Asymptotic Bounds for Bipartite Ramsey Numbers

Yair Caro
Department of Mathematics
University of Haifa - Oranim
Tivon 36006, Israel
ya_caro@kvgeva.org.il

Cecil Rousseau
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152-3240
ccrousse@memphis.edu

Submitted: July 11, 2000; Accepted: February 7, 2001.
MR Subject Classifications: 05C55, 05C35

Abstract

The bipartite Ramsey number $b(m, n)$ is the smallest positive integer r such that every (red, green) coloring of the edges of $K_{r, r}$ contains either a red $K_{m, m}$ or a green $K_{n, n}$. We obtain asymptotic bounds for $b(m, n)$ for $m \geq 2$ fixed and $n \rightarrow \infty$.

1 Introduction

Recent exact results for bipartite Ramsey numbers [4] have rekindled interest in this subject. The bipartite Ramsey number $b(m, n)$ is the smallest integer r such that every (red, green) coloring of the edges of $K_{r, r}$ contains either a red $K_{m, m}$ or a green $K_{n, n}$. In early work on the subject [1], Beineke and Schwenk proved that $b(2,2)=5$ and $b(3,3)=17$. In [4] Hattingh and Henning prove that $b(2,3)=9$ and $b(2,4)=14$. The following variation was considered by Beineke and Schwenk [1] and also by Irving [5]: for $1 \leq m \leq n$, the bipartite Ramsey number $R(m, n)$ is the smallest integer r such that every (red, green) coloring of the edges of $K_{r, r}$ contains a monochromatic $K_{m, n}$. Irving found that $R(2, n) \leq 4 n-3$, with equality if n is odd and there is Hadamard matrix of order $2(n-1)$. The bound $R(m, n) \leq 2^{m}(n-1)+1$ was proved by Thomason in [7]. Note that $b(m, m)=R(m, m)$. In this note, we obtain asymptotic bounds for $b(m, n)$ with m fixed and $n \rightarrow \infty$.

2 The Main Result

Theorem 1. Let $m \geq 2$ be fixed. Then there are constants A and B such that

$$
A\left(\frac{n}{\log n}\right)^{(m+1) / 2}<b(m, n)<B\left(\frac{n}{\log n}\right)^{m}, \quad n \rightarrow \infty
$$

Specifically, these bounds hold with

$$
A=(1-\epsilon) m^{-1 /(m-1)}\left(\frac{m-1}{m^{2}}\right)^{(m+1) / 2}
$$

and

$$
B=(1+\epsilon)\left(\frac{1}{m-1}\right)^{m-1}
$$

where $\epsilon>0$ is arbitrary.
Proof. The upper bound is based on well-known results for the Zarankiewicz function. Let $z(r, s)$ denote the maximum number of edges that a subgraph of $K_{r, r}$ can have if it does not contain $K_{s, s}$ as a subgraph. We use the bound

$$
\begin{equation*}
z(r ; s)<\left(\frac{s-1}{r}\right)^{1 / s} r(r-s+1)+(s-1) r, \tag{1}
\end{equation*}
$$

which is found in [2] and elsewhere. To prove $b(m, n) \leq r$ it suffices to show that $z(r ; m)+$ $z(r ; n)<r^{2}$. Take $\epsilon>0$ and set $r=c(n / \log n)^{m}$ where $c=(m-1)^{-(m-1)}(1+\epsilon)$. Then

$$
\begin{align*}
\frac{z(r ; m)}{r^{2}} & <\left(\frac{m-1}{r}\right)^{1 / m}\left(1-\frac{m-1}{r}\right)+\frac{m-1}{r} \\
& =\left(\frac{m-1}{c}\right)^{1 / m} \frac{\log n}{n}+O\left(\left(\frac{\log n}{n}\right)^{m}\right) . \tag{2}
\end{align*}
$$

To bound $z(r ; n) / r^{2}$, we begin with the evident asymptotic formula

$$
\left(\frac{n-1}{r}\right)^{1 / n}=\left(\frac{(n-1)(\log n)^{m}}{c n^{m}}\right)^{1 / n}=1-\frac{(m-1) \log n}{n}+O\left(\frac{\log \log n}{n}\right)
$$

Hence

$$
\begin{align*}
\frac{z(r ; n)}{r^{2}} & <\left(\frac{n-1}{r}\right)^{1 / n}\left(1-\frac{n-1}{r}\right)+\frac{n-1}{r} \\
& =1-\frac{(m-1) \log n}{n}+O\left(\frac{\log \log n}{n}\right) . \tag{3}
\end{align*}
$$

Adding (2) and (3) we obtain

$$
\begin{aligned}
\frac{z(r ; m)+z(r ; n)}{r^{2}} & =1-\left(m-1-\left(\frac{m-1}{c}\right)^{1 / m}\right) \frac{\log n}{n}+O\left(\frac{\log \log n}{n}\right) \\
& =1-(m-1)\left(1-\frac{1}{(1+\epsilon)^{1 / m}}\right) \frac{\log n}{n}+O\left(\frac{\log \log n}{n}\right)
\end{aligned}
$$

so $(z(r ; m)+z(r ; n)) / r^{2}<1$ for all sufficiently large n, completing the proof.
To prove the lower bound, we use the Lovász Local Lemma in the manner pioneered by Spencer [6]. Consider a random coloring of the edges of $K_{r, r}$ in which, independently, each edge is colored red with probability p. For each set S of $2 m$ vertices, m from each vertex class of the $K_{r, r}$, let R_{S} denote the event in which each edge of the $K_{m, m}$ spanned by S is red. Similarly, for each set T consisting of n vertices from each color class, let G_{T} denote the event in which each edge of the $K_{n, n}$ spanned by T is green. Then $\mathbb{P}\left(R_{S}\right)=p^{m^{2}}$ for each of the $\binom{r}{m}^{2}$ choices of S, and we simply write $\mathbb{P}(R)$ for the common value. In the same way, $\mathbb{P}(G)=(1-p)^{n^{2}}$ for each of $\binom{r}{n}^{2}$ possible $G=G_{T}$ events. Let S be a fixed choice of m vertices from each class. Then $N_{R R}$ denotes the number of events $R_{S^{\prime}}$ such that R_{S} and $R_{S^{\prime}}$ are dependent, that is the bipartite graphs spanned by S and S^{\prime} share at least one edge. Similarly, let $N_{R G}$ denote the number of events G_{T} such that R_{S} and G_{T} are dependent. In the same way, for fixed a fixed choice T of n vertices from each class, we define the dependence numbers $N_{G R}$ and $N_{G G}$. By the Local Lemma, the probability that a random coloring has neither a red $K_{m, m}$ or a green $K_{n, n}$ is positive provided there exist positive numbers x_{R} and x_{G} such that

$$
\begin{align*}
1 & >x_{R} \mathbb{P}(R), \tag{4}\\
1 & >x_{G} \mathbb{P}(G), \tag{5}\\
\log x_{R} & >x_{R} N_{R R} \mathbb{P}(R)+x_{G} N_{R G} \mathbb{P}(G), \tag{6}\\
\log x_{G} & >x_{R} N_{G R} \mathbb{P}(R)+x_{G} N_{G G} \mathbb{P}(G) . \tag{7}
\end{align*}
$$

With positive constants c_{1} through c_{4} to be chosen, set

$$
\begin{aligned}
p & =c_{1} r^{-2 /(m+1)}, \\
n & =c_{2} r^{2 /(m+1)} \log r, \\
x_{R} & =c_{3} \\
x_{G} & =\exp \left(c_{4} r^{2 /(m+1)}(\log r)^{2}\right)
\end{aligned}
$$

To prove that there are choices of the constants c_{1}, \ldots, c_{4} for which (4) through (7) hold, we begin by noting the following bounds:

$$
\begin{aligned}
N_{R R} & \leq m^{2}\binom{r}{m-1}^{2}<r^{2(m-1)} \\
N_{G R} & \leq n^{2}\binom{r}{m-1}^{2}<n^{2} r^{2(m-1)}, \\
N_{R G}, N_{G G} & \leq\binom{ r}{n}^{2}<\left(\frac{e r}{n}\right)^{2 n} .
\end{aligned}
$$

We have

$$
\begin{equation*}
N_{R R} \mathbb{P}(R)<r^{2(m-1)}\left(c_{1} r^{-2 /(m+1)}\right)^{m^{2}}=c_{1}^{m^{2}} r^{-2 /(m+1)}=o(1), \quad r \rightarrow \infty \tag{8}
\end{equation*}
$$

independent of the choice of c_{1}. Also $\log N_{R G}<2 n \log r=2 c_{2} r^{2 /(m+1)}(\log r)^{2}$ and

$$
\mathbb{P}(G)=(1-p)^{n^{2}} \leq \exp \left(-p n^{2}\right)=\exp \left(-c_{1} c_{2}^{2} r^{2 /(m+1)}(\log r)^{2}\right),
$$

so $x_{G} N_{R G} \mathbb{P}(G) \leq \exp \left(\left(c_{4}+2 c_{2}-c_{1} c_{2}^{2}\right) r^{2 /(m+1)}(\log r)^{2}\right)$. Hence $x_{G} N_{R G} \mathbb{P}(G)=o(1)$ and $x_{G} N_{G G} \mathbb{P}(G)=o(1)$. provided we choose c_{1}, c_{2} and c_{4} so that

$$
\begin{equation*}
c_{4}<c_{1} c_{2}^{2}-2 c_{2} . \tag{9}
\end{equation*}
$$

Note that (4) is automatically fulfilled, and also $x_{G} N_{R G} \mathbb{P}(G)=o(1)$ implies (5). In view of (8) and $x_{G} N_{R G} \mathbb{P}(G)=o(1)$, which is implied by (9), condition (6) holds for all sufficiently large r if we choose

$$
\begin{equation*}
c_{3}>1 \tag{10}
\end{equation*}
$$

Finally, since

$$
\begin{aligned}
x_{R} N_{G R} \mathbb{P}(R) & \leq c_{3}\left(c_{2} r^{2 /(m+1)} \log r\right)^{2} r^{2(m-1)}\left(c_{1} r^{-2 /(m+1)}\right)^{m^{2}} \\
& =c_{1}^{m^{2}} c_{2}^{2} c_{3} r^{2 /(m+1)}(\log r)^{2},
\end{aligned}
$$

we see that (7) holds provided the constants c_{1}, \ldots, c_{4} are chosen so that

$$
\begin{equation*}
c_{4}>c_{1}^{m^{2}} c_{2}^{2} c_{3} \tag{11}
\end{equation*}
$$

To satisfy (9), (10), and (11), and at the same time find a near optimal (minimum) choice for c_{2}, we begin by considering the case of equality in (7)-(9). Set $c_{3}=1$ and

$$
c_{1}^{m^{2}} c_{2}^{2}=c_{4}=c_{1} c_{2}^{2}-2 c_{2}
$$

Since both c_{1} and c_{2} are positive, c_{1} must satisfy $0<c_{1}<1$. To minimize $c_{2}=1 /\left(c_{1}-c_{1}^{m^{2}}\right)$ we choose $c_{1}=m^{-2 /\left(m^{2}-1\right)}$. To satisfy (7)-(9) and still make a nearly optimal choice of c_{2}, set

$$
c_{1}=m^{-2 /\left(m^{2}-1\right)}, \quad c_{2}=\frac{2(1+\epsilon)}{c_{1}-(1+\epsilon) c_{1}^{m^{2}}}, \quad c_{3}=1+\epsilon,
$$

where ϵ is positive and small enough that $c_{1}-(1+\epsilon) c_{1}^{m^{2}}>0$. Then $c_{1}^{m^{2}} c_{2}^{2} c_{3}<c_{1} c_{2}^{2}-2 c_{2}$, which is equivalent to $c_{2}\left(c_{1}-c_{3} c_{1}^{m^{2}}\right)>2$, is satisfied and there is a suitable choice of c_{4} so that $c_{1}^{m^{2}} c_{2}^{2} c_{3}<c_{4}<c_{1} c_{2}^{2}-2 c_{2}$. A routine computation shows that this justifies the lower bound statement with

$$
A=(1-\epsilon) m^{-1 /(m-1)}\left(\frac{m-1}{m^{2}}\right)^{(m+1) / 2}
$$

where $\epsilon>0$ is arbitrary.

3 Open Questions

Our knowledge of $b(2, n)$ closely parallels that of $r\left(C_{4}, K_{n}\right)$. Concerning the latter, Erdős conjectured at the 1983 ICM in Warsaw that $r\left(C_{4}, K_{n}\right)=o\left(n^{2-\epsilon}\right)$ for some $\epsilon>0[3, \mathrm{p}$. 19].

Open Question 1. Prove or disprove that $b(2, n)=o\left(n^{2-\epsilon}\right)$ for some $\epsilon>0$.
Also, very little is known about the diagonal case. A well-known question in classical Ramsey theory concerning the asymptotic behavior of $r(n)$ [3, p. 10] has the following counterpart for bipartite Ramsey numbers.

Open Question 2. Determine the value of

$$
\lim _{n \rightarrow \infty} b(n, n)^{1 / n}
$$

if it exists.
From [4] and [7] it is known that $\sqrt{2} e^{-1} n 2^{n / 2}<b(n, n) \leq 2^{n}(n-1)+1$, so if the limit exists, it is between $\sqrt{2}$ and 2 .

References

[1] L. W. Beineke and A. J. Schwenk, On a bipartite form of the Ramsey problem, Proceedings of the 5th British Combinatorial Conference, 1975, Congr. Numer. XV (1975), 17-22.
[2] B. Bollobás, Extremal Graph Theory, in Handbook of Combinatorics, volume II, R. L. Graham, M. Grötschel, and L. Lovász, eds, MIT Press, Cambridge, Mass., 1995.
[3] F. Chung and R. Graham, Erdős on Graphs, His Legacy of Unsolved Problems, A. K. Peters, Wellesley, Mass., 1998.
[4] J. H. Hattingh and M. A. Henning, Bipartite Ramsey theory, Utilitas Math. 53 (1998), 217-230.
[5] R. W. Irving, A bipartite Ramsey problem and the Zarankiewicz numbers, Glasgow Math. J. 19 (1978), 13-26.
[6] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977), 69-76.
[7] A. Thomason, On finite Ramsey numbers, European J. Combin. 3 (1982), 263-273.

