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1. Introduction

In recent years, considerable attention has been paid to the development of
a qualitative theory for difference equations. Recent contributions were made
by many authors including [1-11].

In particular, paper [1] surveys the existence and approximation of solutions
for a discrete system. Stability criteria are derived for difference equations of
Volterra type degenerate Kernels in paper [2]. The main objective in papers
[3, 5] is to extend some of the main results in asymptotic theory to difference
systems of Volterra type. In the paper [6], topological methods were used to
study stability in the first approximation of some nonlinear Volterra difference
equations. In papers [7, 8], weighted norms are used to find sufficient conditions
under which discrete Volterra equations have unique solutions. The problem of
asymptotic equivalence in difference equations has been considered for exam-
ple in papers [3, 4, 9, 10, 11]. In these papers block dichotomy was used to
study relations between the solution of a linear difference system and perturbed
difference system associated with the linear system.

This paper is divided into two sections not including Introduction and Re-
solvent. In the first section (Section 3) we consider linear system of difference
equations and give sufficient condition for this equation has the solution which
tends to a constant vector. In Section 4, using the resolvent kernel we provide
a criterion for the asymptotic equivalence between the unperturbed linear and
perturbed nonlinear Volterra systems.

Let

Z = {0, 1, 2, . . .}, N(n0) = {n0 + 1, n0 + 2, . . .}, n0 ∈ Z,
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Rk – the k-dimensional real Euclidean space with norm

|x| =
k∑

i=1

|xi|, x = (x1, . . . , xk),

Mk – the space of all k × k metrics A = (aij) with norm | ◦ | given by

|A| =
k∑

i=1

k∑

j=1

|aij |.

The identity matrix is defined by E.

2. Resolvent

Consider a system of linear equations

(1) y(n) = f(n) +
∞∑

s=n+1

K(n, s)y(s)

where f, y Z → Rk,K(n, s) is from Mk.
Let us assume that a unique solution y of system (1) exists for all finite

n. Let us find the solution y as a function of f and auxiliary k × k matrix
R(n, j), n ≤ j < ∞ referred to as resolvent.

Let

K1(n, s) = K(n, s),

Kq(n, s) =
s−1∑

r=n+1

K(n, r)Kq−1(r, s)

and

(2) R(n, s) =
∞∑

q=1

Kq(n, s).

The k×k matrix R(n, s) is called the resolvent kernel associated with the kernel
K(n, s).

It is now easy to conclude that the resolvent R(n, s) satisfies the relations

(3) R(n, j) = K(n, j) +
j−1∑

s=n+1

R(n, s)K(s, j)

and

(3′) R(n, j) = K(n, j) +
j−1∑

s=n+1

K(n, s)R(s, j),
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for j ≥ n, where
l∑

s=k

u(s) ≡ 0 for l < k.

In terms of the resolvent matrix R(n, s) of (2) (analogously as in integral
equations) the solution of (1) can be written as

(4) y(n) = f(n) +
∞∑

s=n+1

R(n, s)f(s).

From (1), multiplying by R(n, j) and summing with respect to j between n + 1
and ∞, we obtain

∞∑

j=n+1

R(n, j)(y(j)− f(j)) =
∞∑

j=n+1

( j−1∑
s=n+1

R(n, s)K(s, j)
)
y(j).

Then, by virtue of (3’) and (1) we obtain the desired form (4) of the solution of
the system (1).

3. Asymptotic properties

Asymptotic properties of the Volterra discrete system (1) is discussed in this
part.

Lemma 3.1. Suppose that

1◦ the functions f(n) and K(n, s) are defined for n ≥ n0, s ≥ n0,

2◦ lim
n→∞

|f(n)| = M < ∞,

3◦ lim
n→∞

∞∑
s=n0

|K(n, s)| = µ < 1, lim
n→∞

n1∑
s=n0

|K(n, s)| = 0 for each n1 ≥ n0,

4◦ the equation

(5) y(n) = f(n) +
∞∑

s=n0

K(n, s)y(s) (n ≥ n0)

has a solution y(n) such that |y(n)| ≤ L for n ≥ n0.

Then the following inequality holds

lim
n→∞

|y(n)| ≤ M

1− µ
.
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Proof. Agarwal [1] gave sufficient conditions for the existence of the solution of
equation (5). For the given ε ∈ (0, 1 − µ) we choose n1 ≥ n0 and n2 ≥ n1 so
that

n1∑
s=n0

|K(n, s)| ≤ ε,

∞∑
s=n0

|K(n, s)| ≤ µ + ε,

|f(n)| ≤ M + ε and |y(n)| ≤ L1 + ε

for n ≥ n2 where L1 = lim
n→∞

|y(n)|. We obtain

|y(n)| ≤ M + ε + L

n1∑
s=n0

|K(n, s)|+ (L1 + ε)
∞∑

s=n1+1

|K(n, s)|

≤ M + ε + εL + (L1 + ε)(µ + ε).

Hence

L1 ≤ M + ε(1 + L + µ + ε)
1− µ− ε

.

2

Theorem 3.1. Let f, F and ψ be defined for n ∈ N(n0) and let N(n, s) be
defined for s ≥ n ≥ n0. Suppose that for s ≥ n ≥ n0

1◦
s−1∑

l=n+1

|N(n, l)| |N(l, s)|α ≤ λ|N(n, s)|α, with some α ∈ [0, 1] and fixed

λ < 1,

2◦ |N(n, s)| ≤ F (s), F (s) uniformly bounded for s ≥ n ≥ n0,

3◦
∞∑

s=n+1
|ψ(s)| < ∞, ψ(n) is uniformly bounded, for n ≥ n0,

4◦ lim
n→∞

sup
n0≤l≤n+1

∞∑
s=n+1

F 1−α(s)|N(l, s)|α = 0,

5◦a lim
n→∞

|f(n)| = M < ∞ or

5◦b lim
n→∞

f(n) = s (|s| < ∞).

Then the equation

(6) y(n) = f(n) +
∞∑

s=n+1

K0(n, s)y(s)

where K0(n, s) = N(n, s) + ψ(s) for s ≥ n ≥ n0 has for large n(n ≥ n0) exactly
one solution y(n) bounded for n → ∞. We have lim

n→∞
|y(n)| = M in case 5◦a,

respectively lim
n→∞

y(n) = s in case 5◦b.
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Proof. We choose a number a satisfying the condition λ < a < 1. Then, with

some n1 ≥ n0 there exists
s−1∑

l=n+1

F 1−α(l)|N(n, l)|α for s ≥ n ≥ n1 and we have

∞∑
l=n+1

|K0(n, l)| ≤ a for n ≥ n1.

Let

(7) Kq(n, s) =
s−1∑

l=n+1

K0(n, l)Kq−1(l, s)

for s ≥ n ≥ n0, q = 1, 2, . . . .
We will prove by induction the inequality

(8) |Kq(n, s)| ≤ aqF 1−α(s)|N(n, s)|α + qaq−1ψ1(n, s) + aq|ψ(s)|
for s ≥ n ≥ n1 and q = 0, 1, 2, . . . , where

ψ1(n, s) = F 1−α(s)
s−1∑

l=n+1

|N(l, s)|α|ψ(l)|.

We immediately verify that (8) is true for q = 0. Suppose now that it is
true for the index q − 1 (q ≥ 1). Then, observing that ψ1(n, s) is a decreasing
function of the variable n for s ≥ n ≥ n1, we have

|Kq(n, s)| ≤
s−1∑

l=n+1

|N(n, l) + ψ(l)| · {aq−1F 1−α(s)|N(l, s)|α

+ (q − 1)aq−2ψ1(l, s) + aq−1|ψ(s)|}

≤ aq−1|ψ(s)|
s−1∑

l=n+1

|N(n, l) + ψ(l)|

+ (q − 1)aq−2
s−1∑

l=n+1

|N(n, l) + ψ(l)|ψ1(l, s)

+ aq−1
s−1∑

l=n+1

|N(n, l) + ψ(l)|F 1−α(s)|N(l, s)|α

≤ aq|ψ(s)|+ (q − 1)aq−2ψ1(n, s)
s−1∑

l=n+1

(F 1−α(s)|N(n, l)|α + |ψ(l)|)

+ aq−1F 1−α(s)
s−1∑

l=n+1

|N(n, l)| |N(l, s)|α

+ aq−1F 1−α(s)
s−1∑

l=n+1

|N(n, l)|α|ψ(l)|
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≤ aq|ψ(s)|+ (q − 1)aq−1ψ1(n, s)

+ aq−1F 1−α(s)λ|N(n, s)|α + aq−1ψ1(n, s)

= aq|ψ(s)|+ (q − 1)aq−1ψ1(n, s)

+ aq−1F 1−α(s)λ|N(n, s)|α + aq−1ψ1(n, s)

= aq|ψ(s)|+ qaq−1ψ1(n, s) + aqF 1−α(s)|N(n, s)|α, (λ < a < 1).

This proves (8). Therefore, the series
∞∑

q=0
Kq(n, s) is uniformly convergent for

s ≥ n ≥ n1. Taking
∞∑

q=0
Kq(n, s) = R(n, s) we obtain from (8) for s ≥ n ≥ n1

|R(n, s)| ≤
∞∑

q=0

(aq|ψ(s)|+ qaq−1ψ1(n, s) + aqF 1−α(s)|N(n, s)|α)

≤ 1
1− a

|ψ(s)|+ 1
(1− a)2

ψ1(n, s) +
1

1− a
F 1−α(s)|N(n, s)|α.

We have

lim
n→∞

∞∑
s=n+1

ψ1(n, s) = lim
n→∞

∞∑
s=n+1

F 1−α(s)
s−1∑

i=n+1

|N(i, s)|α|ψ(i)|

= lim
n→∞

∞∑

i=n+1

|ψ(i)|
∞∑

s=i+1

F 1−α(s)|N(i, s)|α

≤ lim
n→∞

∞∑

i=n+1

|ψ(i)| · lim
n→∞

∞∑
s=n+1

F 1−α(s)|N(n, s)|α = 0.

We choose n2 ≥ n1 such that the functions

∞∑
s=n+1

F 1−α(s)|N(n, s)|α,

∞∑
s=n+1

ψ1(n, s)

and f(n) are bounded for n ≥ n2 and we find that the
∞∑

s=n+1
|R(n, s)| is conver-

gent and uniformly bounded for n ≥ n2. Then the functions

I(n) =
∞∑

s=n+1

R(n, s)f(s) and y(n) = f(n) + I(n)

remain bounded for n ≥ n2.
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We will prove the uniform convergence of
∞∑

s=n+1
R(t0, s)f(s) for t1 ≤ t0 ≤

t2, t1 ≥ n2. We have for n ≥ n3, t1 ≤ t0 ≤ t2

∞∑
s=n+1

F 1−α(s)
s−1∑

i=t0+1

|N(i, s)|α|ψ(i)| =

=
∞∑

s=n+1

n∑

i=t0+1

F 1−α(s)|N(i, s)|α|ψ(i)|+
∞∑

s=n+1

s−1∑

i=n+1

F 1−α(s)|N(i, s)|α|ψ(i)|

≤
n∑

i=t0+1

|ψ(i)|
∞∑

s=n+1

F 1−α(s)|N(i, s)|α +
∞∑

i=n+1

|ψ(i)|
∞∑

s=i+1

F 1−α(s)|N(i, s)|α

≤ εA + ε2,

where A =
∞∑

i=t0+1

|ψ(i)|.
We have for n ≥ n2

∞∑
s=n+1

|R(t0, s)f(s)| ≤ N0

{ 1
1− a

∞∑
s=n+1

|ψ(s)|

+
1

(1− a)2

∞∑
s=n+1

F 1−α(s) ·
s−1∑

i=t0+1

|N(i, s)|α|ψ(i)|

+
1

1− a

∞∑
s=n+1

F 1−α(s)|N(t0, s)|α
}

,

where N0 = sup
n≥n2

|f(n)|.
For given ε > 0 we choose n3 ≥ t2 so that for n ≥ n3 we get

sup
t1≤u≤n+1

∞∑
s=n+1

F 1−α(s)|N(u, s)|α ≤ ε and
∞∑

s=n+1

|ψ(s)| ≤ ε.

Finally, for n ≥ n3, t1 ≤ t0 ≤ t2 we obtain

∞∑
s=n+1

|R(t0, s)f(s)| ≤ εN0

1− a
+

εAN0

(1− a)2
+

ε2N0

(1− a)2
+

εN0

1− a
.

It follows that I(n) exists in every finite interval [a, b] (n2 ≤ a < b < ∞). Since

the
∞∑

i=n+1

|K0(n, s)|
∞∑

i=s+1

|R(s, i)| converges for n ≥ n2, we have for n ≥ n2

∞∑
s=n+1

K0(n, s)I(s) =
∞∑

s=n+1

K0(n, s)
∞∑

i=s+1

R(s, i)f(i)
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=
∞∑

i=n+1

( i−1∑
s=n+1

K0(n, s)R(s, i)
)
f(i)

=
∞∑

i=n+1

( i−1∑
s=n+1

K0(n, s)
∞∑

q=0

Kq(s, i)
)
f(i)

=
∞∑

i=n+1

∞∑
q=0

i−1∑
s=n+1

K0(n, s)Kq(s, i)f(i)

=
∞∑

i=n+1

∞∑
q=0

Kq+1(n, i)f(i)

and

∞∑
s=n+1

K0(n, s)y(s) =
∞∑

s=n+1

K0(n, s)(f(s) + I(s))

=
∞∑

s=n+1

K0(n, s)f(s) +
∞∑

s=n+1

K0(n, s)I(s)

=
∞∑

s=n+1

K0(n, s)f(s) +
∞∑

i=n+1

∞∑
q=0

Kq+1(n, i)f(i)

=
∞∑

s=n+1

K0(n, s)f(s) +
∞∑

i=n+1

( ∞∑
q=0

Kq(n, i)−K0(n, i)
)
f(i)

=
∞∑

i=n+1

∞∑
q=0

Kq(n, i)f(i) =
∞∑

i=n+1

R(n, i)f(i) = I(n).

Hence it follows that y(n) satisfies (1) for n ≥ n2. Next, by (5) the equality

(9) lim
q→∞

∞∑
s=n+1

|Kq(n, s)| = 0

holds for n ≥ n2. Indeed, from (8) and assumptions of Theorem we have

lim
q→∞

∞∑
s=n+1

{aqF 1−α(s)|N(n, s)|α + qaq−1ψ1(n, s) + aq|ψ(s)|} = 0.

Every solution y(n) of (6) for f(n) = 0 satisfies the relation

y(n) =
∞∑

s=n+1

K0(n, s)y(s).
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Indeed, let y(n) be solution of the equation (6). Now substituting for y(s)
relation

y(s) =
∞∑

l=s+1

K0(s, l)y(l)

we get from (7)

y(n) =
∞∑

s=n+1

K0(n, s)
∞∑

l=s+1

K0(s, l)y(l)

=
∞∑

l=n+1

( l−1∑
s=n+1

K0(n, s)K0(s, l)
)
y(l) =

∞∑

l=n+1

K1(n, l)y(l).

Substituting the last equality into (6) we obtain

y(n) =
∞∑

l=n+1

K2(n, l)y(l).

Repeating the above procedure (q − 1) times we have

(10) y(n) =
∞∑

l=n

Kq(n, l)y(l).

Our next objective is to show that equation (6) has a unique solution. Suppose
(for contradiction) that there are two solutions y1, y2, y1 6= y2 bounded for
n →∞. Subtracting we get

(11) u(n) =
∞∑

l=n+1

K0(n, l)u(l); u(l) = y1(l)− y2(l).

From (10), we see that

(12) u(n) =
∞∑

l=n+1

Kq(n, l)u(l).

Hence, by the boundedness of the function u and the condition (9) we have
u(n) = 0 for all n ≥ n2.

We infer hence that in the general case there exists for n ≥ n2 exactly one
solution of (6) bounded for n →∞.

We have

y(n)− f(n) =
∞∑

s=n+1

K0(n, s)y(s) → 0

as n →∞ by (3) and (4).
It follows that lim

n→∞
|y(n)| = M in case (5a) and lim

n→∞
y(n) = s in case (5b).

2

Now we consider the scalar situation.
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Theorem 3.2. Suppose that

1◦ the function gp(n) has property lim
n→∞

gp(n) = 0,
∞∑

s=n+1
|∆gp(s)| ≤ K|gp(n)|,

K ≥ 1, uniformly for p ∈ (0, 1], g(n) 6= 0, |g(n)| is monotone and |∆g(n)|
uniformly bounded for n ≥ n0,

2◦ ϕ(n), f(n) and ψ(n) are bounded on N(n0),

2◦a lim
n→∞

|f(n)| = M < ∞,

2◦b lim
n→∞

f(n) = s (|s| < ∞),

3◦
∞∑

n=n0

|ψ(n)| < ∞,

4◦ lim
n→∞

ϕ(n) = 0.

Let K(n, s) = ∆g(s)
g(n) ϕ(s)+ψ(s) and N(n, s) = ∆g(s)

g(n) ϕ(s) for n ≥ n0, s ≥ n0.
Then, in the case of lim

n→∞
g(n) = 0 the equation

(13) y(n) = f(n) +
∞∑

s=n+1

K(n, s)y(s),

has for large (n ≥ n0) exactly one solution y(n) bounded for n →∞.
We have lim

n→∞
|y(n)| = M in case 2◦a, resp. lim y(n) = s in case 2◦b.

Proof. In the case of lim
n→∞

g(n) = 0 we choose a fixed α ∈ (0, 1) and for given
ε > 0 a small enough δ > 0 such that the inequality Kδ ≤ ε < 1 is true. Next,
we choose n2 ≥ n0 such that |ϕ(n)| ≤ δ for n ≥ n2 and

∞∑

l=n+1

|g(l)|p−1|∆g(l)| ≤ K|g(n)|p

is satisfied for n ≥ n2 and every p ∈ (0, 1].
We obtain by 1◦ and 4◦ for s ≥ n ≥ n2

s−1∑

l=n+1

|N(n, l)| |N(l, s)|α =
s−1∑

l=n+1

∣∣∣∆g(l)
g(n)

ϕ(l)
∣∣∣
∣∣∣∆g(s)

g(l)
ϕ(s)

∣∣∣
α

=
|∆g(s)ϕ(s)|
|g(n)|

s−1∑

l=n+1

|∆g(l)| |ϕ(l)| |g(l)|−α

≤ δ
|∆g(s)ϕ(s)|α

|g(n)|
s−1∑

l=n+1

|∆g(l)| |g(l)|−α

≤ |∆g(s)ϕ(s)|α
|g(n)| δK|g(n)|1−α = δK|N(n, s)|α.
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The inequality in hypothesis 1◦ of Theorem 3.1 is satisfied with λ = Kδ.
Next, we state that hypothesis 2◦ of Theorem 3.1 is satisfied for F (s) =∣∣∣∆g(s)

g(s) ϕ(s)
∣∣∣ for s ≥ n2. We shall show that hypothesis 4◦ of Theorem 3.1 is also

satisfied.
We have

sup
n0≤l≤n+1

∞∑
s=n+1

F 1−α(s)|N(l, s)|α =

= sup
n0≤l≤n+1

∞∑
s=n+1

F 1−α(s)
∣∣∣∆g(s)

g(l)
ϕ(s)

∣∣∣
α

= sup
n0≤l≤n+1

1
|g(l)|α

∞∑
s=n+1

∣∣∣∆g(s)
g(l)

ϕ(s)
∣∣∣
1−α

|∆g(s)ϕ(s)|α

= sup
n0≤l≤n+1

1
|g(l)|α

∞∑
s=n+1

|∆g(s)ϕ(s)| |g(s)|α−1

≤ sup
n0≤l≤n+1

δ

|g(l)|α K|g(n)|α ≤ ε for n ≥ n2.

To prove this part of Theorem 3.2 we now use Theorem 3.1. 2

Remark 3.1. System (1) can be extended in the form

(∗) y(n) = f(n) +
∞∑

s=n

K(n, s)y(s).

Let det(E −K(n, n)) 6= 0 for all n ≥ n0, then

y(n) = h(n) +
∞∑

s=n+1

K(n, s)y(s)

where

h(n) = (E −K(n, n))f(n),
K(n, s) = (E −K(n, n))−1K(n, s).

4. Asymptotic equivalence

In this section we are going to get some asymptotic formulae which relate
the solutions y(n) of the system

(14) y(n) = f(n) +
n−1∑
s=0

K(n, s)y(s)
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and solutions x(n) of the system

(15) x(n) = f(n) +
n−1∑
s=0

K(n, s)[x(s) + g(s, x(s))].

In particular, we will show that

lim
n→∞

|x(n)− y(n)| = 0.

Our results complete those concerning various asymptotic relationships between
(14) and (15) that have been obtained recently, [3, 4, 9, 10].

The resolvent kernel associated with the kernel K(n, s) is defined to be the
(unique) solution of the system (see Section 2, Resolvent)

(16) R(n, s) = K(n, s) +
n−1∑

q=s+1

K(n, q)R(q, s), n > s

and

(17) R(n, s) = K(n, s) +
n−1∑

q=s+1

R(n, q)K(q, s), n > s.

In terms of the resolvent matrix R(n, s) of (14) the system (15) equivalent to
the system

(18) x(n) = y(n) +
n−1∑
s=0

R(n, s)g(s, x(s)),

where y(n) is the solution of the linear system (14) given by

(19) y(n) = f(n) +
n−1∑
s=0

R(n, s)f(s).

Let S(o) ≡ S be the set of all sequences {z(n)}n≥0 of k-dimensional vectors and
let BS(o) ≡ BS be the space of all bounded sequences equipped with the norm
|z| = sup

n≥0
|z(n)|.

Theorem 4.1. Let the resolvent kernel R(n, s) satisfy the following conditions:

1◦ there exist constants p > 1 and B > 0 such that

(20)
( n∑

s=0

|R(n, s)|p
) 1

p ≤ B, n ∈ N, p > 1,
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2◦ for each fixed m > 0

(21) lim
n→∞

m∑
s=0

|R(n, s)|p = 0.

Let g(n, x) be defined for n ≥ 0, |x| < ∞ and continuous for each x, and let
there exist a function λ(n) ≥ 0, λ ∈ lq(0,∞) where p + q = pq such that for all
n ≥ 0, |x| < ∞
(22) |g(n, x)| ≤ λ(n)(1 + |x|).
Then, given a solution y ∈ BS of system (14), there exists a solution x ∈ BS
of the system (15) such that

(23) lim
n→∞

(x(n)− y(n)) = 0.

And conversely, given a solution u ∈ BS of the system (15), there exists a
solution v ∈ BS of the system (14) such that

(23′) lim
n→∞

(u(n)− v(n)) = 0.

As can be seen from (19), a sufficient condition for y ∈ BS is that f ∈
BS, f ∈ lq(0,∞) and R(n, s) satisfy (20).

Proof of Theorem 4.1. The proof is divided into four parts.

I. Assuming the existence of a solution y ∈ BS of (14), we prove that there
exists a solution x of (15) for n ≥ 0. We make use of the Volterra equation (18)
equivalent to (15). Sufficient conditions under which equation (18) has unique
solution is given in [1].

II. Next we show that x ∈ BS. Let 0 < ε < 1, since λ ∈ lq(0,∞), choose a
number n∗ > 0 so large that

(24)
( n∑

s=n∗

λq(s)
) 1

q ≤ ε

B
(n∗ ≤ n < ∞, 1 < q < ∞).

Since x(n) is defined on 〈0,∞), there exists a constant M = M(n∗) > 0 so that
M = sup

0≤n≤n∗
|x(n)|.

Choose a number P > 0 so that

(25) |y|+
n−1∑
s=0

|R(n, s)|(1 + |x(s)|)λ(s) ≤
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≤ |y|+
n−1∑
s=0

|R(n, s)|λ(s)(1 + M)

≤ |y|+ (1 + M)
(n−1∑

s=0

|R(n, s)|p
) 1

p
(n−1∑

s=0

λq(s)
) 1

q ≤ (1− ε)P.

We assert that |x(n)| < P for all n ≥ 0. If not, there exists a n1 ≥ n∗ + 2 such
that |x(n)| < P for 0 ≤ n < n1 and |x(n1)| = P . But from (18) and assumption
of Theorem we obtain

P = |x(n1)| ≤ |y|+
n∗∑

s=0

|R(n1, s)|λ(s)(1 + |x(s)|)

+
n1−1∑

s=n∗+1

|R(n1, s)|λ(s)(1 + |x(s)|)

≤ |y|+ (1 + M)B(|λ|q + (1 + P )B
( n1−1∑

s=n∗+1

λq(s)
) 1

q

.

Applying (24) and (25) yields

P ≤ |y|+ (1 + M)B|λ|q + (1 + P )ε < (1− ε)P + εP = P,

what is a contradiction. Thus |x(n)| < P for all n ≥ 0.

III. We show that lim
n→∞

(x(n) − y(n)) = 0, where y ∈ BS is a solution of (14)

and x ∈ BS is the solution of (15), the existence of which was established in (I)
and (II).

Let sup
0≤n<∞

|x(n)| = M0 and let ε > 0 be given. Choose m > 0 so large that

(26)
( n∑

s=m

λq(s)
) 1

q

<
ε

2B(1 + M0)
for n ≥ m.

By (21) choose m1 > m so that

(27)
( m∑

s=0

|R(n, s)|p
) 1

p

<
ε

2(1 + M0)|λ|q (n ≥ m1).

Then, from (19), (20), (22), the Hölder inequality and (26), (21) we obtain
successively

|x(n)− y(n)| ≤
m∑

s=0

|R(n, s)|λ(s)(1 + |x(s)|) +
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+
n∑

s=m+1

|R(n, s)|λ(s)(1 + |x(s)|)

≤ (1 + M)|λ|q
( m∑

s=0

|R(n, s)|p
) 1

p

+ (1 + M)B
( n∑

s=m+1

λq(s)
) 1

q

<
ε

2
+

ε

2
= ε

for n > m1. Since ε > 0 is arbitrary, this completes the proof.

IV. Let u ∈ BS be a solution of (15). We will show that there exists a solution
v ∈ BS of (14) such that

lim
n→∞

(u(n)− v(n)) = 0.

Let v(n) = u(n) −
n−1∑
s=0

R(n, s)g(s, u(s)). The v(n) is a solution of (14). Using

assumptions of Theorem and the Hölder inequality one has

|v(n)| ≤ |u(n)|+
n−1∑
s=0

|R(n, s)| |g(s, u(s))|

≤ |u|+
n−1∑
s=0

|R(n, s)|λ(s)(1 + |u|)

= |u|+ (1 + |u|)
n−1∑
s=0

|R(n, s)|λ(s)

≤ |u|+ (1 + |u|)B|λ|q < ∞.

Hence v ∈ BS.
Define m and m1 as in (26), (27) with M0 replaced by |u|. Then as in (III)

one obtains

|u(n)− v(n)| ≤
m∑

s=0

|R(n, s)|λ(s)(1 + |u|) +
n−1∑

s=m+1

|R(n, s)|λ(s)(1 + |u|)

< ε
(1 + |u|)|λ|q
2(1 + |u|)|λ|q + ε

B(1 + |u|)
2B(1 + |u|) = ε for n ≥ m1.

Since ε > 0 is arbitrary,

lim
n→∞

(u(n)− v(n)) = 0.

This completes the proof. 2
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Corollary 4.1. Let the resolvent Kernel R(n, s) satisfy (20), (21) with p = 1.
Let g(n, x) be continuous in (n, x) for n ∈ 〈0,∞), |x| < ∞ and let there exists
a function λ ∈ BS such that λ(n) ≥ 0, 0 ≤ n < ∞, lim

n→∞
λ(n) = 0 and such

that (22) is satisfied. Then the systems (14)-(15) are asymptotically equivalent.

References

[1] Agarval, R. P., O’Regan, D., Existence and approximation of solutions of Non-
linear discrete systems on infinite intervals. Math. Meth. Appl. Sci. 22 (1999),
91–99.

[2] Crisci, M., Jackiewicz, Z., Russo, E., Vecchio, A., Stability analysis of discrete
recurrence equations of Volterra type with degenerate Kernels. Journal Math.
Analysis Appl. V 162 (1991), 49–62.
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