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Abstract

Suppose X1, · · · , Xn are random variables with the same known marginal distribution F but un-

known dependence structure. In this paper, we study the smallest possible value of P(X1 + · · ·+ Xn < s)

over all possible dependence structures, denoted by mn,F(s). We show that mn,F(ns) → 0 for s no

more than the mean of F under weak assumptions. We also derive a limit of mn,F(ns) for any s ∈ R

with an error of at most n−1/6 for general continuous distributions. An application of our result in risk

management confirms that the worst-case Value-at-Risk is asymptotically equivalent to the worst-case

Expected Shortfall for risk aggregation with dependence uncertainty. In the last part of this paper we

present a dual presentation of the theory of complete mixability and give dual proofs of theorems in

the literature on this concept.
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1 Introduction

Let X = (X1, · · · , Xn) be a random vector with the same known marginal distributions F, denoted as

Xi ∼ F, i = 1, · · · , n. When F is known but the joint distribution of (X1, · · · , Xn) is unknown, the

distribution of X is undetermined with some marginal constraints. For any s ∈ R and ψ : Rn → R, let

mψ,F(s) = inf {P(ψ(X) < s) : Xi ∼ F, i = 1, · · · , n} ,

and

wψ,F(s) = inf {P(ψ(X) , s) : Xi ∼ F, i = 1, · · · , n} .

The cases for P(ψ(X) ≤ s) and P(ψ(X) = s), and the cases concerning the largest, instead of the smallest,

possible values are technically similar; we focus on the case for P(ψ(X) < s) in this paper. The study of
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mψ,F(s) originated from a question earlier raised by A. N. Kolmogorov, partially answered by Makarov

(1981) as the first result for n = 2 and ψ(x, y) = x + y. There has been extensive research on this topic

during the past few decades. Admittedly, most of the recent research on mψ,F(s) has been motivated by the

rapidly growing applications in financial risk management in the past several years. Roughly speaking,

finding mψ,F(s) is equivalent to finding the worst-case Value-at-Risk with dependence uncertainty, which

plays an important role in the study of risk aggregation. We refer to Embrechts and Puccetti (2010)

for an overview on this topic, where the connection between mψ,F(s) and risk management is explained

in details. Numerical calculation of mψ,F(s) and its importance in quantifying model uncertainty are

discussed in a more recent paper Embrechts et al. (2013),.

Unfortunately, when n ≥ 3 the quantity mψ,F(s) is not solved except for a few special cases of F

and ψ. The most-studied and most-interesting choice of ψ is the sum function ψn(X) = X1 + · · · + Xn

due to its mathematical tractability and financial interpretation as the aggregate risk. Equivalent forms of

ψn includes the product function Πn(X) = X1 × · · · × Xn, by noting that mΠn,F(s) = mψn,G(log s) where

G is the distribution of log X, X ∼ F. In this paper, we will focus on the case of ψn(X). For simplicity,

throughout we denote mn,F = mψn,F and wn,F = wψn,F for the sum functions ψn, n = 1, 2, · · · .

A duality theorem for mψ,F was given in Gaffke and Rüschendorf (1981) and used in Rüschendorf

(1982) to find mn,F for uniform and binomial distributions. Besides the uniform and binomial cases,

explicit values of mn,F are not found until Wang and Wang (2011) revealed the connection between mn,F

and the class of completely mixable distributions, introduced in the same paper. A distribution F is said

to be n-completely mixable if there exist (dependent) random variables X1, · · · , Xn, identically distributed

F, such that X1 + · · ·+Xn is a constant. Based on complete mixability, Wang et al. (2013) gave the explicit

values of mn,F for F with tail-monotone densities. The reader is also referred to Denuit et al. (1999) for

the study of mn,F using the method of copulas, Embrechts and Puccetti (2006) for a lower bound using

the duality, Puccetti and Rüschendorf (2013a) for the connection between the sharpness of the duality

bounds and complete mixability. A history of the study of mn,F and its connection to mass-transportation

theory can be found in the book Rüschendorf (2013).

The recent development of complete mixability has drawn an increasing attention in quantitative

risk management, not limited to the problems related to mn,F . The concept is of importance in variance

minimization and convex ordering with constraints, and has already been studied before the formal in-

troduction of complete mixability; see for example Rüschendorf and Uckelmann (2002). The concept of

complete mixability was later studied and used in the research of risk aggregation with dependence un-

certainty, such as Puccetti et al. (2012), Wang et al. (2013), Puccetti and Rüschendorf (2013a), Embrechts

et al. (2013) and Bernard et al. (2013). It turns out that the concept has a dual representation based on the

quantities mn,F(s) and wn,F(s), which will be given in this paper.

In this paper, we will study the asymptotic limit of the probability mn,F as n → ∞ based on the
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duality theorem in Gaffke and Rüschendorf (1981). We will show for any continuous distribution F with

a bounded density that

mn,F(ns)→ F(a0)

as n → ∞ where a0 = inf{a ∈ R : E[X|X ≥ a] ≥ s, X ∼ F}. The convergence rate will also be

obtained. Our result has a clear interpretation in risk management. It suggests that for general continuous

distributions with bounded density, the worst-case Value-at-Risk (VaR) and worst-case Expected Shortfall

(ES) are asymptotically equivalent, and the superadditivity ratio of Value-at-Risk is asymptotically equal

to the value of ES/VaR for F. This phenomenon, in the risk management aspect, has been pointed out

first in a recent paper Puccetti and Rüschendorf (2013b) and later in another paper Puccetti et al. (2013)

with assumptions and technical approaches completely different from this paper. In the last part of this

paper, we will construct a bridge that conncets mn,F(s), wn,F(s) and the theory of complete mixability.

The rest of the paper is organized as follows. In Section 2, we give the dual representation for

the quantities mn,F(s) and wn,F(s). Two admissible sets will be introduced and their properties will be

studied. In Section 3, we will present our main results of the asymptotic bounds for mn,F(s), and discuss

its applications in risk management. In Section 4, we give the dual representation of the complete mixa-

bility. Section 5 draws our conclusion. Throughout the paper, we identify probability measures with the

corresponding cumulative distribution functions.

2 Dual Representation and Admissible Sets

In this section, we associate the probabilities mψn,F and wψn,F with an optimization problem over some

functional sets, called admissible sets, and study the properties of the admissble sets. Throughout the

paper, we use the notations x ∨ y = max{x, y}, x ∧ y = min{x, y} and (x)+ = max{x, 0} for x, y being

numbers, functions or random variables.

2.1 Dual representation of the infimum distribution of the sum

A duality for mψ,F was given in Gaffke and Rüschendorf (1981) and Rüschendorf (1982):

mψ,F(s) =1 − inf
{

n
∫

f dF ; f : R→ R is bounded and measurable, s.t.

n∑
i=1

f (xi) ≥ 1[s,+∞)(ψ(x1, · · · , xn)), for all xi ∈ R, i = 1, · · · , n

 .
(2.1)

For simplicity, we denote mn,F = mψn,F and wn,F = wψn,F for the sum functions ψn, n = 1, 2, · · · . To

better study the value of mn,F and wn,F using the duality, for µ ∈ R we define the admissible sets

An(µ) = { f : R→ R, measurable,
1
n

n∑
i=1

f (xi) ≥ 1{[nµ,∞)}(x1 + · · · + xn), ∀x1, · · · , xn ∈ R},
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and

Bn(µ) = { f : R→ R, measurable,
1
n

n∑
i=1

f (xi) ≥ 1{nµ}(x1 + · · · + xn), ∀x1, · · · , xn ∈ R}.

It is obvious that An(µ) ⊂ Bn(µ). Note that here µ is any real number and in the later sections it is

often chosen as the mean of a distribution F. The following lemma states the relationship between the

probabilities mn,F and wn,F , and the admissible sets An and Bn.

Lemma 2.1. For any µ ∈ R and any distribution F, we have

mn,F(nµ) = 1 − inf
{∫

f dF : f ∈ An(µ)
}
,

and

wn,F(nµ) = 1 − inf
{∫

f dF : f ∈ Bn(µ)
}
.

Proof. To be more specific, By taking ψ(X) = X1 + · · · + Xn in (2.1), we get

mn,F(nµ) =1 − inf
{

n
∫

f dF ; f : R→ R is bounded and measurable, s.t.

n∑
i=1

f (xi) ≥ 1[nµ,+∞)(x1 + · · · + xn), for all xi ∈ R, i = 1, · · · , n

 .
(2.2)

Since any function f is the limit of bounded functions, the boundedness in (2.2) can be dropped. Thus,

simply replacing n f in (2.2) by f , we have the first equality mn,F(nµ) = 1 − inf{
∫

f dF : f ∈ An(µ)}.

For the second equality, take ψ(x1, · · · , xn) = 1{nµ}(x1 + · · · + xn) in (2.1). We have

mψ,F(1) =1 − inf
{

n
∫

f dF ; f : R→ R is bounded and measurable, s.t.

n∑
i=1

f (xi) ≥ 1[1,+∞)(1{nµ}(x1 + · · · + xn)), for all xi ∈ R, i = 1, · · · , n


=1 − inf

{∫
f dF : f ∈ Bn(µ)

}
.

Note that mψ,F(1) = inf{P(1nµ(X1 + · · · + Xn) < 1) : Xi ∼ F, i = 1, · · · , n} = wn,F(nµ). Thus, wn,F(nµ) =

1 − inf{
∫

f dF : f ∈ Bn(µ)}. �

The quantities mn,F(nµ) and wn,F(nµ), when µ is chosen as the mean of F, turn out to be closely

related to the concept of complete mixability. We will use them to formulate the theory of the complete

mixability in Section 4. Before that, we first study the properties of the two sets An(µ) and Bn(µ).

2.2 Properties of the admissible sets

Using the duality in Lemma 2.1, one can look into the probabilities mn,F(nµ) and wn,F(nµ) by investi-

gating the sets An(µ) and Bn(µ). Hence, it would be of interest to derive some relevant properties of the
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admissible sets. Throughout the rest of the paper, we will use a class of functions fa for a, µ ∈ R defined

as (for simplicity, µ is dropped in the notation)

fa(x) = (1 + a(x − µ))+ .

Note that 1
n ( fa∧n) is exactly the admissible functions used in Section 4 of Embrechts and Puccetti (2006).

For technical reasons, at this moment we do not truncate fa by n as in the above paper.

In the following, we introduce a few propositions concerning some properties of the admissible

sets. Those properties will be used to derive the asymptotic behavior of the admissible sets, and later they

contribute to the proof of our main result in Section 3. We first introduce some elements in An(µ) and

Bn(µ). The following proposition gives important forms of elements in An(µ) and Bn(µ); later we will see

that the functions fa are fundamental in the asymptotic sense for the sets An(µ) and Bn(µ). The proof is

quite straightforward and omitted.

Proposition 2.2. In the following n ∈ N and µ ∈ R.

(a) fa ∈ Bn(µ) for a ∈ R and fa ∈ An(µ) for a ≥ 0. In particular,

(i) if µ , 0, then f1/µ(x) =
(

x
µ

)
+
∈ Bn(µ);

(ii) if µ > 0, then f1/µ(x) =
(

x
µ

)
+
∈ An(µ);

(iii) f0(x) = 1 ∈ An(µ) ⊂ Bn(µ).

(b) n1[µ,∞)(·) ∈ An(µ) ⊂ Bn(µ).

In the next we list some properties of the admissible sets. In summary, the sets An(µ) and Bn(µ) are

convex, and a dominating or truncated function of an element in An(µ) or Bn(µ) is still in An(µ) or Bn(µ).

Those simple properties provide analytical convenience and will be used later. Their proof is also quite

straightforward and omitted.

Proposition 2.3. In the following n ∈ N and µ ∈ R.

(a) An(µ) is a convex set, i.e. for any λ ∈ [0, 1] and f , g ∈ An(µ), we have λ f + (1 − λ)g ∈ An(µ).

(b) If f ∈ An(µ), then f ≥ 0.

(c) If f ∈ An(µ), g : R→ R and g ≥ f , then g ∈ An(µ).

(d) If f ∈ An(µ), then f ∧ n ∈ An(µ).

(e) The above holds true if An(µ) is replaced by Bn(µ).

One may wonder the effect of n on the sets An(µ) and Bn(µ). The next proposition states the connec-

tion between the sets An(µ) (and also Bn(µ)) for different values of n.
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Proposition 2.4. In the following n, k ∈ N and µ ∈ R.

(a) An+k(µ) ⊂ An(µ) ∪ Ak(µ). In particular, Adn(µ) ⊂ An(µ) for all d ∈ N.

(b) Bn+k(µ) ⊂ Bn(µ) ∪ Bk(µ). In particular, Bdn(µ) ⊂ Bn(µ) for all d ∈ N.

Proof. For any f ∈ An+k(µ) and f < Ak(µ), there exist y1, · · · , yk ∈ R such that y1 + · · · + yk ≥ kµ and∑k
j=1 f (y j) < k. Note that for any x1, · · · , xn ∈ R such that x1 + · · · + xn ≥ nµ, we have

n∑
i=1

f (xi) +

k∑
j=1

f (y j) ≥ n + k

since
∑n

i=1 xi +
∑k

j=1 y j ≥ (n + k)µ. This implies
∑n

i=1 f (xi) > n and f ∈ An(µ). Thus, An+k(µ) ⊂

An(µ) ∪ Ak(µ). The proof for Bn(µ) is similar. �

The fact that Adn(µ) ⊂ An(µ) tells us that, roughly speaking (although not strictly), the set An(µ) gets

smaller as n gets larger. It motivates us to study the asymptotic behavior of An(µ) as n→ ∞. Fortunately,

we are able to characterize the limit of An(µ). Before approaching this result, we give a lemma whose

proof is trivial by definitions.

Lemma 2.5. In the following n, k ∈ N and µ ∈ R.

(a) If f ∈ An(µ), then (n − k) f (µ − ks) + k f (µ + (n − k)t) ≥ n for all t, s ∈ R, t ≥ s and k = 0, · · · , n. In

particular, f (t) ≥ 1 for all t ≥ µ.

(b) If f ∈ Bn(µ), then (n− k) f (µ− ks) + k f (µ+ (n− k)s) ≥ n for all s ∈ R and k = 0, · · · , n. In particular,

f (µ) ≥ 1.

The following theorem characterizes the limit of An(µ) as n → ∞. It is clear from the theorem that

fa plays a fundamental role in the limit of An(µ).

Theorem 2.6. Let A(µ) = ∩∞n=1An(µ), then

(a) A(µ) = { f : R→ R, f ≥ fa for some a ≥ 0};

(b) limn→∞ An(µ) exists and equals A(µ).

Proof. (a) If f ≥ fa, then by Proposition 2.2(a) and Proposition 2.3(c) we have f ∈ An(µ) for all n ∈ N.

In the next we will show that for any f ∈ A(µ), we have f ≥ fa for some a ≥ 0. For any f ∈ A(µ),

it is obvious that f ≥ 0. Let d1 = sup{ 1− f (µ−c)
c : c > 0} and d2 = inf{ f (µ+c)−1

c : c > 0}. By Lemma

2.5(a) we know d2 ≥ 0. If d1 ≤ d2, then we have f (x) ≥ fd2 (x).

Now suppose d1 > d2. Then there exists c1 > 0 and c2 > 0 such that

f (µ + c2) − 1
c2

<
1 − f (µ + c1)

c1
. (2.3)
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On the other hand, by Lemma 2.5(a) we know that

f (µ + (n − k)t) − 1 ≥
n − k

k
(1 − f (µ − ks))

for all n ∈ N, t, s ∈ R, t ≥ s and k = 1, · · · , n. We take kn = d c1
c1+c2

ne. It is easy to see that n−kn
kn
≤

c2
c1

and n−kn
kn
→

c2
c1

as n→ ∞. Further take sn = c1/kn and tn = c2/(n − kn). Then sn ≤ tn and

f (µ + c2) − 1 ≥
n − kn

kn
(1 − f (µ − c1)). (2.4)

By taking n→ ∞, we obtain that (2.3) is violated. Thus, d1 ≤ d2 holds true and f (x) ≥ fd2 (x).

(b) Recall that lim infn→∞ An(µ) = limm→∞ ∩
∞
n=mAn(µ) and lim supn→∞ An(µ) = limm→∞ ∪

∞
n=mAn(µ). It is

obvious that

A(µ) ⊂ lim inf
n→∞

An(µ) ⊂ lim sup
n→∞

An(µ).

We use the same argument in (a) for any f ∈ Ak(µ) for some k ∈ N. Assume d1 > d2. Notice that for

all ε > 0, there exist N ∈ N such that for all n > N, n−kn
kn
≥

c2
c1
− ε. We rewrite (2.3) as

f (µ + c2) − 1 =
c2

c1
(1 − f (µ + c1)) − δ, δ > 0. (2.5)

Thus, by taking ε which violates (2.5), we obtain that if d1 > d2 for f , then f < An(µ) for all n > N.

This implies that

lim inf
n→∞

An(µ) ⊂ lim sup
n→∞

An(µ) ⊂ A(µ).

Finally, we conclude that A(µ) = lim infn→∞ An(µ) = lim supn→∞ An(µ), thus A(µ) = limn→∞ An(µ).

�

Remark 2.1. A similar asymptotic result for the limit of Bn(µ) is not available using a similar method,

due to that the elements in Bn(µ) are less regulated than in An(µ).

3 Asymptotic Bounds on the Distribution Function of the Sum

Motivated by the analysis on An(µ), we first provide a new result on the bound for mn,F(nµ) where µ is the

mean of F, which implies that mn,F(nµ) → 0 as n → ∞ under weak condition of F. Then we extend the

result to mn,F(s) for any s ∈ R. Finally, we will give the applications of our results in risk management.

All the distributions F discussed in this section are continuous since we will always assume a bounded

density.

3.1 Asymptotic result of mn,F(nµ) where µ is the mean of F

In Section 2.2 we found that limn→∞ An(µ) = A(µ) = { f : R → R, f ≥ fa for some a ≥ 0}. One may

immediately notice that
∫

fadF ≥
∫

1 + a(x − µ)dF = 1 for all a ≥ 0. This, although does not directly
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imply, but suggests a possibility that when n is large, mn,F(nµ) = 1− inf{
∫

f dF : f ∈ An(µ)}may be close

to zero since the set An(µ) contains mostly functions greater than fa for some a. This motivates us to use

the duality to investigate the asymptotic behavior of mn,F(nµ). Before providing the main result, we first

present a lemma.

Lemma 3.1. Denote kn(x, y) = d x
x+y

ne for x, y ∈ R.

(a) For any f ∈ An(µ) and a ≥ 0 we have

f (x) − fa(x) ≥ a(µ − x) −
kn(µ − x, c)

n − kn(µ − x, c)
( f (µ + c) − 1)

for any x < µ, c ≥ 0. Here, by convention we use 1
0 = +∞.

(b) Let a = inf{ f (µ+c)−1
c : p ≤ c ≤ q}, then f (x) − fa(x) ≥ 0 for any x ∈ [µ + p, µ + q].

Proof. We only prove part (a) as part (b) is trivial. By Lemma 2.5(a) we know that

f (µ + (n − k)t) − 1 ≥
n − k

k
(1 − f (µ − ks))

for all n ∈ N, t, s ∈ R, t ≥ s and k = 1, · · · , n. For any x < µ, c ≥ p, it is easy to see that n−kn(µ−x,c)
kn(µ−x,c) ≤

c
µ−x .

Take s = (µ − x)/kn(µ − x, c) and t = c/(n − kn(µ − x, c)). Then s ≤ t and

f (µ + c) − 1 ≥
n − kn(µ − x, c)

kn(µ − x, c)
(1 − f (x)).

Hence, (by setting 1
0 = +∞ when kn = n)

f (x) ≥ 1 −
kn(µ − x, c)

n − kn(µ − x, c)
( f (µ + c) − 1).

Finally,

f (x) − fa(x) ≥ a(µ − x) −
kn(µ − x, c)

n − kn(µ − x, c)
( f (µ + c) − 1).

�

Theorem 3.2. Let F be a distribution on [0, 1] with mean µ and a bounded density F′ ≤ m0. Then

mn,F(nµ) ≤ 2n−1/3m0 for n ≥ 33.

Proof. First without loss of generality we assume µ = 1/2. We will comment on the case µ , 1/2 at the

end of the proof (see (**)). To avoid displaying too many fractions in equations, we still use the notation

µ for 1/2.

It is obvious that when n ≥ 3, p := n−2/3 < µ. Take any g ∈ An(µ) and let f = g ∧ n, then f ∈ An(µ)

by Proposition 2.3(d). We will show that
∫

f dF ≥ 1 − n−1/3m0.

We assume that a := inf{ f (µ+c)−1
c : p ≤ c ≤ µ} is attained at a point c0 ∈ [p, µ] such that a =

f (µ+c0)−1
c0

.

By definition, It is obvious that 0 ≤ a ≤ n−1
µ

= 2(n − 1). The case when this infimum is not attained is

similar and will be explained later (see (*) below).
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Next we calculate
∫

( f − fa)dF. Note that fa(x) = 0 for x ≤ µ − 1
a . By Lemma 3.1(b), we have

f (x) − fa(x) ≥ 0 for x ∈ [µ + p, 1]. We first consider the case a < 1/p. We can write∫ 1

0
( f − fa)dF ≥

∫ µ−p

0∨(µ− 1
a )

( f − fa)dF +

∫ µ+p

µ−p
( f − fa)dF. (3.1)

By taking c = c0 in Lemma 3.1(a), we have∫ µ−p

0∨(µ− 1
a )

( f − fa)dF ≥
∫ µ−p

0∨(µ− 1
a )

a(µ − x)
(
1 −

kn(µ − x, c0)
n − kn(µ − x, c0)

c0

µ − x

)
dF. (3.2)

Note that in the integral of (3.2), µ − x ∈ [p, µ] and c0 ∈ [p, 1 − µ]. Denote b =
µ−x

µ−x+c0
, then p

1/2+p =

p
1−µ+p ≤ b ≤ µ

µ+p =
1/2

1/2+p and hence b(1 − b) ≥ p
2(1/2+p)2 . It is easy to see that

kn(µ − x, c0)
n − kn(µ − x, c0)

c0

µ − x
≤

bn + 1
(1 − b)n − 1

1 − b
b

= 1 +
1

b(1 − b)n − b

≤ 1 +
2(1/2 + p)2

pn − (1/2 + p)
.

Also note that since the mean of F is 1/2 and F is supported in [0, 1], we have that

1
2

=

∫
xdF ≤

(
1 − F

(
1
2
− p

))
+

(
1
2
− p

)
F

(
1
2
− p

)
.

Therefore, F(1/2 − p) ≤ 1/(1 + 2p). By (3.2) we have that∫ µ−p

0∨(µ− 1
a )

( f − fa)dF ≥

∫ µ−p

0∨(µ− 1
a )

a(µ − x)
(
−

2(1/2 + p)2

pn − (1/2 + p)

)
dF

≥ −a
(
µ − µ +

1
a

)
2(1/2 + p)2

pn − (1/2 + p)
F(1/2 − p)

≥ −
1/2 + p

pn − (1/2 + p)
.

=
1

n1/3

1 + 2n−2/3

2 − n−1/3 − 2n−1 .

Some straightforward algebra shows that

1 + 2n−2/3

2 − n−1/3 − 2n−1 ≤
2
3

for n ≥ 33. In the following we also assume n ≥ 33. Thus,∫ µ−p

0∨(µ− 1
a )

( f − fa)dF ≥ −
2
3

n−1/3. (3.3)

On the other hand, since f (x) ≥ 0 for x < µ and f (x) ≥ 1 for x ≥ µ, we have∫ µ+p

µ−p
( f − fa)dF ≥ −

∫ µ

µ−p
fadF +

∫ µ+p

µ

(1 − fa)dF

≥ −m0

(∫ µ

µ−p
(1 + a(x − µ))dx +

∫ µ+p

µ

a(x − µ)dx
)

= −m0 p

= −n−2/3m0. (3.4)
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Finally, by (3.1), (3.3) and (3.4), we conclude that∫ 1

0
( f − fa)dF ≥ −n−1/3(

2
3

+ n−1/3m0).

Also note that m0 is the maximum density of a distribution on [0, 1], hence m0 ≥ 1. Thus∫ 1

0
( f − fa)dF ≥ n−1/3(

2
3

+ n−1/3m0) ≥ n−1/3(
2
3

m0 + n−1/3m0) ≥ −n−1/3m0. (3.5)

Now we consider the case 1/p ≤ a ≤ 2(n − 1). In this case, we have∫ 1

0
( f − fa)dF ≥

∫ µ+p

µ− 1
a

( f − fa)dF

= −

∫ µ

µ− 1
a

fadF +

∫ µ+p

µ

(1 − fa)dF

≥ −m0

∫ µ

µ− 1
a

(1 + a(x − µ))dx +

∫ µ+p

µ

a(x − µ)dx


= −m0(
1

2a
+

ap2

2
)

≥ −n−1/3m0. (3.6)

Combining (3.5) and (3.6), we have ∫ 1

0
( f − fa)dF ≥ −n−1/3m0

for both cases of a and n ≥ 33.

We can easily verify that
∫

fadF ≥
∫

(1 + a(x − µ))dF = 1. Thus∫ 1

0
f dF ≥ 1 − n−1/3m0.

(*) Now we comment on the case when a = inf{ f (µ+c)−1
c : p ≤ c ≤ µ} is not attained at any point

c0 ∈ [p, µ]. In that case, for each δ > 0, there exist 0 < ε < δ such that we can find cε ∈ [p, µ]

where f (µ+cε )−1
cε

= a + ε. Every argument in the above proof is still true if a is replaced by a + ε and

c0 is replaced by cε , except for f ≥ fa+ε not longer holds true for x ∈ [u + p, 1] (Lemma 3.1(b) is

not satisfied). Thus, using the same argument, we have∫ 1

0
( f − fa+ε)dF ≥ −n−1/3m0 −

∫ 1

u+p
( fa+ε − f )dF.

Note that fa+ε − f ≤ fa+ε − fa since f ≥ fa for x ∈ [u + p, 1], thus∫ 1

u+p
( fa+ε − f )dF ≤

∫ 1

u+p
( fa+ε − fa)dF = ε

∫ 1−µ

p
xdF ≤ δ.

It follows that ∫ 1

0
f dF ≥ 1 − n−1/3m0 − δ.

Since δ > 0 is arbitrary, we have
∫ 1

0 f dF ≥ 1 − n−1/3m0.
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In summary, for any g ∈ An(µ) and f = g ∧ n, we have
∫ 1

0 f dF ≥ 1 − n−1/3m0 and therefore∫ 1
0 gdF ≥ 1 − n−1/3m0 since g ≥ f . As g is chosen arbitrarily, we conclude that

inf
{∫

gdF : g ∈ An(µ)
}
≥ 1 − n−1/3m0.

Equivalently, mn,F(nµ) ≤ n−1/3m0.

(**) Finally, we consider the general case µ , 1/2. If µ > 1/2, let X ∼ F and G be the distribution of

X/2µ. Note that G has mean 1/2 and it is easy to see mn,G(n/2) = mn,F(nµ). The maximum density

of G is 2µm0 ≤ 2m0. The case for µ < 1/2 is similar. Thus, for any distribution F with maximum

density m0, we can conlude that mn,F(nµ) ≤ 2n−1/3m0.

�

Remark 3.1. Our result is only meaningful when n is large. Note that only when n ≥ (2m0)3 ≥ 23 our

bound is less than 1, so it is reasonable to assume n ≥ 33. In this paper, we are more interested in the

asymptotic results, hence the case for small n is not our focus. Also, from the proof, one can see that the

bound can be improved to mn,F(nµ) ≤ max{2µ, 2(1 − µ)}n−1/3m0.

We conclude this section with the following immediate corollary.

Corollary 3.3. Let F be a distribution on [a, b] with mean µ and a bounded density F′ ≤ m0. Then

mn,F(ns) ≤ 2n−1/3(b − a)m0 for n ≥ 33 and all s ≤ µ. In particular, we have mn,F(ns) → 0 as n → ∞ for

all F supported in a finite interval with mean µ and a bounded density, and s ≤ µ.

3.2 Asymptotic result of mn,F(ns), s ∈ R

We will use the results obtained in Section 3.1 to give an upper bound on mn,F(ns) for any s ∈ R. Here

we use the notation ns for any real number instead of s to allow asymptotic analysis. Note that the

existing results in the literature usually concern lower bounds on mn,F(ns); see for example Embrechts

and Puccetti (2006) and Wang et al. (2013). A lower bound of mn,F(ns) can be obtained by taking the

supremum of 1−
∫

f dF over a collection of candidate functions f ∈ An(s) such as fa∧n used in Embrechts

and Puccetti (2006). An upper bound on mn,F(ns), on the other hand, is more challenging to obtain. It

also gives approximations for mn,F(ns) since lower bounds on mn,F(ns) are well documented. In this

paper, we give an upper bound for mn,F(ns) for a continuous distribution F with a finite mean. The case

when F(s) = 0 or F(s) = 1 is trivial, so we only consider 0 < F(s) < 1.

Theorem 3.4. Suppose a distribution F has a bounded density F′ ≤ m0 and a finite mean µ, and 0 <

F(s) < 1. We denote a0 = inf{a ∈ R : E[X|X ≥ a] = s, X ∼ F} for s ≥ µ.
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(a) We have

mn,F(ns) ≤ 2n−1/3m0(b − a)(F(b) − F(a)) + F(a)

for n ≥ 33 and any a < b such that 1
F(b)−F(a)

∫ b
a xdF(x) = s.

(b) For s < µ, there exists N ∈ N, such that mn,F(ns) ≤ n−1/6 for any n ≥ N.

(c) For s ≥ µ, mn,F(ns) ≤ F(a0) + o(1) as n→ ∞.

(d) For s ≥ µ, if F has a finite variance, then there exists N ∈ N, such that mn,F(ns) ≤ n−1/6 + F(a0) for

any n ≥ N.

(e) Suppose the support of F is in [c, d], −∞ < c < d < ∞. Then mn,F(ns) ≤ 2n−1/3m0(d − c) + F(a0) for

n ≥ 33.

Proof. (a) Let F1, F2, F3 be the conditional distributions of F on (−∞, a), [a, b) and [b,∞) respectively,

and let p1 = F(a), p2 = F(b) − F(a) and p3 = 1 − F(b). Note that F = p1F1 + p2F2 + p3F3 and the

mean of F2 is s. Let A, B,C be disjoint sets with probability p1, p2, p3 respectively, and

mn,F(ns)

= inf{P(X1 + · · · + Xn < ns) : Xi ∼ F, i = 1, · · · , n}

≤ inf{P(X1 + · · · + Xn < ns) : Xi = 1AXi,1 + 1BXi,2 + 1C Xi,3, Xi, j ∼ F j, i = 1, · · · , n, j = 1, 2, 3}

=

3∑
j=1

p j × inf{P(X1, j + · · · + Xn, j < ns) : Xi, j ∼ F j, i = 1, · · · , n}

Since a < s < b, we have

mn,F(ns) ≤

3∑
j=1

p j × inf{P(X1 + · · · + Xn < ns) : Xi ∼ F j, i = 1, · · · , n}

= p1 + p2 inf{P(X1 + · · · + Xn < ns) : Xi ∼ F j, i = 1, · · · , n}

≤ F(a) + (F(b) − F(a))2n−1/3m0(b − a). (3.7)

This completes the first part of the theorem.

(b) Suppose s < µ. We take an = s − 1
3m0

n1/6 and bn such that 1
F(bn)−F(an)

∫ bn

an
xdF(x) = s. Such bn is

always possible since an < s < µ. It is easy to see that bn ≤ b0 where s ≤ b0 < ∞ is such that
1

F(b0)

∫ b0

−∞
xdF(x) = s. We can see that (3.7) becomes

mn,F(ns) ≤ F(an) + F(bn)2n−1/3m0(b0 − s +
1

3m0
n1/6) ≤ F(an) + n−1/6

for large n. It is also noted that F(an)|an| → 0 since F has a finite mean. Thus, F(an) = o(n−1/6) and

mn,F(ns) ≤ n−1/6 for large n.
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(c) Suppose s > µ. We take bn = s + 1
3m0

n1/6 and an such that 1
F(bn)−F(an)

∫ bn

an
xdF(x) = s. It is easy to see

that an ≥ a0 where −∞ < a0 < s is such that 1
1−F(a0)

∫ ∞
a0

xdF(x) = s. We can see that (3.7) becomes

mn,F(ns) ≤ F(an) + F(bn)2n−1/3m0(s +
1

3m0
n1/6 − a0) ≤ F(an) + n−1/6 (3.8)

for large n. Thus, by noting that an → a0 as n → ∞ and F(an) − F(a0) ≤ m0(an − a0), we have

mn,F(ns) ≤ F(a0) + o(1).

For the case of mn,F(nµ), write a0(s) is such that 1
1−F(a0(s))

∫ ∞
a0(s) xdF(x) = s for s > µ. We have

mn,F(nµ) ≤ mn,F(ns) ≤ F(a0(s)) + o(1) for s > µ. By taking a limit as s → µ and noting that

a0(s)→ a0(µ), we obtain the result holds for mn,F(nµ).

(d) Suppose s > µ. Again we take bn = s + 1
3m0

n1/6 and an such that
∫ bn

an
xdF(x) = s. As in part (c), (3.8)

holds. We will show that F(an) − F(a0) = o(1/bn). Note that
∫ ∞

a0
(s − x)dF(x) =

∫ bn

an
(s − x)dF(x). It

implies that

(s − an)(F(an) − F(a0)) ≤
∫ an

a0

(s − x)dF(x) =

∫ ∞

bn

(x − s)dF(x). (3.9)

Note that F has a finite variance, hence
∫ ∞

bn
(x − s)dF(x) = o(1/bn). Since s − an → s − a0 > 0, It

follows from (3.9) that F(an)−F(a0) = o(1/bn) = o(n−1/6).By (3.8) we have mn,F(ns) ≤ F(a0)+n−1/6.

For the case of s = µ, it is similar to part (c).

(e) This can be directly obtained from (3.7) by letting a = c and b = b0 in part (b) for s ≤ µ, and a = a0

and b = d for s > µ.

�

Remark 3.2. One may directly use Lemma 3.1 for µ = s and apply the proof of Theorem 3.2 to obtain

the same asymptotic result for mn,F(ns). That is, to show
∫

( f − fa)dF → 0 for all f ∈ An(s) where

fa = (1 + a(x − s))+ as in Section 2.2 with µ replaced by s. The two methods are equivalent.

Remark 3.3. Our assumption on the distribution F is very weak. Note that our asymptotic results do

not require F to have a bounded support. For s < µ, we only need F to have a finite mean and a

bounded density. For s ≥ µ, we also need F to have a variance to obtain a convergence rate of n−1/6.

The asymmetry between the two cases is due to the fact that the convergence of F(an) → F(a) and the

convergence of n−1/3bn → 0 are different in nature. Also note that our bound is only meaningful for large

values of n.

In Wang et al. (2013), it is obtained that mn,F(ns) ≥ F(a0) for s ≥ µ for any distribution F with a

finite mean (see Corollary 2.4 in their paper). Hence, the upper bound on mn,F(ns) obtained above and

mn,F(ns) converge to the same limit F(a0) or 0, and for a distribution F with finite variance, |mn,F(ns) −

F(a0)| ≤ n−1/6 for s ≥ µ. We combine this result in the following corollary.
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Corollary 3.5. For any distribution F with finite mean, we have mn,F(ns) → F(a0) for all s ≥ µ, where

a0 = inf{a ∈ R : E[X|X ≥ a] ≥ s, X ∼ F}. Moreover, if F has a finite variance, then F(a0) ≤ mn,F(ns) ≤

F(a0) + n−1/6 for large n.

Remark 3.4. When the support of F is in R+, one can also combine the upper bound in Corollary 3.5

with the dual bound given in Embrechts and Puccetti (2006). That is, for F with a finite variance, we

have

1 − inf
a≥0

∫
( fa ∧ n)dF ≤ mn,F(ns) ≤ F(a0) + n−1/6, (3.10)

where fa = (1 + a(x− s))+ as in Section 2.2 with µ replaced by s. It was pointed out in Wang et al. (2013)

that F(a0) ≤ 1 − infa≥0
∫

( fa ∧ n)dF, hence (3.10) gives a possibly better estimation of mn,F(ns) if F is

supported in R+.

3.3 Applications in risk management

One of the strongest motivations to study the bound function mn,F(s) is to induce the sharp bounds on

quantile-based risk measures of the aggregate risk S = X1 + · · · + Xn, when the marginal distributions of

X1, · · · , Xn are given but the dependence structure among them is unknown. This is a typical setting of

dependence uncertainty in risk management and has been studied extensively in the literature; a history

and recent developments on dependence uncertainty can be found in Bernard et al. (2013). A widely used

risk measure is the so-called Value-at-Risk (VaR) at level α, defined as

VaRα(F) = inf{s ∈ R : F(s) ≥ α} =: F−1(s), α ∈ (0, 1).

An upper bound on the above VaR, called the worst-case Value-at-Risk, is defined as

VaRα(n, F) = sup{VaRα(X1 + · · · + Xn) : Xi ∼ F, i = 1, · · · , n}.

Computing the worst VaR is of great interest in the recent research of quantitative risk management;

the reader is referred to Embrechts and Puccetti (2006), Embrechts and Puccetti (2010), Puccetti and

Rüschendorf (2013a) and Wang et al. (2013) for the study of this problem and applications in practice. It

is well-known that for a continuous distribution F, mn,F is strictly increasing, invertible and VaRα(n, F) =

m−1
n,F(α); see for example Embrechts and Puccetti (2006) and Wang et al. (2013). The following corollary

states the asymptotic behavior of VaRα(n, F). The result is, with no surprise, related to the other popular

risk measure Expected Shortfall (ES, sometimes called other names such as TVaR), defined as

ESα(F) =
1

1 − α

∫ 1

α

F−1(p)dp, α ∈ [0, 1)

for F with a finite mean.

Corollary 3.6. For F with a finite mean and a bounded density, VaRα(n, F)/n → ESα(F) as n → ∞ for

α ∈ (0, 1).
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Proof. Note that ESF(a0)(F) = s and VaRF(a0)(n, F)/n = m−1
n,F(F(a0))/n → s = ESF(a0)(F) for any a0 ∈ R

by Corollary 3.5 and the asymptotic continuity of mn,F . �

Remark 3.5. In Wang et al. (2013), it is already pointed out that mn,F(ns) ≥ F(a0) is equivalent to

VaRα(n, F) ≤ nESα(F). This result can also be explained from the risk management perspective. By the

coherence of the ES (see Artzner et al. (1999)), the worst-case ES is

ESα(n, F) := sup{ESα(X1 + · · · + Xn) : Xi ∼ F, i = 1, · · · , n} = nESα(F).

By definition it is clear that VaRα(F) ≤ ESα(F) for any distribution F, thus we have VaRα(n, F) ≤

ESα(n, F) = nESα(F). Corollary 3.6 suggests that for large n, VaR and ES are asymptotically equivalent.

Thus, when n is large, using the worst-case VaR or the worst-case ES for risk regulation will not lead to

much difference. From the risk management perspective, this phenomenon was mentioned in Puccetti and

Rüschendorf (2013b) under a strong mixable assumption on the distribution which requires a equivalence

of mn,F(ns) =
∫

( fa ∧ n)dF for some a ≥ 0. This strong assumption was verified only in a few cases,

as studied in Puccetti and Rüschendorf (2013a) and Wang et al. (2013). Our asymptotic result does not

require this assumption and hence gives a stronger result. Another recent paper Puccetti et al. (2013) also

studied this equivalence using the complete mixability, and obtained the asymptotic equivalence under

different conditions, without estimates of the convergence rate. Their result requires a strictly positive

and continuous density function of F bounded below on any finite intervals, which, interestingly, is not

comparable to our condition of bounded (above) density. Note that this asymptotic equivalence can also

be generated to possible inhomogeneous portfolios with a finite number of choices of different marginal

distributions (see Puccetti et al. (2013)).

Another interpretation of our result concerns the superadditivity ratio of Value-at-Risk. It is well-

known that the risk measure VaR is often criticized for not being subadditive, and hence it is not coherent.

It is then of interest to study the superadditive ratio δα(n), defined as

δα(n) =
VaRα(n, F)
VaR+

α(n, F)

where VaR+
α(n, F) = nVaRα(F) is called the VaR of comonotonic risks. For discussion on δα(n) in risk

aggregation, we refer to Embrechts et al. (2013). It was mentioned in the latter paper that numerical

evidence suggests that δα(n) converges to a limit quite fast, without theoretical proofs. Our result shows

that this limit exists and it can be identified easily.

Corollary 3.7. For F with a finite mean and a bounded density and F−1(α) > 0,

δα(n) =
VaRα(n, F)
VaR+

α(n, F)
→

ESα(F)
VaRα(F)

=
1

1 − α

∫ 1
α

F−1(p)dp

F−1(α)
.

15



4 Dual Representation of the Complete Mixability

In this section, we give a dual representation of the recently developing concept of complete mixability,

and provide dual proofs of properties of complete mixability shown in the literature by probabilistic

methods.

4.1 Preliminaries on complete mixability

We first give a summary of the existing results on completely mixable distributions which we will use in

the remainder.

Definition 4.1. A distribution function F on R is called n-completely mixable (n-CM) if there exist n

random variables X1, . . . , Xn identically distributed as F such that

X1 + · · · + Xn = nµ, (4.1)

for some µ ∈ R. Any such µ is called a center of F and any vector (X1, . . . , Xn) satisfying (4.1) with

Xi ∼ F, 1 ≤ i ≤ n, is called an n-complete mix.

It is obvious that if F is n-CM and has finite mean µ, then its center is unique and equal to µ. We

denote byMn(µ) the set of all n-CM distributions with center µ, and byMn =
⋃
µ∈RMn(µ) the set of all

n-completely mixable distributions on R.

The following mean condition proposed in Wang and Wang (2011) is important to the CM distribu-

tions.

Definition 4.2 (Mean condition). Let F be a distribution with finite mean µ, and [a, b] be the essential

support of F, i.e. a = sup{t ∈ R : F(t) = 0} and b = inf{t ∈ R : F(t) = 1}. We say F satisfies the mean

condition, if

a +
b − a

n
≤ µ ≤ b −

b − a
n

. (4.2)

In the above condition, a and b can be finite or infinite. It turns out that the mean condition is

necessary for a CM distribution.

Proposition 4.1 (Wang and Wang (2011)). Suppose F ∈ Mn(µ), then F satisfies the mean condition

(4.2).

Some straightforward examples of completely mixable distributions are given in Wang and Wang

(2011). We summarize the existing theoretical results below.

Proposition 4.2. The following statements hold.

(a) F is 1-CM if and only if F is the distribution of a constant.
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(b) F is 2-CM if and only if F is symmetric, i.e. X ∼ F and a − X ∼ F for some constant a ∈ R.

(c) Any linear transformation of a n-CM distribution is n-CM.

(d) If F,G ∈ Mn(µ), then λF + (1 − λ)G ∈ Mn(µ) for λ ∈ [0, 1].

(e) F ∈ Mn(µ) ∪Mk(µ) for n, k ∈ N, then F ∈ Mn+k(µ).

(f) Any continuous distribution function F having a symmetric and unimodal density is n-CM for n ≥ 2.

(Rüschendorf and Uckelmann (2002).)

(g) Suppose F is a continuous distribution with a monotone density on its support, then the mean condi-

tion (4.2) is sufficient. (Wang and Wang (2011).)

(h) Suppose F admits a concave density on its support, then F is n-CM for n ≥ 3. (Puccetti et al. (2012).)

For n = 1 or n = 2, Mn(µ) is fully characterized. However, for n ≥ 3, the full characterization

on Mn(µ) is still an open question and has been extremely challenging. In this paper, we give a dual

representation of the complete mixability with the hope to give another possible research direction on the

complete mixability.

4.2 Dual representation of the complete mixability

In this section we associate the duality to the complete mixability. By definition, we know that for any

distribution F, F ∈ Mn(µ)⇔ wn,F(nµ) = 0. Moreover, for any distribution F with mean µ, F ∈ Mn(µ)⇔

mn,F(nµ) = 0. This allows us to give two dual representation of the complete mixability.

Using Lemma 2.1, we give a dual presentation of n-CM distributions.

Theorem 4.3 (Dual representation of complete mixability).

(a) A probability distribution F is n-completely mixable with center µ if and only if
∫

f dF ≥ 1 for all

f ∈ Bn(µ).

(b) A probability distribution F with finite mean µ is n-completely mixable if and only if
∫

f dF ≥ 1 for

all f ∈ An(µ).

Proof. (a) By the definition of n-CM distributions, F ∈ Mn(µ) ⇔ wn,F(nµ) = 0. By Lemma 2.1, it is

again is equivalent to inf{
∫

f dF : f ∈ Bn(µ)} = 1. Since the function f (x) = 1 is always in Bn(µ),

inf{
∫

f dF : f ∈ Bn(µ)} = 1⇔ inf{
∫

f dF : f ∈ Bn(µ)} ≥ 1.

(b) Suppose F ∈ Mn(µ). Since An(µ) ⊂ Bn(µ), by (a) we have
∫

f dF ≥ 1 for all f ∈ An(µ). Now

suppose
∫

f dF ≥ 1 for all f ∈ An(µ). By Lemma 2.1, we have mn,F(nµ) = 0. Then there exist
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random variables X1, · · · , Xn ∼ F such that P(X1 + · · · + Xn ≥ nµ) = 1 a.s. Also note that E[X] = µ,

thus P(X1 + · · · + Xn = nµ) = 1 and F ∈ Mn(µ).

�

Remark 4.1. Although being very similar, Theorem 4.3 (a) and (b) can be used in different situations.

In general, when we consider the complete mixability of a distribution F with finite mean, the smaller set

An(µ) is more convenient to use than the larger set Bn(µ). However, when the mean of F does not exist,

(b) cannot be used. Also note that, if we replace [nµ,∞) in the definition of An(µ) by (−∞, nµ], (b) still

holds.

Remark 4.2. For a given function f , it is easy to check whether f is in An(µ) or Bn(µ). However, it is

hard to characterize all the functions in An(µ) or Bn(µ). In general, when a distribution F is given, it is

yet difficult to check if
∫

f dF ≥ 1 for all f in An(µ) or Bn(µ).

Recall that for any distribution F with mean µ, F ∈ Mn(µ) is equivalent to mn,F(nµ) = 0. We can

the asymptotic mixability by the condition mn,F(nµ)→ 0 as n→ ∞.

Definition 4.3. A distribution F with mean µ is asymptotically mixable if mn,F(nµ)→ 0 as n→ ∞.

The asymptotic mixability of F states that for any ε > 0, there exist n ∈ N random variables

X1, · · · , Xn from the distribution F such that P(X1 + · · · + Xn ≥ nµ) ≥ 1 − ε. By Corollary 3.5, we

immediately obtain that all distributions with a bounded density are asymptotically mixable. However, it

is left open to answer whether all distributions are asymptotically mixable.

Corollary 4.4. Any distribution with a bounded density is asymptotically mixable.

4.3 Dual proofs of CM properties

In this section, we give dual proofs of some theorems given in the literature of complete mixability. Some

of the results are surprisingly simple to prove using the duality, but non-trivial to prove using probabilistic

methods.

Theorem 4.5 (Completeness and convexity). In the following, n ∈ N and µ ∈ R.

(i) The (weak) limit of n-CM distributions with center µ is n-CM with center µ.

(ii) A (possibly infinite) convex combination of n-CM distributions with center µ is n-CM with center µ.

Proof. In the following suppose Fk ∈ Mn(µ), k = 1, 2, · · · . Then for all f ∈ Bn(µ),
∫

f dFk ≥ 1 for

k = 1, 2, · · · .

(i) Suppose Fk → F. We have
∫

f dF = limk→∞
∫

f dFk ≥ 1, thus F ∈ Mn(µ).
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(ii) Suppose F =
∑∞

k=1 akFk where ak ≥ 0,
∑∞

k=1 ak = 1. We have
∫

f dF =
∫

f d(
∑∞

k=1 akFk) =∑∞
k=1 ak

∫
f dFk ≥ 1, thus F ∈ Mn(µ).

�

Remark 4.3. The above theorem summarizes the completeness theorems in Puccetti et al. (2012) where

a non-trivial probabilistic proof was given.

Proposition 4.6. In the following, n, k ∈ N and µ ∈ R. If F ∈ Mn(µ) ∪Mk(µ), then F ∈ Mn+k(µ). In

particular, F ∈ Mdn(µ) for any d ∈ N.

Proof. By Proposition 2.4, we know that for any f ∈ Bn+k(µ), we have f ∈ Bn(µ) ∪ Bk(µ). This implies∫
f dF ≥ 1 and hence F ∈ Mn+k(µ). �

Remark 4.4. The above proposition was also given in Proposition 2.1 of Wang and Wang (2011).

Very often, the CM distributions on finite intervals are of our interest. Since the complete mixability

is affine invariant, we focus all our discussions on distributions on [0, 1]. Necessary conditions of the

complete mixability are given in the following theorem.

Theorem 4.7 (Necessary conditions). Suppose F ∈ Mn(µ) is a probability distribution on [0, 1], then

F( nµ
k ) ≥ n−k+1

n and F( nµ−n+k
k ) ≤ k−1

n for all k = 1, · · · , n. In particular,

(i) 1
n ≤ µ ≤ 1 − 1

n , given that [0, 1] is the essential support of F (see (4.2)).

(ii) 1
n ≤ F(µ) ≤ 1 − 1

n .

Proof. Let X ∼ F be a random variable. Take f = n
n−k+1 1(−∞, nµ

k ]. When x1 + · · · + xn = nµ, since

x1 + · · · + xn ≥ x1 + · · · + xk, we have at most k − 1 of {x1, · · · , xn} greater than nµ
k . Thus,

n∑
i=1

1(−∞, nµ
k ](xi) ≥ n − k + 1,

hence f (x1) + · · · + f (xn) ≥ n and f ∈ Bn(µ).
∫

f dF ≥ 1 implies that F( nµ
k ) ≥ n−k+1

n .

Similarly, take f = n
n−k+1 1[ nµ−n+k

k ,∞). When x1 +· · ·+xn = nµ, since x1 +· · ·+xn ≤ x1 +· · ·+xk +(n−k),

we have at most k − 1 of {x1, · · · , xn} smaller than nµ−n+k
k . Thus, f (x1) + · · · + f (xn) ≥ n, and f ∈ Bn(µ).∫

f dF ≥ 1 implies that 1 − F( nµ−n+k
k ) ≥ n−k+1

n , thus F( nµ−n+k
k ) ≤ k−1

n .

In particular,

(i) Take k = 1. We have F(nµ) = 1 and F(nµ− n + 1) = 0. This implies if [0, 1] is the essential support

of F, then 1 ≤ nµ ≤ n − 1.

(ii) Take k = n. We have F(µ) ≥ 1
n and F(µ) ≤ n−1

n .
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Remark 4.5. These necessary conditions can also be obtained using probabilistic methods. (i) is the

mean condition (4.2) first given in Wang and Wang (2011). In the appendix of Puccetti et al. (2013), a

probabilistic proof of these necessary conditions was given.

Theorem 4.8 (Unimodal and symmetric distributions). Any distribution with a unimodal and symmetric

density is n −CM for n ≥ 2.

Proof. We first prove that a uniform distribution U on [0, 1] is n-CM for n ≥ 2 using the duality. For any

f ∈ An(1/2), write ∫
f dU = lim

m→∞

1
nm

nm∑
i=1

f
( i
nm

)
= lim

m→∞

1
nm

nm∑
i=1

f
(

i + 1
nm

)
.

It is easy to see that the numbers in the last summation (from 2 to nm + 1) can be divided in to m

subgroups, such that there are n numbers with the sum at least (1 + nm)nm/2 in each subgroup. Thus,

since f ∈ An(1/2), we have
∑nm

i=1 f ( i+1
nm ) ≥ nm. Therefore,

∫
f dU ≥ 1. and U is n-CM for n ≥ 2. Now,

Suppose F is a distribution with a unimodal and symmetric density. It is obvious that F can be written

as the limit of a convex combination of uniform distributions with the same mean as F, and hence by

Theorem 4.5, F is n-CM for n ≥ 2. �

Remark 4.6. The above theorem summarizes the main result of Rüschendorf and Uckelmann (2002).

We note that for the other existing results such as the main theorems in Wang and Wang (2011) and

Puccetti et al. (2012) based on combinatorial techniques, a dual proof is not easy to find.

5 Conclusion

In this paper, we studied the duality for the bounds on the distribution of aggregate risk with uncertain-

ty of dependence, mn,F(s) = inf {P(ψ(X) < s) : Xi ∼ F, i = 1, · · · , n} . It was proved for any continuous

distribution F with a bounded density that

mn,F(ns)→ F(a0)

as n → ∞ where a0 = inf{a ∈ R : E[X|X ≥ a] ≥ s, X ∼ F}. We provided an upper bound on

mn,F(ns) which turns out to converge to the real value of mn,F(ns) with a controlled convergence rate.

An application of our result in risk management directly indicates that the worst-case Value-at-Risk is

asymptotically equivalent to the worst-case Expected Shortfall with dependence uncertainty, and gives

the asymptotic superadditivity ratio of Value-at-Risk. We also provided a dual representation of the

complete mixability and proved existing theoretical results using the dual representation, which enriches

the mathematical tools for the theory of complete mixability.
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There are also many open questions in the related study. For the asymptotic bounds, it would be

natural (and challenging) to generalize the bounds to inhomogeneous marginal distributions. Also, exact

values (or more accurate bounds) of mn,F(ns) might be found through further study of the admissible sets

An(s). Although the rate of n−1/3 is sufficient for the convergence in our asymptotic results, the rate might

still be improved for more practical applications. For the dual representation of the complete mixability,

one research direction is to generate new classes of completely mixable distributions from the duality.

Also note that the question about the uniqueness of the center of complete mixability has been asked

since the first day of the introduction of the complete mixability, but not yet answered. The admissible

sets Bn(µ) may help to study the uniqueness. That is, is there a distribution F with infinite mean such that∫
f dF ≥ 1 for all f ∈ Bn(µ) ∪ Bn(ν) where µ , ν?
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Rüschendorf, L. (2013). Mathematical Risk Analysis: Dependence, Risk Bounds, Optimal Allocations

and Portfolios. Springer.

Wang, R., Peng, L. and Yang, J. (2013). Bounds for the sum of dependent risks and worst Value-at-Risk

with monotone marginal densities. Finance and Stochastics, 17(2), 395–417.

Wang, B. andWang, R. (2011). The complete mixability and convex minimization problems with mono-

tone marginal densities. Journal of Multivariate Analysis, 102, 1344–1360.

22


