The posterior probability of

interest is bounded by

Pπ [An|Xn] = Pπ [An ∩ {||f − f0|| ≤Mδn}|Xn] + oP (1)

=

∫

A′
n
eln(θ)−ln(θ0)dπk(θ)

∫

||f0−fθ||≤Mδn
eln(θ)−ln(θ0)dπk(θ)

+ oP (1)

where A
′

n = An ∩ {||f − f0|| ≤Mδn}. We denote by

Nn =

∫

An

eln(θ)−ln(θ0)dπk(θ) and Dn =

∫

||f0−fθ||≤Mδn

eln(θ)−ln(θ0)dπk(θ). (4)

To prove the first part of Theorem 1 we first prove that for all ǫ > 0, there exists Cǫ such that for

all permutations σ : {1, ..., k} → {1, ..., k},

Pn0

[

Dn ≥ Cǫn
−dk0−k0+1−

Pk
j=k0+1 ασ(j)

]

> 1 − ǫ, π(An) ≤ Cδdk0+k0−1+d/2(k−k0)
n (5)

The combination of these two inequalties implies that for all ǫ > 0, with probability larger than

1 − ǫ,

Pπ [An|Xn] = op(1)
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which terminates the proof of the first part of Theorem 1. Similarly if d/2 < min{αj , j = 1, ..., k},
we obtain

Pn0

[

Dn ≥ Cǫn
−dk0−k0+1−d(k−k0)/2

]

> 1 − ǫ., π(Acn) ≤ Cmax
σ

n−dk0−k0+1−
Pk

j=k0+1 ασ(j) (6)

which leads to

Pπ [Acn|Xn] = op(1) .

We now establish (5) and (6). We start with (5). Throughout the proof we write all constants

whose value are of no consequence to be equal to 1. First

Dn ≥
∫

Sn

eln(θ)−ln(θ0)dπk(θ)

where

Sn = {θ = (p1, ..., pk, γ1, ..., γk); |pj−p0
j | ≤ n1/2; |γj−γ0

j | ≤ n−1/2, j = 1, ..., k0; |γj−γ∗j | ≤ ǫ1, j ≥ k0+1}

where γ∗j ∈ Γ0, j ≥ k0 +1 and satisfy mink0<l 6=j |γ∗j −γ∗l | > Cǫ1, with C, ǫ1 > 0 fixed. By definition

of Γ0, minl≤k0 |γ∗j − γ0
l | > Cǫ1 and by definition of Sn,

∑

j≥k0+1 pj ≤ k0δn. Such a path to

approach Θ0 corresponds to the partition t = (0, 1, 2, ..., k0). Let (φt, ψt) be the parameterisation

of θ associated to the partition t. We consider a Taylor expansion of ln(φt, ψt) − ln(φ
0
t
, ψt). By

convention and without loss of generality we write p1 = 1−∑j≥2 pj and write p0
j = 0 and γ0

j = γj

for j = k0 + 1, ..., k. Then

ln(φt, ψt) − ln(φ
0
t
, ψt) =

√
n(φt − φ0

t
)TUn − n

2
(φt − φ0

t
)TJ(φ̄)(φt − φ0

t
) (7)

where J(φ̄) = −∂2ln(φ̄t, ψt)/∂φt∂φ
T
t
, φ̄t ∈ (φt, φ

0
t
) . and

Un(i−1) = Gn

(

fγ0
i
− fγ0

1

f0

)

, i = 2, ..., k, Un(i) = Gn

(

∇lgγ0
j

f0

)

, i = k−1+l+(j−1)∗d, j ≤ k0

then Un = 0p(1). Denote by Ωn(c0, C) = {(θ,Xn);J(φ̄) ≤ c0nI(θ); |Un| ≤ C} where I(θ) is a

Fisher information matrix defined as En0
[

J(φ0)
]

. Assumptions [A2] and [A3], together with basic

algebra imply that I is bounded from above by a constant times the identity matrix uniformly on

Sn so that the log likelihood ratio is bounded from below by
√
n(φt − φ0

t
)TUn − C0n

2 ||φt − φ0
t
||2 for

some positive constant C0 on Ωn(c0, C). This leads to

∫

Sn∩Ωn

eln(θ)−ln(θ0)dπk(θ) ≥ e
1

2C0
||Un||2

∫

Sn∩Ωn

e−
nC0

2 ||φt−φ0
t
−C−1

0 Un/
√
n||2dπk(θ)

≥
∫

Sn∩Ωn

e−
nC0

2 ||φt−φ0
t
−C−1

0 Un/
√
n||2dπk(θ) .
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Recall that on Sn, pj ≥ 0 for j ≥ k0 + 1. Using assumption [A5] we can bound from below πk(θ)

by c1p
αk0+1−1

k0+1 ...pαk−1
k . Thus on Ωn(c0, C), we have

∫

Sn

e−
C0n

2 ||φt−φ0
t
−C−1

0 Un/
√
n||2πk(θ)dθ ≥ n−(dk0+k0−1)/2

k
∏

j=k0+1

∫ δn/k0

0

e−
nC0

2 (pj−Un(j))2p
αj−1
j dpj

≥ n−(dk0+k0−1+
P

j>k0
(αj−1))/2

k
∏

j=k0+1

∫ δn/k0

c/
√
n

e−
nC0

2 (pj−Un(j))2dpj

≥ n−(dk0+k0−1+
P

j>k0
αj)/2

k
∏

j=k0+1

Φ(C1)

≥ n−(dk0+k0−1+
P

j>k0
αj)/2

where c > 0 is chosen small enough and where C1 depends on C, c, C0. To obtain the best lower

bound we can choose the permutation σ∗ defined in Theorem 1. Set A(k) = (dk0 + k0 − 1 +
∑

j>k0
αj)/2, and a > 0 as small as need be; then

Pn0

[

Dn < cn−A(k)
]

≤ Pn0

[∫

Sn∩Ωn

e−
nC0

2 ||φt−φ0
t
−C−1

0 Un/
√
n||2dπk(θ) < 2an−A(k)

]

≤ Pn0

[

∫

Sn∩Ωc
n

e−
nC0

2 ||φt−φ0
t
−C−1

0 Un/
√
n||2dπk(θ) >

∫

Sn

e−
nC0

2 ||φt−φ0
t
−C−1

0 Un/
√
n||2dπk(θ)/2

]

≤
En0

[

∫

Sn∩Ωc
n
e−

C0n
2 ||φt−φ0

t
−C−1

0 Un/
√
n||2dπk(θ)

]

Cn−A(k)
+ o(1)

≤ C ′nA(k)

∫

Sn

Pn0 [Ωcn] dπk(θ),

The lower bound in (5) is then proved by determining an upper bound on Pn0 [Ωcn(c0, C)]. Note first

that for all ǫ > 0 there exists C > 0 such that with probability greater than 1− ǫ, |Un| ≤ C. Then

we bound for each i, i′ ≤ k − 1 + k0d , and some c > 0 small enough Pn0 [J(i, i′) − nI(i, i′) < cn].

We have if i, i′ ≤ k − 1,

J(i, i′) − nI(i, i′) =
√
nGn

(

(gγ0
i
− gγ0

1
)(gγ0

j′
− gγ0

1
)

f2
0

)

+ nPn [∆θ̄(i, i
′)]

with

∆θ̄(i, i
′) =

(

(gγ̄i − gγ̄1)(gγ̄i′
− gγ̄1)

f2
θ̄

)

−
(

(gγ0
i
− gγ0

1
)(gγ0

i′
− gγ0

1
)

f2
0

)

Using a Tchebychev inequality the first term is less than nc/2 with probability

Cn−1F0





(

(gγ0
i
− gγ0

1
)(gγ0

j′
− gγ0

1
)

f2
0

)2


 ≤ Ck0

nminj≤k0(p
0
j )

4
+ n−1 max

γ∈Γ0

F0

(

g4
γ

f4
0

)

Assumption [A3] implies that the second term on the right hand side of the above inequality is

of order O(n−1), so that the above probability is O(n−1). To study the behaviour of ∆θ(i, i
′) we
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consider its derivatives : if i, i′ ≤ k − 1, Then if i, i′ ≤ k − 1

∣

∣

∣

∣

∂∆(i, i′)

∂pj

∣

∣

∣

∣

=

∣

∣

∣

∣

(gγi − gγ1)(gγi′
− gγ1)(gγj − gγ1)

f3
θ

∣

∣

∣

∣

≤
[ḡγ0

i
+ ḡγ0

1
][ḡγ0

i′
+ ḡγ0

1
][ḡγ0

j
+ ḡγ0

1
]

(1 − δn)3
(

∑k
j=1 p

0
jgγ0

j

)3

and if i, i′ ≤ k − 1, j ≤ k0,

∣

∣

∣

∣

∂∆γ(i, i
′)

∂γj

∣

∣

∣

∣

=

∣

∣

∣

∣

(gγi
− gγ1)(gγi′

− gγ1)∇gγj

f3
θ

+ 1lj=i
∇gγi(gγi′

− gγ1)

f2
θ

+ 1lj=i′
∇gγi′

(gγi − gγ1)

f2
θ

−1lj=1
∇gγ1(gγi′

+ gγi − 2gγ1)

f2
θ

∣

∣

∣

∣

≤
[h̄γ0

i
+ gγk

][h̄γ0
i′

+ gγk
][h̄γ0

j
+ gγk

]

(1 − δn)3
(

∑k
j=1 p

0
jhγ0

j

)3 + 1lj=i
sup|γ−γ0

i |≤δ |∇gγ |(h̄γ0
i′

+ gγk
)

(1 − δn)3
(

∑k
j=1 p

0
jhγ0

j

)2

+1lj=i′
sup|γ−γ0

i′
|≤δ |∇gγ |(h̄γ0

i
+ gγk

)

(1 − δn)3
(

∑k
j=1 p

0
jhγ0

j

)2 .

Assumptions [A2] and [A3] imply that there exists δ,M > 0 such that

F0

(

sup
θ∈Sn

∣

∣

∣

∣

∂∆γ(i, i
′)

∂γj

∣

∣

∣

∣

)

≤M < +∞ ∀j,∀i, i′ ≤ k − 1,

so that for all c > 0, there exist δ0 such that for all δ < δ0,

P0

[

Pn

∣

∣

∣

∣

sup
θ∈Sn

|∆(i, i′)|
∣

∣

∣

∣

> c

]

≤ δM

c
,

which can be made as small as necessary. Similarly if i ≤ k − 1 and i′ ≥ k,

J(i, i′) − nI(i, i′) =
√
nGn

(

(gγ0
i
− gγk

)∇gγ0
j′

f2
0

)

+ nPn [∆θ̄(i, i
′)]

with

∆θ̄(i, i
′) =

(gγ̄i
− gγk

)∇gγ̄i′

f2
θ̄

−
(gγ0

i
− gγk

)∇gγ0
i′

f2
0

Assumptions [A2] and [A3] imply that using a Tchebychev inequality |J(i, i′) − nI(i, i′)| < cn for

all c > 0 with probability of order o(1). Also looking at the derivative of ∆γ(i, i
′) we obtain an

upper bound with terms of the form

sup|γ−γ0
i |≤δ |∇gγ | sup|γ−γ0

i′
|≤δ |∇gγ |

(1 − δn)3
(

∑k
j=1 p

0
jhγ0

j

)2 ,
sup|γ−γ0

i |≤δ |D
2gγ |(h̄(γ0

i′) + gγk
)

(1 − δn)3
(

∑k
j=1 p

0
jhγ0

j

)2
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and

sup|γ−γ0
i′
|≤δ |∇gγ |[h̄γ0

i
+ gγk

][h̄γ0
j

+ gγk
]

(1 − δn)3
(

∑k
j=1 p

0
jhγ0

j

)3 ,
sup|γ−γ0

i′
|≤δ |∇gγ | sup|γ−γ0

j |≤δ |∇gγ |[h̄γ0
i

+ gγk
]

(1 − δn)3
(

∑k
j=1 p

0
jhγ0

j

)3

so that

Pn0

[

|Pn
[

sup
θ∈Sn

|∆(i, i′)|
]

| < c

]

≤ Cδ/c.

The same calculations can be made for the terms J(i, i′) when i, i′ ≥ k, so that finally there

exists c0, C > 0 such that for all θ ∈ Sn P
n
0 [Ωcn(c0, C)] ≤ 2ǫ and the lower bound of Dn in (5) is

established.

To bound π(An) in (5), we need to characterize θ ∈ An. For each θ ∈ An, consider a partition

t∗ and a permutation σ∗ which minimizes 2|γ| + |λ|2, where

γ =



[(si + p0
i )(
∑

j∈Ii

qjγj − γ0
i )]

k0
i=1, (si)

k0
i=2, (pj)

k
j=tk0

+1



 λ =
(

[
√
qj(γj − γ0

i )]j∈Ii
, i = 1, ..., k0

)

.

Since θ ∈ An, for such a (t∗, σ∗), (2|γ|+ |λ|2)(t∗, σ∗) goes to zero as n goes to infinity, and we can

consider a Taylor expansion of fθ in terms of φt around φ0
t
:

fθ = f0 + (φt − φ0
t
)T f

′

(φ0
t
,ψt)

+
1

2
(φt − φ0

t
)T f”

(φ0
t
,ψt)

(φt − φ0
t
) +

1

6
(φt − φ0

t
)(3)f

(3)

(φ̄t,ψt)

where φ̄t ∈ (φt, φ
0
t
). The last term of right hand side of the above equation is bounded by C|φt−φ0

t
|3

in L1 for some positive constant C > 0, it is thus o(|φt −φ0
t
|2). Therefore, droping the dependence

on σ∗, t∗ set η = |λ|2/(2|γ| + |λ|2), and

fθ − f0 =
1

2
(2|γ| + |λ|2)

(

(1 − η)w(γ)TL′ + ηw(λ)TL”w(λ) + o(1)
)

(8)

where w(x) = x/|x| if x 6= 0 and

L′ =

(

(∇gγ0
1
)T , ..., (∇gγ0

k0
)T , gγ0

1
− gγ0

k0
, ..., gγ0

k0−1
− gγ0

k0
, gγ0

tk0
+1

− gγ0
k0
, ..., gγ0

k
− gγ0

k0

)

,

L” = diag
(

p0
1D

2gγ0
1
, ..., p0

k0D
2gγ0

k0

)

.

We now prove that there exists c > 0 and N ∈ IN such that for all n ≥ N and all θ ∈ An,

|λ|2 + 2|η| ≤ δn/c. Indeed, were it not the case, we could construct a sequence cn decreasing to 0

such that there would exist a subsequence θrn
satisfying

∣

∣

∣(1 − ηrn)w(γrn)TL
′

rn
+ ηrnw(λrn)TL”w(λrn)

∣

∣

∣ ≤ cn. (9)
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Thus to prove that |λ|2 + 2|η| ≤ δn/c for some c, it is enough to find a subsequence of θn which

contradicts (9). Thus to simplify notations we write without loss of generality all subsequences θn.

Since the set of possible partitions t∗ and σ∗ is finite, there is a subsequence of θn along which t∗

and σ∗ are constants. From now on we work with this t∗ and σ∗ which we drop from our notations

hereafter. Since w(γn), w(λn), ηn vary in a compact set there exists a subsequence which converges

to w(γ), w(λ), η on the unit spheres of dimensions k0 and k− k0 − 1 and on [0, 1] respectively, and

which we still denote w(γn), w(λn), ηn.

We first consider the case where Γ is compact. Then θn belongs to a compact set and there

exists a subsequence such that L
′

n is consistent to some vector L
′

∞ corresponding to some θ ∈ Θ0.

At the limit, inequality (9) becomes

(1 − η)w(γ)tL
′

∞ + ηw(λ)tL”w(λ) = 0

and if 0 < η < 1 we can construct (φ, ψ) based on w(γ), w(λ) and η such that there exists u > 0

for which

f ′φ0,ψ(φ− φ0) + 0.5(φ− φ0)tf ′φ0,ψ(φ− φ0) = u(1 − η)w(γ)tL
′

∞ + uηw(λ)tL”w(λ) = 0

which contradicts assumption [A4]. If η = 1 such a construction still exists and satisfies for all

i = 1, ..., k0,
∑

j∈Ii
qjγj = γ0

i , si = 0 pj = 0, i = 1, ..., k0 − 1 and j = tk0 + 1, ..., k
√
qj(γj − γ0

i ) =

uwti−1+j with u > 0 small. This is possible even if there exists i ≤ k0 such that ti = ti−1 + 1,

i.e. the class of components close to γ0
i is a singleton, since then, having η̃n → 1 means that

|γ̃n| = o(|λ̃|2n) and

|γ̃ − γ0
i | = o





∑

i

∑

j∈Ii

qj(γ̃j − γ0
i )

2



 . (10)

Therefore if wti(λ̃n) → wti 6= 0 then there exists c1 > 0 such that

(γti − γ0
i )

2 ≥ c1





∑

i

∑

j∈Ii

qj(γj − γ0
i )

2





which contradicts (10). If η = 0, then (9) leads to w(γ)tL
′

∞ = 0. Note that the constraints on w(γ)

are the following: for the components corresponding to pj , j ≥ tk0 + 1, the terms wl are greater

or equal to 0. Assumption [A4] together with the positivity of the weights associated to the pj ’s,

j = tk0 + 1, ..., k, imply that for all i = 1, ..., k0 − 1, wi(γ)
t∇gγ0

i
+ wk0+ig

0
γi

= 0 and

∀i = 2k0, ..., k + 2k0 − 1 − tk0 , wi(γ) = 0, and gγ0
k0

2k0−1
∑

i=k0+1

wi(γ) − wk0∇gγ0
k0

= 0
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Therefore for all i = 1, ..., k0 − 1

wk0+i(γ) = −
wi(γ)

t∇gγ0
i

g0
γi

= −wi(γ)t∇ log gγ0
i

Since Eγ0
i
∇ log gγ0

i
(X) = 0, the above equality implies that for all i = k0+1, ..., 2k0−1, wk0+i(γ) =

0. The regularity asumption [A2] (positivity of the Fisher information matrix) of each model gγ

implies that wt∇ log gγ = 0 ⇔ w = 0. We finally obtain that w(γ) = 0 which contradicts the fact

that w(γ) belongs to the sphere with radius 1. If Γ is not compact, for any converging sub-sequence

of θn to a point Θ0 for which all components parameters γj belong to Γ we can apply the arguments

of the compact case, leading to a contradiction of (9). We thus only need consider sub-sequences

which do not converge to such a point. In other words and without loss of generality we can assume

that θn converges to a point in Θ̄0, where at least one of the components’ parameters belongs to

∂Γ. Let J = {j ≤ k; γj,n → ∂Γ} 6= ∅. By definition of t∗, J ⊂ {tk0 + 1, ..., k} and choosing σ∗

accordingly we can write J = {k1, ..., k} with k1 ≥ tk0 +1. Hence for all j < k1, there exists γj ∈ Γ

such that γj,n → γj . We split L′
n into L

′

n,(1) and L
′

n,(2) where L
′

n,(2) = (gγj,n
− g0

γk0
, j = k1, ..., k)

and by definition of k1, Ln,(1) converges to L
′

∞,(1) so that (9) becomes in the limit,

∣

∣

∣(1 − η)wt(1)(γ)L
′

(1) + (1 − η)wt(2)(γ)L
′

n,(2) + ηw(λ)tL”w(λ)
∣

∣

∣

1
→ 0 (11)

as n goes to infinity, where the only term depending on n is L
′

n,(2). If η < 1 then (11) can be

written as: there exists h integrable such that

lim
n→∞

∣

∣

∣

∣

∣

∣

k−k1+1
∑

j=1

w(2),j(γ)gγj+k1−1,n
− h

∣

∣

∣

∣

∣

∣

1

= 0

if w(2)(γ) 6= 0 then set w̄2 =
∑

l w(2),l and since w(2),l ≥ 0 for all l, then (11) can be expressed as

∣

∣

∣

∣

∣

∣

k−k1+1
∑

j=1

pjgγj+k1−1,n
− h/(1 − w̄2)

∣

∣

∣

∣

∣

∣

1

→ 0, pj = w(2),j/w̄2

Thus h/(1 − w̄2) is a probability density and
∑k−k1+1
j=1 pjgγj+k1−1,n

converges towards a proper

probability density which contradicts assumption [A4 non compact ]. Hence w(2) = 0 and we can

apply the same arguments as in the compact case to conclude. If η = 1, then we can use the same

argument as in in the compact case since L
′

n,(2) has no influence.

Therefore on An

|λ|2 + 2|η| ≤ δn,
∑

j≥k0+1

pj > n−1/2+ǫ
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so that for all θ ∈ An, (t∗, σ∗) must satisfy :

∃i ≤ k0, card(Ii) ≥ 2, ∃j1, j2 ∈ Ii, qj1 > ǫ/k0, qj2 > n−1/2+ǫ

without loss of generality we set i = 1 and j1 = 1, j2 = 2. Then we obtain

|si| ≤ δn, ∀i ≤ k0 − 1 pj ≤ δn, j = tk0 + 1, ..., k,

∣

∣

∣

∣

∣

∣

∑

j∈Ii

qjγj − γ0
i

∣

∣

∣

∣

∣

∣

≤ δn, qj |γj − γ0
i |2 ≤ δn

We now bound the prior probability of such a set : The constraints on the si’s and on the pj ’s

imply that

π({|si| ≤ δn,∀i ≤ k0}) ≤ Cδk0−1
n , π ({pj ≤ δn, j = tk0 + 1, ..., k}) ≤ δ

Pk
j=tk0

+1 αj

n .

Also on I1

q1(γ1 − γ0
1) = −

∑

j∈I1,j>1

qj(γj − γ0
1) + 0(δn), q2 > n−1/2+ǫ, |γj − γ0

1 | ≤
√

δn/qj , j ∈ I1

the prior probability of the set of (q1, γ1, q2, γ2, qjγj , j > 2, j ∈ I1) satisfying the above constraints

is bounded by

V1 ≤ δdn

∫

q2=n−1/2+ǫ

(δn/q2)
d/2

qα2−1
2 dq2

∏

j>2,j∈I1

∫

qj ,γj

1l|γj−γ0
1 |≤

√
δn/qj

q
αj−1
j dqjdγj

Note that

∫

qj ,γj

1l|γj−γ0
1 |≤

√
δn/qj

q
αj−1
j dqjdγj ≤ δαj

n + δd/2n

∫ 1

δn

qαj−1−d/2dq

≤ δαj∧d/2
n (log n)1lαj=d/2

and we finally obtain that there exists q > 0 such that

V1 ≤ (log n)qδd+d/2n

(

1 + δ(1−2ǫ)(α2−d/2)
n

)

δ
Pt1

j=3 αj∧d/2
n

Similarly the prior probability of the set of parameters associated with Ii is bounded by

Vi ≤ δ
d+

Pti
j=ti−1+2 αj∧d/2

n

Finally the volume of the set of θ ∈ An associated with the partition t is bounded

Vt ≤ δ
k0−1+

Pk
j=tk0

+1 αj+dk0+d/2+
P

tk0
j=3 αj∧d/2−

Pk0−1
i=1 αti+1∧d/2

n (log n)q
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If maxj αj < d/2 then

Vt ≤ δ
k0−1+dk0+d/2+

Pk
j=3 αj−

Pk0−1
i=1 αti+1

n

So that with probability going to 1, VtDn ≤ δ
d/2−max(αj)
n and π(An)Dn ≤ δ

d/2−max(αj)
n and

Pπ [An|Xn] = op(1) if max{αj , j = 1, ..., k} < d/2.

We now prove the second part of Theorem 1, where min{αjj = 1, ..., k} > d/2 and we prove that

Pπ [Acn|Xn] = op(1). (12)

To prove (12) we need a different lower bound of Dn, based on a different approximative set S̃n of

f0, since the approximative path based on
∑k
j=k0+1 pj ≈ 0 is not the most parcimonious in terms

of prior mass. Consider t = (0, k − k0 + 1, k − k0 + 2, ..., k) so that tk0 = k and define

S̃n = {(φt, ψt); |γ̄i − γ0
i | ≤ n−1/2; |si| ≤ n−1/2; qj |γj − γ0

i |2 ≤ n−1/2, ∀j ∈ Ii, i = 1, ..., k0}

where γ̄i =
∑

j∈Ii
qjγj , φt = (γj , j ≤ k; si, i = 2, ..., k0) and ψt = (qj , j ∈ Ii, i ≤ k0). Similar

computations to those made on the terms Vt lead to (up to fixed multiplicative constants)

π
(

S̃n

)

≤ n−(k0−1+dk0+d/2(k−k0))/2, π
(

S̃n

)

≥ n−(k0−1+dk0+d/2(k−k0))/2.

To lower bound Dn we consider a Taylor expansion of ln(φt, ψt) around φt = φ0
t

to the order 3

ln(φt, ψt) − ln(φ
0
t
, ψt) =

√
n(φt − φ0

t
)TWn − n

2
(φt − φ0

t
)TH(φt − φ0

t
) +Rn (13)

where H = −∂2ln(φ0
t
,ψt)

∂φt∂φT
t

, and noting

Wn(t) = Gn

(

p0
i qj∇lgγ0

i

f0

)

, t = l+(j−1)d, j ∈ Ii, Wn(kd+t) = Gn

(

f0
γt+1

− f0
γ1

f0

)

, t = 1, ..., k0−1

and

Rn =
1

6

∑

r1,r2,r3

(φt − φ0
t
)r1(φt − φ0

t
)r2(φt − φ0

t
)r3

∂l3n
∂φt,r1φt,r2φt,r3

(φ̄t, ψt) φ̄t ∈ (φt, φ
0
t
).
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We have

(φt − φ0
t
)TWn =

k0
∑

i=1

p0
i (γ̄i − γ0

i )
T

Gn

(∇gγ0
i

f0

)

+

k0
∑

i=2

siGn

(

gγ0
i
− gγ0

1

f0

)

= Op

[

k0
∑

i=1

||γ̄i − γ0
i || +

k0
∑

i=2

|si|
]

= Op(n
−1/2). (14)

The difficulty in proving that the second term in (13) is of order Op(1) comes from the fact that

|φt − φ0
t
| is not of order n−1/2 since for each j ∈ I1 ||γj − γ0

1 || = O(n−1/4. However simple

computations leads to

n

2
(φt − φ0

t
)TH(φt − φ0

t
) = Op

(

n

(

∑

i

s2i + ||γ̄i − γ0
i ||2
))

= Op(1)

We now study Rn. Each term including at least one si or one (γk−k0+i−1 − γ0
i ), i ≥ 2 are of order

Op(n
−1), therefore we need only consider derivatives of the loglikelihood in the form:

∂3ln
∂γj1l1∂γj2l2∂γj3,l3

, j1, j2, j3 ∈ I1

Straightforward computations computations imply that for all l1, l2, l3 ≤ d,

∑

j,j2,j3∈I1
(γj1l1 − γ0

i2l1)(γj2l2 − γ0
i2l2)(γj3l3 − γ0

i3l3)
∂3ln

∂γj1l1∂γj2l2∂γj3,l3

= Op



n



||γ̄1 − γ0
1 ||
∑

j∈I1
||γj − γ0

1 ||2 + n−1/2
∑

j∈I1
||γj − γ0

1 ||3 +
∑

j∈I1
||γj − γ0

1 ||4








under the assumption that for all i = 1, ..., k0,

F0

[

sup
|γ−γ0

i |≤δ

|D4gγ |
gγ

]

< +∞

Finally uniformly over S̃n, ln(φt, ψt)− ln(φ
0
t
, ψt) = Op(1) and using similar computation as in the

case d/2 > maxj αj , for all ǫ > 0 there exists Cǫ > 0 such that

Pn0

[

Dn < n−(dk0+k0−1+d(k−k0)/2)/2Cǫ
]

≤ ǫ.

We then bound

π [Bn] where Bn := {|f0 − fθ| ≤ δn} ∩ {
k
∑

i=k0+1

pi ≤ n−1/2+ǫ}

The argument used in the control of π(An) imply that π [Bn] is bounded by the prior on the set
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constraint by : for all t

|si| ≤ δn; ||
∑

j∈Ii

qjγj − γ0
i || ≤ δn qti+j ≤ n−1/2+ǫ, j = 2, ..., ti+1 − 1 ∀i = 1, ..., k0

qj ||γj − γ0
i ||2 ≤ δn ∀j ∈ Ii, i = 1, ..., k0 and

∑

j≥tk0
+1

pj ≤ δn.

The prior probability of such a set is bounded by a term of order

δ
dk0+k0−1+

P

j≥k0+1 ασ(j)

n nǫ
Pk

j=k0+1(ασ(j)−d/2)

so that Pπ [Bn|Xn] = op(1) if d(k − k0)/2 <
∑

j≥k0+1 ασ(j) − 2ǫ
∑k
j=k0+1(ασ(j) − d/2) which is

satisfied as soon as ǫ < 1/2.


