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Abstract

The bipartite Ramsey number b(m,n) is the smallest positive integer r such that
every (red, green) coloring of the edges of Kr,r contains either a red Km,m or a green
Kn,n. We obtain asymptotic bounds for b(m, n) for m ≥ 2 fixed and n →∞.

1 Introduction

Recent exact results for bipartite Ramsey numbers [4] have rekindled interest in this
subject. The bipartite Ramsey number b(m, n) is the smallest integer r such that every
(red, green) coloring of the edges of Kr,r contains either a red Km,m or a green Kn,n.
In early work on the subject [1], Beineke and Schwenk proved that b(2, 2) = 5 and
b(3, 3) = 17. In [4] Hattingh and Henning prove that b(2, 3) = 9 and b(2, 4) = 14. The
following variation was considered by Beineke and Schwenk [1] and also by Irving [5]: for
1 ≤ m ≤ n, the bipartite Ramsey number R(m,n) is the smallest integer r such that
every (red, green) coloring of the edges of Kr,r contains a monochromatic Km,n. Irving
found that R(2, n) ≤ 4n − 3, with equality if n is odd and there is Hadamard matrix of
order 2(n−1). The bound R(m,n) ≤ 2m(n−1)+1 was proved by Thomason in [7]. Note
that b(m,m) = R(m,m). In this note, we obtain asymptotic bounds for b(m,n) with m
fixed and n →∞.

2 The Main Result

Theorem 1. Let m ≥ 2 be fixed. Then there are constants A and B such that

A
(

n
log n

)(m+1)/2

< b(m,n) < B
(

n
log n

)m

, n →∞.
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Specifically, these bounds hold with

A = (1− ε)m−1/(m−1)
(

m− 1
m2

)(m+1)/2

and

B = (1 + ε)
(

1
m− 1

)m−1

,

where ε > 0 is arbitrary.

Proof. The upper bound is based on well-known results for the Zarankiewicz function.
Let z(r, s) denote the maximum number of edges that a subgraph of Kr,r can have if it
does not contain Ks,s as a subgraph. We use the bound

z(r; s) <
(

s− 1
r

)1/s

r(r − s + 1) + (s− 1)r, (1)

which is found in [2] and elsewhere. To prove b(m,n) ≤ r it suffices to show that z(r; m)+
z(r; n) < r2. Take ε > 0 and set r = c(n/ log n)m where c = (m− 1)−(m−1)(1 + ε). Then

z(r; m)
r2 <

(

m− 1
r

)1/m (

1− m− 1
r

)

+
m− 1

r

=
(

m− 1
c

)1/m log n
n

+ O
((

log n
n

)m)

. (2)

To bound z(r; n)/r2, we begin with the evident asymptotic formula
(

n− 1
r

)1/n

=
(

(n− 1)(log n)m

cnm

)1/n

= 1− (m− 1) log n
n

+ O
(

log log n
n

)

.

Hence

z(r; n)
r2 <

(

n− 1
r

)1/n (

1− n− 1
r

)

+
n− 1

r

= 1− (m− 1) log n
n

+ O
(

log log n
n

)

. (3)

Adding (2) and (3) we obtain

z(r; m) + z(r; n)
r2 = 1−

(

m− 1−
(

m− 1
c

)1/m
)

log n
n

+ O
(

log log n
n

)

= 1− (m− 1)
(

1− 1
(1 + ε)1/m

)

log n
n

+ O
(

log log n
n

)

,
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so (z(r; m) + z(r; n))/r2 < 1 for all sufficiently large n, completing the proof.
To prove the lower bound, we use the Lovász Local Lemma in the manner pioneered

by Spencer [6]. Consider a random coloring of the edges of Kr,r in which, independently,
each edge is colored red with probability p. For each set S of 2m vertices, m from each
vertex class of the Kr,r, let RS denote the event in which each edge of the Km,m spanned
by S is red. Similarly, for each set T consisting of n vertices from each color class, let GT

denote the event in which each edge of the Kn,n spanned by T is green. Then P(RS) = pm2

for each of the
( r

m

)2 choices of S, and we simply write P(R) for the common value. In the
same way, P(G) = (1 − p)n2 for each of

(r
n

)2 possible G = GT events. Let S be a fixed
choice of m vertices from each class. Then NRR denotes the number of events RS′ such
that RS and RS′ are dependent, that is the bipartite graphs spanned by S and S ′ share at
least one edge. Similarly, let NRG denote the number of events GT such that RS and GT

are dependent. In the same way, for fixed a fixed choice T of n vertices from each class,
we define the dependence numbers NGR and NGG. By the Local Lemma, the probability
that a random coloring has neither a red Km,m or a green Kn,n is positive provided there
exist positive numbers xR and xG such that

1 > xR P(R), (4)
1 > xG P(G), (5)

log xR > xRNRR P(R) + xGNRG P(G), (6)
log xG > xRNGR P(R) + xGNGG P(G). (7)

With positive constants c1 through c4 to be chosen, set

p = c1r−2/(m+1),

n = c2r2/(m+1) log r,
xR = c3,

xG = exp
(

c4r2/(m+1)(log r)2) .

To prove that there are choices of the constants c1, . . . , c4 for which (4) through (7) hold,
we begin by noting the following bounds:

NRR ≤ m2
(

r
m− 1

)2

< r2(m−1),

NGR ≤ n2
(

r
m− 1

)2

< n2r2(m−1),

NRG, NGG ≤
(

r
n

)2

<
(e r

n

)2n
.

We have

NRRP(R) < r2(m−1) (

c1r−2/(m+1))m2

= cm2

1 r−2/(m+1) = o(1), r →∞, (8)
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independent of the choice of c1. Also log NRG < 2n log r = 2c2 r2/(m+1)(log r)2 and

P(G) = (1− p)n2
≤ exp(−pn2) = exp

(

−c1c2
2r

2/(m+1)(log r)2) ,

so xGNRG P(G) ≤ exp
(

(c4 + 2c2 − c1c2
2)r

2/(m+1)(log r)2
)

. Hence xGNRG P(G) = o(1) and
xGNGG P(G) = o(1). provided we choose c1, c2 and c4 so that

c4 < c1c2
2 − 2c2. (9)

Note that (4) is automatically fulfilled, and also xGNRG P(G) = o(1) implies (5). In
view of (8) and xGNRG P(G) = o(1), which is implied by (9), condition (6) holds for all
sufficiently large r if we choose

c3 > 1. (10)

Finally, since

xRNGR P(R) ≤ c3(c2 r2/(m+1) log r)2r2(m−1)(c1r−2/(m+1))m2

= cm2

1 c2
2 c3 r2/(m+1)(log r)2,

we see that (7) holds provided the constants c1, . . . , c4 are chosen so that

c4 > cm2

1 c2
2 c3. (11)

To satisfy (9), (10), and (11), and at the same time find a near optimal (minimum) choice
for c2, we begin by considering the case of equality in (7)-(9). Set c3 = 1 and

cm2

1 c2
2 = c4 = c1c2

2 − 2c2.

Since both c1 and c2 are positive, c1 must satisfy 0 < c1 < 1. To minimize c2 = 1/(c1−cm2

1 )
we choose c1 = m−2/(m2−1). To satisfy (7)-(9) and still make a nearly optimal choice of
c2, set

c1 = m−2/(m2−1), c2 =
2(1 + ε)

c1 − (1 + ε)cm2

1
, c3 = 1 + ε,

where ε is positive and small enough that c1− (1 + ε)cm2

1 > 0. Then cm2

1 c2
2c3 < c1c2

2− 2c2,
which is equivalent to c2(c1− c3cm2

1 ) > 2, is satisfied and there is a suitable choice of c4 so
that cm2

1 c2
2c3 < c4 < c1c2

2 − 2c2. A routine computation shows that this justifies the lower
bound statement with

A = (1− ε)m−1/(m−1)
(

m− 1
m2

)(m+1)/2

,

where ε > 0 is arbitrary.
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3 Open Questions

Our knowledge of b(2, n) closely parallels that of r(C4, Kn). Concerning the latter, Erdős
conjectured at the 1983 ICM in Warsaw that r(C4, Kn) = o(n2−ε) for some ε > 0 [3, p.
19].

Open Question 1. Prove or disprove that b(2, n) = o(n2−ε) for some ε > 0.

Also, very little is known about the diagonal case. A well-known question in classical
Ramsey theory concerning the asymptotic behavior of r(n) [3, p. 10] has the following
counterpart for bipartite Ramsey numbers.

Open Question 2. Determine the value of

lim
n→∞

b(n, n)1/n,

if it exists.

From [4] and [7] it is known that
√

2e−1n2n/2 < b(n, n) ≤ 2n(n− 1) + 1, so if the limit
exists, it is between

√
2 and 2.
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