Asymptotic Bounds for Bipartite Ramsey Numbers

Yair Caro

Department of Mathematics University of Haifa - Oranim Tivon 36006, Israel ya_caro@kvgeva.org.il Cecil Rousseau

Department of Mathematical Sciences The University of Memphis Memphis, TN 38152-3240 ccrousse@memphis.edu

Submitted: July 11, 2000; Accepted: February 7, 2001. MR Subject Classifications: 05C55, 05C35

Abstract

The bipartite Ramsey number b(m, n) is the smallest positive integer r such that every (red, green) coloring of the edges of $K_{r,r}$ contains either a red $K_{m,m}$ or a green $K_{n,n}$. We obtain asymptotic bounds for b(m, n) for $m \ge 2$ fixed and $n \to \infty$.

1 Introduction

Recent exact results for bipartite Ramsey numbers [4] have rekindled interest in this subject. The bipartite Ramsey number b(m, n) is the smallest integer r such that every (red, green) coloring of the edges of $K_{r,r}$ contains either a red $K_{m,m}$ or a green $K_{n,n}$. In early work on the subject [1], Beineke and Schwenk proved that b(2,2) = 5 and b(3,3) = 17. In [4] Hattingh and Henning prove that b(2,3) = 9 and b(2,4) = 14. The following variation was considered by Beineke and Schwenk [1] and also by Irving [5]: for $1 \leq m \leq n$, the bipartite Ramsey number R(m,n) is the smallest integer r such that every (red, green) coloring of the edges of $K_{r,r}$ contains a monochromatic $K_{m,n}$. Irving found that $R(2,n) \leq 4n-3$, with equality if n is odd and there is Hadamard matrix of order 2(n-1). The bound $R(m,n) \leq 2^m(n-1)+1$ was proved by Thomason in [7]. Note that b(m,m) = R(m,m). In this note, we obtain asymptotic bounds for b(m,n) with mfixed and $n \to \infty$.

2 The Main Result

Theorem 1. Let $m \ge 2$ be fixed. Then there are constants A and B such that

$$A\left(\frac{n}{\log n}\right)^{(m+1)/2} < b(m,n) < B\left(\frac{n}{\log n}\right)^m, \qquad n \to \infty.$$

The electronic journal of combinatorics 8 (2001), #R17

Specifically, these bounds hold with

$$A = (1 - \epsilon)m^{-1/(m-1)} \left(\frac{m-1}{m^2}\right)^{(m+1)/2}$$

and

$$B = (1+\epsilon) \left(\frac{1}{m-1}\right)^{m-1},$$

where $\epsilon > 0$ is arbitrary.

Proof. The upper bound is based on well-known results for the Zarankiewicz function. Let z(r, s) denote the maximum number of edges that a subgraph of $K_{r,r}$ can have if it does not contain $K_{s,s}$ as a subgraph. We use the bound

$$z(r;s) < \left(\frac{s-1}{r}\right)^{1/s} r(r-s+1) + (s-1)r,$$
(1)

which is found in [2] and elsewhere. To prove $b(m,n) \leq r$ it suffices to show that $z(r;m) + z(r;n) < r^2$. Take $\epsilon > 0$ and set $r = c(n/\log n)^m$ where $c = (m-1)^{-(m-1)}(1+\epsilon)$. Then

$$\frac{z(r;m)}{r^2} < \left(\frac{m-1}{r}\right)^{1/m} \left(1 - \frac{m-1}{r}\right) + \frac{m-1}{r}$$
$$= \left(\frac{m-1}{c}\right)^{1/m} \frac{\log n}{n} + O\left(\left(\frac{\log n}{n}\right)^m\right). \tag{2}$$

To bound $z(r;n)/r^2$, we begin with the evident asymptotic formula

$$\left(\frac{n-1}{r}\right)^{1/n} = \left(\frac{(n-1)(\log n)^m}{cn^m}\right)^{1/n} = 1 - \frac{(m-1)\log n}{n} + O\left(\frac{\log\log n}{n}\right).$$

Hence

$$\frac{z(r;n)}{r^2} < \left(\frac{n-1}{r}\right)^{1/n} \left(1 - \frac{n-1}{r}\right) + \frac{n-1}{r} = 1 - \frac{(m-1)\log n}{n} + O\left(\frac{\log\log n}{n}\right).$$
(3)

Adding (2) and (3) we obtain

$$\frac{z(r;m) + z(r;n)}{r^2} = 1 - \left(m - 1 - \left(\frac{m-1}{c}\right)^{1/m}\right)\frac{\log n}{n} + O\left(\frac{\log \log n}{n}\right)$$
$$= 1 - (m-1)\left(1 - \frac{1}{(1+\epsilon)^{1/m}}\right)\frac{\log n}{n} + O\left(\frac{\log \log n}{n}\right),$$

The electronic journal of combinatorics 8 (2001), #R17

so $(z(r;m) + z(r;n))/r^2 < 1$ for all sufficiently large n, completing the proof.

To prove the lower bound, we use the Lovász Local Lemma in the manner pioneered by Spencer [6]. Consider a random coloring of the edges of $K_{r,r}$ in which, independently, each edge is colored red with probability p. For each set S of 2m vertices, m from each vertex class of the $K_{r,r}$, let R_S denote the event in which each edge of the $K_{m,m}$ spanned by S is red. Similarly, for each set T consisting of n vertices from each color class, let G_T denote the event in which each edge of the $K_{n,n}$ spanned by T is green. Then $\mathbb{P}(R_S) = p^{m^2}$ for each of the $\binom{r}{m}^2$ choices of S, and we simply write $\mathbb{P}(R)$ for the common value. In the same way, $\mathbb{P}(G) = (1-p)^{n^2}$ for each of $\binom{r}{n}^2$ possible $G = G_T$ events. Let S be a fixed choice of m vertices from each class. Then N_{RR} denotes the number of events $R_{S'}$ such that R_S and $R_{S'}$ are dependent, that is the bipartite graphs spanned by S and S' share at least one edge. Similarly, let N_{RG} denote the number of events G_T such that R_S and G_T are dependent. In the same way, for fixed a fixed choice T of n vertices from each class, we define the dependence numbers N_{GR} and N_{GG} . By the Local Lemma, the probability that a random coloring has neither a red $K_{m,m}$ or a green $K_{n,n}$ is positive provided there exist positive numbers x_R and x_G such that

$$1 > x_R \mathbb{P}(R), \tag{4}$$

$$1 > x_G \mathbb{P}(G), \tag{5}$$

$$\log x_R > x_R N_{RR} \mathbb{P}(R) + x_G N_{RG} \mathbb{P}(G), \tag{6}$$

$$\log x_G > x_R N_{GR} \mathbb{P}(R) + x_G N_{GG} \mathbb{P}(G).$$
(7)

With positive constants c_1 through c_4 to be chosen, set

$$p = c_1 r^{-2/(m+1)},$$

$$n = c_2 r^{2/(m+1)} \log r,$$

$$x_R = c_3,$$

$$x_G = \exp\left(c_4 r^{2/(m+1)} (\log r)^2\right).$$

To prove that there are choices of the constants c_1, \ldots, c_4 for which (4) through (7) hold, we begin by noting the following bounds:

$$N_{RR} \le m^2 \binom{r}{m-1}^2 < r^{2(m-1)},$$
$$N_{GR} \le n^2 \binom{r}{m-1}^2 < n^2 r^{2(m-1)},$$
$$N_{RG}, N_{GG} \le \binom{r}{n}^2 < \left(\frac{er}{n}\right)^{2n}.$$

We have

$$N_{RR}\mathbb{P}(R) < r^{2(m-1)} \left(c_1 r^{-2/(m+1)} \right)^{m^2} = c_1^{m^2} r^{-2/(m+1)} = o(1), \qquad r \to \infty, \tag{8}$$

The electronic journal of combinatorics 8 (2001), #R17

independent of the choice of c_1 . Also $\log N_{RG} < 2n \log r = 2c_2 r^{2/(m+1)} (\log r)^2$ and

$$\mathbb{P}(G) = (1-p)^{n^2} \le \exp(-pn^2) = \exp\left(-c_1 c_2^2 r^{2/(m+1)} (\log r)^2\right),$$

so $x_G N_{RG} \mathbb{P}(G) \leq \exp\left((c_4 + 2c_2 - c_1c_2^2)r^{2/(m+1)}(\log r)^2\right)$. Hence $x_G N_{RG} \mathbb{P}(G) = o(1)$ and $x_G N_{GG} \mathbb{P}(G) = o(1)$. provided we choose c_1, c_2 and c_4 so that

$$c_4 < c_1 c_2^2 - 2c_2. \tag{9}$$

Note that (4) is automatically fulfilled, and also $x_G N_{RG} \mathbb{P}(G) = o(1)$ implies (5). In view of (8) and $x_G N_{RG} \mathbb{P}(G) = o(1)$, which is implied by (9), condition (6) holds for all sufficiently large r if we choose

$$c_3 > 1.$$
 (10)

Finally, since

$$x_R N_{GR} \mathbb{P}(R) \le c_3 (c_2 r^{2/(m+1)} \log r)^2 r^{2(m-1)} (c_1 r^{-2/(m+1)})^{m^2}$$
$$= c_1^{m^2} c_2^2 c_3 r^{2/(m+1)} (\log r)^2,$$

we see that (7) holds provided the constants c_1, \ldots, c_4 are chosen so that

$$c_4 > c_1^{m^2} c_2^2 c_3. (11)$$

To satisfy (9), (10), and (11), and at the same time find a near optimal (minimum) choice for c_2 , we begin by considering the case of equality in (7)-(9). Set $c_3 = 1$ and

$$c_1^{m^2}c_2^2 = c_4 = c_1c_2^2 - 2c_2.$$

Since both c_1 and c_2 are positive, c_1 must satisfy $0 < c_1 < 1$. To minimize $c_2 = 1/(c_1 - c_1^{m^2})$ we choose $c_1 = m^{-2/(m^2-1)}$. To satisfy (7)-(9) and still make a nearly optimal choice of c_2 , set

$$c_1 = m^{-2/(m^2 - 1)}, \qquad c_2 = \frac{2(1 + \epsilon)}{c_1 - (1 + \epsilon)c_1^{m^2}}, \qquad c_3 = 1 + \epsilon,$$

where ϵ is positive and small enough that $c_1 - (1 + \epsilon)c_1^{m^2} > 0$. Then $c_1^{m^2}c_2^2c_3 < c_1c_2^2 - 2c_2$, which is equivalent to $c_2(c_1 - c_3c_1^{m^2}) > 2$, is satisfied and there is a suitable choice of c_4 so that $c_1^{m^2}c_2^2c_3 < c_4 < c_1c_2^2 - 2c_2$. A routine computation shows that this justifies the lower bound statement with

$$A = (1 - \epsilon)m^{-1/(m-1)} \left(\frac{m-1}{m^2}\right)^{(m+1)/2},$$

where $\epsilon > 0$ is arbitrary.

3 Open Questions

Our knowledge of b(2, n) closely parallels that of $r(C_4, K_n)$. Concerning the latter, Erdős conjectured at the 1983 ICM in Warsaw that $r(C_4, K_n) = o(n^{2-\epsilon})$ for some $\epsilon > 0$ [3, p. 19].

Open Question 1. Prove or disprove that $b(2,n) = o(n^{2-\epsilon})$ for some $\epsilon > 0$.

Also, very little is known about the diagonal case. A well-known question in classical Ramsey theory concerning the asymptotic behavior of r(n) [3, p. 10] has the following counterpart for bipartite Ramsey numbers.

Open Question 2. Determine the value of

$$\lim_{n \to \infty} b(n, n)^{1/n},$$

if it exists.

From [4] and [7] it is known that $\sqrt{2}e^{-1}n2^{n/2} < b(n,n) \leq 2^n(n-1)+1$, so if the limit exists, it is between $\sqrt{2}$ and 2.

References

- L. W. Beineke and A. J. Schwenk, On a bipartite form of the Ramsey problem, Proceedings of the 5th British Combinatorial Conference, 1975, Congr. Numer. XV (1975), 17-22.
- [2] B. Bollobás, *Extremal Graph Theory*, in *Handbook of Combinatorics, volume II*, R. L. Graham, M. Grötschel, and L. Lovász, eds, MIT Press, Cambridge, Mass., 1995.
- [3] F. Chung and R. Graham, Erdős on Graphs, His Legacy of Unsolved Problems, A. K. Peters, Wellesley, Mass., 1998.
- [4] J. H. Hattingh and M. A. Henning, Bipartite Ramsey theory, Utilitas Math. 53 (1998), 217-230.
- [5] R. W. Irving, A bipartite Ramsey problem and the Zarankiewicz numbers, *Glasgow Math. J.* 19 (1978), 13-26.
- [6] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977), 69-76.
- [7] A. Thomason, On finite Ramsey numbers, European J. Combin. 3 (1982), 263-273.