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Asymptotic BER Analysis for MIMO-BICM with

Zero-Forcing Detectors Assuming Imperfect CSI

I-Wei Lai∗†,Susanne Godtmann∗, Tzi-Dar Chiueh†, Gerd Ascheid∗, and Heinrich Meyr∗

∗Institute for Integrated Signal Processing Systems, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
†Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan

Abstract—In this paper, we derive the asymptotic bit error
rate (BER) for multiple-input multiple-output bit-interleaved
coded modulation (MIMO-BICM) with linear zero-forcing (ZF)
receivers for a temporally correlated flat Rayleigh fading channel.
Pilot symbol assisted modulation (PSAM) in combination with
linear minimum mean-squared error (LMMSE) channel estima-
tion is considered. We also demonstrate that the deterioration due
to imperfect channel state information (CSI) can be represented
by a signal-to-noise ratio (SNR) degradation.

I. INTRODUCTION

Bit-interleaved coded modulation (BICM), first introduced

by Zehavi [1], can achieve large diversity orders in fading

channels. Caire et al. [2] have later built the information-

theoretical foundation of BICM. The performance of BICM

has been evaluated under the assumption of perfect channel

state information (CSI) or no CSI. Müller-Weinfurtner [3]

has demonstrated that for the multiple-input multiple-output

(MIMO) system, BICM shows excellent performance in fast-

fading channel when maximum likelihood (ML) detection is

used. However, as the complexity of ML detection is a heavy

burden for implementation, a low complexity zero-forcing

(ZF) detector has been studied in [4]. The results reveal the

interesting fact that the performance gap between the ML and

ZF detection is significantly reduced when either the number

of receive antennas or the modulation order increases.

The capacity and BER performance of MIMO-BICM with

ZF detection were thoroughly analyzed by McKay et al. [5].

The asymptotic bit error rate (BER) is analytically derived un-

der the assumption of fast fading and perfect CSI. However, in

a realistic environment the channel is unknown at receiver side,

and pilot symbol insertion is obligatory to estimate the CSI.

This is the so-called pilot symbol assisted modulation (PSAM)

and is explained in e.g. [6]. Accurate channel estimation is a

major issue in MIMO systems. In order to guarantee the same

accuracy as in SISO systems, MIMO systems require Mt-

times more pilot symbols, where Mt represents the number

of transmit antennas. The trade-off between accurate channel

estimation and the achievable data rate in MIMO systems was

pointed out in [7].

In this paper, we explore the asymptotic BER performance

for a spatially uncorrelated MIMO channel model, where

each subchannel is a temporally correlated flat Rayleigh

fading channel. Linear minimum mean-squared error

(LMMSE) channel estimation that relies on periodically

inserted orthogonal pilot symbols [7] is assumed. We base

our derivations on the previous work in [5], where the

asymptotic BER under the assumption of perfect CSI was

calculated. Furthermore, we build on the results in [8]

where a SISO-BICM system with imperfect CSI is regarded.

Further analyses lead to interpret the estimation error as a

signal-to-noise ratio (SNR) degradation, which is labeled as

estimation loss. This interpretation was first applied in [7]

and [9] in the context of the achievable rate.

This paper is organized as follows: in Section II the

MIMO transmission model is provided. Section III briefly

summarizes the results from [5] on the BER performance for

a MIMO-BICM system with ZF detection assuming perfect

CSI. The mathematical expressions for the asymptotic BER

assuming imperfect CSI and LMMSE channel estimation are

derived in Section IV. The approximated SNR degradation

due to channel estimation inaccuracies is elaborated in Sec-

tion V. Section VI validates the analytical results by means

of Monte Carlo simulation and the conclusions are given

in Section VII.

II. MIMO TRANSMISSION MODEL

The architecture of the system discussed in this paper is

presented in Fig. 1 for a 2 × 2 MIMO system. In general, N
information bits are first assembled into a packet and de-

multiplexed into Mt transmit streams. Each bit stream is

then encoded with a binary convolutional code of rate r =
kc/n, interleaved (possibly across the streams) and mapped

onto an M -ary constellation set χ based on the mapping

rule µ. χi
b denotes the subset of χ whose labels have the binary

value b ∈ [0, 1] at the ith bit position, with i ∈ [1, I] and I =
log2(M). The resulting Mt symbols at time instant k are

labeled as a hypersymbol. Here, we define a pilot hypersymbol

group P ∈ CMt×Mt that consists of concatenated orthogonal

hypersymbols in order to allow for LMMSE channel estima-

tion [7]. The pilot spacing Ps denotes the spacing between

two successive pilot hypersymbol groups. The ratio between

orthogonal pilot hypersymbols and data hypersymbols is given

to Ps/Mt. Note that the number of pilot hypersymbols per Ps

data symbols increases with Mt. Periodic pilot hypersymbols

and data hypersymbols are then multiplexed and transmitted

over a spatially-uncorrelated channel where each path is a tem-

porally correlated flat Rayleigh fading channel. The maximum

normalized Doppler spread with respect to the symbol duration

is given by Fd = fdTs.

Assuming perfect timing synchronization, the received base-

band signals of a MIMO system with Mt transmit antennas

and Mr receive antenna after matched filtering and sampling
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Fig. 1. transmission model of a 2 × 2 MIMO-BICM with ZF detection

can be modeled as

yk = Hkxk + nk, (1)

where Hk ∈ CMr×Mt is the complex MIMO channel matrix
with the (i, j)th element hij,k indicating the path gain from

the jth transmit antenna to the ith receive antenna at time

instant k. The variance of each channel gain is E
{

|hij,k|
2
}

=
σ2

h. The complex noise component nk ∈ CMr×1 is addi-

tive zero-mean white Gaussian noise. The covariance ma-

trix E
{

nknH
k

}

is an identity matrix σ2
nIMr

= N0IMr
,

where (·)H denotes conjugate transpose (hermitian). The trans-

mitted hypersymbol xk is spatially independent E
{

xkxH
k

}

=
σ2

xIMt
. The received signal power per transmit antenna

is σ2
xσ2

h, and the SNR Es/N0 = Mt · σ
2
xσ2

h/N0.

At receiver side, the pilot hypersymbols are extracted from

the received signals and employed for channel estimation.

Since it is impossible to perform LMMSE estimation of H

directly, we define the effective channel matrix Ak and esti-

mate it first. The effective channel matrix is given by

Ak = HkP. (2)

Due to the orthogonality of the columns of P, P is of full
rank and invertible. Therefore, it is possible to perform the

Wiener filtering based on the observations Ãk and to obtain

the actual channel matrix Ĥk as

Ĥk = ÂkP−1, (3)

where Âk is the output of the Wiener filter. An illustrative
example of MIMO channel estimation is depicted in Fig. 2

in [7]. The mean squared error (MSE) of this MIMO LMMSE

channel estimator is identical to the MSE of a SISO LMMSE

channel estimator assuming the same SNR Es/N0, the pilot

spacing Ps, and the channel dynamics Fd.

After channel estimation, the ZF detector recovers the

transmitted data hypersymbols

x̂k = Ĉkyk = xk + ĈkEkxk + Ĉknk (4)

with

Ĉk = (Ĥ
H

k Ĥk)−1Ĥ
H

k

Ek = Hk − Ĥk. (5)

In conjunction with imperfect channel estimation, the ZF

detection introduces interference ĈkEkxk. When perfect CSI

is assumed, Ĉk is replaced by Ck = (HH
k Hk)−1HH

k , and (4)

reduces to

x̂k = Ckyk = xk + Cknk, (6)

where only the colored noise Cknk is left as distortion. In the

remainder of this paper, We will drop the time index k where

it is obvious.

III. ASYMPTOTIC BER FOR MIMO-BICM WITH PERFECT

CSI

In this section, we shortly summarize the derivations in [5].

For a MIMO-BICM system with ZF detector, in [5] it is shown

that the expurgated bound for SISO systems derived in [2]1

can be applied to a single stream of a MIMO-BICM system

with ZF detectors.

The upper bound of the coded BER at lth stream is given by

Pb,l ≤
1

kc

∞
∑

d=dmin,l

WI,l(d)fl(d, µ, χ), (7)

where WI,l(d) is the total input weight of error events

and fl(d, µ, χ) denotes the pairwise error probability (PEP).

dmin,l is the minimum Hamming distance of code employed

on the lth stream. It should be stressed that since each

transmit stream is encoded independently, different codes

can be adopted for different streams. According to (7), the

key quantity to be evaluated is the PEP since WI,l(d) is

1Sethuraman and Hajek in 2006 [10] have indicated that the proof that ex-
purgated bound is an upper BER bound for QAM signal sets and Gray labeling
is flawed. However, the results still represent a very tight approximation on
the coded BER.
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a known coefficient when a specific convolutional code is

employed. The PEP can be approximated by the expurgated

PEP fex,l(d, µ, χ) [2], [10]

fl(d, µ, χ) ≈ fex,l(d, µ, χ)

with

fex,l(d, µ, χ) =
1

2πj

∫ v+j∞

v−j∞

[ψex,l(s)]
d ds

s
, (8)

where v is chosen such that the integral converges [2]. A

numerical method called Gauss-Chebyshev quadratures can

approximate the integral closely [11]. ψex,l(s) is defined as

ψex,l(s) =
1

I2I

I
∑

i=1

1
∑

b=0

∑

x∈χi
b

Φ∆l(x,z)(s), (9)

where Φ∆l(x,z)(s) is the bilateral Laplace transform

of the probability density function (pdf) of the metric

difference ∆l(x, z). x is the transmit symbol, whereas z
represents the symbol that is erroneously detected because

of an error event. The index l of x and z is dropped without

loss of generality. For BICM, z = z(x) ∈ χi
b̄

is the nearest

neighboring constellation point of x ∈ χi
b for which χi

b̄
holds.

As Gray Mapping maximizes the average distance {x → z},

it is considered here. ∆l(x, z) is formally defined to be [5]

∆l(x, z) = log p(x̂|x) − log p(x̂|z) (10)

with

p(x̂|x) =
1

πN0‖cl‖2
exp

{

−
|x̂ − x|2

N0‖cl‖2

}

(11)

for the perfect CSI case, where cl ∈ C1×Mr is the lth row

vector of C. Inserting (11) into (10), the constant N0 can be

dropped, since it is only the probability P (∆l(x, z) < 0) (Eq.

(24,28) in [5]) that matters. The metric difference is given by

∆l(x, z)P =
|x̂ − z|2 − |x̂ − x|2

‖cl‖2
, (12)

where (·)P denotes perfect CSI. We can then calculate the bi-

lateral Laplace transform by following Eq.(29-33) in [5]. Nor-

malizing the distance d = x−z to σ2
x, the result is expressed as

Φ∆l(x,z)P
(s)= E‖cl‖2

{

e−s∆l(x,z)P

∣

∣

∣

∣

‖cl‖
2

}

=
(

1−σ2
hσ2

x|d̃|
2s(N0s−1)

)−(Mr−Mt+1)

, (13)

where the exponent (Mr −Mt +1) indicates how the number

of antennas effects the performance. If Mt = Mr, (13)

reduces to the result obtained for a SISO system [2] with the

same Es/N0.

IV. ASYMPTOTIC BER FOR MIMO-BICM WITH

IMPERFECT CSI

The difference of the asymptotic BER analysis for the

MIMO-BICM system with ZF detectors between the perfect

and imperfect CSI case occurs when calculating the biliteral

Laplace transform of the metric difference Φ∆l(x,z) and, of

course, when deriving the metric difference ∆l(x, z)I itself.

Therefore, we only focus on the calculations of the Φ∆l(x,z)I

in this section. (·)I denotes ”imperfect” CSI.

We assume that the receiver utilizes LMMSE channel

estimation, which fulfills the orthogonal projection theorem

E
{

ĤkEH
k

}

= 0. (14)

Substituting ĉl for cl in (12), the metric difference for
imperfect CSI is given as

∆l(x, z)I =
|x̂−z|2−|x̂−x|2

‖ĉl‖2
= β̂l(|x̂−z|2−|x̂−x|2), (15)

where we define a new variable β̂l as the inverse of the squared

norm of the row vector ĉl. Replacing (x − z) by d and the

detected signal x̂ by ĉl(Hx + n) yields

∆l(x, z)I = β̂l

(

2Re {ĉl(Hx+n)d∗}−|x|2+|z|2
)

. (16)

Making use of (14) results in

∆l(x, z)I

= 2β̂l(Re {ĉlnd∗} + Re
{

ĉlĤxd∗
}

+ Re {ĉlExd∗})

− β̂l(|x|
2 − |z|2)

= 2β̂l Re {ĉlnd∗} + β̂l(|x|
2 − 2Re {xz∗} + |z|2)

+ 2β̂l Re {ĉlExd∗})

= 2β̂l Re {ĉl(n + Ex)d∗} + β̂l|d|
2. (17)

n and Ex are independent zero-mean complex Gaussian ran-

dom variables. The covariance matrix of Ex is given by

E
{

ExxHEH
}

=

Mt
∑

i=1

|xi|
2σ2

eIMr
= Mtσ

2
xσ2

eIMr
. (18)

It should be emphasized that (18) only holds if σ2
e is indepen-

dent of the time index k, and this independence exists when

the channel sampling rate is faster than the Nyquist rate of the

fading process [9]. Therefore, ∆l(x, z)I given Ĥ is a Gaussian

random variable with its mean value and variance given as

µ∆ = β̂l|d|
2, (19)

σ2
∆ = 4β̂2

l |d|
2 E

{

Re {ĉl(n + Ex)}
2
}

= 2β̂2
l |d|

2(Mtσ
2
xσ2

e + N0)ĉlIMr ĉ
H
l

= 2β̂l|d|
2(Mtσ

2
xσ2

e + N0). (20)

In accordance with (13), we obtain the conditional bilateral

Laplace transform of the pdf of ∆l(x, z)I as

Φ∆l(x,z)I
(s) = Eβ̂l

{

exp

(

−µ∆s+
1

2
σ2

∆s2

)∣

∣

∣

∣

β̂l

}

. (21)

From (19) and (20), it follows that (21) can be expressed as

Φ∆l(x,z)I
(s)

=Eβ̂l

{

exp
(

β̂l|d|
2
(

(N0 + Mtσ
2
xσ2

e)s2 − s
)

)

∣

∣

∣

∣

β̂l

}

. (22)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.



βl is a Gamma random variable (Eq. (32) in [5]) and so is

β̂l ∼ G(Mr − Mt + 1, σ2
h − σ2

e)

with the moment generating function of its pdf given as

Mβ̂l
(t)=Eβ̂l

{

exp (β̂lt)
}

=
(

1−(σ2
h−σ2

e)t
)−(Mr−Mt+1)

.

(23)

In accordance with (13), the conditional expectation then can
be calculated and expressed in a normalized way

Φ∆l(x,z)I
(s)

=
(

1−σ2
x(σ2

h−σ2
e)|d̃|2s

(

(N0+Mtσ
2
xσ2

e)s−1
)

)−(Mr−Mt+1)

.

(24)

V. RELATION BETWEEN CHANNEL ESTIMATION ERROR

AND SNR DEGRADATION

For the imperfect CSI case, the performance is clearly

deteriorated because of the estimation error. By using the

Chernoff bound approximation

fl(d, µ, χ) ≈ fch,l(d, µ, χ) = min
v>0

[ψex,l(s)]
d, (25)

where v is the real part of the smallest right-hand side
pole of ψex,l(s). Therefore, v is 1/(2N0 + 2Mtσ

2
xσ2

e) for the

imperfect CSI case and 1/(2N0) for the perfect CSI case.

Inserting this one into (25) and using (24) and (13), we get

fch,l(d, µ, χ)I

=





1

I2I

I
∑

i=1

1
∑

b=0

∑

x∈χi
b

(

1+
|d̃|2(σ2

h − σ2
e)σ2

x

4(N0+Mtσxσ2
e)

)−(Mr−Mt+1)




d

and

fch,l(d, µ, χ)P

=





1

I2I

I
∑

i=1

1
∑

b=0

∑

x∈χi
b

(

1+
|d̃|2σ2

hσ2
x

4N0

)−(Mr−Mt+1)




d

. (26)

Comparing fch,l(d, µ, χ)P and fch,l(d, µ, χ)I in (26), we can

see that the reduction of the received signal power

σ2
hσ2

x → (σ2
h − σ2

e)σ2
x (27)

and the enhancement of the interference and the noise

N0 → N0 + Mtσ
2
xσ2

e (28)

contributes to the degradation. This phenomenon can be
interpreted as an additional SNR degradation and has been

investigated when elaborating on the achievable rate of a

SISO system [9] and a MIMO system [7]. Note that the

comparison is made under the assumption that the transmit

power per antenna σ2
x in (13) and (24) are the same. To

make a fair comparison, we assume a constant power budget.

This assumption leads to different transmit signal power per

antenna σ2
x for the system with perfect and imperfect CSI

because the constant energy per frame is shared between the

data and the pilot symbols for the imperfect CSI case. As

inserting pilot symbols reduces the power per transmit symbol,

the Es/N0 decreases:

Es/N0 = (Es/N0)P ·
Ps − Mt

Ps
, (29)

where (Es/N0)P is the Es/N0 for the system without any
pilot symbols. A completely fair comparison is based on both a

constant transmit power and a constant number of transmitted

symbols per frame. However, it requires adjustable code rates

and modulation alphabet sizes to get a constant information

rate. These factors greatly influence the performance, and

jointly optimizing these parameters for certain Ps in order to

guarantee a fair comparison is highly complicated. Therefore,

we only stick to the ”constant power budget condition”. The

overall SNR degradation factor with respect to the system with

perfect and imperfect CSI can then be expressed as

LSNR =

(

Ps−Mt

Ps

)

·
1 − σ2

e/σ2
h

1+σ2
e/σ2

h(Es/N0)P ·
(

Ps−Mt

Ps

) , (30)

where the first term in the right-hand side is the energy
loss caused by inserting pilot symbols and the second is the

estimation loss.

For LMMSE channel estimation, σ2
e can be calculated

analytically. Furthermore, by simplifying the fading spectrum

to a rectangular spectrum and extending the filter length to

infinite, the close-form expression of the estimation error is

give by (cf. Eq. (29) in [7])

σ2
e =

2FdPs

2FdPs + (Es/N0)P · (Ps−Mt

Ps
)
σ2

h. (31)

Making use of this expression, we can get

L̃SNR =

(

Ps−Mt

Ps

)

·
1

2FdPs(1+ Ps

(Es/N0)P·(Ps−Mt)
)+1

. (32)

Then the optimum Ps for a given (Es/N0)P , Mt, and Fd can

be determined by using (32).

VI. SIMULATION RESULTS

In this section, we validate the results on the asymptotic

BER by means of Monte-Carlo simulation. The system is

evaluated in a temporarily correlated flat Rayleigh fading

channel with a Jakes’ spectrum. The normalized Doppler

spread is Fd = 6.25 ·10−3, the filter length FW = 10, and the

interleaver length N = 6 · 104. The BCJR algorithm with its

max-log MAP simplification is used for soft decoding. Fig. 2

gives the analytical results (lines without markers) and the

results from the Monte-Carlo simulation (lines with markers).

The solid lines represent the imperfect CSI case while the

dashed lines correspond to the perfect CSI case. We denote

them as ”P-CSI” and ”I-CSI” in the figure legends. We observe

a asymptotically tight match between the analytical and the

numerical result for both 2×2 and 2×4 MIMO systems. The

performance gap between the P-CSI and I-CSI curves for the

same MIMO system is exactly the estimation loss and energy

loss caused by pilot inertion given in (30). Fig. 3 depicts

the SNR loss for a MIMO system with different numbers of

transmit and receive antennas vs. the pilot spacing. Different

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.
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(b) 2 × 4 MIMO-BICM with ZF detectors

Fig. 2. BER vs. Eb/N0 for Mt × Mr MIMO systems; 8PSK, Gray Mapping, N = 6 · 104, fdTs = 6.25 · 10−3, Ps = 51, FW = 10, Conv. Code
{5,7}8, r = 1/2 .
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Fig. 3. SNR degradation vs. Ps for MIMO-BICM with ZF detectors; 8PSK,
Gray Mapping, Eb/N0 = 17 dB, r = 1/2, fdTs = 6.25 ·10−3, Conv. Code
{5,7}8

Wiener filter lengths are also considered. The solid lines

correspond to a filter length FW = 10 and the dashed lines

correspond to an infinite filter length. The difference between

them is the so-called implementation loss. The curves with

circle markers represent a 4 × 4 MIMO system, whereas the

curves with diamond markers represent a 2×2 MIMO system.

The gap between these two systems results from inserting

different pilot hypersymbol groups of different size. The gap

obviously decreases as Ps increases. The curve of a 2 × 4
MIMO system not shown here coincides with that of a 2 × 2
MIMO system. We see that the optimum pilot spacing for

a 2×2 MIMO-BICM with ZF detectors in this case is Ps ≈ 14
, while for a 4 × 4 system Ps ≈ 26. It is worth noting that

changing the filter length also slightly affects the optimum

value of Ps, e.g., for the 4 × 4 MIMO system with infinite

filter length Ps ≈ 22 is optimal rather than Ps ≈ 26.

VII. CONCLUSION

In this paper, we explore the asymptotic BER for a MIMO-

BICM system with a ZF detector assuming imperfect CSI. We

base our derivation on a spatially uncorrelated flat Rayleigh

fading channel model with LMMSE channel estimation at

receiver side. The deterioration with respect to perfect CSI

can be well approximated by an SNR degradation that depends

on the channel dynamics and the SNR. The intermediate per-

formance, estimation error, and the final performance, coded

BER, are linked together by this SNR degradation and the

system design is significantly facilitated.
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